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Pre- and Post-Nicotine Circadian Activity Episodes are Differentially Affected by 

Pharmacological Treatments for Drug Addiction 

 

Nicotine and other drugs of abuse can act as zeitgebers and entrain persisting 

circadian activity episodes when administered on a 24-hour schedule.  There are two 

types of drug-induced circadian activity episodes:  a pre-drug anticipatory episode 

characterized by a rise in activity beginning 1-2 hours prior to the drug administration 

time that is not linked to any predictive environmental cue, and a post-drug evoked 

episode that lasts for approximately the duration of the drug’s physiological half-life.  

The present research examined how pharmacological treatments prescribed for nicotine 

and other substance addictions affected pre- and post-nicotine activity episodes in adult 

female Sprague-Dawley rats housed in wheel boxes under constant light and rate-limited 

feeding.  For 16 consecutive days, the rats were administered a subcutaneous “zeitgeber” 

injection of either nicotine or saline on a 24-hour schedule to establish pre- and post-

administration activity episodes. The rats were then were administered one of nine 

treatment conditions in place of the zeitgeber injection for two consecutive days.  The 

treatment conditions were No Treatment, Saline Treatment, Varenicline, Mecamylamine, 

Acamprosate, Topiramate, Naltrexone, SB-334867, and Bupropion.  The treatment phase 

was followed by a 4-day baseline in which no injections were administered and the rats 

were not disturbed.  The treatment conditions had different effects on pre- and post-drug 

activity episodes as well as nicotine- and saline-induced episodes.   All treatments 
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reduced post-nicotine episodes, whereas post-saline episodes were increased by some 

treatments and decreased by others.  All treatments increased pre-saline activity levels 

except the No Treatment condition and Mecamylamine (a nicotinic acetylcholine receptor 

antagonist), which reduced pre-saline activity.  In contrast, pre-nicotine episodes were 

significantly reduced only by the No Treatment condition and by treatment with either 

the µ- and κ-opioid antagonist naltrexone or the orexin-1 antagonist SB-334867.  These 

results indicate that distinct neural mechanisms mediate both pre- and post-drug circadian 

activity episodes as well as nicotine- and saline-induced circadian effects.  These results 

also argue that a number of pharmacological treatments currently prescribed for nicotine 

addiction may exacerbate pre-nicotine anticipatory episodes, while treatment with 

naltrexone or SB-334867 may help to alleviate the occurrence of these episodes. 
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Pre- and Post-Nicotine Circadian Activity Episodes are Differentially Affected by 

Pharmacological Treatments for Drug Addiction 

 

Introduction 

Substance dependence, often known as drug addiction, is a psychiatric disorder 

characterized by repeated compulsive drug use over extended periods of time that usually 

leads to detrimental effects on the user’s social, occupational, and financial well-being 

(American Psychiatric Association, 2000).  One of the characteristic signs of drug 

addiction is an inability to stop using the drug despite the fact that many drug addicts 

express a desire to quit.  Most substance-dependent individuals require some form of 

treatment intervention to successfully quit, as recovery without intervention is relatively 

rare (Sobell, Ellingstad, & Sobell, 2000).  There is a wide spectrum of pharmacological 

and psychosocial treatments available for drug addiction that aim to alleviate withdrawal 

symptoms, initiate drug abstinence, and/or prevent relapse (Dutra, et al., 2008; Nides, 

2008; Soyka, et al., 2008).  While some treatments are more efficacious than others, there 

does not appear to be a “magic bullet” that will treat all kinds of drug addictions in all 

types of drug users. 

One of the reasons a “magic bullet” treatment is unrealistic is that long-term use 

of addictive drugs leads to numerous changes in several different regions of the brain, 

and many of these changes appear permanent.  Drugs of abuse are known to promote 

associative learning (Hyman, Malenka, & Nestler, 2006), corrupt the mesolimbic 

pathways that mediate the motivational properties of reward (Di Chiara, et al., 2004), and 

interfere with executive decision-making (Kalivas, Volkow, & Seamans, 2005).  It is 
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unlikely that a single treatment could address the breadth of these issues.  Most drugs of 

abuse also have a characteristic withdrawal syndrome that begins in the early stages of 

the quitting process (West & Gossop, 1994) and further complicates treatment regimes. 

The solution to the lack of a “magic bullet” in drug addiction treatment appears to 

be the individualization of drug treatment programs to account for the individual 

circumstances of each drug addict.  Ideally, such individualized programs would account 

for an addict’s history of drug use, the amount of substances used, the environment(s) in 

which the drugs were used, individual drug-taking behaviors, and the level of motivation 

to quit.  It is clear that no two drug users are alike, and therefore, treatment programs 

must have a broad scope and a great deal of flexibility to account for this fact. 

One way in which individual drug addicts differ that could potentially be relevant 

to their treatment is their daily pattern of drug use.  For example, smokers can be 

classified into different chronotypes based on their daily smoking patterns (Chandra, 

Shiffman, Scharf, Dang, & Shadel, 2007), daily fluctuations in nicotine craving, or which 

of the cigarettes they smoke in the course of a day is their favorite (Jarvik, Killen, 

Varady, & Fortmann, 1993).  Heavy alcohol users can also be classified into different 

chronotypes based on their daily drinking schedules.  Many alcohol-dependent 

individuals have rigid daily drinking schedules; most report that they start drinking 

during the same hour each day, usually before noon (Danel, Jeanson, & Touitou, 2003).  

There is also evidence that illicit drug users take drugs on a 24-hour schedule, as 

emergency room admission times for drug overdoses and drug-related medical issues 

show a circadian rhythm with a peak in the early evening (Erickson, Lee, Zautcke, & 

Morris, 1998; Morris, 1987; Raymond, Warren, Morris, & Leikin, 1992).  
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These regular daily consumption patterns shown by drug users provide evidence 

that drugs of abuse affect the timing of internally-driven rhythms that cycle on a schedule 

of approximately 24 hours and are known as circadian rhythms.  Endogenous circadian 

rhythms such as the daily sleep-wake cycle are governed by neural “clocks” that receive 

timing signals from the external environment and send outputs to synchronize the activity 

of specialized cells that generate daily physiological and behavioral events (Rosenwasser, 

2009).  Each individual cell has a molecular clock mechanism that consists of two sets of 

paired genes that are expressed at opposite times of the day (Bell-Pedersen, et al., 2005), 

and these individual molecular clocks respond to the outputs of the neural clocks. 

A great deal of evidence has emerged in recent years showing that neural and 

cellular circadian timing systems are corrupted by drugs of abuse.  Daily nicotine 

administration can alter daily meal patterns (Bellinger, Cepeda-Benito, & Wellman, 

2003; Bellinger, et al., 2005) and phase shift circadian rhythms of heart rate, body 

temperature, and locomotor activity (Jacober, Hasenfratz, & Battig, 1994; Pelissier, 

Gantenbein, & Bruguerolle, 1998).  Nicotine can also phase advance waking times and 

decrease REM sleep (Gillin, Lardon, Ruiz, Golshan, & Salin-Pascual, 1994).  Daily 

ethanol administration can phase shift circadian activity and body temperature rhythms 

(Baird, et al., 1998; Eastman, Stewart, & Weed, 1994).  Methamphetamine administered 

in the drinking water can restore circadian locomotor, body temperature, water drinking, 

and feeding rhythms to arrhythmic SCN-lesioned rats (S. Honma, Honma, Shirakawa, & 

Hiroshige, 1988).  Finally, daily administrations of nicotine (Gillman, Kosobud, & 

Timberlake, 2008), cocaine (White, Feldon, Heidbreder, & White, 2000), 

methamphetamine (Kosobud, Pecoraro, Rebec, & Timberlake, 1998; Pecoraro, Kosobud, 
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Rebec, & Timberlake, 2000), fentanyl (Gillman, Leffel, Kosobud, & Timberlake, 2009), 

and ethanol (Kosobud, et al., 2009) have all been shown to entrain circadian episodes of 

locomotor activity that are separate from the light-entrained activity rhythm.   

Studies of human drug addicts have confirmed that these individuals show 

extensive disruptions in endogenous circadian rhythms.  In the absence of 

pharmacological treatment interventions, newly abstinent heroin users fail to show 

circadian rhythmicity in the expression of adrenocorticotropic hormone (ACTH), β-

endorphin, interleukin-2 (IL-2), and the mRNA of the clock genes hPer1 and hPer2 in 

peripheral blood cells for up to 30 days after the initiation of abstinence (Li, et al., 2009).  

These individuals also show elevated levels of cortisol and elevated expression of the 

clock genes hPer1 and hCLOCK in addition to reduced levels of leptin, neuropeptide Y 

(NPY), IL-2, and tumor necrosis factor (TNF) during the first month of abstinence.  

These persisting drug-induced disruptions in physiological circadian rhythms may 

contribute to withdrawal symptoms, hinder the initiation of abstinence, and/or increase 

vulnerability to relapse. 

Despite extensive evidence showing the involvement of circadian timing systems 

in the development, expression, and maintenance of drug addiction, the potential role of 

circadian processes in the treatment of drug addiction is largely unexplored.  The present 

study sought to expand this area of research by examining how pharmaceutical 

substances prescribed to treat nicotine and other drug addictions affect circadian activity 

episodes in rats that are entrained to a daily nicotine administration and that appear to 

reflect circadian aspects of drug craving, anticipation, and/or seeking behaviors.   
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A major goal of this work is develop procedures, results, and hypotheses that can 

lead to improvements in the individualization of drug treatment programs.  Specifically, 

the present study will help to clarify the predictability of how drug users with strong 

circadian patterns of drug use (and presumably strong circadian-based drug cravings) will 

respond to pharmacological treatments for drug addiction.  Additionally, the results of 

this study will help to isolate the neurotransmitter systems that mediate nicotine-induced 

circadian episodes, as several different treatments with a variety of pharmacological 

profiles will be tested. 

Circadian Timing Mechanisms 

 The Earth rotates on its axis approximately once every 24 hours.  This rotation 

organizes each 24-hour day into one long period of light and one long period of dark 

across most of the planet’s surface.  This basic day/night structure has existed throughout 

the evolution of most of the organisms on Earth (Hunt, 1979).  Consequently, most 

organisms evolved some kind of endogenous timing or “clock” mechanism to 

synchronize physiological and behavioral processes to the 24-hour day.  Most 

physiological events and behaviors that are critical to the survival of an animal show 

circadian or 24-hour rhythmicity, including the sleep-wake cycle (Aschoff, 1965), the 

consumption of large daily meals (Mistlberger, 1994), fluctuations in body temperature 

(Aschoff, 1983), and the release of several hormones, including corticosteroids that 

regulate physiological responses to stress (Moore & Eichler, 1972).   

Endogenous or internally-driven circadian rhythms have two important 

characteristics.  First, as these rhythms are generated by cells within the body, they have 

an intrinsic rhythm that is approximately, but often not equal to 24 hours (Aschoff, 1965; 
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Aschoff, Hoffmann, Pohl, & Wever, 1975).  Second, the period lengths of these intrinsic 

rhythms can be shortened or lengthened to match up with special time cues known as 

zeitgebers that signal the passage of a day in the external environment.  Most endogenous 

circadian rhythms respond to the zeitgeber of light; specifically, the transition from light 

to dark throughout the day that occurs as the sun rises and sets.  However, other external 

stimuli are able to act as zeitgebers, including large meals (Mistlberger & Rusak, 1987), 

social stimuli (Mrosovsky, Reebs, Honrado, & Salmon, 1989), and administration of 

drugs of abuse (Kosobud, et al., 2007).  If no zeitgebers are present in an organism’s 

environment, these internally-driven rhythms will continue to oscillate on a schedule of 

approximately, but usually not exactly 24 hours.  Such rhythms are known as free-

running rhythms and are essentially the expression of biological errors in time-keeping.  

These characteristics are critical to the identification of both endogenous circadian 

rhythms and unknown zeitgebers and to distinguish them from Pavlovian stimulus-

response associations which do not show free-running rhythmicity.  

At the cellular level, circadian rhythms are regulated by two sets of paired 

elements known as “clock” genes that are expressed at opposite times during the 24-hour 

day in a transcriptional-translational autoregulatory feedback loop (Bell-Pedersen, et al., 

2005).  The active part of the rhythm (such as the release of a hormone) is generated by 

the expression of the positive or “ON” genes.  This gene expression then encodes the 

activation of the negative or “OFF” genes in the feedback loop.  These negative genes 

prevent the expression of the positive genes until they are degraded by metabolic 

processes in the cell.  Once the negative genes are fully degraded, the positive genes can 

be expressed, and the feedback loop begins again.  This entire process takes 
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approximately 24 hours to complete, and the length of this feedback loop dictates the 

free-running periodicity of endogenous circadian rhythms. 

This basic molecular feedback loop occurs in some iteration in every organism in 

which circadian rhythms have been studied to date.  In mammals, the positive genes in 

the genetic clock are known as CLOCK (Circadian Locomotor Output Cycles Kaput) and 

BMAL1 (Brain-mediated ARNT-like Protein 1), two genes in the nucleus of the cell that 

form a heterodimer (Ko & Takahashi, 2006).  A paralog of CLOCK known as NPAS2 

can also dimerize with BMAL1 and appears to function in place of CLOCK in some 

regions of the brain (DeBruyne, Weaver, & Reppert, 2007).  The formation of a 

CLOCK:BMAL1 (or NPAS2:BMAL1) heterodimeric protein chain in the nucleus of a 

cell activates the transcription of the negative genes in the mammalian molecular clock.  

These negative genes are known as Period (Per), which has three subtypes, Per1 – Per3, 

and Cryptochrome (Cry), which has two subtypes, Cry1 and Cry2 (Ko & Takahashi, 

2006).  Per and Cry form a second heterodimer that acts in a negative feedback loop to 

suppress their own transcription in the nucleus by inhibiting the expression of the 

CLOCK:BMAL1 heterodimer.  As the Per:Cry complex degrades, CLOCK and BMAL1 

are re-expressed, and the feedback loop starts over.  

Each individual cell that expresses this molecular feedback loop can operate 

independently of other cells.  However, the cacophony of individually oscillating cells 

can be synchronized by the outputs of a group of cells that collectively act as a master 

clock system or oscillator (Morin & Allen, 2006; Verwey & Amir, 2009).  The master 

clock sends electrical and/or chemical outputs to dictate the activity of downstream cells, 

and, when a zeitgeber is present in the environment, receives inputs that allow it to match 
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its own oscillation with the presentation of the zeitgeber.  To date, there are three basic 

types of oscillator systems that have been identified by their zeitgebers:  the light-

entrainable oscillator system, the food-entrainable oscillator, and the drug-entrainable 

oscillator. 

The light-entrainable circadian system.  As stated above, most endogenous 

circadian rhythms respond to the zeitgeber of the daily light/dark cycle.  When light 

photons enter the eye, they activate three basic types of photoreceptors on the most 

posterior layer of the retina:  rods, cones, and melanopsin-containing cells (Morin & 

Allen, 2006).  The activation of these retinal photoreceptors stimulates neurons that 

project to numerous regions of the brain that mediate vision and control the muscles of 

the eye.  Light-induced activation of retinal photoreceptors also activates a circadian 

visual pathway that is independent of the primary visual and occulomotor pathways. 

The circadian visual pathways stretch from the retina to the suprachiasmatic 

nuclei (SCN) of the hypothalamus both directly via the retinohypothalamic tract (RHT) 

(Moore & Lenn, 1972) and indirectly via the geniculohypothalamic tract (GHT) that 

passes through the intergeniculate leaflet (Swanson, Cowan, & Jones, 1974).  The SCN 

are regions of approximately 11,000 neurons (Guldner, 1983) that act as a master clock to 

synchronize the activity of cells in the brain and periphery to produce light-entrainable 

behavioral and physiological rhythms (Ralph, Foster, Davis, & Menaker, 1990; Silver & 

Schwartz, 2005; Stephan & Zucker, 1972).  In mammals, the SCN acts as the master 

clock for the majority of the known endogenous circadian rhythms, including the sleep-

wake cycle (Ibuka & Kawamura, 1975; Mistlberger, 2005), locomotor activity (Schwartz 

& Zimmerman, 1991; Stephan & Zucker, 1972), the release of hormones such as adrenal 
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corticosterone (Moore & Eichler, 1972), and metabolic processes such as dopamine 

metabolism (Perlow, Gordon, Ebert, Hoffman, & Chase, 1977).  When the SCN is 

lesioned, these processes lose their periodicity and become arrhythmic. 

The SCN has four major output pathways that have been identified (LeSauter & 

Silver, 1998; Morin & Allen, 2006).  The rostral or anterior pathway projects to the 

medial preoptic area (which receives vasopressin), the ventrolateral septum, the bed 

nucleus of the stria terminalis, and the anterior paraventricular nucleus of the thalamus, 

which receives both vasopressin and vasoactive intestinal polypeptide (VIP).  The lateral 

pathway projects to the intergeniculate leaflet and appears to interact with the primary 

visual pathways.  The posterior pathway projects to the posterior paraventricular 

thalamus, the precommissural nucleus, and the olivary pretectal nucleus.  Finally, the 

periventricular pathway projects to several other hypothalamic nuclei, and many of the 

peptides transmitted to these nuclei by the SCN neurons have been described.  VIP and 

gastrin-related peptide (GRP) are transmitted to the subparaventricular zone, vasopressin 

and VIP are transmitted to the paraventricular hypothalamic nucleus, and vasopressin, 

VIP, and GRP are all transmitted to the dorsomedial hypothalamic nucleus.  The SCN 

also projects to the ventromedial hypothalamic nucleus, the arcuate nucleus, and the 

premammillary area in the periventricular pathway.  There is also evidence that the SCN 

can transmit chemical outputs without axonal projections via diffusible chemical 

pathways, as SCN-driven locomotor rhythms can still persist when all efferent 

projections of the SCN are severed (Hakim, Debernardo, & Silver, 1991). 

The RHT and GHT transmit several different types of neurotransmitters that 

affect the firing of SCN neurons.  The primary neurotransmitters of the RHT are 
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glutamate (Ebling, 1996) and pituitary adenylate cyclase-activating peptide (PACAP) 

(Morin & Allen, 2006), although this pathway also transmits aspartate, nitric oxide, and 

substance P.  The transmission of glutamate in the RHT and the sensitivity of SCN 

neurons to the effects of glutamate correspond to the effects of light on the SCN (Gillette 

& Mitchell, 2002).  Both light pulses and glutamate transmission can induce phase shifts 

in SCN-driven circadian rhythms during the subjective night (the dark phase of the 

light/dark cycle), but not during the subjective day.  In contrast, PACAP appears to act as 

the functional opposite of glutamate and light; PACAP transmission can induce phase 

shifts during the subjective day, but not at night. 

The primary neurotransmitter of the GHT appears to be GABA (Morin & 

Blanchard, 2001), although this pathway also transmits neuropeptide Y, neurotensin, and 

enkephalin (Morin & Allen, 2006).  Although GABA is generally considered a 

universally inhibitory neurotransmitter, SCN neurons show differential responses to 

GABA during the day and at night.  During the subjective day, GABA transmission 

elicits an excitatory response from SCN neurons, whereas during the subjective night, 

GABA has an inhibitory effect on these cells.  GABA also appears to serve as the major 

synchronizing mechanism among the neurons within the SCN and is transmitted widely 

throughout the region (Morin & Allen, 2006).  

Although photic information from the RHT and GHT provide the major zeitgeber 

input into the SCN, there are several other afferent pathways that can affect the activity of 

SCN neurons.  Serotonin is transmitted to the SCN from projections that originate in the 

median raphe nucleus (Glass, DiNardo, & Ehlen, 2000). Acetylcholine is transmitted 

from the basal forebrain and brainstem (Bina, Rusak, & Semba, 1993), and SCN neurons 
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respond to these cholinergic inputs during the subjective night, but not the subjective day 

(Morin & Allen, 2006).  The SCN also receives inputs from several other hypothalamic 

nuclei, including the dorsomedial and ventromedial hypothalamic nuclei, and from the 

regions of the brain that mediate interoception, including the insular cortex, the 

infralimbic cortex, the parabrachial nucleus, the olfactory cortex, and the autonomic 

nervous system via the vagus nerve (Krout, Kawano, Mettenleiter, & Loewy, 2002; Moga 

& Moore, 1997). 

Although light is undoubtedly the most powerful zeitgeber of SCN-driven 

rhythms, several non-photic stimuli have been shown to affect the firing of SCN neurons 

and induce phase shifts in SCN-driven rhythms during the subjective day when the SCN 

does not respond to light pulses and shows maximal Period gene expression (Morin & 

Allen, 2006).  In most cases, the phase shifts induced by these non-photic stimuli are 

associated with decreased Per expression.  Non-photic stimuli that are able to phase shift 

SCN-driven rhythms include novel wheel-running activity (Maywood & Mrosovsky, 

2001) and treatment with addictive drugs including the benzodiazepine analog brotizolam 

(Yokota, et al., 2000), fentanyl (Vansteensel, et al., 2005), and nicotine (Ferguson, 

Kennaway, & Moyer, 1999; Trachsel, Heller, & Miller, 1995).   

The food-entrainable circadian system.  Although the majority of endogenous 

circadian rhythms have been shown to be controlled by the SCN, there is a small subset 

of circadian rhythms that clearly are neither entrained by light nor controlled solely by 

the outputs of the SCN.  Animals with complete bilateral SCN lesions do not lose 

circadian periodicity in locomotor activity, body temperature, or adrenal corticosterone 

rhythms that have been entrained to the regular daily presentation of a large meal 
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(Krieger, Hauser, & Krey, 1977; Phillips & Mikulka, 1979; Stephan, Swann, & Sisk, 

1979a, 1979b).  Like the zeitgeber of light, a large daily meal can only entrain such 

activity when presented at an interval greater than 23 hours or less than 29 hours 

(Mistlberger, 1994; Stephan, 1981), a time window known as the range of entrainment.  

Further, when animals are kept in constant light or constant dark and on a restricted daily 

feeding schedule, the light-entrainable, SCN-driven locomotor rhythm will free-run 

independently of the food-driven anticipatory locomotor rhythm (Stephan, et al., 1979a).  

In contrast to light-entrained rhythms, peak levels of food-entrained rhythms emerge 

several hours before the zeitgeber is presented and drop off shortly after the meal is 

consumed (Mistlberger, 1994).  As with all endogenous circadian rhythms, food-

anticipatory rhythms will persist on an approximately circadian schedule for several days 

after the meal is withheld. 

At the molecular level, the pre-feeding episodes of food-anticipatory rhythms 

appear to be associated with the expression of the Period2 and Cryptochrome clock 

genes.  Although Per1 mutant mice show regular food-anticipatory activity, Per2 mutants 

do not show significant food-anticipatory rhythms (Feillet, et al., 2006).  Likewise, 

Cry1/Cry2 double knockout mice show greatly reduced food-anticipatory activity 

compared to wild type mice (Iijima, et al., 2005).  CLOCK mutant mice are arrhythmic 

for light-entrainable circadian rhythms, but do show normal food-anticipatory activity to 

a daily meal (Pitts, Perone, & Silver, 2003).  However, mice deficient for NPAS2 (a 

paralog of CLOCK that is not expressed in the SCN but is expressed in other forebrain 

areas) take a long time to acquire food-anticipatory activity (Dudley, et al., 2003), so the 

expression of pre-feeding activity bouts may not be solely derived from the expression of 
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Per2 and Chryptochrome.  It has been reported that BMAL-1 deficient mice do not show 

food-anticipatory activity rhythms and that restoration of BMAL1 expression is sufficient 

to restore these rhythms (Fuller, Lu, & Saper, 2008a), but these results have been strongly 

contested (Fuller, Lu, & Saper, 2008b; Fuller, Lu, & Saper, 2009; Mistlberger, et al., 

2009a; Mistlberger, et al., 2009b; Mistlberger, et al., 2008; Pendergast, et al., 2009).  It 

has also been suggested that food-anticipatory circadian rhythms may operate completely 

independently of the known mammalian molecular clock (Storch & Weitz, 2009). 

 The food-entrainable oscillator that governs food-anticipatory rhythms was 

originally believed to be a discrete region that operated much like the SCN with a 

discrete zeitgeber input pathway and widespread output pathways to synchronize cells 

throughout the brain and periphery.  This hypothesis appears to be false, as several 

decades of studies have shown that food-anticipatory rhythms persist after lesions of the 

vast majority of the brain (Davidson, 2009; Mistlberger, 1994, 2009).  The location and 

circuitry of the food-entrainable oscillator is currently the subject of considerable 

controversy among researchers.   

 In the past decade, a great deal of research on the food-entrainable oscillator 

system has focused on the dorsomedial hypothalamic nucleus (DMH).  Activity of DMH 

neurons has been linked to several circadian rhythms, including feeding, the sleep-wake 

cycle, and the transmission of corticosteroids (Chou, et al., 2003; Elmquist, Ahima, Elias, 

Flier, & Saper, 1998; Verwey & Amir, 2009).  As stated above, the DMH is a major 

target of SCN efferent signals and receives vasopressin, VIP, and GRP from this region 

(Morin & Allen, 2006).  In addition to the SCN, the DMH also receives projections from 

most of the other hypothalamic nuclei, particularly the preoptic area (Thompson & 
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Swanson, 1998).  The DMH also receives projections from the brainstem and several 

areas of the telencephalon, including the ventral subiculum, the infralimbic cortex, the 

lateral septal nucleus, and the bed nucleus of the stria terminalis.  The DMH receives 

inputs of both the satiety-associated neuropeptide leptin and the hunger-associated 

neuropeptide ghrelin (Elmquist, et al., 1998; C. B. Lawrence, Snape, Baudoin, & 

Luckman, 2002). 

The DMH itself has three major efferent projection pathways to other 

hypothalamic nuclei.  First, the DMH projects to the paraventricular hypothalamic 

nucleus (PVH), a region associated with the transmission of corticosteroids and the 

autonomic responses to stress (Elmquist, et al., 1998).  Second, the DMH transmits 

GABA to the ventrolateral preoptic nucleus (VLPO), a region of neurons whose activity 

promotes sleep (Chou, et al., 2003).  Finally, the DMH transmits glutamate to the lateral 

hypothalamus (LH), the origin of most of the neurons that transmit the neuropeptide 

orexin, which is sometimes known as hypocretin (De Lecea, et al., 1998; Preti, 2002).  In 

contrast to the VLPO, activity of LH neurons is linked to wakefulness, and the 

transmission of orexin from these neurons promotes wakefulness and decreases REM 

sleep (Piper, Upton, Smith, & Hunter, 2000) and induces feeding in rats (Sakurai, et al., 

1998).  In sum, the activation of DMH neurons is directly influenced by the SCN and 

peripheral feeding-related inputs and is associated with arousal, stress responses, and 

feeding. 

Studies that have used lesions to examine the function of the DMH in food-

anticipatory rhythms have reported widely different results depending on the techniques 

and measurements utilized.  Excitotoxic (ibotenic acid) lesions of the DMH have been 
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shown to reduce the circadian rhythm of ad libitum feeding (Chou, et al., 2003) and to 

greatly reduce food-anticipatory (general) locomotor activity and increases in body 

temperature as measured by implanted telemetry transmitters (Gooley, Schomer, & 

Saper, 2006).  However, radiofrequency lesions of the DMH do not abolish food-

anticipatory locomotor activity as measured by sensors both in the cage and in the food 

cup (Landry, Simon, Webb, & Mistlberger, 2006; Landry, Yamakawa, Webb, Mear, & 

Mistlberger, 2007).  These apparently contradictory findings may be due to 

methodological differences (Davidson, 2009; Gooley & Saper, 2007; Landry & 

Mistlberger, 2007; Mistlberger, 2009), but it remains unclear whether the inactivation of 

DMH neurons has a demonstrable effect on food-anticipatory circadian rhythms. 

 Numerous studies have examined how restricted daily feeding affects clock gene 

oscillation and expression in the brain and periphery.  A single daily meal elicits 

rhythmic Per1 and Per2 expression in the DMH, the nucleus of the solitary tract (NTS), 

and the area postrema (AP) that is synchronized to food-anticipatory activity and food 

availability and is not present in rats fed ad libitum (Mieda, Williams, Richardson, 

Tanaka, & Yanagisawa, 2006).  Restricted daily feeding schedules will also entrain the 

rhythms of Per1, Per2, Per3, and Cry1 expression in the liver independently of the 

light/dark cycle but do not alter clock gene expression in the SCN (Damiola, et al., 2000; 

Hara, et al., 2001).  Although lesions of the DMH will phase advance the Per2 rhythm in 

the liver, a large meal can still entrain this rhythm in DMH-lesioned animals (Tahara, 

Hirao, Moriya, Kudo, & Shibata, 2010).  Therefore, although the DMH is likely an 

important relay for the synchronization of food-anticipatory circadian rhythms, it does 

not appear to act as an oscillator that is comparable to the SCN. 
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Food is an example of a natural reward, and like other rewarding stimuli, 

palatable food activates the mesocorticolimbic pathways that mediate the motivation to 

seek rewards (Wise, 2004).  Other rewarding stimuli have also been shown to entrain 

anticipatory circadian rhythms independent of feeding when presented on a 24-hour 

schedule, including water access (Mistlberger, 1992) and highly palatable treats such as 

sucrose (Pecoraro, Gomez, Laugero, & Dallman, 2002) and chocolate (Ángeles-

Castellanos, Salgado-Delgado, Rodríguez, Buijs, & Escobar, 2008).  Both food and 

chocolate entrain Per1 expression in the prefrontal cortex and both the core and shell of 

the nucleus accumbens.  However, a large daily meal has also been shown to entrain Per1 

expression in hypothalamic structures, including the DMH and the arcuate nucleus, while 

daily chocolate access does not entrain Per1 expression in these structures.  Therefore, 

circadian anticipation of caloric or metabolic stimuli such as a palatable daily meal 

appears to be mediated in the hypothalamus, whereas circadian anticipation of rewards 

appears to be mediated in corticolimbic structures and not in the hypothalamus. 

The drug-entrainable circadian system.  Acute administration of drugs of abuse 

produces rewarding effects, and like the natural rewards discussed above, administration 

of these drugs activates the corticolimbic structures that mediate the motivation to seek 

rewards (Di Chiara & Imperato, 1988; Wise, 2004).  Like food and other natural rewards, 

drugs of abuse have also been shown to entrain circadian rhythms of locomotor (wheel-

running) activity episodes when presented on a 24-hour schedule (Kosobud, et al., 2007).  

Specifically, repeated subcutaneous or intraperitoneal injections of methamphetamine 

(Kosobud, et al., 1998), nicotine (Gillman, et al., 2008), cocaine (White, et al., 2000), 

fentanyl (Gillman, et al., 2009), and ethanol (Kosobud, et al., 2009) have been shown to 
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entrain circadian activity episodes in adult rats.  These episodes emerge 1-2 hours before 

the daily drug administration time and last for 3-6 hours after the administration, 

depending on the drug and dosage given.  Once these pre- and post-drug activity episodes 

are entrained, they will persist for at least two days if the drug is withheld.  

Further, as with the zeitgebers of light and food, drug zeitgebers appear to have a 

specific and limited range of entrainment.  Injections of these same drugs on 31- or 33-

hour schedules do not entrain anticipatory episodes 1-2 hours before the next 

administration time (at hours 29-30 post-administration) (Gillman, et al., 2009; Pecoraro, 

et al., 2000; White, et al., 2000).  Instead, an “ensuing” episode of activity occurs 

approximately 24 hours after each administration, even though the next injection is not 

administered until 7-9 hours after the ensuing activity bout. 

Although daily injections of saline have been shown to entrain weak persisting 

circadian episodes (Timberlake, Gillman, Leffel, & Kosobud, 2009), and the act of 

picking up rodents once a day has been shown to entrain small bouts of activity (Goel & 

Lee, 1997), not all drug injections are able to act as zeitgebers.  The antipsychotic drug 

haloperidol, a dopamine receptor antagonist with a high affinity for D2 receptors and a 

low affinity for D1 receptors (Irving, Adams, & Lawrie, 2006), does not entrain either 

anticipatory locomotor episodes on a 24-hour schedule or ensuing activity episodes on a 

31-hr schedule (Gillman, et al., 2009). 

As stated above, drug-entrained circadian activity episodes manifest as a 

continuous bout of activity that begins approximately two hours prior to the circadian 

administration time and lasts for 3 to 6 hours after administration, depending on the drug 

and dose.  Similarly, the ensuing activity episodes recorded approximately 24 hours after 
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each administration on 31- or 33-hour schedules usually emerge 22-23 hours after the 

injection and last for a total of 3-6 hours.  Although these drug-entrained episodes appear 

as a single circadian activity episode in the data, subsequent evidence suggests that there 

are actually two separate episodes entrained to the drug administration time that are at 

least partially mediated by separate mechanisms. 

The first episode has been designated the pre-drug episode (Gillman, et al., 2008; 

Gillman, et al., 2009).  For all drugs of abuse, this episode emerges 1-2 hours prior to the 

drug administration time and is generally considered to end at the administration time.  

Pre-drug activity episodes closely resemble food-anticipatory activity rhythms, which 

also emerge 1-2 hours prior to the zeitgeber presentation and drop off after the zeitgeber 

is consumed (Mistlberger, 1994).  In human smokers and polydrug (cocaine and heroin) 

users, the hours leading up to drug administration are most closely associated with linear 

increases in craving (Preston, et al., 2009; Shiffman, et al., 2002).  The hours leading up 

to a relapse to cigarette smoking in abstinent individuals are associated with increases in 

negative affect (Shiffman & Waters, 2004).  In polydrug (cocaine and heroin) users, the 

hours prior to drug use and drug craving are associated with several triggers for drug use, 

especially the sight of the drug and both positive and negative affect (Epstein, et al., 

2009).  Based on these convergent data, pre-drug circadian activity episodes are assumed 

to reflect a circadian-based drug craving, anticipation, and/or seeking behavior. 

The second episode has been designated the post-drug episode, and it begins 

immediately after the drug is administered and has different activity profiles and 

durations depending on the drug and dose administered.  Post-drug episodes appear to 

reflect the acute drug effects in addition to a circadian-synchronized effect that may 
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influence the rewarding properties of the drug and set the timing for compensatory 

changes in physiological systems to counteract the excitotoxic effects of the drug.   

In some cases, environmental conditions have been shown to differentially affect 

pre- and post-drug episodes.  Pre-drug episodes can be suppressed if an auditory cue is 

paired with the effects of the drug, but post-drug episodes are not affected by presentation 

of the same cue (Gillman, et al., 2008).  Further, when rats are kept under a fixed 

light/dark cycle, post-drug episodes last for an extended period of time compared to when 

the rats are kept under constant light or a variable light/dark cycle (Gillman, Kosobud, & 

Timberlake, 2007).  In contrast, pre-drug episodes are not affected by different lighting 

regimes.  Pre- and post-nicotine episodes also have different dose-response curves 

(Gillman, Kosobud, & Timberlake, 2010).  When the nicotine dose is reduced and then 

restored over time, post-drug episodes show an inverse dose-response effect where the 

number of wheel turns per mg of nicotine administered increases as the dose is decreased 

and decreases as the dose is increased.  In contrast, pre-drug episodes maintain a direct 

linear dose-response relationship as the dose is changed over time.  These results suggest 

that post-drug episodes likely show sensitization and tolerance and that pre-drug episodes 

do not, but this has yet to be confirmed. 

As with food-entrainable circadian rhythms, the mechanisms that produce drug-

entrainable circadian rhythms have not been definitively identified.  Although a great 

deal is known about how drugs of abuse affect the brain over time (see next section), few 

studies have explicitly examined the effects of drugs of abuse from a circadian 

perspective.  Like the food-entrainable oscillator, the drug-entrainable oscillator system 

appears to operate at least partially independent of the light-entrainable master clock in 
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the SCN.  Arrhythmic SCN-lesioned rodents given ad libitum access to 

methamphetamine in the drinking water show restoration of free-running circadian 

locomotor, feeding, drinking, body temperature, and corticosterone rhythms that do not 

entrain to the light-dark cycle (K.-I. Honma, Honma, & Hiroshige, 1987; S. Honma, et 

al., 1988; Tataroglu, Davidson, Benvenuto, & Menaker, 2006) but do entrain to a large 

meal given at 24- or 27-hour intervals (S. Honma, Honma, & Hiroshige, 1989; S. Honma, 

Kanematsu, & Honma, 1992).  Methamphetamine administration can also to lengthen the 

free-running period of circadian activity in non-lesioned animals (K. Honma & Honma, 

1986). 

Although the results above suggest that the drug-entrainable oscillator system 

overlaps with the food-entrainable oscillator system, the SCN may also play a role in the 

expression of drug-induced and drug-shifted circadian rhythms.  As stated earlier, the 

SCN receives cholinergic, glutamatergic, and GABAergic inputs (Morin & Allen, 2006), 

and these neurotransmitter systems are known to be affected by drugs of abuse 

(Benowitz, 2008; Kalivas, 2009; Koob, 2004).  There is also evidence that the 

methamphetamine-sensitive circadian oscillator that restores free-running rhythmicity to 

arrhythmic rodents may interact with or be influenced by the SCN, as intact animals often 

show two separate (light-entrainable and methamphetamine-entrainable) rhythms with 

relative phase coordination (Tataroglu, et al., 2006). 

To further complicate the issue, the methamphetamine-sensitive circadian 

oscillator does not appear to require the presence of any of the clock genes that have been 

identified as essential for the functioning of the light-entrainable circadian clock system.  

Arrythmic Per1/Per2 double knockouts, Cry1/Cry2 double knockouts, and BMAL1 
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knockouts all show restored circadian locomotor rhythmicity when methamphetamine is 

administered ad libitum in the drinking water (S. Honma, Yasuda, Yasui, van der Horst, 

& Honma, 2008; Mohawk, Baer, & Menaker, 2009).  CLOCK, Tau, and NPAS2 mutants, 

all of which show ultradian or infradian periodicity, experience a lengthening in their 

locomotor activity rhythm when administered methamphetamine (Masubuchi, Honma, 

Abe, Nakamura, & Honma, 2001; Mohawk, et al., 2009).  Further, these effects of 

methamphetamine are not affected by SCN lesions. 

Despite the negative results, there is considerable evidence that drugs of abuse 

can affect the known circadian clock genes.  When methamphetamine is administered in 

the drinking water, the locomotor activity rhythm of intact (non-SCN-lesioned) rats 

becomes desynchronized from the light/dark cycle, and this desynchronized rhythm is 

correlated with phase shifts of Per1, Per2, and BMAL1 expression in the caudate-

putamen and the parietal cortex, but not in the SCN, the nucleus accumbens, or the 

cingulate cortex (Masubuchi, et al., 2000; Masubuchi, Honma, Abe, Namihira, & Honma, 

2007).  In rats, morphine administration eliminates the daily rhythms of Per1 and Per2 in 

both the hypothalamus and in peripheral blood cells (Li, et al., 2009).  Likewise, chronic 

ethanol administration has been shown to attenuate the expression of Per2 in the SCN 

and the arcuate nucleus of the hypothalamus and to eliminate the periodicity of Per3 in 

the SCN and Per1 in the arcuate nucleus (Chen, Kuhn, Advis, & Sarkar, 2004).  Finally, 

chronic cocaine administration has been shown to increase Per1 and Per2 expression and 

decrease NPAS2 expression in the hippocampus as well as increase Per1 and CLOCK 

expression and decrease Per2, BMAL1, Cry1, and NPAS2 expression in the caudate-

putamen (Uz, et al., 2005). 
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There is also a great deal of evidence that the known circadian clock genes have 

roles in drug addiction.  Per1 knockout mice do not show locomotor sensitization or 

conditioned place preference to cocaine (Abarca, Albrecht, & Spanagel, 2002), which 

indicates that the Per1 gene may be critical for the development of both sensitization and 

Pavlovian associations to cocaine.  Rodents deficient in N-acetylserotonin and melatonin 

also fail to sensitize to cocaine and also lack circadian periodicity in Per1 expression 

(Akhisaroglu, Ahmed, Kurtuncu, Manev, & Uz, 2004); therefore, the role of Per1 in 

sensitization and Pavlovian conditioning to cocaine may be mediated through the actions 

of these transmitters. 

In contrast to Per1 knockouts, Per2 knockouts show robust conditioned place 

preference to cocaine and increased locomotor sensitization to cocaine compared to wild-

type mice (Abarca, et al., 2002).  These results have been interpreted to mean that 

individuals with poorly-functioning Per2 genes may have an increased vulnerability to 

drug addiction.  Per2 mutants also consume greater amounts of alcohol than wild-type 

mice and show downregulation of the excitatory amino acid transporter 1 (EAAT1) on 

synaptic astrocytes, resulting in high levels of synaptic glutamate (Spanagel, et al., 2005).  

Elevated alcohol consumption in Per2 mutants can be reduced with administration of the 

glutamate NMDA receptor antagonist acamprosate, an anti-craving drug used to treat 

alcoholism. 

The CLOCK gene appears to be important for the firing of dopaminergic neurons 

in the ventral tegmental area (VTA) that mediate the motivational properties of rewarding 

stimuli such as food and drugs of abuse (Wise, 2004).  Like Per2 mutants, CLOCK 

knockout mice show increased sensitization and robust conditioned place preference to 
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cocaine (McClung, et al., 2005).  CLOCK mutants also show increased firing and 

bursting in VTA dopamine neurons and have elevated levels of tyrosine hydroxylase, the 

rate-limiting enzyme in dopamine synthesis.  As with Per2, these results indicate that 

poorly functioning CLOCK polymorphisms may increase an individual’s susceptibility to 

drug addiction. 

Studies of human population genetics have shown mixed results in attempts to 

link clock gene polymorphisms with drug addiction.  One of the earliest studies failed to 

show evidence for Per1, Per2, or CLOCK polymorphisms that contribute to cocaine 

addiction (Malison, Kranzler, Yang, & Gelernter, 2006).  However, one study has 

identified a variant of the Per2 gene in humans that may contribute to alcoholism 

(Spanagel, et al., 2005) and another has identified a polymorphism of the CLOCK gene 

that may contribute to co-morbid alcohol use and depression, but not to alcoholism alone 

(Sjoholm, et al., 2010). 

 In summary, while the ability of methamphetamine to entrain locomotor activity 

rhythms does not appear to involve the known light-entrainable molecular clock feedback 

loops, these clock genes appear to play a role in drug addiction and mediate many of the 

effects of drugs of abuse.  Per1 appears to be critical for the development of behavioral 

sensitization, whereas Per2 and CLOCK appear to mediate a protective effect to prevent 

sensitization to drugs of abuse as well as the formation of drug-paired Pavlovian 

associations. 

 There is still a great deal that remains to be discovered about how and where 

drugs of abuse affect endogenous circadian timing systems.  Drugs of abuse are known to 

induce widespread and often permanent changes to the learning, memory, motivational, 
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and cognitive regions of the brain.  The next section will provide an overview of the 

neural mechanisms of drug addiction with a special emphasis on potential connections to 

circadian timing systems. 

Neural Mechanisms of Drug Addiction 

Fundamentally, drug addiction is a disorder of goal-directed behavior.  The brain 

contains a complex circuit of motor and cognitive pathways that motivate an individual to 

seek stimuli that are critical to survival and reproduction and to avoid stimuli that are 

detrimental to these goals (Cardinal, Parkinson, Hall, & Everitt, 2002).  Thus, it is no 

accident that survival-related stimuli such as food and water tend to have rewarding 

properties, whereas harmful stimuli tend be repulsive.  In the early stages of drug use, 

drugs of abuse show rewarding qualities, and their administration reliably elicits 

pleasurable acute effects (Kalivas & Volkow, 2005).  Administration of these drugs 

activates the motivational circuits of the brain and induces the drug user to seek the 

rewarding drug effects again and again. 

However, over time, repeated administration of drugs of abuse leads to a number 

of permanent alterations in the brain.  The pleasurable effects of the drug decline steadily, 

while the motivation to seek the drug continues to escalate (Kalivas & Volkow, 2005).  

The drug-directed motivation of an addict is often so strong that it is not interrupted by 

strongly negative stimuli and states such as drug-induced medical problems (i.e. cancer, 

liver disease, etc.), the loss of financial security, or the disruption of important social 

relationships (American Psychiatric Association, 2000).  In short, drugs of abuse cause 

permanent damaging changes to the motivational survival circuits of the brain. 
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Acute drug effects.  Drugs of abuse cover a wide pharmacological spectrum, 

including psychostimulants, opiates, sedatives, and depressants.  Each individual drug has 

a distinct set of acute physiological and behavioral effects.  Nicotine consumption leads 

to increased arousal and alertness, a relaxed mood, and a reduction in appetite (Benowitz, 

2008).  Amphetamine administration causes hyperactivity, increased heart rate and 

breathing rate, and a number of psychological effects including euphoria, increased 

concentration, anxiety, and paranoia (Seiden, Sabol, & Ricaurte, 1993).  Opioids such as 

heroin and morphine were first developed as analgesics but also induce euphoria and 

relaxation when used recreationally (Zacny, 1995).  Alcohol can be stimulating at low 

doses, but at high doses it acts as a depressant and causes intoxication, impaired 

judgment, blurred vision, and many other effects (Eckardt, et al., 1998). 

Each type of drug interacts with a unique subset of the dozens of neurotransmitter 

systems that facilitate cell-to-cell communication in the nervous system.  For example, 

the acute psychostimulant effects of nicotine are primarily derived from the drug binding 

to and activating nicotinic acetylcholine receptors (Benowitz, 2008).  Cocaine and 

amphetamine interfere with dopamine reuptake in the synapse which leads to an increase 

in dopamine transmission (Giros, Jaber, Jones, Wightman, & Caron, 1996).  Both ethanol 

and opiates inhibit the firing of GABAergic neurons; ethanol binds to GABA receptors 

on these neurons while opioids bind to endogenous opioid receptors (Di Chiara, 1995; 

Koob, 2004).  As the brain is a highly complex and integrated circuit, these primary drug 

actions have widespread and long-term consequences.  Despite their different 

pharmacological profiles, drugs of abuse cause several common effects in brain 

functioning, the sum of which presumably constitutes the disorder of drug addiction. 
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Dopamine.  One of the first physiological “links” discovered among the different 

classes of addictive drugs was that acute administration of each of these drugs led to the 

transmission of dopamine in the shell of the nucleus accumbens from neurons that 

originate in the ventral tegmental area (VTA) of the midbrain (Di Chiara, et al., 2004; Di 

Chiara & Imperato, 1988).  The VTA also has dopaminergic projections to the ventral 

pallidum, the prefrontal cortex (PFC), and the amygdala that are affected by drugs of 

abuse (Kalivas & Volkow, 2005).  The transmission of dopamine from the VTA to the 

nucleus accumbens appears to mediate the motivation to seek rewarding stimuli 

(Cardinal, et al., 2002; Wise, 2004), and these VTA neurons also release dopamine when 

an individual is exposed to natural rewards such as palatable food (Hernandez & Hoebel, 

1988) and stimuli associated with sex and reproduction (Aragona, et al., 2006; Fisher, 

Aron, & Brown, 2005).  By activating VTA dopamine neurons, drugs of abuse signal to 

the brain that drug consumption is a desirable action and should be repeated if the drug is 

encountered again. 

Each addictive drug enhances VTA dopamine transmission via different 

mechanisms, but the end result appears to be similar (Di Chiara, 1995).  Nicotine binds to 

nicotinic acetylcholine receptors on the dopamine neurons in the VTA which cause the 

neurons to fire action potentials and release dopamine from their axon terminals in the 

nucleus accumbens.  Psychostimulant drugs such as amphetamine and cocaine bind to the 

dopamine reuptake transporter on the axon terminals in the NAc, which increases the 

transmission of dopamine by preventing it from being taken back up into the presynaptic 

neuron. Both ethanol and opioid drugs enhance dopamine transmission through a process 

called disinhibition where the drugs bind to receptors on neurons that transmit GABA to 
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the VTA dopamine neurons and inhibit their firing.  By preventing the GABA neurons 

from firing, these drugs allow the dopamine neurons to fire without inhibition.  Ethanol 

disinhibits the VTA dopamine neurons by binding to GABA-A receptors on the GABA 

neurons, while opioids bind to µ-opioid receptors on these neurons. 

Pavlovian conditioning. The formation of Pavlovian associations between a 

rewarding stimulus and reward-related cues in the external environment is a critical 

component of adaptive motivation.  These associations allow an organism to predict the 

location and/or temporal availability of a rewarding stimulus without having to directly 

encounter the stimulus itself.  The establishment and maintenance of Pavlovian 

associations involves several different brain regions, including the VTA, the nucleus 

accumbens, the amygdala, the prefrontal cortex, and the orexin neurons of the 

hypothalamus (Aston-Jones, et al., 2010; Day & Carelli, 2007; Kalivas & Volkow, 2005; 

See, 2005).   

As noted above, the VTA also has dopaminergic projections to the amygdala 

(Kalivas & Volkow, 2005; See, 2005).  The basolateral amygdala (BLA) is an important 

region for the processing of emotional information (Cardinal, et al., 2002; Day & Carelli, 

2007) and is critical for the formation of Pavlovian associations between drugs of abuse 

and drug-associated environmental cues (See, 2005).  Both the core and shell of the 

nucleus accumbens receive excitatory glutamatergic inputs from the basolateral 

amygdala, and these pathways are believed to mediate cue-induced drug seeking. 

While drugs of abuse directly stimulate VTA neurons to release dopamine in the 

shell of the nucleus accumbens, drug-paired cues elicit dopamine release in the core of 

the nucleus accumbens (Ito, Dalley, Howes, Robbins, & Everitt, 2000).  The development 
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of Pavlovian associations to drugs of abuse can be prevented if dopamine antagonist 

drugs are administered directly into the NAc core (Yun, Nicola, & Fields, 2004) or if this 

region is lesioned (Parkinson, Olmstead, Burns, Robbins, & Everitt, 1999).  Drug-paired 

cues also appear to develop rewarding qualities in and of themselves, as rats trained to 

press a lever to receive cocaine or heroin will also press a lever solely to see a light that 

was previously paired with the administration of the drug (Di Ciano & Everitt, 2004). 

The nucleus accumbens core and shell both have inhibitory GABAergic 

projections to the ventral pallidum, a nucleus of the basal ganglia that is an important 

motor region of the brain (Stratford & Kelley, 1999).  Both drugs of abuse and their 

associated Pavlovian cues disinhibit these GABA projections and therefore activate the 

neurons of the ventral pallidum (Day & Carelli, 2007).  The disinhibition of this motor 

area appears to lead to reward-related motor processes such as consumption. 

Orexin.  The lateral hypothalamus (LH) is another important structure for the 

consumption of both natural and drug rewards.  Unlike the motor functions of the 

adjacent ventral pallidum, the lateral hypothalamus drives reward consumption through 

the release of the neuropeptide orexin (Dube, Kalra, & Kalra, 1999; Sakurai, et al., 1998).  

The orexin neurons of the lateral hypothalamus project to diverse regions of the brain that 

are involved in the outputs of many endogenous circadian rhythms, including sleep, 

arousal, and reward-related behaviors (Sakurai, 2007).  Most notably, the lateral 

hypothalamus has orexin projections to the VTA (Peyron, et al., 1998) and to the insular 

cortex (Date, et al., 1999), a subregion of the prefrontal cortex that has been strongly 

implicated in drug craving in substance-dependent individuals (Naqvi & Bechara, 2009; 

Naqvi, Rudrauf, Damasio, & Bechara, 2007). 
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The orexin neurons of the lateral hypothalamus appear to play a role in 

conditioned behavioral drug-seeking responses to drug-paired Pavlovian cues and 

environmental contexts (Aston-Jones, et al., 2010).  A number of studies have shown that 

the transmission of orexin from these neurons is critical for triggering cue- and context-

induced reinstatement of drug-seeking in rodent self-administration and conditioned 

place preference paradigms (Aston-Jones, et al., 2010; Boutrel, et al., 2005; Harris, 

Wimmer, & Aston-Jones, 2005; A. J. Lawrence, Cowen, Yang, Chen, & Oldfield, 2006).  

This function appears to be specifically mediated by the orexin-1 (OX1) receptor, as 

administration of the OX1 antagonist SB-334867 strongly attenuates cue-induced drug-

seeking behaviors (A. J. Lawrence, et al., 2006; Smith, Tahsili-Fahadan, & Aston-Jones, 

2010).  The activity of LH orexin neurons correlates with the expression of conditioned 

place preference to morphine and cocaine, and this drug-induced conditioned place 

preference is reduced following administration of SB-334867 (Harris, et al., 2005). 

The mechanisms by which drugs of abuse activate orexin neurons and 

subsequently contribute to the expression of conditioned behavioral responses to drug-

paired cues have not been definitively isolated.  The afferent projections to the lateral 

hypothalamus orexin neurons that are most strongly activated during conditioned place 

preference to cocaine originate in the lateral septum and the bed nucleus of the stria 

terminalis (Aston-Jones, et al., 2010), so these input pathways may be critical for drug-

induced activation of LH orexin neurons.  The orexin projections to the VTA appear to be 

critical for the expression of cue-induced drug-seeking, as microinjections of orexin into 

the VTA can reinstate extinguished conditioned place preference to morphine (Harris, et 
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al., 2005) and microinjections of SB-334867 into the VTA can suppress morphine-

conditioned place preference (Narita, et al., 2006).   

It has been suggested that orexin transmission in the VTA facilitates glutamate 

transmission to the VTA dopamine neurons from neurons that originate in the medial 

prefrontal cortex (Aston-Jones, et al., 2010).  The transmission of glutamate in this 

pathway is known to be critical for the maintenance of Pavlovian associations between 

drugs and environmental cues (Kalivas & Volkow, 2005), and orexin inputs to these 

neurons appear to both enhance the glutamate-induced excitation of VTA neurons and to 

simultaneously inhibit excitatory inputs from other regions (Aston-Jones, et al., 2010).  

Through these actions, orexin transmission from the lateral hypothalamus appears to 

promote the firing of VTA dopamine neurons in reward-paired behavioral contexts.   

Glutamate.  The acute effects of drugs of abuse appear to be primarily driven by 

their effects on dopamine transmission.  However, these effects happen at the early stages 

of drug use, and as initial recreational drug use progresses into drug addiction, many of 

these dopaminergic effects are reversed (Kalivas, et al., 2005).  The chronic effects of 

drugs of abuse are believed to result from their effects on glutamate, a universally 

excitatory neurotransmitter.  In addition to their effects on dopamine, drugs of abuse also 

acutely enhance glutamate transmission, mostly via the same mechanisms by which they 

stimulate dopamine release (Dalia, Uretsky, & Wallace, 1998; Reid, Fox, Ho, & Berger, 

2000; Reid, Hsu, & Berger, 1997).  Over time, this excessive transmission of glutamate 

appears to be the major mechanism by which chronic drug use leads to permanent 

changes in neural structure and function. 
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Chronic drug effects.  Although acute (short-term) administration of drugs of 

abuse leads to the activation of VTA dopamine neurons, these neurons decrease in size 

following chronic drug administration (Sklair-Tavron, et al., 1996) and fire action 

potentials at a greatly reduced rate (Zhang, Hu, & White, 1998).  Additionally, post-

synaptic neurons in the nucleus accumbens and the prefrontal cortex express fewer 

dopamine receptors (Dagher, et al., 2001; Volkow, et al., 2001).  The net result of these 

changes is reduced dopamine transmission in the mesocorticolimbic pathways of the 

brain.  This reduction may partially explain why the acute rewarding effects of the drug 

diminish over time while the urge to take the drug continues to escalate (Robinson & 

Berridge, 1993; Solomon & Corbit, 1974). 

While dopamine transmission is attenuated with chronic drug use, glutamate 

transmission continues to be evoked by drugs of abuse at all stages of drug use (Kalivas, 

2009; Kalivas, et al., 2005).  Excessive glutamate transmission is believed to underlie 

many of the characteristic behaviors and physiological changes that occur in drug-

dependent individuals, including behavioral sensitization, compulsive drug use, and 

relapse. 

Tolerance. Chronic drug users are able to consume enormous quantities of drugs 

that would produce toxic or fatal effects in naïve drug users (American Psychiatric 

Association, 2000).  This phenomenon is known as tolerance, and is formally defined as a 

decreased effect of the drug as the dosage is increased or held constant over time (Stewart 

& Badiani, 1993).  Tolerance usually occurs as a reduction in the physiological effects of 

the drug, and common examples include attenuation of nicotine-induced changes in mood 
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and heart rate (Perkins, et al., 1994), alcohol-induced intoxication (Bennett, Cherek, & 

Spiga, 1993), and opioid-induced analgesia (Collett, 1998).  

The mechanisms of drug tolerance are not well understood, but tolerance is 

generally believed to occur as a result of reduced signal intensity at the drug’s primary 

pharmacological targets as well as changes in the extent of gene expression and protein 

transcription within the target neurons (Littleton, 2001).  For example, tolerance to the 

effects of nicotine is associated with increased expression of nicotinic acetylcholine 

receptors (Benowitz, 2008) and with changes in the expression patterns of the subunits 

that make up these receptors (McCallum, Collins, Paylor, & Marks, 2006).  Tolerance to 

cocaine and morphine has been linked to an upregulation of the transcription factor cyclic 

adenosine monophosphate (cAMP) response element binding protein (CREB) that occurs 

as a result of chronic drug-induced dopamine transmission (Nestler, 2004).  Alcohol 

tolerance is linked to an upregulation of alcohol dehydrogenase enzymes in the liver that 

work to metabolize alcohol and remove it from the bloodstream (Eckardt, et al., 1998; 

Redmond & Cohen, 1971). 

Behavioral sensitization. Behavioral sensitization is the functional opposite of 

tolerance; it is defined as an increased effect of the drug as the dosage decreases or stays 

the same (Stewart & Badiani, 1993).  Sensitization generally occurs to the behavioral 

effects of drugs such as locomotor activation and drug seeking and is particularly 

pronounced for psychostimulants such as nicotine, cocaine, and amphetamine (Booze, et 

al., 1999; Camp, Browman, & Robinson, 1994).   

The development of behavioral sensitization has been linked to a prolonged 

increase in excitatory synaptic transmission known as long-term potentiation (LTP) at 
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glutamatergic synapses in the VTA (Kauer, 2004).  These glutamate projections primarily 

originate in the medial prefrontal cortex and are an important pathway for the expression 

of reward-seeking behaviors (Capriles, Rodaros, Sorge, & Stewart, 2003; Cardinal, et al., 

2002).  As with LTP in the hippocampus that underlies learning and memory, LTP in the 

VTA is initiated by the upregulation of NMDA glutamate receptors on the post-synaptic 

cells at this synapse (Saal, Dong, Bonci, & Malenka, 2003).  The initiation of both 

sensitization and LTP in the VTA can be prevented with the administration of both 

competitive and noncompetitive NMDA antagonist drugs (Ohmori, Abekawa, Muraki, & 

Koyama, 1994).   

Once LTP is established, NMDA receptors at the synapse are downregulated, and 

the number of AMPA glutamate receptors is increased (Boudreau & Wolf, 2005).  

AMPA antagonist drugs can block drug-seeking behaviors in animals that are chronically 

administered drugs of abuse (Cornish & Kalivas, 2000), but NMDA antagonists have no 

effect on established sensitization (Karler, Chaudhry, Calder, & Turkanis, 1990).  The 

increased numbers of AMPA receptors at potentiated synapses is associated with the 

upregulation of two transcription factors, CREB and ΔFosB, that alter the patterns of 

gene expression within VTA neurons, increase the expression of AMPA receptor 

subunits, and alter the sensitivity of these neurons to glutamate transmission (Nestler, 

Barrot, & Self, 2001; Olson, et al., 2005). 

Three additional factors have been found to contribute to the potentiation of VTA 

glutamatergic synapses and therefore enhance behavioral sensitization to chronic drug 

administration.  First, stressful stimuli such as a foot-shock have been shown to enhance 

LTP at these synapses (Saal, et al., 2003).  Numerous studies have linked stressful stimuli 
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and situations to the development of drug addiction (Koob & Kreek, 2007), and stress-

induced drug-taking appears to hasten the process of sensitization.  Second, chronic drug 

administration also blocks the development of long-term depression, a prolonged 

weakening of synaptic strength, at VTA glutamatergic synapses (Jones, Kornblum, & 

Kauer, 2000).  Third, as stated earlier, orexin inputs to the VTA appear to augment 

cortical glutamate transmission and promote both behavioral sensitization and the 

expression of conditioned drug-seeking (Borgland, Taha, Sarti, Fields, & Bonci, 2006). 

Compulsive drug consumption. One notable difference between drug addicts and 

recreational drug users is that drug addicts show compulsive or irresistible drug-taking 

behavior, whereas recreational users are generally better able to self-regulate their drug 

consumption (American Psychiatric Association, 2000).  Individuals who can be 

classified as substance-dependent show reduced neural activity in both the prefrontal 

cortex and the nucleus accumbens (Goldstein & Volkow, 2002), and changes in these 

regions are believed to underlie the compulsive aspect of chronic drug use. 

In normal, non-drug-using individuals, the neurons of the prefrontal cortex and 

nucleus accumbens are activated by the presentation of a rewarding stimulus (Cardinal, et 

al., 2002).  However, in drug addicts, the prefrontal cortex is only activated when 

presented with a drug-paired cue such as a video of a person taking drugs (Garavan, et 

al., 2000).  These individuals also show reduced D2 receptor signaling and therefore have 

a predominance of D1 receptors that are coupled to a stimulatory G-protein that promotes 

inhibition of neuronal activity (Volkow, et al., 2001). The net result of these changes is 

that only very strong excitatory inputs, such as the excessive glutamate transmission 

produced by chronic drug use, can activate these motivational circuits.  This serves to 
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focus the behavior of the drug addict towards drug-seeking and away from other 

rewarding stimuli (Kalivas, et al., 2005). 

Craving.  Drug craving is defined as a strong urge to consume a drug and is 

another characteristic of fully developed drug addictions.  Drug craving appears to be one 

of the permanent aspects of drug addiction; unlike withdrawal, drug addicts may 

experience craving for several months, years, or for the rest of their life, even if they 

successfully quit (Friedmann, Saitz, & Samet, 1998).   

Surprisingly, drug craving is not usually associated with withdrawal symptoms 

(Robinson & Berridge, 1993; Tiffany, Warthen, & Goedeker, 2007); instead, researchers 

have found that drug craving is reliably induced by certain environmental factors.  When 

a drug addict experiences prolonged abstinence, consumption of a small amount of the 

drug can induce further craving – this phenomenon is known as drug-induced drug 

craving (Stewart, 2000).  Exposure to drug-paired cues such as the sight of the drug or 

being in a place where the drug is normally consumed can reliably produce cue-induced 

drug craving, particularly in recently abstinent addicts (Brody, et al., 2007; Garavan, et 

al., 2000).  Exposure to stressful situations can also induce drug craving in both drug-

using and abstinent drug addicts, and this is known as stress-induced craving (Sinha, et 

al., 2005; Stewart, 2000).  Finally, there is some evidence that heavy drug users may 

experience craving on a circadian schedule, particularly in the first few hours after 

waking (Chandra, et al., 2007; Danel, et al., 2003; Jarvik, et al., 1993).   

The insular cortex has been strongly implicated in mediating drug craving in the 

brain.  Activation of insular neurons correlates with reported drug cravings in drug 

addicts (Garavan, et al., 2000; Goldstein & Volkow, 2002).  Smokers with bilateral 



 
 

36 

stroke-induced damage to the insula occasionally spontaneously quit smoking without 

experiencing nicotine craving (Naqvi, et al., 2007).  In rats, conditioned place preference 

to amphetamine can be reversibly blocked by the temporary inactivation of the insula 

with lidocaine (Contreras, Ceric, & Torrealba, 2007).   

The insular cortex integrates interoceptive cues from the autonomic and sensory 

nervous systems to monitor the current state of the body (Craig, 2002).  It appears to 

facilitate drug-seeking by integrating the peripheral and visceral effects of the drugs with 

emotional and Pavlovian memories (Naqvi & Bechara, 2009).  The insula also receives 

afferent signals from other brain regions, most notably glutamate projections from the 

amygdala and the ventral striatum (Cardinal, et al., 2002; Naqvi & Bechara, 2009) and 

orexin projections from the lateral hypothalamus (Date, et al., 1999; Hollander, Lu, 

Cameron, Kamenecka, & Kenny, 2008).   

Although the role of insular mechanisms in the various types of craving have not 

yet been defined, activation of the VTA and the nucleus accumbens (in the ventral 

striatum) have been linked to drug-induced drug craving, and stress-induced drug craving 

has been linked to the release of corticotrophin releasing factor (CRF) by norepinephrine 

neurons in the bed nucleus of the stria terminalis (Stewart, 2000). Cue-induced craving 

has been linked to activation of the anterior cingulate cortex (Brody, et al., 2007; 

Garavan, et al., 2000). The orexin inputs to the insula have been linked to motivational 

drug-seeking, as administration of the orexin-1 antagonist SB-334867 into the insula 

reduces nicotine self-administration in rats and reverses the effects of nicotine on 

intracranial self stimulation thresholds (Garavan, et al., 2000). 
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Withdrawal.  Each drug has a distinct and characteristic withdrawal syndrome 

that drug addicts experience when they stop taking the drug.  Withdrawal symptoms 

usually emerge 24-48 hours after the last drug administration and can last for several days 

or weeks depending on the drug and the severity of the addiction (Foy, Kay, & Taylor, 

1997; McGregor, et al., 2005; Piasecki, Fiore, & Baker, 1998).  Withdrawal from nearly 

all drugs of abuse is associated with anxiety, depression, and sleep disturbances (West & 

Gossop, 1994).  Nicotine withdrawal also induces irritability and increased appetite.  

Alcohol withdrawal is characterized by tremors, nausea, excessive sweating, and 

occasionally seizures.  Opioid withdrawal includes dysphoria, sweating, nausea, and pain.  

Amphetamine withdrawal induces agitation, increased appetite, and some psychotic 

symptoms.  The withdrawal symptoms of cocaine are not as severe as for other drugs of 

abuse, but have been reported to include dysphoria, fatigue, and increased appetite. 

Relapse.  Finally, when attempting to quit taking drugs, drug addicts have an 

extremely high chance of experiencing relapse, the resumption of drug-taking after a 

period of abstinence.  Even in structured treatment programs, the majority of patients will 

relapse within a year of initial abstinence (McLellan, Lewis, O'Brien, & Kleber, 2000).  

Psychiatrists generally believe that relapse is an inescapable aspect of addiction.  The 

most common explanations for relapse correspond to many of the most common triggers 

for drug craving; drug addicts often relapse after exposure to drug-associated stimuli and 

contexts or after experiencing stressful or traumatic situations (Marlatt, 1996). 

Treatment of Drug Addiction 

Most pharmacological and behavioral treatments for drug addiction aim to 

prevent relapse after an addict has quit using the drug for an extended period of time.  
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Specifically, most treatments are administered to reduce subsequent drug craving, 

alleviate the symptoms of drug withdrawal, or to help a drug addict transition to a drug-

free lifestyle.  Some treatments are targeted toward particular drugs or drug classes, such 

as opiates, while other treatments can be applied across the entire spectrum of addictive 

drugs.  Currently, most evidence-based drug treatment programs include a combination 

of psychosocial and pharmacological interventions in order to maximize the efficacy of 

the program. 

Psychosocial interventions.  Several types of psychosocial treatment 

interventions have been shown to be effective in the treatment of drug addiction, 

including contingency management, cognitive behavior therapy, motivational 

interviewing, and counseling (Carroll & Onken, 2005; Dutra, et al., 2008).  Many 

treatment programs utilize a combination of these approaches.  Contingency management 

programs offer a reward in exchange for continued good behavior.  In the case of drug 

addiction treatment, the good behavior is usually abstinence from drug use as measured 

by urine samples or compliance with the prescribed treatment program, and the rewards 

can include money, access to methadone, career training, or vouchers for food and other 

necessities (Carroll & Onken, 2005; Petry, 2000).  Cognitive behavior therapy is based on 

operant conditioning procedures and generally involves coaching a drug addict to 

recognize both the antecedents and the consequences of drug use and to develop a set of 

skills to help avoid and deal with situations that could lead to relapse.  Motivational 

interviewing, also known as motivation enhancement therapy, is a form of counseling 

that is designed to increase an individual’s motivation to change their behavior and 

remain abstinent (Carroll & Onken, 2005; Soyka, et al., 2008).  This form of 
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psychosocial intervention is most often used to treat alcoholism.  Finally, most drug 

treatment programs include some kind of counseling, either private, with family, or in 

group settings.  Behavioral family and couples therapies tend to be the most effective, as 

they engage a drug user’s social network to promote the maintenance of abstinence and 

the prevention of relapse (Carroll & Onken, 2005). 

Drug withdrawal treatments.  As stated earlier, drug withdrawal syndromes 

occur when a drug of abuse is unable to act in the body, either due to low systemic drug 

levels or due to the presence of an antagonist drug that prevents the drug from binding to 

its primary receptors (West & Gossop, 1994).  Antagonist drugs that act in this manner 

are not effective treatments for substance dependence because they induce drug cravings 

that can’t be immediately alleviated by taking the addictive drug.  An example of this 

kind of antagonist is mecamylamine, a nicotinic acetylcholine receptor antagonist that 

induces nicotine cravings in smokers, but does not have adverse effects on non-smokers 

(Nemeth-Coslett, Henningfield, O'Keeffe, & Griffiths, 1986).  A similar antagonist is 

naltrexone, a µ- and κ-opioid antagonist that blocks the effects of opiate drugs such as 

heroin and morphine and can induce dysphoria and other withdrawal symptoms in current 

and recently abstinent users (Crowley, Wagner, Zerbe, & Macdonald, 1985).  

Many drug withdrawal treatments involve some kind of drug replacement therapy 

in which a substitute compound is administered that allows addicts to wean themselves 

off of the drug without experiencing strong withdrawal.  One of the most common 

examples of drug replacement is methadone, a weak opioid receptor agonist that is 

administered to treat addictions to heroin and morphine (Farrell, et al., 1994).  The 

symptoms of opioid withdrawal are extremely unpleasant, and by alleviating these 
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symptoms, methadone administration increases the chances of successful quitting.  

Another common example of drug replacement therapy is nicotine replacement therapy 

(NRT).  Nicotine is the main addictive component of tobacco (Office of the Surgeon 

General, 1988), and in NRT, nicotine is administered alone without the other components 

of tobacco, usually in the form of an oral lozenge or a dermal patch (Silagy, Lancaster, 

Stead, Mant, & Fowler, 2004).  Varenicline, a weak nicotinic acetylcholine receptor 

agonist, is a pharmaceutical form of drug replacement therapy for nicotine addiction that 

treats nicotine withdrawal symptoms as well as nicotine craving (Rollema, et al., 2007).  

Drug craving treatments.  Drug withdrawal symptoms will eventually cease 

once an addict has been abstinent for a sufficient period of time, usually several days or 

weeks (West & Gossop, 1994).  Despite the absence of the drug withdrawal syndrome, 

drug addicts often still experience drug cravings for many months or years, particularly 

when exposed to stressful situations or environmental cues that were previously paired 

with the effects of the drug, such as the sight of a person smoking a cigarette (Friedmann, 

et al., 1998).  There are several pharmaceutical treatments with a variety of 

pharmacological profiles that are prescribed to reduce or alleviate drug cravings. 

Consistent with the role of glutamate in the chronic effects of drugs of abuse, 

pharmacological treatments that target glutamate transmission have shown efficacy in the 

treatment of several different substance addictions.  Acamprosate is primarily considered 

to be a weak glutamate NMDA receptor antagonist (Spanagel & Zieglgansberger, 1997), 

although it has been reported to enhance NMDA-mediated transmission in the nucleus 

accumbens (Berton, Francesconi, Madamba, Zieglgansberger, & Siggins, 1998). 

Acamprosate is primarily prescribed for the treatment of alcoholism (Kranzler & Van 
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Kirk, 2001; Spanagel & Zieglgansberger, 1997).  Topiramate is a glutamate 

AMPA/kainite antagonist and GABA agonist drug that was originally prescribed as an 

anticonvulsant but has also been used to treat cravings in alcoholics, smokers, and 

cocaine addicts (Flórez, et al., 2008; Kampman, et al., 2004; Reid, Palamar, Raghavan, & 

Flammino, 2007).  

Dopamine receptor antagonists are generally prescribed to treat psychosis and do 

not have a great deal of efficacy for the treatment of drug addictions (Nestler, 2002).  

However, drugs that enhance dopamine transmission can alleviate craving in some 

individuals.  For example, bupropion is a dopamine (DAT) and norepinephrine 

transporter (NET) reuptake inhibitor and weak acetylcholine receptor antagonist that 

enhances dopamine transmission and has been prescribed for smoking cessation in 

addition to its original indication as an antidepressant (Dwoskin, Rauhut, King-Pospisil, 

& Bardo, 2006). 

Although opioid receptor antagonists are not effective in alleviating opioid 

withdrawal symptoms, drugs that target these receptors have shown some efficacy in 

alleviating drug craving. Naltrexone, a µ- and κ-opoid receptor antagonist, is particularly 

effective in reducing reported cravings in alcoholics and in opioid addicts who are not 

experiencing withdrawal symptoms (Kosten, Kreek, Ragunath, & Kleber, 1986; Kranzler 

& Van Kirk, 2001; Spanagel & Zieglgansberger, 1997).  Naltrexone has also been 

proposed as a treatment for nicotine craving although it is seldom prescribed for this 

purpose (Covey & Glassman, 1999; O'Malley, et al., 2006).  By blocking opioid 

receptors, naltrexone also indirectly suppresses dopamine transmission in the nucleus 

accumbens (Benjamin, Grant, & Pohorecky, 1993). 
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Finally, given the recent findings linking the activity of lateral hypothalamic 

orexin neurons to cue-induced drug seeking and other aspects of drug addiction (Aston-

Jones, et al., 2010; Hollander, et al., 2008), some researchers have proposed prescribing 

orexin receptor antagonist drugs to alleviate drug craving (Scammell & Saper, 2007).  

Currently, the drug most likely to be utilized is the OX1 receptor antagonist SB-334867, 

but this drug has not been approved for this purpose and is not yet commercially 

available (Bingham, Cai, & Deehan, 2006; Rodgers, et al., 2001).  

Purpose of Research 

Given that drug users can experience several different types of craving, and each 

type of craving is at least partially mediated by different neural pathways and 

neurotransmitter systems, the total alleviation of drug craving through pharmaceutical 

treatment intervention is a daunting task.  For example, a single treatment drug could 

alleviate stress-induced drug craving while exacerbating cue-induced drug craving.  The 

present study is based on the assumption that the anticipatory activity that emerges prior 

to a daily subcutaneous injection of nicotine (pre-nicotine) reflects a circadian-based drug 

craving that could potentially impact the treatment of drug addicts who show strong 

circadian patterns of drug consumption.  The neural mechanisms that mediate circadian-

based drug craving have not yet been determined, but it is assumed that these 

mechanisms are at least partially distinct from those that produce stress-induced, cue-

induced, and other types of drug craving.  Therefore, a treatment that reduces circadian-

based craving could increase other types of craving, and vice versa. 

The present study tested the effects of seven pharmacological treatments on 

nicotine-induced pre- and post-drug circadian activity episodes.  A number of 
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pharmacological treatments for nicotine addiction have been shown to alleviate some 

form of craving in abstinent human smokers, but these treatments have not been tested 

for their efficacy on circadian-based drug craving.  The treatment drugs used in the 

present study have shown efficacy either for smoking cessation or for the treatment of 

alcoholism, and most were selected based on the known pharmacological profile of 

nicotine.  The acetylcholine-targeted treatments used were varenicline, a weak nicotinic 

acetylcholine receptor agonist that is essentially a pharmacological form of nicotine 

replacement therapy (Rollema, et al., 2007), and mecamylamine, a nicotinic receptor 

antagonist that will show how pre- and post-nicotine episodes are affected by a drug that 

is known to enhance rather than alleviate craving in human smokers (Nemeth-Coslett, et 

al., 1986).  The glutamate-targeted treatments included acamprosate, an NMDA receptor 

antagonist that has not specifically been tested for smoking cessation, but is often 

prescribed for the treatment of alcoholism (Spanagel & Zieglgansberger, 1997).  

Acamprosate has also been shown to alleviate excessive alcohol consumption in Period2 

mutant mice (Spanagel, et al., 2005), so the pharmacological actions of this drug may 

include drug-entrainable molecular timing mechanisms.  Topiramate, an AMPA and 

kainate receptor antagonist, was also used as a glutamate-targeted treatment, and this 

drug has shown efficacy both for alcoholism treatment and for smoking cessation (Flórez, 

et al., 2008; Kampman, et al., 2004; Reid, et al., 2007).  Bupropion, an established 

pharmacological treatment for smoking cessation, was used as a treatment to specifically 

target dopamine transmission (Dwoskin, et al., 2006).  Bupropion inhibits the dopamine 

reuptake transporter (DAT), so administration of this treatment will increase dopamine 

transmission.   
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Naltrexone, a µ-opioid receptor antagonist, was also tested as a treatment in the 

present study.  Although naltrexone is primarily prescribed for the treatment of 

alcoholism, it has also shown some efficacy for smoking cessation when combined with 

nicotine-replacement therapy (Krishnan-Sarin, Meandzija, & O’Malley, 2003; O'Malley, 

et al., 2006).  Nicotine administration has been shown to enhance the transmission of 

endogenous opioids in addition to stimulating dopamine and glutamate transmission 

(Margioris, Markogiannakis, Makrigiannakis, & Gravanis, 1992).  Stimulation of 

endogenous opioid pathways is believed to mediate some of the rewarding effects of 

nicotine (Corrigall, Herling, & Coen, 1988) and may explain a portion of the efficacy of 

naltrexone observed in smoking cessation programs.  

Finally, the rewarding effects of nicotine have also been shown to be at least 

partially mediated by the neuropeptide orexin via the orexin-1 (OX1) receptor (Corrigall, 

2009; Hollander, et al., 2008).  For this reason, the present study also included the 

selective OX1 antagonist SB-334867 as a treatment.  As stated earlier, this drug is not 

currently available or prescribed for smoking cessation or the treatment of other 

substance addictions, although it has been proposed for this purpose (Scammell & Saper, 

2007). 

In addition to the seven pharmacological treatments listed above, the present 

research also included two control treatments:  a saline injection and a no treatment 

condition.  The saline treatment in the present paradigm is analogous to the smoking of 

denicotinized cigarettes which allow a smoker to extinguish Pavlovian associations 

between the effects of nicotine and sensory cues associated with the route of 

administration (i.e., the cigarette) (Rose, 2006).  The no treatment control condition is 
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analogous to quitting “cold turkey,” the most common method of smoking cessation 

(Fiore, et al., 1990; Solberg, Asche, Boyle, McCarty, & Thoele, 2007). 

The nicotine dosage used in the present study, 1.0 mg/kg, has been established in 

previous studies of nicotine-induced circadian activity episodes to entrain robust pre- and 

post-drug wheel-running episodes that persist for at least two days after nicotine is 

withheld (Gillman, et al., 2007; Gillman, et al., 2008).  These previous studies also used a 

dorsal subcutaneous injection route to minimize the amount of handling and restraint 

necessary to administer the drug.  This administration route was used for all nicotine, 

saline, and treatment injections throughout the present study so that the only difference 

between the drug and treatment conditions was the substance administered.  Due to 

temporal and financial constraints on this research, only a single dose was used for each 

treatment drug.  Whenever possible, the treatment doses were selected based on previous 

studies that have shown that particular dose to have an effect on the behaviors or 

physiological effects produced by high doses of nicotine (see Method section).  If these 

data were not available, the treatment doses selected were high enough to alter the effects 

of another drug of abuse in the absence of toxic effects. 

The present study also investigated the effects of the nine treatment conditions on 

saline-induced circadian activity episodes in addition to nicotine-induced episodes.  

Previous studies have shown conflicting results on the ability of saline to act as a 

zeitgeber.  Some studies have not shown entrainment of locomotor activity to daily saline 

administration (Gillman, et al., 2008; Pecoraro, et al., 2000), while others have shown 

small but significant persisting episodes of wheel-running activity entrained to saline 

injections (Timberlake, et al., 2009).  At best, saline injections appear to be only a weak 
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zeitgeber that is easily overshadowed by more salient rewards.  In the present study, 

saline was used as a zeitgeber control injection to examine the effects of the treatments 

on drug-naïve animals that have been weakly entrained to a daily administration time and 

to provide further insight on the neurotransmitter mechanisms that produce pre- and post-

drug circadian activity episodes. 

As stated earlier, daily administrations of nicotine and other drugs of abuse 

entrain two distinct activity episodes in which activity counts are significantly higher than 

acclimation activity levels at the same time of day.  The pre-drug anticipatory episode 

consists of steadily increasing activity levels that emerge 1-2 hours prior to the daily 

administration time.  The post-drug evoked episode begins immediately after the drug is 

administered and lasts for several hours, depending on both the drug and dosage given.  

Entrainment is considered to occur if repeated daily administration of a drug produces 

significant pre- and post-drug episodes and if both of these episodes persist for multiple 

days after the drug is withheld.   

For the purposes of this research, pre-nicotine circadian activity episodes are 

assumed to reflect a circadian-based nicotine craving and/or nicotine-seeking behavior.  

Therefore, a treatment that significantly reduces pre-nicotine activity episodes and 

eliminates their persistence is assumed to alleviate this circadian-based craving.  In 

contrast, a treatment that significantly enhances these episodes is assumed to exacerbate 

circadian-based craving.  Post-nicotine circadian activity episodes are assumed to reflect 

the activation of an endogenous circadian timing system as an acute effect of the drug.  A 

treatment that significantly reduces or eliminates the amplitude and persistence of post-
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nicotine episodes is assumed to interrupt this timing mechanism, while a treatment that 

does not significantly change these episodes is assumed to not affect this timing system. 

Finally, the effects of the tested treatments on pre- and post-nicotine- and saline-

induced activity episodes should help to illuminate which neurotransmitter mechanisms 

mediate the expression of these episodes.  Given that these episodes normally persist for 

several days following drug cessation, if administration of a treatment is followed by an 

immediate and significant attenuation of an activity episode, an opposite pharmacological 

action is assumed to at least partially mediate that activity.  For example, if the nicotinic 

acetylcholine receptor antagonist mecamylamine significantly reduces an activity 

episode, then that episode is assumed to be at least partially driven by acetylcholine 

transmission via nicotinic receptors.  Conversely, if treatment administration significantly 

increases activity levels in a circadian episode, the pharmacological action of the 

treatment is assumed to partially mediate the expression of that activity.  For example, if 

the dopamine reuptake inhibitor bupropion significantly increases activity levels in a 

circadian episode, then the expression of that episode is assumed to be partially driven by 

dopamine transmission.  Finally, if a treatment does not significantly alter a circadian 

activity episode, it will be tentatively concluded that the receptor and/or neurotransmitter 

targets of that treatment are not involved in the expression of that activity episode while 

reserving the possibility that higher or lower doses of the treatment may have an effect.  
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Method 

 All experimental procedures were approved by the Institutional Animal Care and 

Use Committee at Indiana University Bloomington.  

Subjects 

 Subjects were 144 female Sprague-Dawley rats obtained from the rodent colony 

in the Department of Psychological and Brain Sciences at Indiana University 

Bloomington or from Harlan Industries.  Female rats were used because previous studies 

of drug-entrained circadian episodes have generally used female rats (Gillman, et al., 

2008; Kosobud, et al., 2007), and because male rats generally show a decline in wheel 

running with age (Peng, Jiang, & Hsu, 1980).  At the beginning of the study, the mean 

age of the subjects was 103.53 days (SD = 15.78 days) and the mean body weight was 

250.04 g (SD = 20.05 g).  The rats were divided into a total of 18 experimental groups 

based on the zeitgeber injections (nicotine or saline) and the administered treatment (no 

treatment, saline, varenicline, mecamylamine, acamprosate, topiramate, naltrexone, SB-

334867, and bupropion).  Eight rats were assigned to each experimental group. 

Apparatus & Conditions 

 All rats were individually housed in cages with attached wheels for 50 days, 

except for four of the saline zeitgeber groups that received the acamprosate, topiramate, 

naltrexone, and SB-334867 treatments, which were housed for 28 days.  The cages were 

kept in light- and sound-isolated cabinets equipped with a ventilation fan to maintain 

airflow and mask outside noise.  Each cabinet contained 8 cages, and each experimental 

group was isolated within a single cabinet. 
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The rats were continuously monitored throughout the study for wheel running, 

water drinking, and feeding activities.  Water was available ad libitum, and water bottles 

and cage bedding were changed once every week as per institutional guidelines.  The 

numbers of wheel turns were recorded with microswitches, and water bottle licks, head 

entries in the feeder, and the numbers of food pellets consumed were recorded with 

photobeam sensors.  Data were recorded continuously in one-minute bins using the Med 

PC-IV program (MedAssociates, Inc). 

Throughout the study, the rats were kept under constant light that varied as a 

function of the location within the cage. Constant light was used to prevent entrainment 

to a light/dark cycle, which acts as a zeitgeber for most locomotor, behavioral, and 

physiological circadian rhythms (Bell-Pedersen, et al., 2005).  Under constant lighting 

conditions, the estrous cycle is usually suspended in adult female rats (Fitzroy Hardy, 

1970).  Light intensity was ~45 lux in the wheels and ~275 lux in the cage where the food 

hopper and water bottle were located.  Light intensity in the room outside the cabinet 

where injections were performed and body weights were recorded was ~215 lux.  These 

light intensities are considered “bright light,” but are lower than the 300 lux intensity that 

reliably produces arrhythmia in adult rats (Cambras, et al., 1998).  Light-entrainable 

physiological and behavioral rhythms will free-run under constant light, and the period of 

these free-running rhythms lengthens as the light intensity increases (Daan & Pittendrigh, 

1976).  Therefore, under the present study conditions, the free-running light-entrainable 

rhythms should show periods of approximately 25-26 hours and be easily distinguishable 

from the drug-entrained circadian episodes, which should show 24-hour periodicity. 
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For the duration of the study, food access was rate-limited to no more than two 

97-mg pellets (NOYES pellets, Test Diets, Inc.) per 5-minute period.  Food pellets were 

accessible from a food receptacle in the cage equipped with an infrared photodetector.  

The dispensation of the food pellets was controlled by the Med PC-IV program, which 

was programmed to dispense two pellets if five minutes had elapsed since the previous 

pellets were dispensed and if there were no pellets currently present in the receptacle.  

This rate-limited food access was used to prevent entrainment to a large daily meal which 

has been shown to act as a zeitgeber for circadian food-anticipatory locomotor and body 

temperature rhythms (Mistlberger, 1994).  Under the rate-limited feeding schedule, rats 

readily consume their daily nutritional requirements, but they are unable to consume 

pellets fast enough and in sufficient quantities to constitute a meal that is large enough to 

entrain circadian food-anticipatory rhythms.  In adult female rats, food-anticipatory 

activity generally emerges when meal size is 5 g or larger in a 2-hr period (Mistlberger & 

Rusak, 1987).  

Drug Solutions & Administration 

Summaries of all drug solutions administered are listed in Table 1.  All zeitgeber 

injections and treatments were administered via dorsal subcutaneous injections at a 

dosage volume of 1.0 ml/kg.  All drug solutions were refrigerated at approximately 4°C 

when not in use. 

Zeitgeber injections.  Nicotine hydrogen tartrate powder (Sigma 

Pharmaceuticals, St. Louis, MO) was dissolved in 0.9% NaCl solution to a concentration 

of 1.0 mg/ml (free base weight). The pH of the solution was adjusted to approximately 

7.4 using NaOH solution.  Nicotine was administered at a dosage level of 1.0 mg/kg.   
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Table 1  

 

Pharmacological Profiles and Dosages of Subcutaneous Zeitgeber and Treatment 

Injectionsa 

Substance Pharmacological Target Dosage 

Zeitgeber Injections   

Nicotine Nicotinic acetylcholine receptor agonist; 
enhances dopamine, glutamate, orexin 
transmission 

1.0 mg/kg 

Saline n/a n/a 

Treatment Injections   

No Treatment n/a n/a 

Saline Treatment n/a n/a 

Varenicline Nicotinic acetylcholine receptor partial 
agonist 

1.0 mg/kg 

Mecamylamine  Nicotinic acetylcholine receptor antagonist 0.57 mg/kg 

Acamprosate Glutamate NMDA receptor antagonist 50 mg/kg 

Topiramate Glutamate AMPA/kainate receptor 
antagonist 

50 mg/kg 

Naltrexone µ/κ-opioid receptor antagonist 10 mg/kg 

SB-334867 Orexin-1 receptor antagonist 10 mg/kg 

Bupropion Dopamine reuptake transporter inhibitor 20 mg/kg 

aAll injections administered at a dosage volume of 1.0 ml/kg. 
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This dosage of nicotine has been shown to entrain robust pre- and post-drug 

circadian activity episodes in adult female rats under constant light and rate-limited 

feeding without adverse effects (Gillman, et al., 2008).  This dosage has also been shown 

to produce conditioned place preference to nicotine injections, as do higher and lower 

doses (Le Foll & Goldberg, 2005).  

 A solution of 0.9% NaCl solution was used for all saline injections.  

 Treatment injections.  Varenicline tartrate (Pfizer) was dissolved in 0.9% NaCl 

solution to a concentration of approximately 1.0 mg/ml.  Varenicline was administered at 

a dosage level of 1.0 mg/kg.  This dosage has been shown to produce a response rate 

similar to 0.4 mg/kg nicotine in a drug discrimination paradigm, and this effect of 

varenicline is blocked by the administration of 0.56 mg/kg mecamylamine (Rollema, et 

al., 2007).  

Mecamylamine hydrochloride powder (Sigma) was dissolved in 0.9% NaCl 

solution to a concentration of approximately 0.57 mg/ml.  Mecamylamine was 

administered at a dosage level of 0.57 mg/kg.  This dosage has been shown to eliminate 

somatic signs of nicotine withdrawal in rats 24 hours after nicotine administration ceases 

(Watkins, Epping-Jordan, Koob, & Markou, 1999). 

 Acamprosate sodium (Toronto Research Chemicals) was dissolved in 0.9% NaCl 

solution to a concentration of approximately 50 mg/ml.  Acamprosate was administered 

at a dosage level of 50 mg/kg.  This dosage has been shown to reduce ethanol drinking in 

rats during reinstatement (Czachowski, Legg, & Samson, 2001), but is not known to 

specifically alter any behavioral or systemic effects of nicotine. 
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 Topiramate powder (US Pharmacopeia) was suspended in 0.9% NaCl solution to 

a concentration of approximately 50 mg/ml and mixed in a warm water bath.  Topiramate 

was administered at a dosage level of 50 mg/kg and vigorously stirred prior to each daily 

administration time.  This dosage has been shown to attenuate the release of dopamine, 

norepinephrine, and serotonin in the nucleus accumbens produced by the administration 

of 0.4 mg/kg nicotine (Schiffer, et al., 2001). 

 Naltrexone hydrochloride (Tocris) was dissolved in 0.9% NaCl solution to a 

concentration of approximately 10 mg/ml.  Naltrexone was administered at a dosage level 

of 10 mg/kg.  This dosage has been shown to decrease responding for food under a fixed 

interval schedule when administered in combination with 1.0 mg/kg nicotine (Corrigall, 

et al., 1988).  

 SB-334867 (Tocris) was dissolved to a concentration of approximately 10 mg/ml 

in a vehicle that consisted of 88% sterile water, 2% dimethylsulphoxide (Sigma), and 

10% 50 mM 2-hydroxy-β-cyclodextrin.  SB-334867 was administered at a dosage level 

of 10 mg/kg and stirred prior to each daily administration time.  In rats, this dosage has 

been shown to extinguish cocaine-seeking behavior (Boutrel, et al., 2005) and to reduce 

the consumption of high-fat food pellets (Nair, Golden, & Shaham, 2008).  A lower dose 

of SB-334867 (4 mg/kg) has been shown to significantly reduce both i.v. nicotine self-

administration and to reduce lever-pressing for nicotine rewards in a progressive ratio 

schedule (Hollander, et al., 2008).   

 Bupropion hydrochloride (Sigma) was dissolved in 0.9% NaCl solution to a 

concentration of approximately 20 mg/ml.  Bupropion was administered at a dosage level 
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of 20 mg/kg.  This dosage has been shown to attenuate somatic nicotine withdrawal signs 

in rats (Malin, et al., 2006).  

Study Schedules 

The basic study schedule lasted 50 days (Table 2).  The study began with a 5-day 

acclimation phase in which the rats were only disturbed twice at approximately 1200 to 

record body weights.  The remainder of the study consisted of two zeitgeber injection 

series, each followed by a 2-day treatment series and a 4-day baseline phase in which all 

injections were withheld and the rats were left undisturbed unless entry was required by 

equipment malfunctions.  The first zeitgeber injection series lasted 16 days, and the 

second zeitgeber injection series lasted 8 days.  Within each injection series, nicotine or 

saline was administered at the same hour each day within the first 30 minutes of the hour.   

The daily administration time was shifted (earlier or later) by at least 3 hours 

between zeitgeber injection series 1 and 2.  During the treatment series, the treatments 

were administered at the same time of day that the zeitgeber injection had been 

administered in the preceding injection series. 

Four of the saline zeitgeber groups were tested in an abbreviated 28-day paradigm 

due to temporal and financial constraints.  These groups received the acamprosate, 

topiramate, naltrexone, and SB-334867 treatments.  In this abbreviated paradigm (Table 

1), the acclimation saline injections and the second zeitgeber injection, treatment, and 

baseline phases were omitted so that the rats received only a single 16-day zeitgeber 

injection series followed by a 2-day treatment phase and a 4-day baseline phase. 
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Table 2  

 

Study Schedule and Subcutaneous Injections Administered 

Study Phase 

No. of 

Days 

Nicotine Zeitgeber 

Group 

Saline Zeitgeber 

Group 

Acclimation 5 None None 

Acclimation Injectionsa 8 Saline Saline 

Zeitgeber Injection Series 1 16 Nicotine Saline 

Treatment Series 1 2 Treatmentb Treatmentb 

Baseline Phase 1 4 Nonec Nonec 

Zeitgeber Injection Series 2a 8 Nicotine Saline 

Treatment Series 2a 2 Treatmentb Treatmentb 

Baseline Series 2a 4 Nonec Nonec 

aOmitted for Saline-Acamprosate, Saline-Topiramate, Saline-Naltrexone, and Saline-

SB334867 groups. 
bTreatments administered were one of the following:  No Treatment (rats left undisturbed 

on treatment days), Saline injection, Varenicline, Mecamylamine, Acamprosate, 

Topiramate, Naltrexone, SB-334867, or Bupropion. All treatments were administered at 

the same time as the zeitgeber was administered in the preceding injection series. 
cRats not disturbed on indicated days.  
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Data Analysis 

 The two hours prior to a zeitgeber injection time were designated as the pre-

injection (PRE) period, and the three hours immediately following an injection were 

designated as the post-injection (POST) period.  The PRE period for each individual 

zeitgeber and treatment injection was calculated for the period 22-24 hours after that 

particular injection (i.e., on the following day).  The remaining 19 hours of each 24-hour 

day were designated as the rest-of-day (ROD) period.  The activity measures analyzed in 

the statistical analyses were the wheel turns, water licks, head entries into the feeders, and 

the number of pellets consumed. 

Entrainment was determined by estimating the period length of the drug-related 

and free-running activity cycles from the actograms and by statistical analysis of the 

activity counts across the acclimation phase, the zeitgeber injection series, and the 

treatment and baseline days.  Multivariate repeated measures analyses with simple 

planned comparisons were performed to compare the PRE, POST, and ROD periods 

among the acclimation and zeitgeber injection series to test for significant episodes of 

activity before and after the drug injection times.  Activity levels in the PRE and POST 

periods that were significantly higher in the zeitgeber injection series than in the 

acclimation injection series were interpreted as significant episodes.  To determine 

persistence of significant episodes, repeated measures analyses were also performed to 

compare the treatment and baseline days to the zeitgeber injection series for the No 

Treatment control groups.  Activity levels that were not significantly different between 

the treatment or baseline phases and the zeitgeber injection series were interpreted as 

persisting episodes. 
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The percent change in activity from the zeitgeber injection series was used to 

examine the effects of the treatments on pre- and post-drug episodes.  This measure was 

calculated by subtracting the amount of activity in either the PRE or POST period on 

each of the individual treatment and baseline days from the mean amount of activity in 

that period on the last four days of the zeitgeber injection series.  This difference value 

was then divided by the injection series amount to obtain the percent different in activity.  

As the PRE period used for each injection was calculated on the following day, there was 

one fewer baseline day of data available for the PRE period than for the POST period.  

Multivariate repeated measures analyses with planned comparisons were then performed 

to compare the percent difference in activity on the individual treatment and baseline 

days to the percent difference in activity during the zeitgeber injection series, which was 

equal to zero in all cases.  Therefore, percent differences on the treatment and baseline 

days that were significantly different from zero (no change in activity) were interpreted 

as a significant effect of the treatments on the activity levels.  

 Finally, to examine the effect of the treatments on the reacquisition of nicotine-

induced entrainment, multivariate repeated measures comparisons were performed 

between the first and second zeitgeber injection series for an average of activity in the 

PRE and POST periods in both the first 4 days of each series and the last 4 days of each 

series.   

 Two rats were excluded from the analyses of the treatment effects because their 

activity counts and percent difference values for all of the four activity measures were 

extreme outliers compared to the other seven rats in their treatment group (more than 3 
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interquartile ranges from the group means).  The excluded rats were rat #3 from the 

Nicotine-Naltrexone group and rat #9 from the Saline-Bupropion group.  
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Results 

Episodic Entrainment to 24-hour Injection Schedules 

 Entrainment to nicotine zeitgeber.  Actograms of wheel running, water 

drinking, head entries into the feeders, and food pellet consumption for the Nicotine-No 

Treatment control group are depicted in Figure 1 for rats that received the nicotine 

zeitgeber.  As in previous studies, nicotine- induced circadian activity episodes were 

independent of the free-running activity rhythms for all four activity measures.  Period 

lengths of the activity cycles (τ) were approximately 24 hours for nicotine-induced 

episodes, whereas the free-running rhythms were approximately 25-26 hours in length.  

 As established in previous studies, drug-induced episodic entrainment requires 

that four major criteria be met.  Repeated administration of a zeitgeber drug on a 24-hour 

schedule must induce (1) a pre-administration activity episode and (2) a post-

administration episode, both of which are significantly higher than acclimation activity 

levels at the corresponding daily time periods.  These significant pre- and post-drug 

episodes (3 & 4) must also persist for multiple days after the drug is withheld.  As no 

treatment drug was administered to the No Treatment control groups, these rats received 

a total of six test days following each injection series in which the drug was withheld and 

the rats were not disturbed.  

 Repeated nicotine administration induced post-drug activity episodes that were 

higher than activity levels at the corresponding time of day during the acclimation phase.  

In Injection Series 1, wheel counts in the POST period (3 hours following the nicotine 

injection) were significantly higher than acclimation wheel counts, F(1, 7) = 18.769, p < 
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   (a)      (b)  

   (c)      (d) 
Figure 1.  Double-plotted actograms of wheel turns (a), water bottle licks (b), head 
entries in the feeder (c), and food pellet consumption (d) depicted as black tick-marks for 
a representative rat (#2) from the Nicotine-No Treatment control group kept under 
constant dim light and rate-limited feeding.  The y-axes are the days of the study with the 
first study day at the top of the graph, and the x-axes are the hours of the day starting at 
midnight (hour 0).  Each horizontal line depicts two consecutive days, and the second day 
is repeated at the beginning of the next line.  Rats in the Nicotine-No Treatment group 
received 5 days of acclimation (ACCL), 8 days of saline injections (SAL), and 2 separate 
nicotine injection series (NIC1 and NIC2), each followed by a 6-day test phase (TEST1 
& TEST2) in which the rats were not disturbed.  Subcutaneous nicotine injections are 
marked with transparent gray boxes on the left side of the actograms, and saline 
injections are marked with white boxes.  For this group, the daily administration time was 
1300 during Series 1 and 0900 during Series 2.  The free-running (light-entrainable) 
activity rhythms are visible as diagonal bouts approximately 26 hours in length.  The pre- 
and post-nicotine episodes are visible as vertical bouts before and after the nicotine 
administration times and persisting into the test phases. 
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.01 (Figure 2), as were water licks, F(1, 7) = 8.028, p < .05 (Figure 3), head entries in the 

feeder, F(1, 7) = 9.685, p < .05 (Figure 4), and pellet consumption, F(1, 7) = 68.136, p < 

.001 (Figure 5).  Post-nicotine episodes of wheel-running, water drinking, head entries, 

and pellet consumption were also significantly higher than post-saline episodes following 

the acclimation saline injections, F(1, 7) = 10.797 – 20.847, p < .05.  On the test days 

when nicotine was withheld (Test 1), both the POST period wheel counts, F(1, 7) = .063 

– 4.774, p = .065 - .810, and the head entries, F(1, 7) = .011 – 4.740, p = .066 - .918, 

were not significantly different from the POST period during Injection Series 1, and 

therefore these activity episodes are considered to have persisted for all six of the test 

days.  In contrast, the water licks and pellet consumption persisted for only one test day, 

F(1, 7) = 2.010 – 4.502, p = .072 - .199, and were significantly lower than the injection 

series levels on the second and third test days, F(1, 7) = 7.431 – 37.370, p < .05.  During 

Injection Series 2, all of the activity measures in the POST period were significantly 

higher than acclimation wheel counts, F(1, 7) = 19.855, p < .01, water licks, F(1, 7) = 

32.286, p < .01, head entries, F(1, 7) = 6.802, p < .05, and pellet consumption, F(1, 7) = 

26.985, p < .01.  POST period wheel running, water licks, and pellet consumption each 

persisted for two test days, F(1, 7) = .018 – 2.001, p = .200 - .897, and head entries 

persisted for five test days, F(1, 7) = .199 – 3.453, p = .106 - .669.  

 Pre-nicotine episodes were not as consistent as the post-nicotine episodes.  In 

Injection Series 1, PRE period wheel counts were significantly higher than both 

acclimation wheel counts, F(1, 7) = 7.902, p < .05, and acclimation saline injection wheel 

counts, F(1, 7) = 10.388, p < .05, at the corresponding time of day (Figure 2).  These PRE 

period wheel counts also persisted for all six days of Test 1, F(1, 7) = .080 – 2.877, p =  
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(a) 

 
 

 
(b) 

 
 

Figure 2.  Mean wheel turns for Nicotine-No Treatment control group rats throughout the 
50-day study.  Rats received 5 days of acclimation followed by (a) 8 days of acclimation 
saline injections at 1300, 16 days of nicotine injections at 1300, 6 test days in which the 
rats were not disturbed, and (b) 8 days of nicotine injections at 0900 followed by 6 
additional test days.  The pre-drug period (PRE) is 22-24 hours following each nicotine 
injection.  The post-drug (POST) period is 0-3 hours following each nicotine injection.  
The rest-of-day (ROD) period is 3-22 hours following each nicotine injection.  Mean 
wheel turns that are significantly higher than acclimation wheel turns:  *p<.05, **p<.01.  
Mean wheel turns that are significantly lower than the last 4 days of Nicotine Series 1:  
+p<.05, ++p<.01.  Mean wheel turns that are significantly different from the last 4 days of 
Nicotine Series 1:  ^p<.05, ^^p<.01. 
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Figure 3.  Mean water licks for Nicotine-No Treatment control group rats throughout the 
50-day study.  Rats received 5 days of acclimation followed by (a) 8 days of acclimation 
saline injections at 1300, 16 days of nicotine injections at 1300, 6 test days in which the 
rats were not disturbed, and (b) 8 days of nicotine injections at 0900 followed by 6 
additional test days.  The pre-drug period (PRE) is 22-24 hours following each nicotine 
injection.  The post-drug (POST) period is 0-3 hours following each nicotine injection.  
The rest-of-day (ROD) period is 3-22 hours following each nicotine injection.  Mean 
water licks that are significantly higher than acclimation water licks:  *p<.05, **p<.01, 
***p<.001.  Mean water licks that are significantly lower than the last 4 days of Nicotine 
Series 1:  +p<.05, ++p<.01.  Mean water licks that are significantly different from the last 
4 days of Nicotine Series 1:  ^p<.05, ^^p<.01. 
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Figure 4.  Mean head entries in the feeder for Nicotine-No Treatment control group rats 
throughout the 50-day study.  Rats received 5 days of acclimation followed by (a) 8 days 
of acclimation saline injections at 1300, 16 days of nicotine injections at 1300, 6 test days 
in which the rats were not disturbed, and (b) 8 days of nicotine injections at 0900 
followed by 6 additional test days.  The pre-drug period (PRE) is 22-24 hours following 
each nicotine injection.  The post-drug (POST) period is 0-3 hours following each 
nicotine injection.  The rest-of-day (ROD) period is 3-22 hours following each nicotine 
injection.  Mean head pokes that are significantly higher than acclimation head pokes:  
*p<.05, ***p<.001.  Mean head pokes that are significantly lower than the last 4 days of 
Nicotine Series 1:  ++p<.01.  Mean head pokes that are significantly different from the last 
4 days of Nicotine Series 1:  ^p<.05. 
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Figure 5.  Mean food pellets consumed for Nicotine-No Treatment control group rats 
throughout the 50-day study.  Rats received 5 days of acclimation followed by (a) 8 days 
of acclimation saline injections at 1300, 16 days of nicotine injections at 1300, 6 test days 
in which the rats were not disturbed, and (b) 8 days of nicotine injections at 0900 
followed by 6 additional test days.  The pre-drug period (PRE) is 22-24 hours following 
each nicotine injection.  The post-drug (POST) period is 0-3 hours following each 
nicotine injection.  The rest-of-day (ROD) period is 3-22 hours following each nicotine 
injection.  Mean pellet consumption that is significantly higher than acclimation pellet 
consumption:  *p<.05, **p<.01, ***p<.001.  Mean pellet consumption that is significantly 
lower than the last 4 days of Nicotine Series 1:  +p<.05.  Mean pellet consumption that is 
significantly different from the last 4 days of Nicotine Series 1:  ^p<.05, ^^p<.01, 
^^^p<.001. 
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.134 - .786.  PRE period wheel counts were also significantly higher than acclimation 

levels during Injection Series 2, F(1, 7) = 8.148, p < .05.  Although PRE period wheel 

counts were significantly lower than injection series levels on Test Day 1, F(1, 7) = 

9.300, p < .05, wheel counts were not significantly different from the injection series 

levels on Test Day 2, F(1, 7) = .691, p = .433, and on Test Day 3, F(1, 7) = .458, p = 

.520. 

 Nicotine administration did not reliably produce significant persisting pre-drug 

episodes of water drinking, head entries, or food pellet consumption.  PRE period water 

licks (Figure 3) were not significantly different from acclimation levels in Injection 

Series 1, F(1, 7) = .262, p = .624, but were significantly higher in Injection Series 2, F(1, 

7) = 10.426, p < .05.  PRE period water licks persisted for two days in Test 2, F(1, 7) = 

2.353 – 4.097, p = .083 - .169.  In contrast, both head entries (Figure 4) and pellet 

consumption (Figure 5) were significantly higher than acclimation levels in the PRE 

period in Series 1, F(1, 7) = 6.181 – 6.426, p < .05, but not in Series 2, F(1, 7) = 1.052 – 

2.449, p = .162 - .339.  Both the head entries and the pellet consumption episodes 

persisted for all six days of Test 1, F(1, 7) = .005 – 2.153, p = .186 - .946. 

 Given the entrainment criteria listed above, wheel counts appeared to be the most 

reliable measure of episodic entrainment of activity.  Although all activity measures 

produced significant and persisting pre- and post-nicotine episodes in either Series 1 or 

Series 2, only pre- and post-nicotine wheel counts were both significant and persisting in 

both Series 1 and Series 2.  For this reason, the remaining results sections will focus on 

the wheel counts data, while the water- and food-directed activities will not be reported. 
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 Although drug-induced activity episodes are usually restricted to the PRE and 

POST periods, activity counts in the remaining 19 hours of the day (Rest of Day or ROD) 

were summed and compared across the acclimation, injection series, and test phases for 

the No Treatment control groups.  Repeated nicotine administration significantly 

increased ROD wheel counts in the first four days of both Injection Series 1 and Series 2 

in comparison to acclimation levels, F(1, 7) = 6.719 – 7.097, p < .05, but ROD wheel 

counts were not significantly different from acclimation wheel levels at the end of the 

Injection Series, F(1, 7) = 3.817 – 5.116, p = .058 - .092.  These results appear to indicate 

that repeated nicotine administration may initially stimulate wheel-running throughout 

the day (not just in the PRE and POST periods) at the beginning of the injection series, 

but became focused in the PRE and POST periods by the end of the injection series, 

possibly after the establishment of episodic entrainment.   

In contrast to the PRE and POST periods, ROD period wheel counts tended to 

increase across the test days as the PRE and POST period wheel counts decreased.  

During Test 1, ROD period wheel counts were significantly higher than wheel counts at 

the end of Injection Series 1 on Test Days 2 through 6, F(1, 7) = 6.693 – 32.621, p < .05.  

Similarly, during Test 2, ROD wheel counts were significantly higher than Injection 

Series 2 wheel counts on Test Days 3 through 5, F(1, 7) = 5.897 – 8.821, p < .05.  These 

results appear to indicate that at the end of the Injection Series and the beginning of the 

Test Phases, nicotine’s stimulatory effects on wheel running are concentrated in the PRE 

and POST periods.  In contrast, ROD period wheel-running increases significantly once 

nicotine has been withheld for several days.  This may occur because nicotine-entrained 
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wheel-running episodes start to free-run in the absence of the zeitgeber, although the 

actograms (Figure 5) do not appear to show this free-running during the Test Phases. 

 Finally, although persistence of nicotine-induced pre- and post-drug wheel-

running episodes cannot be determined for the rats in the other eight treatment groups due 

to the administration of treatment injections, wheel counts for all 72 rats receiving 

nicotine were significantly higher in the PRE period when compared to acclimation levels 

during both Injection Series 1, F(1, 63) = 84.866, p < .001, and Injection Series 2, F(1, 

63) = 69.359, p < .001.  In addition, there was no significant (between-subjects) 

difference in PRE period wheel-running among the treatment groups, F(8, 63) = .601 - 

1.604, p = .142 - .773.   

POST period wheel counts were also significantly higher than acclimation levels 

in both Injection Series 1, F(1, 63) = 163.102, p < .001, and Series 2, F(1, 63) = 181.872, 

p < .001.  POST period wheel-running was not significantly different among the 

treatment groups in Series 1, F(8, 63) = 1.587, p = .147, but there was a significant 

between-subjects effect of treatment in Series 2, F(8, 63) = 2.224, p < .05.  The 

Naltrexone, SB-334867, and Acamprosate treatment groups (in that order) had the lowest 

POST period wheel counts in Series 2, while the No Treatment, Topiramate, Bupropion, 

and Mecamylamine groups (in that order) had the highest Series 2 POST period wheel 

counts. 

 Entrainment to saline zeitgeber.  Previous studies have demonstrated that 

repetitive saline administration induces weak (but significant) pre- and post-drug activity 

episodes that persist for multiple days when saline is withheld (Timberlake, et al., 2009).  

Actograms of wheel-running, water drinking, head entries in the feeders, and food pellet  
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   (a)      (b)  

   (c)      (d) 
 
Figure 6.  Double-plotted actograms of wheel turns (a), water bottle licks (b), head 
entries in the feeder (c), and food pellet consumption (d) depicted as black tick-marks for 
a representative rat (#16) from the Saline-No Treatment control group kept under 
constant dim light and rate-limited feeding.  The y-axes are the days of the study with the 
first study day at the top of the graph, and the x-axes are the hours of the day starting at 
midnight (hour 0).  Each horizontal line depicts two consecutive days, and the second day 
is repeated at the beginning of the next line.  Rats in the Saline-No Treatment group 
received 5 days of acclimation (ACCL), 2 separate saline injection series (SAL/SAL1 
and SAL2), each followed by a 6-day test phase (TEST1 & TEST2) in which the rats 
were not disturbed.  Subcutaneous saline injections are marked with white boxes.  The 
free-running (light-entrainable) activity rhythms are visible as diagonal bouts 
approximately 26 hours in length.  The pre- and post-saline episodes are visible as 
vertical bouts before and after the administration times and persisting into the test phases. 
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consumption for the Saline-No Treatment control group are depicted in Figure 6. As with 

the nicotine-induced circadian activity episodes, saline-induced episodes had period 

lengths (τ) of approximately 24 hours and were independent of the free-running activity 

rhythms that were approximately 25-26 hours in length. 

 Post-saline wheel-running episodes were significantly higher than acclimation 

wheel counts during the acclimation saline injections, F(1, 7) = 14.312, p < .01, and 

throughout both Saline Series 1 and Series 2, F(1, 7) = 9.405 – 39.759, p < .05 (Figure 

11).  Repeated saline administration also appeared to induce locomotor sensitization 

during Saline Series 1, as POST period wheel counts during the last 4 days of  Series 1 

were significantly higher than both the first 4 days of Series 1, F(1, 7) = 21.223, p < .01, 

and the acclimation saline injections, F(1, 7) = 21.039, p < .01.  Post-saline episodes 

persisted for all six days of Test Phase 1, F(1, 7) = .163 – 4.218, p = .079 - .698, and for 

all of Test Phase 2, F(1, 7) = .343 – 1.987, p = .202 - .576, with the exception of Test Day 

5, which had significantly lower wheel counts than the end of Saline Series 2, F(1, 7) = 

5.750, p < .05. 

 Pre-saline wheel-running activity was also significantly higher than acclimation 

wheel counts throughout the acclimation saline injections and both saline injection series, 

F(1, 7) = 6.665 – 15.766, p < .05 (Figure 7).  Pre-saline activity also increased as 

injections were repeatedly administered, as PRE period wheel counts for the acclimation 

saline injections were significantly lower than PRE period wheel counts during the last 

four days of Saline Series 1, F(1, 7) = 14.158, p < .01, and the first four days of both 

saline injection series were significantly lower than the last four days of the respective 

series, F(1, 7) = 12.162 – 13.440, p < .05.  However, pre-saline wheel-running episodes  
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(a) 

 
 

 
(b) 

 
 

Figure 7.  Mean wheel turns for Saline-No Treatment control group rats throughout the 
50-day study.  Rats received 5 days of acclimation followed by (a) 8 days of acclimation 
saline injections at 1300, 16 days of saline injections at 1300, 6 test days in which the rats 
were not disturbed, and (b) 8 days of saline injections at 0900 followed by 6 additional 
test days.  The pre-drug period (PRE) is 22-24 hours following each saline injection.  The 
post-drug (POST) period is 0-3 hours following each saline injection.  The rest-of-day 
(ROD) period is 3-22 hours following each saline injection.  Mean wheel turns that are 
significantly higher than acclimation wheel turns:  *p<.05, **p<.01, ***p<.001.  Mean 
wheel turns that are significantly lower than the last 4 days of Saline Series 1:  +p<.05, 
++p<.01.  Mean wheel turns that are significantly different from the last 4 days of Saline 
Series 1:  ^p<.05. 
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did not persist as consistently as post-saline episodes.  PRE period wheel counts were 

significantly lower on Test Days 1 and 3 when compared to the last 4 days of Saline 

Series 1, F(1, 7) = 6.096 – 6.750, p < .05, although the remaining test days were not 

significantly different from the last 4 days of the series, F(1, 7) = .025 - .865, p = .383 -  

.878.  Pre-saline episodes persisted throughout Test Phase 2, as PRE period wheel counts 

on all six test days were not significantly different from the last 4 days of Saline Series 2, 

F(1, 7) = .565 – 4.297, p = .077 - .477. 

 Repeated saline injections had a similar effect on wheel-running activity in the 

remaining 19 hours of the day (ROD period) as repeated nicotine injections (Figure 11).  

ROD period wheel-running activity increased relative to the acclimation wheel counts, 

but was only significantly higher than acclimation levels during the first four days of 

Saline Series 1, F(1, 7) = 13.003, p < .01, and not during the acclimation saline 

injections, F(1, 7) = 4.657, p = .068, or the last four days of Saline Series 1, F(1, 7) = 

5.030, p = .060.  Over time, repeated saline injections did appear to increase total daily 

activity, as ROD period wheel-running activity throughout Saline Series 2 was 

significantly higher than acclimation wheel counts, F(1, 7) = 10.738 – 13.193, p < .05.  

ROD period activity for the Saline-No Treatment rats did not change significantly during 

most of the Test Days, F(1, 7) = .041 – 5.573, p = .050 - .845, with the exception of Test 

Day 4 in both Test Phase 1 and Test Phase 2, both of which had significantly higher 

wheel counts than the last four days of the respective Saline Injection Series, F(1, 7) = 

5.810 - 6.954, p < .05. 

 Like the Saline-No Treatment control group, the remaining 64 rats that received 

the other eight treatment conditions also had significantly higher pre-saline wheel-
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running episodes in Saline Series 1 than at the corresponding times during the 

acclimation phase, F(1, 63) = 47.713, p < .001.  For the five treatment groups that 

received a second Saline Injection Series (No Treatment, Saline Treatment, Varenicline, 

Mecamylamine, and Bupropion), pre-saline wheel-running was also significantly higher 

than acclimation levels at the corresponding time of day, F(1, 35) = 31.978, p < .001,  

There was a significant between-subjects effect of the treatment groups on wheel-running 

in Saline Series 1, F(8, 63) = 4.015, p < .01, with the Acamprosate, Mecamylamine, and 

No Treatment groups having the highest levels of pre-saline wheel running.   

Post-saline episodes were also significantly higher than acclimation for all 72 rats 

that received the saline zeitgeber in Saline Series 1, F(1, 63) = 101.804, p < .001, and 

Saline Series 2 for the 5 treatment groups that received a second series, F(1, 63) = 54.674, 

p < .001.  As with the pre-saline episodes, there was a significant between-subjects effect 

of treatment group, F(8, 63) = 3.261, p < .01, with the Mecamylamine, Acamprosate, 

Bupropion, and No Treatment groups having higher overall wheel counts than the other 

five treatment groups. 

Summary of entrainment results.  In this paradigm, repeated nicotine 

administration entrained robust pre- and post-drug activity episodes to the daily 

administration time that persisted for approximately 3 days after nicotine was withheld.  

Saline administration entrained robust post-drug episodes, but weaker pre-drug episodes 

that did not persist after the first injection series.  While water drinking, head entries in 

the feeder, and food consumption showed similar patterns of entrained episodes, wheel 

counts were consistently the most reliable measure of circadian entrainment to the drug 

injection times.  Therefore, analysis of wheel-running data should provide the most useful 



 
 

74 

indicator of the effects of the pharmacological treatments on nicotine-induced pre- and 

post-drug circadian episodes. 

Effects of Treatments on Entrained Episodes 

 A total of nine treatment conditions were administered to rats that received 

nicotine or saline zeitgeber injections during Series 1 and Series 2.  The treatments were 

administered on two consecutive days that immediately followed the injection series, and 

treatment injections were given at the same time that the zeitgeber injections had been 

administered in the preceding injection series. The control treatment conditions were no 

treatment (i.e., the rats were not disturbed) and saline injections.  The remaining seven 

treatments were injections of varenicline, mecamylamine, acamprosate, topiramate, 

naltrexone, SB-334867, or bupropion. 

 Wheel-running data were analyzed in both the PRE and the POST periods during 

the treatment and baseline days to assess the change in circadian activity induced by the 

treatments and whether the persistence of pre- and post-drug activity episodes was 

interrupted by the treatments.  Additionally, Injection Series 1 and 2 were compared to 

examine whether the initial treatments had an effect on the reacquisition of pre- and post-

drug activity episodes in Series 2. 

 Post-nicotine activity episodes.  The effects of the nine treatments on wheel-

running activity are depicted in Figure 8.  As stated above, when nicotine injections are 

withheld, post-nicotine activity episodes tend to maintain similar magnitudes for multiple 

days.  When no treatment was given during the two treatment days, POST period wheel-

running activity was not significantly different from the wheel turns during the nicotine 

injection series (Figure 8a), F(1, 7) = .126 – 1.936, p = .207 - .733.  On the four baseline  
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(a)  
 

(b)  
 

(c)  
 

Figure 8.  Percent change in wheel counts (± standard error) for the POST period (0-3 
hours following each injection) during the Treatment and Baseline Days compared to the 
Nicotine Injection Series.  Data are the average of Series 1 and 2.  Treatments 
administered are labeled at the top of the individual graphs.  Percent changes in wheel-
running that are significantly different from zero:  *p<.05, **p<.01, ***p<.001. 
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days that followed the treatment days, POST period wheel running was reduced, but this 

reduction was only significant on Baseline Days 1-3, F(1, 7) = 14.380 – 50.991, p < .01, 

and not on Baseline Day 4, F(1, 7) = .898, p = .375. 

Saline treatment appeared to maintain post-nicotine wheel running for slightly 

longer than no treatment (Figure 8b).  On the treatment days, POST period activity was 

lower than the nicotine injection baseline, although only Treatment Day 2 was 

significantly lower, F(1, 7) = 17.684, p < .01, while Treatment Day 1 was not 

significantly different from the nicotine baseline, F(1, 7) = 3.197, p = .117.  On the 

baseline days following the saline treatment, POST period wheel turns were not 

significantly lower than the nicotine injection levels on Baseline Days 1 and 2, F(1, 7) = 

4.024 – 4.153, p = .081 - .085, and were significantly lower than the nicotine levels on 

Baseline Days 3 and 4, F(1, 7) = 21.723 – 32.695, p < .01. 

 The acetylcholine receptor-targeted treatments had different effects on post-

nicotine wheel-running on the treatment days, but similar effects on the baseline days.  

Varenicline, a weak acetylcholine receptor agonist, increased wheel running during the 

POST period on the treatment days, but this was not a significant increase, F(1, 7) = 

2.171 – 2.909, p = .132 - .184 (Figure 8c).  In contrast, mecamylamine, an acetylcholine 

receptor antagonist, significantly reduced POST period wheel running on the two 

treatment days, F(1, 7) = 6.609 – 9.592, p < .05 (Figure 8d).  Both varenicline and 

mecamylamine significantly reduced wheel running during the four baseline days, F(1, 7) 

= 14.831 – 117.382, p < .01. 

 The glutamate receptor-targeted treatments both generally reduced post-nicotine 

activity.  Acamprosate, an NDMA receptor antagonist, reduced POST period wheel  
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(d)  
 

(e)  
 

(f)  
 

Figure 8 (cont.).  Percent change in wheel counts (± standard error) for the PRE period 
(22-24 hours following each injection) during the Treatment and Baseline Days 
compared to the Nicotine Injection Series.  Data are the average of Series 1 and 2.  
Treatments administered are labeled at the top of the individual graphs.  Percent changes 
in wheel-running that are significantly different from zero:  *p<.05, **p<.01, ***p<.001. 
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running on both treatment days, although only Treatment Day 2 had a significant 

reduction in wheel-running, F(1, 7) = 60.253, p < .001; Treatment Day 1 was not 

significantly different from the nicotine injection series levels, F(1, 7) = 2.559, p = .154 

(Figure 8e).  Topiramate, an AMPA receptor antagonist, significantly reduced post-

nicotine wheel-running on both treatment days, F(1, 7) = 7.136 – 14.682, p < .05 (Figure 

8f).  Both acamprosate and topiramate significantly reduced wheel running throughout 

the baseline phase, F(1, 7) = 9.640 – 736.536 = p < .05, with the exception of topiramate 

on Baseline Day 1, in which wheel turns were not significantly different from the 

nicotine series levels, F(1, 7) = .061, p = .813. 

 The remaining treatments targeted opioid receptors (naltrexone), orexin receptors 

(SB-334867), and dopamine reuptake transporters (bupropion).  Naltrexone treatment 

induced a strong reduction in POST period activity on both treatment days, F(1, 6) = 

43.280 – 543.629, p < .01, and on all four baseline days, F(1, 6) = 12.281 – 276.714, p < 

.05 (Figure 8g).  SB-334867 treatment significantly reduced wheel counts in the POST 

period on Treatment Day 1, F(1, 7) = 45.073, p < .001, but not on Treatment Day 2, F(1, 

7) = 4.466, p = .072 (Figure 8h).  On the baseline days following SB-334867 treatment, 

wheel turns were not significantly different from the nicotine series levels on Baseline 

Day 1, F(1, 7) = .834, p = .391, but were significantly lower on the remaining baseline 

days, F(1, 7) = 33.057 – 36.308, p < .01.  Bupropion treatment significantly reduced 

POST period wheel-running on both treatment days, F(1, 7) = 12.580 – 26.746, p < .01, 

but wheel turns on the following baseline days were not significantly lower than the 

nicotine series levels, F(1, 7) = .092 – 2.792, p = .139 - .770, with the exception of  
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(g)  
 

(h)  
 

(i)  
 
Figure 8 (cont.).  Percent change in wheel counts (± standard error) for the PRE period 
(22-24 hours following each injection) during the Treatment and Baseline Days 
compared to the Nicotine Injection Series.  Data are the average of Series 1 and 2.  
Treatments administered are labeled at the top of the individual graphs.  Percent changes 
in wheel-running that are significantly different from zero:  *p<.05, **p<.01, ***p<.001. 
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Baseline Day 2, which had significantly lower wheel turns, F(1, 7) = 19.449, p < .01 

(Figure 12i). 

 Pre-nicotine activity episodes.  Although all of treatments and controls produced 

a general reduction in post-nicotine wheel-running, most treatments had very different 

effects on pre-nicotine activity episodes (Figure 9).  When no treatment was given, PRE 

period wheel turns showed a slight decline across the treatment and baseline days.  

Except for the PRE period following Baseline Day 2, F(1, 7) = 7.681, p < .05, this 

decline was not significant, F(1, 7) = .033 – 5.386, p = .053 - .861 (Figure 9a).  Saline 

treatment maintained pre-nicotine wheel-running following the two treatment days, as 

PRE period wheel turns were not significantly different from the nicotine injection series 

levels, F(1, 7) = .133 - .624, p = .455 - .726 (Figure 9b).  Saline treatment also 

maintained pre-nicotine wheel turns for the first two baseline days, F(1, 7) = .635 – 

1.750, p = .227 - .452, but PRE period wheel turns were significantly lower than the 

nicotine series levels following Baseline Day 3, F(1, 7) = 24.998, p < .01. 

Varenicline and mecamylamine treatments had relatively opposite effects on pre-

nicotine activity episodes.  Varenicline maintained pre-nicotine wheel turns following the 

two treatment days, F(1, 7) = .191 - .529, p = .491 - .675 (Figure 9c), while 

mecamylamine significantly increased PRE period wheel turns following the first 

treatment day, F(1, 7) = 15.534, p < .01, and induced a smaller (not significant) increase 

in wheel turns following the second day, F(1, 7) = .712, p = .427 (Figure 9d).  Following 

the first baseline day, rats that received varenicline treatment showed a significant 

increase in PRE period wheel turns, F(1, 7) = 5.755, p < .05, and PRE period wheel turns 

were not significantly different from the nicotine series levels for the remainder of the  
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(a)  
 

(b)  
 

(c)  
 

Figure 9.  Percent change in wheel counts (± standard error) for the PRE period (22-24 
hours following each injection) during the Treatment and Baseline Days compared to the 
Nicotine Injection Series.  Data are the average of Series 1 and 2.  Treatments 
administered are labeled at the top of the individual graphs.  Percent changes in wheel-
running that are significantly different from zero:  *p<.05, **p<.01, ***p<.001. 
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(d)  
 

(e)  
 

(f)  
 

Figure 9 (cont.).  Percent change in wheel counts (± standard error) for the PRE period 
(22-24 hours following each injection) during the Treatment and Baseline Days 
compared to the Nicotine Injection Series.  Data are the average of Series 1 and 2.  
Treatments administered are labeled at the top of the individual graphs.  Percent changes 
in wheel-running that are significantly different from zero:  *p<.05, **p<.01, ***p<.001. 
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baseline days, F(1, 7) = .935 – 1.529, p = .256 - .366.  In contrast, rats that received 

mecamylamine treatment showed a gradual decline in PRE period wheel-running 

throughout the baseline phase, although wheel turns on these days were not significantly 

different from the nicotine series levels, F(1, 7) = .527 – 1.023, p = .345 - .491. 

Acamprosate treatment maintained PRE period wheel turns throughout the 

treatment and baseline days, as wheel turns on these days were never significantly 

different from the nicotine injection series levels, F(1, 7) = .112 – 2.542, p = .155 - .748 

(Figure 9e).  Like acamprosate, topiramate treatment maintained PRE period wheel-

running following the two treatment days, F(1, 7) = .083 – 1.539, p = .255 - .781 (Figure 

9f).  However, PRE period wheel turns showed a strong decline across the baseline days, 

being not significantly different from nicotine series levels following the first baseline 

day, F(1, 7) = .018, p = .896, and significantly lower than nicotine series levels on the 

second and third baseline days, F(1, 7) = 7.140 – 95.751, p < .05. 

Of all of the treatments, naltrexone induced the strongest overall reduction in pre-

nicotine wheel-running (Figure 9g).  PRE period wheel turns were significantly lower 

than the nicotine series levels following both naltrexone treatment days, F(1, 6) = 7.475 – 

28.337, p < .05, and were also significantly lower throughout the baseline days, F(1, 6) = 

9.990 – 145.232, p < .05, with the exception of the PRE period following the first 

baseline day, F(1, 6) = 4.585, p = .076.  Treatment with SB-334867 induced an increase 

in PRE period activity following the first treatment day and a slight decrease following 

the second treatment day, although these changes were not significantly different from 

the nicotine series wheel-running levels, F(1, 7) = .121 – 1.644, p = .241 - .738 (Figure  
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(g)  
 

(h)  
 

(i)  
 
Figure 9 (cont.).  Percent change in wheel counts (± standard error) for the PRE period 
(22-24 hours following each injection) during the Treatment and Baseline Days 
compared to the Nicotine Injection Series.  Data are the average of Series 1 and 2.  
Treatments administered are labeled at the top of the individual graphs.  Percent changes 
in wheel-running that are significantly different from zero:  *p<.05, **p<.01, ***p<.001. 
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9h).  However, SB-334867 treatment induced the most robust decline in PRE period 

activity during the baseline phase, as rats that received SB-334867 treatment were the  

only group to show significantly lower PRE period wheel turns following all baseline 

days, F(1, 7) = 8.692 – 35.321, p < .05.  Finally, bupropion treatment maintained PRE 

period wheel turns following both treatment days, F(1, 7) = .002 - .020, p = .892 - .969, 

and induced a slight increase in PRE period activity across the baseline days, although 

this increase was not significant, F(1, 7) = .516 – 1.939, p = .206 - .496 (Figure 9i). 

Reacquisition of pre- and post-nicotine episodes.  In most cases, pre- and post-

nicotine episodes showed a general trend of increasing wheel-running activity counts 

between Nicotine Injection Series 1 and Series 2 (Figure 10).  Wheel counts in the PRE 

and POST periods of these two injection series were compared to examine whether the 

administration of the treatments interfered with the reacquisition of nicotine-induced 

activity episodes in Series 2 after the first Treatment Phase that followed Series 1.  When 

no treatment was administered, PRE period wheel counts were significantly higher in the 

first 4 days of Series 2 than in the first 4 days of Series 1, F(1, 7) = 7.958, p < .05 (Figure 

10a), and POST period wheel counts were also significantly higher at the beginning of 

Series 2 than at the beginning of Series 1, F(1, 7) = 18.067, p < .01.  There were no 

significant differences in PRE or POST period wheel counts between the last 4 days of 

the two Nicotine Injection Series, F(1, 7) = 4.155 - 5.534, p = .051 - .081. 

Administration of most of the pharmacological treatments resulted in very similar trends 

in POST period wheel running between Series 1 and Series 2 as the administration of no 

treatment.  POST period wheel counts at the beginning of Series 2 were significantly  
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(a)  
 

(b)  
 

(c)  
 

Figure 10.  Mean wheel turns (± standard error) recorded in the PRE and POST periods 
during the first and last four days of Nicotine Injection Series 1 compared to Series 2, 
which followed the first treatment phase.  Treatments administered are labeled at the top 
of the individual graphs.  Mean wheel turns that are significantly different between Series 
1 and Series 2:  *p<.05, **p<.01.  
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higher than wheel counts at the beginning of Series 1 following treatment with 

varenicline, F(1, 7) = 21.789, p < .01 (Figure 10c), mecamylamine, F(1, 7) = 22.107, p < 

.01 (Figure 10d), acamprosate, F(1, 7) = 24.665, p < .01 (Figure 10e), topiramate, F(1, 7) 

= 16.964, p < .01 (Figure 10f), SB-334867, F(1, 7) = 6.997, p < .05  

 (Figure 10h), and bupropion, F(1, 7) = 11.304, p < .05 (Figure 10i).  However, treatment 

with both saline, F(1, 7) = .702, p = .430 (Figure 10b), and naltrexone, F(1, 7) = .245, p = 

.636 (Figure 10g), resulted in no significant difference in POST period wheel counts 

between Series 1 and Series 2.  There were no significant differences in POST period 

wheel counts between the last 4 days of Series 1 and Series 2 for any of the treatment 

conditions, F(1, 7) = .003 - 5.192, p = .057 - .960. 

Unlike the no treatment condition, in which PRE period wheel counts were 

significantly higher in the first 4 days of Series 2 than Series 1, none of the 

pharmacological treatment conditions showed any significant differences in PRE period 

wheel counts between the beginning of Series 1 and Series 2, F(1, 7) = .018 – 4.248, p = 

.078 - .896 (Figure 10).  Likewise, there were no significant differences in PRE period 

wheel-running between the last 4 days of Series 1 and Series 2, F(1, 7) = .087  – 1.777, p 

= .224 - .776, with the exception of the varenicline treatment condition, in which PRE 

period wheel counts at the end of Series 2 were significantly higher than at the end of 

Series 1, F(1, 7) = 6.432, p < .05 (Figure 10c). 

Overall, the initial treatment conditions appeared to dampen the reacquisition of 

pre-nicotine activity episodes.  Treatment with both saline and naltrexone also appeared 

to dampen the reacquisition of post-nicotine episodes.  However, all of these effects 

appeared to be limited to the start of the second injection series, as by the end of Series 2,  
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 (d)  
 

(e)  
 

(f)  
 

Figure 10 (cont.).  Mean wheel turns (± standard error) recorded in the PRE and POST 
periods during the first and last four days of Nicotine Injection Series 1 compared to 
Series 2, which followed the first treatment phase.  Treatments administered are labeled 
at the top of the individual graphs.  Mean wheel turns that are significantly different 
between Series 1 and Series 2:  *p<.05, **p<.01. 
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(g)  
 

(h)  
 

(i)  
 
Figure 10 (cont.).  Mean wheel turns (± standard error) recorded in the PRE and POST 
periods during the first and last four days of Nicotine Injection Series 1 compared to 
Series 2, which followed the first treatment phase.  Treatments administered are labeled 
at the top of the individual graphs.  Mean wheel turns that are significantly different 
between Series 1 and Series 2:  *p<.05, **p<.01. 
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PRE and POST period wheel counts were equal to or (in the case of varenicline 

treatment) higher than wheel counts at the end of Series 1.  

Effects on post-saline activity episodes.  In general, the treatment conditions had 

very different effects on saline-induced pre- and post-drug activity episodes, and the rats 

that received the saline zeitgeber injections showed a greater amount of variability in 

their responses to the treatments than the rats that received the nicotine zeitgeber 

injections.  Whereas all of the treatment conditions produced a general (although not 

always significant) reduction in post-drug activity levels on the treatment and baseline 

days, many of the treatments induced a general increase in activity counts on these days 

for the saline zeitgeber rats (Figure 11).  Mean wheel counts for the Saline-No Treatment 

group were increased relative to the Saline Injection Series on both Treatment Days, but 

this increase was not significant, F(1, 7) = 1.674 – 3.345, p = .110 - .237 (Figure 11a).  

Wheel counts for the Saline-No Treatment group were also not significantly different 

from the Saline Injection Series on all four Baseline Days, F(1, 7) = .001 – 1.688, p = 

.235 - .976.  Rats in the Saline-Saline Treatment group showed a trend of increased wheel 

counts relative to the Saline Injection Series, but did not show a significant change in 

activity on either the Treatment or the Baseline Days, F(1, 7) = .010 - .854, p = .386 - 

.922 (Figure 11b). 

Overall, varenicline treatment induced an increase in post-saline wheel-running, 

and this change was significant on Treatment Day 2 and Baseline Days 1 and 3, F(1, 7) = 

5.635 – 8.212, p < .05, but was not significantly different from zero on the remaining 

days, F(1, 7) = .754 – 3.986, p = .086 - .414 (Figure 11c).  Mecamylamine treatment 

showed an effect opposite to varenicline treatment; it induced a decline in post-saline  
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(a)  
 

(b)  
 

(c)  
 

Figure 11.  Percent change in wheel counts (± standard error) for the POST period (0-3 
hours following each injection) during the Treatment and Baseline Days compared to 
Saline Injection Series 1.  Treatments administered are labeled at the top of the individual 
graphs.  Percent changes in wheel-running that are significantly different from zero:  
*p<.05, **p<.01, ***p<.001. 
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wheel-running.  Rats in the Saline-Mecamylamine treatment group did not show a 

significant change in wheel-running on both Treatment Days and the first Baseline Day, 

F(1, 7) = .094 - .872, p = .381 - .768, but they showed a significant reduction in wheel-

running on Baseline Days 2 through 4, F(1, 7) = 6.810 – 452.101, p < .05 (Figure 11d). 

Treatment with both acamprosate and topiramate induced a general increase in 

POST period activity for the rats that received the saline zeitgeber.  However, the percent 

change in wheel-running was not significant throughout the Treatment and Baseline Days 

for either the Saline-Acamprosate group, F(1, 7) = .005 – 4.762, p = .065 - .948 (Figure 

11e), or the Saline-Topiramate group, F(1, 7) = .076 – 3.694, p = .096 - .791 (Figure 11f). 

Naltrexone and SB-334867 both induced a general decline in POST period wheel-

running activity.  Rats in the Saline-Naltrexone group showed a significant reduction in 

wheel-running on both Treatment Days, F(1, 7) = 10.671 – 265.457, p < .05 (Figure 11g).  

However, these rats had inconsistent wheel-running patterns on the Baseline Days, as 

they showed a significant increase in wheel-running on Baseline Day 1, F(1, 7) = 29.647, 

p < .01, a significant decrease on Baseline Day 2, F(1, 7) = 13.634, p < .01, and were not 

significantly different from the Saline Injection Series on Baseline Days 3 and 4, F(1, 7) 

= .021 - .501, p = .502 - .890.  Rats in the Saline-SB-334867 group showed an overall 

decline in activity across the Treatment and Baseline Days, and were significantly lower 

than Saline Injection Series levels on Treatment Day 2 and Baseline Days 2 and 4, F(1, 7) 

= 6.652 – 11.499, p < .05 (Figure 11h), but did not show a significant reduction in 

activity on the remaining days, F(1, 7) = .371 – 5.604, p = .050 - .562.  Rats in the Saline-

Bupropion group showed a trend of increasing activity relative to the Saline Injection  
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(d)  
 

(e)  
 

(f)  
 

Figure 11 (cont.).  Percent change in wheel counts (± standard error) for the POST period 
(0-3 hours following each injection) during the Treatment and Baseline Days compared 
to Saline Injection Series 1.  Treatments administered are labeled at the top of the 
individual graphs.  Percent changes in wheel-running that are significantly different from 
zero:  *p<.05, **p<.01, ***p<.001. 
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(g)  
 

(h)  
 

(i)  
 
Figure 11 (cont.).  Percent change in wheel counts (± standard error) for the POST period 
(0-3 hours following each injection) during the Treatment and Baseline Days compared 
to Saline Injection Series 1.  Treatments administered are labeled at the top of the 
individual graphs.  Percent changes in wheel-running that are significantly different from 
zero:  *p<.05, **p<.01, ***p<.001. 
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series across the Treatment and Baseline Days, but these changes were never significant, 

F(1, 6) = .003 – 4.285, p = .084 - .962 (Figure 11i). 

 Not all of the treatment conditions had significantly different effects on post-

nicotine and post-saline episodes.  The groups that received No Treatment, F(1, 14) = 

.308, p = .587, Saline Treatment, F(1, 14) = 1.025, p = .329, Mecamylamine, F(1, 14) = 

4.400, p = .055, SB-334867, F(1, 14) = .411, p = .532, and Bupropion, F(1, 14) = .843, p 

= .374, did not differ significantly between the rats that received the nicotine zeitgeber 

injections and the rats that received the saline zeitgeber injections.  Significant 

differences between the zeitgeber groups were found for the Varenicline, F(1, 14) = 

8.477, p < .05, Acamprosate, F(1, 14) = 7.074, p < .05, Topiramate, F(1, 14) = 9.554, p < 

.01, and Naltrexone treatment groups, F(1, 14) = 23.518, p < .001. 

Effects on pre-saline activity episodes.  As with post-saline activity episodes, 

most of the effects of the treatment conditions on pre-saline episodes were opposite to 

their effects on pre-nicotine episodes, although these differences were not always 

significant (Figure 12).  However, the control treatment conditions had similar effects on 

pre-saline episodes and on pre-nicotine episodes, as wheel-running in the Saline-No 

Treatment group was significantly lower than Saline Injection Series levels following 

Treatment Day 1 and Baseline Day 1, F(1, 7) = 7.319 – 17.993, p < .05, but was not 

significantly different following the remaining Treatment and Baseline Days, F(1, 7) = 

.083 - .696, p = .432 - .781 (Figure 12a).  PRE period wheel running in the Saline-Saline 

Treatment group was not significantly different from the Saline Injection Series levels on 

all Treatment and Baseline Days, F(1, 7) = 1.146 – 4.043, p = .084 - .320, with the  
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(a)  
 

(b)  
 

(c)  
 

Figure 12.  Percent change in wheel counts (± standard error) for the PRE period (22-24 
hours following each injection) during the Treatment and Baseline Days compared to 
Saline Injection Series 1.  Treatments administered are labeled at the top of the individual 
graphs.  Percent changes in wheel-running that are significantly different from zero:  
*p<.05, **p<.01, ***p<.001. 
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exception of the PRE period following Baseline Day 1, which was significantly lower 

than the Injection Series, F(1, 7) = 37.964, p < .001 (Figure 12b). 

As with post-saline episodes, varenicline produced an overall increase in PRE 

period wheel-running (Figure 12c).  However, this increase was only significant 

following Baseline Day 3, F(1, 7) = 6.251, p < .05, and was not significantly different 

from the Saline Injection Series following the remaining Treatment and Baseline Days, 

F(1, 7) = .836 – 4.489, p = .072 - .391.  Mecamylamine also had similar effects on pre-

saline episodes as it did on post-saline episodes, and this effect was opposite to that of 

varenicline.  Rats in the Saline-Mecamylamine group showed an overall reduction in 

PRE period wheel-running, and this change was significant on Baseline Days 1 and 2, 

F(1, 7) = 11.429 – 52.474, p < .05, but not on the remaining Treatment and Baseline 

Days, F(1, 7) = .466 – 1.987, p = .201 - .517 (Figure 12d). 

Acamprosate and topiramate both increased PRE period activity for the rats that 

received the saline zeitgeber injections, as they did with POST period activity.  Rats in 

the Saline-Acamprosate group had significantly higher wheel-running in the PRE period 

following both Treatment Days and the first two Baseline Days, F(1, 7) = 9.138 – 10.061, 

p < .05, but not following Baseline Day 3, F(1, 7) = 2.763, p = .140 (Figure 12e).  Rats in 

the Saline-Topiramate group showed increases in PRE period wheel-running following 

most of the Treatment and Baseline Days, but these changes did not differ significantly 

from the Saline Injection Series, F(1, 7) = .434 – 3.814, p = .092 - .517. 

Naltrexone, SB-334867, and bupropion all induced general increases in pre-saline 

activity episodes across the Treatment and Baseline Days (Figure 16g-i).  However, these 

treatments did not induce significant changes in PRE period activity for any of these  
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(d)  
 

(e)  
 

(f)  
 

Figure 12 (cont.).  Percent change in wheel counts (± standard error) for the PRE period 
(22-24 hours following each injection) during the Treatment and Baseline Days 
compared to Saline Injection Series 1.  Treatments administered are labeled at the top of 
the individual graphs.  Percent changes in wheel-running that are significantly different 
from zero:  *p<.05, **p<.01, ***p<.001. 
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(g)  
 

(h)  
 

(i)  
 
Figure 12 (cont.).  Percent change in wheel counts (± standard error) for the PRE period 
(22-24 hours following each injection) during the Treatment and Baseline Days 
compared to Saline Injection Series 1.  Treatments administered are labeled at the top of 
the individual graphs.  Percent changes in wheel-running that are significantly different 
from zero:  *p<.05, **p<.01, ***p<.001. 

 



 
 

100 

days; naltrexone:  F(1, 7) = .023 – 4.010, p = .085 - .883, SB-334867:  F(1, 7) = .555 – 

2.920, p = .131 - .480, bupropion:  F(1, 7) = .632 – 1.926, p = .208 - .453. 

In most cases, the treatments that had significantly different effects on post-

nicotine, and post-saline episodes also had significantly different effects on pre-nicotine 

and pre-saline episodes.  As with POST period activity, there were no significant 

difference in PRE period activity between the nicotine and saline zeitgeber groups for the 

No Treatment condition, F(1, 14) = .120, p = .734, Saline Treatment, F(1, 14) = .356, p = 

.560, Mecamylamine, F(1, 14) = 1.305, p = .272, SB-334867, F(1, 14) = .336, p = .572, 

and Bupropion, F(1, 14) = 1.010, p = .332.  Likewise, the Acamprosate, F(1, 14) = 

13.505, p < .01, Topiramate, F(1, 14) = 4.949, p < .05, and Naltrexone treatment groups, 

F(1, 13) = 13.431, p < .01, all showed significant differences between the nicotine and 

saline zeitgeber groups, as they did for POST period activity.  The one exception was 

varenicline, which had a significant difference in POST period activity, but was not 

significantly different for PRE period activity, F(1, 14) = 4.595, p = .050. 

 Summary of treatment results.  Most of the treatment conditions reduced post-

nicotine activity that across the treatment and baseline days.  In contrast, most of the 

treatment conditions increased post-saline activity on these days.  Pre-nicotine activity 

levels were increased or maintained by most of the treatment conditions, with the 

exception of naltrexone and SB-334867.  Naltrexone treatment reduced pre-nicotine 

wheel running on both the treatment days and most baseline days.  SB-334867 treatment 

eliminated the persistence of pre-nicotine wheel running on the baseline days, but did not 

significantly lower pre-nicotine activity on the treatment days.  Naltrexone and SB-

334867 also appeared to diminish the reacquisition of both pre- and post-nicotine 
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episodes in the second Nicotine Injection Series.  Overall, naltrexone and SB-334867 had 

the largest effects on both pre- and post-nicotine circadian activity episodes.
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Discussion 

Summary of Results 

Entrainment to nicotine and saline zeitgeber injections.  Overall, wheel counts 

appeared to provide the most sensitive representation of nicotine- and saline-induced 

circadian activity episodes.  While water drinking, head entries in the feeder, and food 

pellet consumption showed similar daily patterns (Figure 1, Figure 6), wheel-running was 

the only activity measure for which significant persisting pre- and post-drug episodes 

were consistently recorded. 

Repeated subcutaneous nicotine administration readily entrained significant post-

nicotine activity episodes that persisted for at least 2 days.  Significant episodes were also 

recorded in the PRE period (1-2 hours prior to the daily injection time) in both Nicotine 

Injection Series, and these episodes also persisted for multiple days, with the exception of 

the PRE period following the first day that nicotine was withheld during Test 2, in which 

PRE period wheel-running was significantly lower than wheel counts at the end of 

Nicotine Series 2 (Figure 2).  The analysis of wheel-running in the remaining 19 hours of 

the day (ROD period) showed that nicotine administration initially increased the overall 

activity levels throughout the day, but nicotine-induced activity eventually became 

focused (entrained) to the PRE and POST periods, while the activity throughout the rest 

of the day returned to acclimation levels.  These results indicate that nicotine 

administration in the current paradigm induced robust pre- and post-drug circadian 

activity episodes that are sufficient to measure the effects of the treatments. 

Repeated saline administration in the same paradigm produced significant pre- 

and post-drug episodes, but only the post-saline episode showed reliable persistence.  The 
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pre-saline episode did not persist following Saline Series 1, and since many of the saline 

zeitgeber groups in the present study did not receive a second zeitgeber injection series, it 

is not clear whether the effects of the treatments can be reliably interpreted for the pre-

saline episodes. 

Effects of treatments on post-drug activity episodes.  The effects of the 

treatment on nicotine-entrained circadian activity episodes are summarized in Table 3, 

and the effects on saline-entrained episodes are summarized in Table 4.  Some of the 

treatments had differential effects on the treatment days versus the baseline days, whereas 

others had consistent effects throughout the treatment and baseline days.  For example, 

varenicline treatment did not produce a significant change in POST period activity on the 

two treatment days, but this activity was significantly lower than the nicotine injection 

series on all four baseline days (Figure 8c).  These differential results appear to indicate 

that the mechanisms that produce the circadian episodes may be at least partially distinct 

from the mechanisms that allow these episodes to persist on a circadian schedule.  In 

other words, the expression of the locomotor activity episodes may be governed by a set 

of mechanisms that is separate from the mechanisms that govern the timing of the 

episodes.  Based on the evidence for these distinct mechanisms, the remainder of this 

discussion will interpret the effects of the treatments on the two treatment days as effects 

on the circadian locomotor activity episodes themselves, while the effects of the 

treatments on the baseline days will be interpreted as effects on persistence of the activity 

episodes.   

Most of the administered treatments produced a reduction in post-nicotine activity 

levels during the three hours following the daily administration time.  When no treatment  
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Table 3  

Summary of Significant Treatment Effects on Pre- and Post-Nicotine Circadian Activity 

Episodes 

Treatment PRE  POST 

 Episodesa Persistenceb  Episodesa Persistenceb 

No Treatment - Decrease – 
2nd day 

 - Decrease – 
1st – 3rd days 

Saline Treatment - Decrease – 
3rd day 

 Decrease – 
2nd day  

Decrease – 
3rd & 4th days 

Varenicline - Increase –  
1st day 

 - Decrease – 
all days 

Mecamylamine  Increase – 
1st day 

-  Decrease – 
both days 

Decrease – 
all days 

Acamprosate - -  Decrease – 
2nd day  

Decrease – 
all days 

Topiramate - Decrease – 
2nd & 3rd day 

 Decrease – 
both days 

Decrease – 
2nd – 4th days 

Naltrexone Decrease - 
both days 

Decrease – 
2nd & 3rd day 

 Decrease – 
both days 

Decrease – 
all days 

SB-334867 - Decrease – 
all days 

 Decrease – 
1st day 

Decrease – 
2nd – 4th days 

Bupropion - -  Decrease – 
both days 

Decrease – 
2nd day 

aPercent difference from Nicotine Injection Series during the two Treatment Days. 

bPercent difference from Nicotine Injection Series during the Baseline Days.  Three 

baseline days were measured for PRE period activity, and four baseline days were 

measured for POST period activity. 
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Table 4  

Summary of Significant Treatment Effects on Pre- and Post-Saline Circadian Activity 

Episodes 

Treatment PRE  POST 

 Episodesa Persistenceb  Episodesa Persistenceb 

No Treatment Decrease – 
1st day 

Decrease – 
1st day 

 - - 

Saline Treatment - Decrease – 
1st day 

 -  - 

Varenicline - Increase –  
3rd day 

 Increase – 
2nd day 

Decrease –        
1st & 3rd days 

Mecamylamine  - Decrease – 
1st - 2nd days 

 - Decrease –       
2nd – 4th days 

Acamprosate Increase – 
both days 

Increase –  
1st - 2nd days 

 -  - 

Topiramate - -  - - 

Naltrexone - -  Decrease – 
both days 

Increase 1st day, 
Decrease 2nd day 

SB-334867 - -  Decrease – 
2nd day 

Decrease –       
2nd & 4th days 

Bupropion - -  - - 

aPercent difference from Saline Injection Series during the two Treatment Days. 

bPercent difference from Saline Injection Series during the Baseline Days.  Three 

baseline days were measured for PRE period activity, and four baseline days were 

measured for POST period activity. 
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was given, post-nicotine wheel-running was not significantly different from the nicotine 

injection series levels on the treatment days, but was significantly lower than the nicotine 

injection series for most of the baseline days (Figure 8a).  Saline treatment appeared to 

maintain post-nicotine activity levels for slightly longer than no treatment, as wheel 

running was not significantly different from the nicotine injection series on the first 

treatment day as well as the first two baseline days (Figure 8b).   

On the treatment days, the post-nicotine activity episodes were consistently and 

significantly reduced by administration of mecamylamine, topiramate, naltrexone, and 

bupropion (Figure 8).  Acamprosate and SB-334867 significantly reduced post-nicotine 

wheel-running on only one of the two treatment days, and varenicline administration did 

not significantly alter these activity levels.  Given these data, the post-nicotine episodes 

appear to be driven by the activation of nicotinic acetylcholine, AMPA/kainate, and µ/κ-

opioid receptors as well as a reduction in dopamine transmission.  The less consistent 

results with acamprosate and SB-334867 may also indicate roles for NMDA and orexin-1 

receptors in mediating post-nicotine activity episodes. 

Both varenicline and mecamylamine significantly reduced post-nicotine wheel-

running on all four baseline days.  Since these two treatments have opposite 

pharmacological actions, it can be assumed that the persistence of post-nicotine episodes 

does not involve acetylcholine transmission.  Persistence of these episodes also does not 

appear to involve dopamine transmission, as bupropion treatment only significantly 

reduced post-nicotine wheel-running on one of the baseline days.  Both acamprosate and 

naltrexone treatment significantly reduced post-nicotine activity on all four baseline days, 

and both topiramate and SB-334867 significantly reduced this activity on the last three 
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baseline days.  Therefore, persistence of post-nicotine episodes appears to be mediated by 

the activation of NMDA, AMPA/kainate, µ/κ-opioid, and orexin-1 receptors. 

Previous studies of nicotine-induced activity episodes have shown that rats will 

readily reacquire the expression of these episodes after nicotine has been withheld for 

several days (Gillman, et al., 2007; Gillman, et al., 2008).  In the present study, most of 

the rats that received the nicotine zeitgeber showed a significant increase in post-nicotine 

wheel-running on the first four days of Nicotine Injection Series 2 when compared to the 

first four days of Series 1 (Figure 10) as the post-nicotine episodes were reacquired and 

quickly became entrained to the new administration time in Series 2.  However, both the 

naltrexone and saline treatment groups did not show a significant difference in post-

nicotine activity between the beginnings of the two series, which suggests that these 

particular treatments interfered with reacquisition of post-nicotine episodes. 

In contrast to the reductions in post-nicotine episodes produced by all treatments, 

most of the treatments did not induce significant changes in post-saline activity episodes, 

although there was a great deal of variability in the effects of the treatments among 

individual rats (Figure 11).  Only naltrexone treatment significantly reduced post-saline 

activity levels on both treatment days, although varenicline significantly increased post-

saline activity on Treatment Day 2, and SB-334867 significantly reduced this activity on 

Treatment Day 2.  Therefore, post-saline episodes appear to be mediated by the activation 

of µ/κ-opioid receptors and possibly by the activation of nicotinic acetylcholine and 

orexin-1 receptors. 

Most of the treatments did not significantly change post-saline episodes on the 

baseline days (Figure 11).  Varenicline treatment significantly increased post-saline 
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wheel-running on the first and third baseline days, and mecamylamine treatment 

significantly reduced post-saline activity on the last three baseline days.  Therefore, 

persistence of post-saline episodes may depend on the activation of nicotinic 

acetylcholine receptors.  Treatment with SB-334867 significantly reduced post-saline 

wheel-running on the second and fourth baseline days, indicating that persistence of these 

episodes may also be mediated by the activation of orexin-1 receptors. 

Effects of treatments on pre-drug activity episodes.  While most of the 

treatments led to a decline in post-nicotine activity, the nine treatment conditions had 

very different effects on pre-nicotine circadian activity episodes.  Most of the treatments 

did not induce a significant change in PRE period wheel-running after administration on 

the two treatment days (Figure 9).  The exceptions were mecamylamine, which led to a 

significant increase in pre-nicotine wheel counts after the first (but not the second) 

treatment day, and naltrexone, which induced a significant decrease in PRE period wheel 

counts following both treatment days.  Therefore, the expression of pre-nicotine episodes 

appears to be mediated by the activation of µ- and/or κ-opioid receptors, and possibly by 

the inactivation of nicotinic acetylcholine receptors. 

Treatment with acamprosate, mecamylamine, and bupropion did not significantly 

change pre-nicotine wheel-running following the baseline days (Figure 9).  Varenicline 

treatment significantly increased PRE period wheel counts following the first baseline 

day.  Both naltrexone and topiramate treatment led to significant reductions in pre-

nicotine wheel-running following the last two baseline days, and treatment with SB-

334867 led to significant reductions in this activity following all three baseline days.  

These results indicate that the persistence of pre-nicotine episodes is mediated by the 
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activation of µ/κ-opioid, AMPA/kainite, and orexin-1 receptors.  Given the effects of 

varenicline following the first baseline day, the persistence of these episodes may also be 

mediated by the activation of nicotinic acetylcholine receptors, presumably by 

acetylcholine instead of nicotine. 

In all but one of the treatment groups, there was no significant difference in PRE 

period wheel counts between the last four days of Series 1 and 2 (Figure 10). The 

exception was the varenicline treatment group, in which pre-nicotine wheel counts at the 

end of Series 2 were significantly higher than at the end of Series 1.  These results may 

indicate that varenicline treatment facilitates or enhances entrainment following a period 

of abstinence, but this cannot be definitively tested in these data. 

As with post-saline episodes, there was a great deal of individual variability in the 

effects of the treatments on pre-saline episodes, but most of the treatments did not 

significantly change PRE period wheel counts (Figure 12).  PRE period wheel counts 

were significantly increased following both treatment days and the first two baseline days 

in the Saline-Acamprosate group.  The Saline-Mecamylamine group showed significant 

reductions in PRE period wheel-running following the first two baseline days.  Following 

the present interpretation criteria, these results indicate that the expression of pre-saline 

episodes is mediated by the inactivation of NMDA receptors, and the persistence of these 

episodes is mediated by the activation of nicotinic acetylcholine receptors and the 

inactivation of NMDA receptors.  However, as noted above, daily saline administration 

did not reliably entrain persisting pre-saline episodes after a single injection series, so it is 

not clear whether these results can be reliably interpreted as the effects these treatments 

would have on fully-entrained pre-saline circadian activity episodes. 
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Summary of treatment effects.  The results of these treatment manipulations 

clearly show that pre- and post-nicotine circadian activity episodes are mediated by 

distinct neuropharmacological mechanisms, although they also appear to share some 

common mechanisms.  Based on the pattern of treatment effects, the activation of µ- 

and/or κ-opioid receptors appears to mediate both the expression and the persistence of 

pre- and post-nicotine circadian episodes, as administration of naltrexone significantly 

reduced both PRE and POST period wheel-running on most of the treatment and baseline 

days.  The persistence of both pre- and post-nicotine episodes also appears to be mediated 

by the activation of orexin-1 receptors, as treatment with SB-334867 significantly 

reduced PRE and POST period wheel counts on most baseline days, but not on treatment 

days.  Post-saline episodes were also reduced by naltrexone administration, and the 

persistence of post-saline episodes was reduced by both naltrexone and SB-334867, 

although these treatments did not significantly change pre-saline wheel running. 

In addition to these common mechanisms, post-nicotine episodes appear to be 

driven by the activation of NMDA, AMPA/kainate, nicotinic acetylcholine, and orexin-1 

receptors, and these receptors also appear to play a role in the persistence of these 

episodes.  These results are not surprising given that nicotine administration is known to 

engage cholinergic and glutamatergic mechanisms (Benowitz, 2008; Reid, et al., 2000).  

In contrast, pre-nicotine episodes appear to be driven by inactivated nicotinic receptors in 

addition to µ/κ-opioid receptors, and the persistence of pre-nicotine episodes appears to 

be driven by the activation of AMPA/kainate receptors in addition to opioid and orexin-1 

receptors.  Surprisingly, neither the expression nor the persistence of both pre- and post-

nicotine episodes appears to involve dopamine transmission, as bupropion administration 
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did not significantly alter pre- or post-nicotine wheel-running throughout all treatment 

and baseline days. 

Finally, as noted in the introduction, it should be noted that the present study was 

limited to single, high doses of nicotine and the treatment drugs.  Therefore, many of the 

treatments that did not significantly affect nicotine-induced circadian activity episodes 

may have significant effects if administered at higher or lower doses.  Future studies will 

need to address these limitations and examine a range of doses for all of the substances 

used in the present research. 

Proposed Mechanisms and Significance 

 Anatomical mechanisms.  The present study was not designed to specifically 

examine the involvement of discrete brain regions in the expression of pre- and post-drug 

circadian activity episodes.  Rather, it was designed to provide a basic overview of the 

neurotransmitter systems involved in the generation and timing of these circadian 

episodes.  The results of the present research allow the formation of several hypotheses 

that can be more directly tested in future studies.  As studies of drug-induced circadian 

activity episodes have to date been restricted to intact, behaving animals, the hypotheses 

proposed in this section are partially based on the findings of studies of food-anticipatory 

activity and the methamphetamine-sensitive circadian oscillator combined with studies of 

drug abuse pharmacology that did not utilize a circadian biological perspective. 

 Before discussing the anatomical mechanisms that mediate pre- and post-drug 

circadian activity episodes, it seems important to clarify the significance and differences 

between these episodes.  Post-drug circadian episodes undoubtedly reflect the acute, 

immediate effects of the drugs.  A great deal is known about the brain regions that are 
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affected after a drug is administered such as the VTA, the nucleus accumbens, the 

amygdala, and the pre-frontal cortex (Kalivas, et al., 2005; Kalivas & Volkow, 2005).  

However, it is not clear why a circadian timing system would be engaged in the post-drug 

period, particularly if an independent mechanism controls the timing of the pre-drug 

episodes.   

 There appear to be two basic conceptual approaches to analyzing the causation 

and function of the post-drug episode.  First, consider that administration of a drug of 

abuse is an enormously noxious event for many systems of the body.  As a drug is 

repeatedly administered over time, a number of compensatory changes occur in 

metabolism, receptor sensitivity, and other physiological processes that lead to drug 

tolerance (Ramos, Siegel, & Bueno, 2002; Stewart & Badiani, 1993).  Entrainment of the 

post-drug circadian episode therefore may ensure that these compensatory changes occur 

at the time(s) of day when administration is most likely to occur.  The importance of 

these compensatory changes appears to be a likely explanation of why emergency room 

admissions for drug overdoses tend to show an exogenous circadian rhythm that peaks in 

the early evening (Erickson, et al., 1998; Morris, 1987; Raymond, et al., 1992).  If drug 

users are accustomed to administering their drugs on a regular daily schedule, then taking 

drugs at a different time of day when these compensatory mechanisms are not engaged 

may lead to the symptoms of an overdose.   

 If the pre- and post-drug episodes are timed by common mechanisms, a second 

function of the post drug circadian episode may be to initiate the timing of the pre-drug 

episode.  The pre-drug episode may represent a circadian-based drug craving, a drug-

anticipatory activity rhythm that is analogous to food-anticipatory activity, or a circadian 
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drug-seeking motivation.  While craving, anticipation, and motivational seeking sound 

like very similar behaviors, each has been linked to different neural circuits.   

Drug craving has been linked to the activity of the insula, which integrates 

interceptive information from the periphery with emotional information from limbic and 

cortical circuits (Naqvi & Bechara, 2009; Paulus, Tapert, & Schulteis, 2009).  Drug 

anticipation, if analogous to food anticipation, is a circadian rhythm of heightened 

activity entrained to and emerging a few hours before a daily drug administration time 

(Mistlberger, 1994, 2009).  The mechanisms that mediate food anticipation have not been 

definitively isolated, but peripheral clock mechanisms and the dorsomedial hypothalamic 

nucleus appear to play roles in the expression of this behavior (Davidson, 2009; Escobar, 

Cailotto, Angeles-Castellanos, Delgado, & Buijs, 2009).  Drug-seeking motivation is 

typically measured as active lever pressing in drug self-administration paradigm and 

reflects the “work” that drug users perform to successfully obtain and administer their 

drugs (Everitt, Dickinson, & Robbins, 2001).  Drug-seeking motivation has been linked 

to the transmission of dopamine in the nucleus accumbens from neurons originating in 

the VTA, and the motor output of this motivation appears to be due to the disinhibition of 

motor neurons in the ventral pallidum that occurs when dopamine is transmitted in the 

accumbens (Berridge, 2009).  Pre-drug circadian activity episodes may reflect a 

combination of these behaviors, and therefore the expression of pre-drug activity 

episodes may be mediated in any or all of these neural regions. 

The combined results of the treatment manipulations in the present study suggest 

that the expression of drug-entrainable circadian activity episodes is controlled by timing 

mechanisms within endogenous opioid-transmitting cells.  Further, it appears that the 
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persisting expression of these rhythms is driven by the activity of both orexin-

transmitting and opioid-transmitting neurons.  Specifically, this orexin transmission 

appears to involve the orexin-1 receptor, and this endogenous opioid transmission 

appears to involve the µ- and/or κ-opioid receptors. 

The origin of these orexin neurons appears easy to locate, as orexin-transmitting 

neurons originate mainly in the lateral hypothalamus and the adjacent perifornical area 

and dorsomedial hypothalamic nucleus (Date, et al., 1999; Peyron, et al., 1998).  The 

lateral hypothalamus receives GABA projections directly from the nucleus accumbens, 

and the firing of these inhibitory projections appears to be inhibited by the transmission 

of dopamine that results from the administration of a drug of abuse (Kelley, 2004; 

Stratford & Kelley, 1999).  Therefore, administration of these drugs also activates lateral 

hypothalamic neurons, and if this administration occurs on a circadian schedule, it would 

presumably entrain molecular clock mechanisms within the cells in this region.  Further, 

there is an orexin projection from the lateral hypothalamus to dopaminergic neurons of 

the ventral tegmental area that express the orexin-1 receptor (Borgland, et al., 2006).  

When drug use ceases, entrained clock mechanisms in the lateral hypothalamus may 

continue to oscillate and continue to activate this tegmental projection pathway, thereby 

facilitating a weakened but persisting circadian activity episode that presumably reflects a 

persisting circadian drug-seeking motivation. 

An entrained clock mechanism in the lateral hypothalamus may also contribute to 

drug craving, as there are orexin projections from this region to neurons in the insular 

cortex that also express the orexin-1 receptor (Hollander, et al., 2008; Peyron, et al., 

1998), and these neurons may continue to be activated on a circadian schedule after drug 



 
 

115 

use ceases.  The lateral hypothalamus also receives inputs from the dorsomedial 

hypothalamus, which appears to play a role in circadian food anticipation and may 

therefore have a role in circadian drug anticipation (Yoshida, McCormack, España, 

Crocker, & Scammell, 2006). 

The locations of the endogenous opioid timing mechanisms that are entrained by 

drugs of abuse are more difficult to isolate, as there are several different types of 

endogenous opioids that activate the µ and κ receptors, and these receptors are expressed 

in numerous brain regions (Mansour, et al., 1994).  However, there are two opioid 

pathways that have been identified as important for the reinforcing effects of non-opioid 

addictive drugs.  First, there are dynorphin-transmitting neurons in the nucleus 

accumbens that project to dopaminergic neurons of the ventral tegmental area that 

express κ-opioid receptors (Shippenberg & Rea, 1997).  These dynorphin neurons are 

activated when dopamine is transmitted to the nucleus accumbens from the VTA and are 

part of a negative feedback loop in which the firing of these neurons inhibits the firing of 

the VTA dopamine neurons.  This negative feedback loop is believed to have a 

neuroprotective function that dampens the dopamine transmission that occurs to repeated 

rewards, and in the case of drug addiction, this feedback loop is believed to dampen the 

rewarding effects of non-drug rewards (Nestler, 2004).   

Despite their functions, these dynorphin neurons are probably not part of the 

mechanisms that time the expression of pre- and post-drug circadian episodes.  As the 

activation of these neurons inhibits the firing of VTA dopamine neurons, circadian 

activation of these neurons would presumably lead to a period of reduced activity, rather 

than the robust circadian activity episodes that precede and follow drug administration.  
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Further, naltrexone is a κ-opioid antagonist, so its administration would prevent these 

neurons from transmitting dynorphin to the VTA dopamine neurons, and therefore would 

presumably produce a rise in activity.  However, naltrexone administration reliably and 

significantly reduced circadian activity episodes, so it can be assumed that these episodes 

are not mediated by these dynorphin neurons that originate in the nucleus accumbens. 

The second endogenous opioid pathway that appears to play a role in drug 

addiction is a β-endorphin pathway that originates in the arcuate nucleus of the 

hypothalamus and projects to the nucleus accumbens, which expresses both µ and κ 

opioid receptors (Gianoulakis, 2009).  Drugs of abuse stimulate these arcuate neurons to 

transmit β-endorphin to the nucleus accumbens shell, and this process has been shown to 

induce locomotion (Sanchis-Segura, Correa, & Aragon, 2000; Sanchis-Segura, Correa, 

Miquel, & Aragon, 2005).  Further, the arcuate nucleus transmits multiple neuropeptides 

to the lateral hypothalamus, including neuropeptide Y, agouti-related peptide, and α-

melanin stimulating hormone (Elias, et al., 1998), and in return, the lateral hypothalamus 

transmits orexin to the arcuate nucleus (Date, et al., 1999). This orexin projection has 

been found to stimulate GABAergic cells in the arcuate nucleus that have been linked to 

food intake (Burdakov, Liss, & Ashcroft, 2003).  Interestingly, orexin transmission in this 

pathway is mediated by the orexin-2 receptor and therefore would not be blocked by the 

administration of SB-334867.  The main function of the arcuate nucleus appears to be the 

maintenance of energy homeostasis, and this region receives and transmits a number of 

food- and energy-related signals (Cone, et al., 2001).  Endogenous circadian rhythms are 

often considered to be a form of temporal physiological homeostasis (Moore-Ede, 1986), 

so it is not too difficult to imagine that the arcuate nucleus would possess timing 
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mechanisms that help to mediate circadian reward-seeking behavior and compensatory 

changes to daily drug administration. 

In summary, present evidence from this and other studies indicates that the 

expression and timing of pre- and post-drug circadian activity episodes are mediated by a 

network of neurons that includes the dopamine neurons in the VTA/nucleus accumbens, 

the orexin neurons in the lateral hypothalamus, and the β-endorphin neurons in the 

arcuate nucleus of the hypothalamus.  The proposed model of the functioning of this 

network works in the following way:  Administration of a drug of abuse stimulates the 

transmission of dopamine from neurons that originate in the ventral tegmental area and 

project to the nucleus accumbens.  This dopamine transmission disinhibits and therefore 

activates the orexin neurons of the lateral hypothalamus.  These neurons transmit orexin 

to numerous neural structures, including the VTA and the arcuate nucleus of the 

hypothalamus.  Β-endorphin neurons in the arcuate nucleus are also activated by drug 

administration, and these neurons transmit this endogenous opioid to the nucleus 

accumbens shell.  Both the transmission of orexin to the VTA dopamine neurons and the 

transmission of β-endorphin to the nucleus accumbens lead to heightened levels of 

locomotor activity.  Thus, when a drug of abuse is repeatedly administered on a daily 

schedule, molecular timing mechanisms are entrained within these opioid and orexin 

neurons that facilitate circadian rhythms of motivational and compensatory responses that 

continue to oscillate for several days after drug use is stopped. 

 Molecular timing mechanisms.  The actograms of the rats in the present study 

(Figure 1, Figure 6) clearly show that two circadian timing mechanisms are operating 

independently with distinct periods.  As the rats were kept under constant light, the light-
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entrainable activity rhythm free-ran on a schedule of approximately 25-26 hours while 

repeated nicotine administration entrained pre- and post-drug episodes on a 24-hour 

schedule.  Based on the results of the present study and previous studies of the effects of 

drugs of abuse on circadian timing systems, there are two hypotheses that can be formed 

as to which molecular timing mechanisms govern these differentiable circadian rhythms. 

 The first hypothesis is that the known circadian clock genes, BMAL1, 

CLOCK/NPAS2, Period, and Cryptochrome, mediate the expression of both light-

entrainable and drug-entrainable circadian rhythms.  If this hypothesis is true, these two 

rhythms are likely governed by the expression of clock genes in separate brain regions or 

at least in separate cells. The light-entrainable rhythms are undoubtedly mediated by the 

activity of SCN neurons, and given the results of the present study, the drug-entrainable 

rhythms are likely mediated by β-endorphin neurons in the arcuate nucleus and orexin 

neurons in the lateral hypothalamus.   

As stated in the introduction,  both Per2 mutants and Cry1/Cry2 double knockout 

mice have been shown to have greatly reduced food-anticipatory rhythms (Feillet, et al., 

2006; Iijima, et al., 2005).  If the molecular mechanisms that govern drug-induced 

circadian activity episodes are the same mechanisms that govern food-anticipatory 

circadian rhythms, then pre-drug episodes are likely mediated by the expression of 

Period:Chryptochrome heterodimers in the orexin and endorphin neurons listed above.  

In contrast, CLOCK mutant mice show regular food-anticipatory rhythms (Pitts, et al., 

2003), but these animals do show robust sensitization to cocaine and increased activity in 

VTA dopamine neurons (McClung, et al., 2005).  As sensitization is measured as a post-
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drug effect (i.e., after the drug is administered), post-drug episodes may be governed by 

the expression of CLOCK:BMAL1 heterodimers in the ventral tegmental area.   

 An alternate hypothesis is that the known circadian clock genes mediate light-

entrainable circadian rhythms while an unknown set of timing genes mediate drug-

entrainable circadian rhythms.  At present, evidence from several different studies 

suggests that this second hypothesis is more likely to be true.  Chronic administration of 

several drugs of abuse has been shown to eliminate the periodicity of several of the 

known clock genes in hypothalamic regions, including the arcuate nucleus (Chen, et al., 

2004; Li, et al., 2009); therefore, it is unlikely that these genes could mediate the 

expression of drug-entrained circadian activity episodes.  Further, both the 

methamphetamine-sensitive circadian oscillator (Mohawk, et al., 2009) and the food-

entrainable oscillator (Storch & Weitz, 2009) have been shown to be able to operate 

without the functioning of all of the known circadian clock genes.  If drug-entrainable 

circadian activity episodes are indeed mediated by an undiscovered set of molecular 

timing mechanisms, the best place to look for these mechanisms would appear to be the 

endogenous opioid and orexin neurons discussed above. 

Treatment Implications 

 The expression and persistence of post-nicotine circadian activity episodes were 

significantly reduced in almost all of the treatment conditions in the present study.  The 

persistence of these episodes was significantly reduced both by mecamylamine, a drug 

that can increase nicotine craving in smokers (Nemeth-Coslett, et al., 1986), and by 

varenicline, a drug that can alleviate nicotine craving in smokers (Rollema, et al., 2007).  
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Due to these conflicting results, post-nicotine circadian episodes do not appear to be an 

accurate indicator of the efficacy of smoking cessation treatments. 

As stated earlier, pre-drug circadian episodes appear to represent a circadian-

based craving, anticipation, and/or seeking response that would presumably be an 

important target for treatments in the early stages of drug abstinence, particularly for 

smokers who show strong circadian rhythms of smoking behavior.  Based on this 

assumption, several of the pharmacological treatments currently available for nicotine 

addiction, including varenicline, bupropion, and topiramate, appear to exacerbate this 

circadian activity, and therefore may be more efficacious if administered after a smoker 

has been abstinent for a week or more.  All of these smoking cessation treatments have 

been reported to alleviate craving in human smokers, but none have shown 100% 

efficacy.  The results of the present study also imply that the “cold turkey” method of 

smoking cessation may be better than some forms of pharmacologically-assisted 

cessation in the early stages of abstinence.  

An alternative interpretation of these results is that pre-nicotine episodes may not 

represent a form of craving, as varenicline, bupropion, and topiramate have been shown 

to alleviate nicotine cravings, and each of these treatments increased pre-nicotine activity.  

However, treatment with mecamylamine, which does exacerbate nicotine cravings, 

significantly increased the expression of pre-nicotine wheel-running in the present study.   

Therefore, it seems likely that the therapeutic efficacy of varenicline, bupropion, and 

topiramate may be limited to stress-, cue-, and drug-induced craving and not to circadian-

based craving.  Finally, the results of the present study suggest that naltrexone and/or SB-

334867 should be considered for the treatment of circadian-based nicotine craving, 
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particularly in the first week of abstinence and particularly for smokers who show strong 

circadian smoking patterns.  
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Conclusion 

In this and previous studies, nicotine and other drugs of abuse have been shown to 

entrain robust pre- and post-drug circadian activity episodes when repeatedly 

administered at a consistent time of day.  These episodes persist for several days after 

drug use ceases, and their periodicity is independent of the free-running light-entrainable 

locomotor activity rhythm.  Pre-drug episodes may be a useful behavioral target for the 

treatment of drug addiction, as they appear to represent a circadian-based drug craving, 

anticipation, and/or seeking motivation.  Several pharmacological treatments that are 

currently prescribed to alleviate the nicotine craving associated with smoking cessation 

appear to exacerbate pre-nicotine episodes.  Two treatment drugs that significantly 

reduced the expression and/or persistence of pre-nicotine activity episodes were the µ-/κ-

opioid receptor antagonist naltrexone and the orexin-1 antagonist SB-334867.  These 

drugs also had similar effects on post-nicotine episodes. 

Overall, there are two major conclusions that can be drawn from this work.  First, 

naltrexone and SB-334867 may be efficacious in the treatment of nicotine and other drug 

addictions, particularly for drug users who show strong circadian rhythmicity in their 

drug consumption.  Second, the timing of pre- and post-nicotine circadian activity 

episodes appears to be mediated by currently undiscovered molecular clock mechanisms 

that are at least partially separate from the known circadian clock genes and are likely 

located in β-endorphin-transmitting neurons in the arcuate nucleus and orexin-

transmitting neurons in the lateral hypothalamus.
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