IUScholarWorksIndiana University Libraries
Communities & Collections
All of IUScholarWorks
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
External Users Only:
New external user? Click here to register. Have you forgotten your external user password?
  1. Home
  2. Browse by Author

Browsing by Author "Giedroc, David P."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii
    (Cell Chemical Biology, 2019) Wang, Jiefei; Lonergan, Zachery R.; Gonzalez-Gutierrez, Giovanni; Nairn, Brittany L.; Maxwell, Christina N.; Zhang, Yixiang; Andreini, Claudia; Karty, Jonathan A.; Chazin, Walter J.; Trinidad, Jonathan C.; Skaar, Eric P.; Giedroc, David P.
    Calprotectin (CP) inhibits bacterial viability through extracellular chelation of transition metals. However, how CP influences general metabolism remains largely unexplored. We show here that CP restricts bioavailable Zn and Fe to the pathogen Acinetobacter baumannii, inducing an extensive multi-metal perturbation of cellular physiology. Proteomics reveals severe metal starvation, and a strain lacking the candidate ZnII metallochaperone ZigA possesses altered cellular abundance of multiple essential Zn-dependent enzymes and enzymes in de novo flavin biosynthesis. The ΔzigA strain exhibits decreased cellular flavin levels during metal starvation. Flavin mononucleotide provides regulation of this biosynthesis pathway, via a 3,4-dihydroxy-2-butanone 4-phosphate synthase (RibB) fusion protein, RibBX, and authentic RibB. We propose that RibBX ensures flavin sufficiency under CP-induced Fe limitation, allowing flavodoxins to substitute for Fe-ferredoxins as cell reductants. These studies elucidate adaptation to nutritional immunity and define an intersection between metallostasis and cellular metabolism in A. baumannii.
  • Accessibility
  • Privacy Notice
  • Harmful Language Statement
  • Copyright © 2024 The Trustees of Indiana University