3s PROTON HOLES IN THE GROUND STATE OF 208Pb

H. Nann
Indiana University Cyclotron Facility, Bloomington, Indiana 47405

S.K.B. Hesmondhalgh, J.M. Schippers, J. Schreuder, and S.Y. van der Werf
Kernfysisch Versneller Instituut, Groningen, The Netherlands

F. Grabmayr, G. Rau, G.J. Wagner, and P. Woldt
University of Tuebingen, Tuebingen, West Germany

M.N. Harakeh
Free University, Amsterdam, The Netherlands

J.B.J.M. Lanen
State University Utrecht, The Netherlands

E.N.M. Quint and P.K.A. de Witt Huberts
NIKHEF-K, Amsterdam, The Netherlands

For the doubly-magic nucleus 208Pb it has recently been argued that short-range and tensor correlations give rise to a depletion of normally filled orbitals close to the Fermi surface. Estimates1 of this depletion are as large as 30%. Information on the occupancy of the $3s_{1/2}$ proton shell, which is the last normally occupied shell in 208Pb, has come from the charge density distribution of 206Pb and 205Tl. The contribution of the $3s$ proton orbital to the charge density difference $\Delta \rho (^{206}\text{Pb} - ^{205}\text{Tl})$ was determined as $z = 0.7 \pm 0.1$ (Ref. 2). Subsequently the deviation of z from unity was interpreted as evidence for a general 30% quenching of the single particle contribution.

Additional evidence for a partial occupancy of the $3s$ proton orbital in 208Pb has come from the $(e,e'p)$ quasielastic proton knockout reaction.3 Combining precise relative spectroscopic factors for $3s$ proton removal from 205Tl, 206Pb and 208Pb through a sum rule with the absolute information from the charge density difference of 206Pb and 205Tl one obtains a largely model-independent value3 for the occupancy of the $3s$ proton orbit in 208Pb of $(82\pm12)%$.

A complementary measure of the partial occupancy of the $3s$ proton orbital in 208Pb can be obtained from stripping a proton into the $3s$ orbital with the $^{208}\text{Pb}(^3\text{He},d)^{209}\text{Bi}$ reaction. This provides a much cleaner signal than the $(e,e'p)$ results, although larger uncertainties in the extraction of spectroscopic factors exist. Therefore we started to investigate the $^{208}\text{Pb}(^3\text{He},d)^{209}\text{Bi}$ reaction with a 50.9 MeV ^3He beam from the KVI cyclotron. The outgoing deuterons were momentum analyzed with the QMG/2 magnetic spectrometer. The target consisted of a selfsupporting, enriched 208Pb foil with a thickness of about 0.3 mg/cm2. Spectra were taken at 0° and 12°, the first two maxima of an $l=0$ angular distribution in order to see if the known $1/2^+$ states in 209Bi at 2.43, 2.87 and 2.92 MeV are excited. An overall energy resolution of about 15 keV was obtained. This energy resolution enabled us to separate the 2.43 MeV transition from the ground state transition of the contaminant $^{12}\text{C}(^3\text{He},d)^{13}\text{N}$ reaction which has a three orders of magnitude larger yield than the strong $^{208}\text{Pb}(^3\text{He},d)^{209}\text{Bi}$ transitions. The transitions to the $1/2^+$ states in 209Bi at 2.43 and 2.87 MeV were clearly identified showing that the $3s$ proton orbital is indeed only partially filled. The data are presently being analyzed.

3) E.N.M. Quint et al., submitted to Phys. Rev. Lett.; see also H. Nann et al., this report.