IUScholarWorksIndiana University Libraries
Communities & Collections
All of IUScholarWorks
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
External Users Only:
New external user? Click here to register. Have you forgotten your external user password?
  1. Home
  2. Browse by Author

Browsing by Author "Altschul, B."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Lorentz violation with an antisymmetric tensor
    (American Physical Society, 2010) Altschul, B.; Bailey, Q.G.; Kostelecký, V.A.
    Field theories with spontaneous Lorentz violation involving an antisymmetric 2-tensor are studied. A general action including nonminimal gravitational couplings is constructed, and features of the Nambu-Goldstone and massive modes are discussed. Minimal models in Minkowski spacetime exhibit dualities with Lorentz-violating vector and scalar theories. The post-Newtonian expansion for nonminimal models in Riemann spacetime involves qualitatively new features, including the absence of an isotropic limit. Certain interactions producing stable Lorentz-violating theories in Minkowski spacetime solve the renormalization-group equations in the tadpole approximation.
  • Loading...
    Thumbnail Image
    Item
    Spontaneous Lorentz violation and nonpolynomial interactions
    (Elsevier, 2005) Altschul, B.; Kostelecký, V.A.
    Gauge-noninvariant vector field theories with superficially nonrenormalizable nonpolynomial interactions are studied. We show that nontrivial relevant and stable theories have spontaneous Lorentz violation, and we present a large class of asymptotically free theories. The Nambu–Goldstone modes of these theories can be identified with the photon, with potential experimental implications.
  • Accessibility
  • Privacy Notice
  • Harmful Language Statement
  • Copyright © 2024 The Trustees of Indiana University