STUDY OF THE 12C(7Li,t)16O α-TRANSFER REACTION AT HIGH ENERGIES

Fred Becchetti, P.M. Lister, and J. Janecke
University of Michigan, Ann Arbor, Michigan 48109

A. Nadasen
University of Michigan, Dearborn, Michigan 48128

J. Winfield
NSCL, Michigan State University, East Lansing, Michigan 48824

D.L. Friesel and K.R. Komisarcik
Indiana University Cyclotron Facility, Bloomington, Indiana 47405

A study of 12C(7Li,t)16O at $E(^7$Li) = 101 MeV was completed at IUCF using two Si ΔE detectors backed by thick intrinsic Ge E detectors. Also, α-particles were observed in coincidence at back angles to identify decay from high spin states in 16O. This utilized a 600 mm2 Si E detector with time-of-flight used for identification.

In addition to the well-known levels at $E_x < 20$ MeV, we may have observed new levels at $E_x > 20$ MeV to 30 MeV and possibly some at $E_x > 30$ MeV (see Figure 1). The analysis of the coincidence α-particle decay data from specific levels has just begun.

A related high-resolution study of 12C(7Li,t) for the region in 16O, $E_x < 10$ MeV was started at NSCL (MSU) using $E(^7$Li) = 80 MeV with the $k = 320$ spectrometer. An initial run resolved both the 7.12/6.92 MeV 1$^-$/2$^+$ doublet and the 9.6 MeV 1$^-$level in 16O which are of interest in astrophysics (helium burning). A second run is scheduled for Spring 1986. This work will be continued and may be extended to higher energies at IUCF using the new $k = 600$ spectrometer.

The high energy 12C(7Li,t)16O data should provide new information on high-spin α-cluster levels in 16O, $E_x > 10$ MeV. It will also permit comparisons with our earlier1 data and analysis of 12C(6Li,d)16O done at IUCF with $E(^6$Li) = 90 MeV. These data can be used to

![Figure 1. A triton energy spectrum and corresponding levels in 16O observed in 12C(7Li,t) at $E(^7$Li) = 101 MeV.](image-url)
test various α-cluster models\(^2\) of \(^{16}\)O and provide additional measurements of α-widths needed for astrophysical calculations.

SEARCH FOR HIGH SPIN STATES IN \(^{27}\)Al AND \(^{27}\)Si

Z-J. Cao, R.D. Bent and H. Mann
Indiana University Cyclotron Facility, Bloomington, Indiana 47405

J.D. Brown
Princeton University, Princeton, New Jersey 08540

Previous studies\(^1\) of the \(A(p,\pi^-)A+1\) reaction have demonstrated the high selectivity of the reaction for states in the residual nucleus which are presumed to have a stretched or nearly stretched two-particle one-hole configuration with respect to the target nucleus. This feature of the \((p,\pi^-)\) reaction has been observed for both light and heavy nuclei\(^1\) and for two cases in the sd-shell: \(^{18}\)O(\(p,\pi^-\))\(^{19}\)Ne and \(^{26}\)Mg(\(p,\pi^-\))\(^{27}\)Si.\(^2\) Studies throughout the lower half of the sd-shell are in progress.\(^3\) To increase the reliability of the \((p,\pi^-)\) reaction as a spectroscopic tool in the sd-shell, it is necessary to obtain, for at least a few cases, independent evidence regarding the spin structure of the states preferentially populated in the \((p,\pi^-)\) reaction.

It has been observed that the \(^{26}\)Mg(\(p,\pi^-\))\(^{27}\)Si reaction populates selectively and strongly two excited states in \(^{27}\)Si at excitation energies of 7 MeV and 9.5 MeV. These states have been tentatively assigned \(13/2^+\) spin and parity. This is the highest spin possible if all the active nucleons are restricted to the sd-shell. Recent shell model calculations\(^4\) predict a \(13/2^+\) state in \(^{27}\)Si at an excitation energy between 7 and 8 MeV and several high spin states around 10 MeV excitation energy.

To date there is little experimental evidence for high spin states in \(^{27}\)Si besides that provided by the \((p,\pi^-)\) reaction. The \(^{27}\)Al(\(^3\)He,\(t\))\(^{27}\)Si reaction is expected to populate the presumed stretched two-particle one-hole states seen in the \(^{26}\)Mg(\(p,\pi^-\))\(^{27}\)Si reaction, and the \(^{24}\)Mg(\(a,p\))\(^{27}\)Al reaction can populate the mirror states in \(^{27}\)Al. We have studied these two reactions in order to obtain supporting evidence for the high spin assignments inferred from the \((p,\pi^-)\) reaction.

We measured the angular distributions of the \(^{24}\)Mg(\(a,p\))\(^{27}\)Al and \(^{27}\)Al(\(^3\)He,\(t\))\(^{27}\)Si reactions using the Princeton AVF (K=60) cyclotron and Quadrupole-Three Dipoles (Q3D) magnetic spectrograph. The angular distributions of the reaction \(^{26}\)Mg(\(^3\)He,\(t\))\(^{26}\)Al leading to the known \(5^+(g.s.), 0^+ (0.228 \text{ MeV}),\) and \(3^+ (0.417 \text{ MeV})\) states were also measured in order to calibrate the "L-signature" for possible high spin state transitions in the \(^{27}\)Al(\(^3\)He,\(t\))\(^{27}\)Si reaction.

The spectra obtained from the \(^{24}\)Mg(\(a,p\))\(^{27}\)Al and \(^{27}\)Al(\(^3\)He,\(t\))\(^{27}\)Si reactions at bombarding energies of