IUScholarWorksIndiana University Libraries
Communities & Collections
All of IUScholarWorks
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
External Users Only:
New external user? Click here to register. Have you forgotten your external user password?
  1. Home
  2. Browse by Author

Browsing by Author "Kashaev, R."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Tetrahedral forms in monoidal categories and 3-manifold invariants
    (De Gruyter, 2012) Geer, N.; Kashaev, R.; Turaev, V.
    We introduce systems of objects and operators in linear monoidal categories called $\hat{\Psi}$-systems. A $\hat{\Psi}$-system satisfying several additional assumptions gives rise to a topological invariant of triples (a closed oriented 3-manifold $M$, a principal bundle over $M$, a link in $M$). This construction generalizes the quantum dilogarithmic invariant of links appearing in the original formulation of the volume conjecture. We conjecture that all quantum groups at odd roots of unity give rise to $\hat{\Psi}$-systems and we verify this conjecture in the case of the Borel subalgebra of quantum sl$_{2}$.
  • Accessibility
  • Privacy Notice
  • Harmful Language Statement
  • Copyright © 2024 The Trustees of Indiana University