IUScholarWorksIndiana University Libraries
Communities & Collections
All of IUScholarWorks
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
External Users Only:
New external user? Click here to register. Have you forgotten your external user password?
  1. Home
  2. Browse by Author

Browsing by Author "Lajiness, Michael S."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Semantic inference using chemogenomics data for drug discovery
    (BioMed Central Ltd., 2011-06-23) Wild, David J.; Lajiness, Michael S.; Ding, Ying; Challa, Sashikiran; Sun, Yuyin; Zhu, Qian
    Background: Semantic Web Technology (SWT) makes it possible to integrate and search the large volume of life science datasets in the public domain, as demonstrated by well-known linked data projects such as LODD, Bio2RDF, and Chem2Bio2RDF. Integration of these sets creates large networks of information. We have previously described a tool called WENDI for aggregating information pertaining to new chemical compounds, effectively creating evidence paths relating the compounds to genes, diseases and so on. In this paper we examine the utility of automatically inferring new compound-disease associations (and thus new links in the network) based on semantically marked-up versions of these evidence paths, rule-sets and inference engines. Results: Through the implementation of a semantic inference algorithm, rule set, Semantic Web methods (RDF, OWL and SPARQL) and new interfaces, we have created a new tool called Chemogenomic Explorer that uses networks of ontologically annotated RDF statements along with deductive reasoning tools to infer new associations between the query structure and genes and diseases from WENDI results. The tool then permits interactive clustering and filtering of these evidence paths. Conclusions: We present a new aggregate approach to inferring links between chemical compounds and diseases using semantic inference. This approach allows multiple evidence paths between compounds and diseases to be identified using a rule-set and semantically annotated data, and for these evidence paths to be clustered to show overall evidence linking the compound to a disease. We believe this is a powerful approach, because it allows compound-disease relationships to be ranked by the amount of evidence supporting them.
  • Loading...
    Thumbnail Image
    Item
    WENDI: A tool for finding non-obvious relationships between compounds and biological properties, genes, diseases and scholarly publications
    (Chemistry Central, 2010) Zhu, Qian; Lajiness, Michael S.; Ding, Ying; Wild, David J.
    Background: In recent years, there has been a huge increase in the amount of publicly-available and proprietary information pertinent to drug discovery. However, there is a distinct lack of data mining tools available to harness this information, and in particular for knowledge discovery across multiple information sources. At Indiana University we have an ongoing project with Eli Lilly to develop web-service based tools for integrative mining of chemical and biological information. In this paper, we report on the first of these tools, called WENDI (Web Engine for Non-obvious Drug Information) that attempts to find non-obvious relationships between a query compound and scholarly publications, biological properties, genes and diseases using multiple information sources. Results: We have created an aggregate web service that takes a query compound as input, calls multiple web services for computation and database search, and returns an XML file that aggregates this information. We have also developed a client application that provides an easy-to-use interface to this web service. Both the service and client are publicly available. Conclusions: Initial testing indicates this tool is useful in identifying potential biological applications of compounds that are not obvious, and in identifying corroborating and conflicting information from multiple sources. We encourage feedback on the tool to help us refine it further. We are now developing further tools based on this model.
  • Accessibility
  • Privacy Notice
  • Harmful Language Statement
  • Copyright © 2024 The Trustees of Indiana University