
Relational Programming in
miniKanren:

Techniques, Applications, and
Implementations

William E. Byrd

Submitted to the faculty of the
University Graduate School

in partial fulfillment of the requirements
for the degree

Doctor of Philosophy
in the Department of Computer Science,

Indiana University

August, 2009

ii

Accepted by the faculty of the University Graduate School, Indiana University, in
partial fulfillment of the requirements for the degree Doctor of Philosophy

Daniel P. Friedman, Ph.D.
(Principal Advisor)

Amr Sabry, Ph.D.

Christopher T. Haynes, Ph.D.

Lawrence S. Moss, Ph.D.

Bloomington, Indiana
May 7, 2009

iii

Copyright © 2009, William E. Byrd
All rights reserved

iv

For my parents.

Hold, p’ease!

—Brian Byrd

Acknowledgments

I first want to acknowledge my mother—without her I wouldn’t be here writing

this dissertation. My father taught me a love of science and nature, which led to

my interest in computers and programming languages—without him I wouldn’t be

here, either. I dedicate my dissertation to them, with love and admiration.

I also thank my brother Brian, my sister Mary, and their spouses, Claudia Díaz-

Byrd and Donald Stevens. I can’t imagine better siblings or in-laws.

Renzhong Chen has been part of the Byrd family for twenty years. I thank

him for his friendship, and for the incredible tour of China that was a highlight of

my time in grad school. I am also grateful for the hospitality of Renzhong’s wife,

Lea Li.

Dan Friedman has been my teacher, mentor, boss, hacking buddy, coauthor, and

friend during my six years at Indiana University. It was Dan who introduced me to

logic programming, and to his language that eventually evolved into miniKanren.

I cannot thank Dan without also thanking his wife Mary and the rest of the

Friedmans, who have been a second family to me in Bloomington. I am especially

grateful to Sa{nd|mm}i Friedman for hours of amusement.

v

vi

My committee members, Dan, Amr, Chris, and Larry, have been unfailingly

cheerful, patient, and supportive. This is fortunate, since their intellects might

otherwise be intimidating. I am especially gratified that all of these scholars are

deeply committed to the art of teaching. Thank you all!

Oleg Kiselyov taught me an unbelievable amount about logic programming,

especially the benefits of purity, and the dangers of impure operators like conda

and condu. It was Oleg who had the incredibly clever idea of implementing a

relational arithmetic system inspired by hardware half-adders and full-adders (see

Chapter 6). Oleg has also had a tremendous influence on the development and

evolution of miniKanren and its predecessor, Kanren.

Chung-chieh (Ken) Shan has also greatly influenced the evolution, and especially

the implementation, of miniKanren. Much of the brevity and elegance of the core

miniKanren implementation in Chapter 3 is due to Ken, who designed the critical

case∞ macro.

Some of the ideas, implementation code, and example programs in this dis-

sertation were first presented, often in a slightly different form, in The Reasoned

Schemer (Friedman et al. 2005). Chapter 6 is based on chapters seven and eight

of The Reasoned Schemer and, to a lesser extent, Kiselyov et al. (2008). Chap-

ters 9 and 11 are adapted from Byrd and Friedman (2007). Chapter 10 is adapted

from Near et al. (2008). A paper containing the contents of Chapter 14 and the

nestable engines code in Appendix D will be presented at Mitch Wand’s Festschrift.

vii

Many thanks to all of my coauthors. Please see the acknowledgments sections of

these papers for additional credits.

The first tabling implementation for miniKanren was designed by the author and

Ramana Kumar, and inspired by the Dynamic Reordering of Alternatives (DRA)

approach to tabling (Guo and Gupta 2009, 2001). Ramana implemented the design,

with debugging assistance from the author. The tabling implementation presented

in Chapter 12 is a slightly modified version of Ramana’s second, and improved,

tabling implementation. Most importantly, the new implementation is based on

streams rather than success and failure continuations, which means answers are

produced in the same order as in the core miniKanren implementation of Chapter 3.

The nominal unifier using triangular substitutions in section 11.4 is due to Joe

Near. Ramana Kumar has implemented a faster but very different triangular unifier.

As described in section 4.1, Abdulaziz Ghuloum, David Bender, and Lindsey Ku-

per have explored which purely functional data structures are best for representing

triangular substitutions.

The pmatch pattern-matching macro in Appendix B was written by Oleg Kise-

lyov. The matche and λe pattern-matching macros in Appendix C were originally

designed by the author and implemented by Ramana Kumar with the help of Dan

Friedman. Andy Keep, Michael Adams, and Lindsey Kuper worked with us to im-

plement an optimized version of matche and λe, which will be presented at the

2009 Scheme Workshop.

viii

Visits to Bloomington from Christian Urban, Matt Lakin, and Gopal Gupta

greatly aided my research. I also benefited from the 3rd International Compu-

log/ALP Summer School on Logic Programming and Computational Logic at New

Mexico State University, organized by Enrico Pontelli, Inna Pivkina, and Son Cao

Tran. I enjoyed many stimulating conversations with visiting scholars Juliana Viz-

zotto, Katja Grace, Dave Herman, and Sourav Mukherjee.

Indiana University’s PL Wonks lecture series, organized by Roshan James, has

been most stimulating. I thank Roshan, Michael Adams, Andy Keep, Jeremiah

Willcock, Ron Garcia, Jeremy Siek, Steve Ganz, Larisse Voufo, and all the other

Wonks for many interesting conversations about programming languages. The PL

Wonks also benefited from special visits by Jeffrey Siskind and Robby Findler. I

look forward to a relaxing conversation with Olivier Danvy that does not require

either of us to use our first-responder skills.

For the past eleven semesters I have had the great pleasure of being the asso-

ciate instructor for Indiana University’s undergraduate (C311) and graduate (B521)

introductory programming languages courses, under the enthusiastic leadership of

Dan Friedman. The material in this dissertation was greatly improved by the com-

ments and corrections of our students. I am grateful to you all, especially those

former students who have conducted summer research with us: Dave Bender, Jor-

dan Brown, Adam Foltzer, Adam Hinz, Andy Keep, Jiho Kim, Ramana Kumar,

Lindsey Kuper, Micah Linnemeier, and Joe Near.

ix

Special thanks goes to former C311 student Jeremiah Penery, who discovered

and corrected a subtle error in the definition of log o from the first printing of The

Reasoned Schemer.

Dan and I have had the great fortune to work with exceptional graduate and

undergraduate associate instructors: David Mack, Alex Platte, Kyle Blocher, Joe

Near, Ramana Kumar, and Lindsey Kuper. Their hard work has made C311 and

B521 such a success. Joe and Ramana also read the final draft of this dissertation,

and provided many insightful comments and corrections—thank you!

I learned a great deal from teaching the honors section of IU’s introductory

programming course (C211) under supreme Scheme hacker Kent Dybvig. Several

years later I had the great pleasure of teaching C211 with another Scheme master,

Aziz Ghuloum, as my associate instructor. Every teacher should be so lucky.

I thank Olin Shivers for writing an exemplary dissertation, the structure and or-

ganization of which I shamelessly ripped off. Once again I relied on Dorai Sitaram’s

Scheme typesetting program, SLATEX.

Whenever I was floundering in grad school Mitch Wand seemed to magically

appear, pulling me aside to see how I was doing, and offering much appreciated

advice and encouragement. Although I did not always follow his advice (to my

detriment, I am sure), I will always be grateful for his support.

In addition to sharing his teaching and programming expertise, Kent Dybvig

also offered invaluable advice about navigating the pitfalls of grad school. I didn’t

x

heed all of Kent’s advice, though I learned to pay special attention to anything

following the catchphrase, “You’ll be committing academic suicide.”

Lucy Battersby, Rob Henderson, and the rest of the Indiana University Com-

puter Science Department staff provided expert help and an outstanding work en-

vironment.

The friendly staff of the east-side Bloomington Quiznos, Sunny Bal, Kae Lunde,

Caitlyn Muncy, Alisha Findley, Tylla Carlisle, and Meagan Perry, kept me rolling

in veggie subs and “om-nom-nom-nom”-worthy cookies.

Caitlin Coar, Cortney Packett, and Alisha Stout, formerly of Cold Stone Cream-

ery, supplied me with delicious and nourishing PB&C milkshakes.

I wrote most of this dissertation at the east-side Starbucks in Bloomington,

where the generous, hilarious, and slightly-unhinged baristas provided a tasty set-

ting for extended writing sessions. Many thanks to:

• Amanda Buck for all the fish stories;

• Andrea Jerabek for always giving me a hard time;

• Ben Canary for inventing the infamous and delectable “Christmas Cookie”;

• Brian Ibison for adoring Olivia Munn;

• Christina Liwski for never giving me a hard time;

• Ciera Brannon for not believing in cells (No cells, no mercy!);

xi

• Eric “Big Eric” Martin for pointing out that UFO over Starbucks;

• Erin Dobias for being a smart chick;

• Gabby Baehl for living up to her first name;

• Megan Traxinger-James for putting up with Eric and Brian;

• and Phil Wood for his Twitter-powered news reports.

I also thank former baristas Jessica Fugate and Shannon Pilrose for hanging out

with me when I should have been writing.

I’ve been fortunate to have made many close friends in Bloomington. In particu-

lar, Aziz Ghuloum, Larisse Voufo, Ron Garcia, Suzanna Crage, Andy Keep, Lindsey

Kuper, Lindsay and Ahmed Hamed, and Anne and Mike Faber helped keep me sane

while I wrote this dissertation.

Marc Muher visited Bloomington for Dig Dug battle royale. Leslie Cuevas helped

keep Jennifer Fitzgerald in line, while Ada Brunstein offered end game encourage-

ment. As always, my childhood friends Mike, Daryl, and Bobby helped relieve the

tension with the occasional game.

It has been my honor to know the Miller family for many years, and am grateful

for their friendship.

Cisco Nochera, former director of Camp Greentop, has been my friend and

mentor for almost two decades.

xii

During the spring of 2006 I visited Chile for a week, along with my brother Brian

and my sister-in-law Claudia. Claudia’s parents, Hugo Díaz and Nancy Zuñiga

de Díaz, warmly welcomed us to their home in the beautiful countryside on the

outskirts of Casablanca, Chile. I thank them for their never-ending hospitality and

goodwill.

I have had many incredible teachers in my life, but a few stand out. My abso-

lutely amazing 11th grade Spanish teacher, Tom Rahauser, taught me to never fear

Señor Subjunctivo. Richard Saenz’s class on special relatively completely blew my

mind. Tom Anastasio taught me LISP, cleverly disguised as C. Alan Sherman pre-

pared me for graduate school. Dan Friedman taught me that you don’t understand

your code until it fits on a 3x5 card.

Abstract

The promise of logic programming is that programs can be written relationally,

without distinguishing between input and output arguments. Relational programs

are remarkably flexible—for example, a relational type-inferencer also performs type

checking and type inhabitation, while a relational theorem prover generates theo-

rems as well as proofs and can even be used as a simple proof assistant.

Unfortunately, writing relational programs is difficult, and requires many inter-

esting and unusual tools and techniques. For example, a relational interpreter for

a subset of Scheme might use nominal unification to support variable binding and

scope, Constraint Logic Programming over Finite Domains (CLP(FD)) to imple-

ment relational arithmetic, and tabling to improve termination behavior.

In this dissertation I present miniKanren, a family of languages specifically de-

signed for relational programming, and which supports a variety of relational idioms

and techniques. I show how miniKanren can be used to write interesting relational

programs, including an extremely flexible lean tableau theorem prover and a novel

constraint-free binary arithmetic system with strong termination guarantees. I also

present interesting and practical techniques used to implement miniKanren, includ-

xiii

xiv

ing a nominal unifier that uses triangular rather than idempotent substitutions and

a novel “walk”-based algorithm for variable lookup in triangular substitutions.

The result of this research is a family of languages that supports a variety of

relational idioms and techniques, making it feasible and useful to write interesting

programs as relations.

Contents

1 Introduction 1

1.1 My Thesis . 1

1.2 Structure of this Dissertation . 3

1.3 Relational Programming . 6

1.4 miniKanren . 8

1.5 Typographical Conventions . 9

I Core miniKanren 10

2 Introduction to Core miniKanren 11

2.1 Core miniKanren . 11

2.2 Translating Scheme Code to miniKanren 16

2.3 Impure Operators . 20

3 Implementation I: Core miniKanren 24

3.1 Variables, Substitutions, and Unification 25

3.2 Reification . 30

xv

CONTENTS xvi

3.3 Goals and Goal Constructors . 31

3.4 Impure Operators . 36

4 Implementation II: Optimizing walk 39

4.1 Why walk is Expensive . 40

4.2 Birth Records . 41

4.3 Eliminating assq and Checking the rhs 42

4.4 Storing the Substitution in the Variable 44

5 A Slight Divergence 46

6 Applications I: Pure Binary Arithmetic 59

6.1 Representation of Numbers . 60

6.2 Naive Addition . 62

6.3 Arithmetic Revisited . 65

6.4 Multiplication . 68

6.5 Division . 70

6.6 Logarithm and Exponentiation . 73

II Disequality Constraints 78

7 Techniques I: Disequality Constraints 79

7.1 Translating rember into miniKanren 80

7.2 The Trouble with rembero . 81

CONTENTS xvii

7.3 Reconsidering rember . 82

7.4 Disequality Constraints . 84

7.5 Fixing rembero . 88

7.6 Limitations of Disequality Constraints 89

8 Implementation III: Disequality Constraints 90

8.1 Constraints, Constraint Lists, and Packages 91

8.2 Solving Disequality Constraints . 92

8.3 Implementing ̸= and ≡ . 95

8.4 Reification . 99

III Nominal Logic 102

9 Techniques II: Nominal Logic 103

9.1 Introduction to αKanren . 104

9.2 Capture-avoiding Substitution . 112

9.3 Type Inferencer . 114

10 Applications II: αleanTAP 120

10.1 Tableau Theorem Proving . 122

10.2 Introducing αleanTAP . 124

10.3 Implementation . 129

10.4 Performance . 137

CONTENTS xviii

10.5 Applicability of These Techniques . 138

11 Implementation IV: αKanren 140

11.1 Nominal Unification with Idempotent Substitutions 140

11.2 Goal Constructors . 149

11.3 Reification . 151

11.4 Nominal Unification with Triangular Substitutions 154

IV Tabling 159

12 Techniques III: Tabling 160

12.1 Memoization . 160

12.2 Tabling . 162

12.3 The tabled Form . 163

12.4 Tabling Examples . 164

12.5 Limitations of Tabling . 166

13 Implementation V: Tabling 169

13.1 Answer Terms, Caches, and Suspended Streams 170

13.2 The Tabling Algorithm . 173

13.3 Waiting Streams . 174

13.4 Extending and Abstracting Reification 179

13.5 Core Tabling Operators . 180

CONTENTS xix

V Ferns 184

14 Techniques IV: Ferns 185

14.1 Introduction to Ferns . 185

14.2 Sharing and Promotion . 191

14.3 Ferns-based miniKanren . 194

15 Implementation VI: Ferns 200

15.1 Engines . 200

15.2 The Ferns Data Type . 202

15.3 cons⊥, car⊥, and cdr⊥ . 204

VI Context and Conclusions 211

16 Related Work 212

16.1 Purely Relational Arithmetic . 215

16.2 αKanren . 216

16.3 αleanTAP . 217

16.4 Tabling . 219

16.5 Ferns . 220

17 Future Work 222

17.1 Formalization . 222

17.2 Implementation . 225

CONTENTS xx

17.3 Language Extensions . 228

17.4 Idioms . 232

17.5 Applications . 233

17.6 Tools . 234

18 Conclusions 235

A Familiar Helpers 241

B pmatch 242

C matche and λe 247

D Nestable Engines 252

E Parser for Nominal Type Inferencer 254

Bibliography 255

Chapter 1

Introduction

1.1 My Thesis

A beginning is a very delicate time.

—Princess Irulan

miniKanren supports a variety of relational idioms and techniques, making it feasible

and useful to write interesting programs as relations.

The promise of logic programming is that programs can be written relation-

ally, without distinguishing between input and output arguments. Each relation

produces meaningful answers, even when all of its arguments are unbound logic

variables. Relational programs are remarkably flexible—for example, a relational

type inferencer can also perform type checking and type inhabitation. Similarly,

a relational theorem prover can also be used as a proof checker, proof generator,

theorem generator, and even as a primitive proof assistant.

Unfortunately, writing remarkably flexible relational programs is remarkably

difficult, and requires a variety of unusual and advanced tools and techniques. For

1

CHAPTER 1. INTRODUCTION 2

example, a relational interpreter for a subset of Scheme might use nominal unifi-

cation to support variable binding and scope, Constraint Logic Programming over

Finite Domains (CLP(FD)) to implement relational arithmetic, and tabling to im-

prove termination behavior.

This dissertation presents miniKanren, a family of languages specifically de-

signed for relational programming, and which supports a variety of relational idioms

and techniques. We show how miniKanren can be used to write interesting relational

programs, including an extremely flexible lean tableau theorem prover and a novel

constraint-free binary arithmetic system with strong termination guarantees. We

also present interesting and practical techniques used to implement miniKanren, in-

cluding a nominal unifier that uses triangular rather than idempotent substitutions

and a novel “walk”-based algorithm for variable lookup in triangular substitutions.

Chapter 2 presents the core miniKanren language, which we then extend with

disequality constraints (Chapter 7), nominal logic (Chapter 9), tabling (Chapter 12),

and expression-level divergence avoidance using ferns (Chapter 14). We provide

implementations of all of these language extensions in Chapters 3, 4, 8, 11, 13,

and 15. Together, these chapters establish the first half of my thesis: miniKanren

supports a variety of relational idioms and techniques.

To illustrate the use of these techniques, we present two non-trivial miniKanren

applications. The constraint-free relational arithmetic system of Chapter 6 and the

theorem prover of Chapter 10 establish the second half of my thesis: it is feasible

CHAPTER 1. INTRODUCTION 3

and useful to write interesting programs as relations in miniKanren, using these

idioms and techniques.

1.2 Structure of this Dissertation

With the exception of two early chapters (Chapters 2 and 5), each technical chapter

in this dissertation is divided into one of three categories: techniques, applications,

or implementations1. Technique chapters describe language features and idioms

for writing relations, such as disequality constraints (Chapter 7) and nominal logic

(Chapter 9). Application chapters demonstrate how to write interesting, non-trivial

relations in miniKanren; these applications demonstrate the use of many of the

language forms and idioms presented in the technique chapters. Implementation

chapters show how to implement the language extensions presented in the technique

chapters.

At a higher level, the dissertation is divided into six parts, which are organized

by theme:

• Part I presents the core miniKanren language, which we will extend in the

latter parts of the dissertation. Chapter 2 introduces the core language, along

with a few simple examples, while Chapter 3 presents the implementation of

the core language. These two chapters are especially important, since they

form the foundation for the advanced techniques and implementations that
1Hence the title of this dissertation: Relational Programming in miniKanren: Techniques, Ap-

plications, and Implementations.

CHAPTER 1. INTRODUCTION 4

follow. In Chapter 4 we optimize the walk algorithm presented in Chapter 3,

which is the heart of miniKanren’s unifier. Chapter 5 attempts to categorize

the many ways miniKanren programs can diverge, and describes techniques

that can be used to avoid each type of divergence. Avoiding divergence while

maintaining declarativeness is what makes relational programming so fasci-

nating, yet so challenging. Chapter 6 presents a non-trivial application of

core miniKanren: a constraint-free arithmetic system with strong termination

guarantees.

• Part II extends core miniKanren with disequality constraints, which allow us

to express that two terms are different, and can never be unified. Disequality

constraints express a very limited form of negation, and can be seen as a very

simple kind of constraint logic programming. Chapter 7 describes disequality

constraints from the perspective of the user, while Chapter 8 shows how we

can use unification in a clever way to simply and efficiently implement the

constraints. We give special attention to constraint reification—the process of

displaying constraints in a human-friendly manner.

• Part III extends core miniKanren with operators for expressing nominal logic;

we call the resulting language αKanren. Nominal logic allows us to easily

express notions of scope and binding, which is useful when writing declarative

interpreters, type inferencers, and many other relations that deal with vari-

ables. Chapter 9 introduces nominal logic, explains αKanren’s new language

CHAPTER 1. INTRODUCTION 5

constructs, and provides a few simple example programs. Chapter 10 presents

a non-trivial application of αKanren: a relational theorem prover. In Chap-

ter 11 we present our implementation of αKanren, including two different

implementations of nominal unification.

• Part IV adds tabling to our implementation of core miniKanren. Tabling is

a form of memoization: the answers produced by a tabled relation are “re-

membered” (that is, stored in a table), so that subsequent calls to the relation

can avoid recomputing the answers. Tabling allows our programs to run more

efficiently in many cases; more importantly, many programs that would other-

wise diverge terminate when using tabling. Chapter 12 introduces the notion

of tabling, and explains which programs benefit from tabling. Chapter 13

presents our streams-based implementation of tabling, which demonstrates

the advantage of embedding miniKanren in a language with higher-order func-

tions.

• Part V presents a bottom-avoiding data structure called a fern, and shows how

ferns can be used to avoid expression-level divergence. Chapter 14 introduces

the fern data structure and implements a simple, miniKanren-like language

using ferns. Chapter 15 presents our embedding of ferns in Scheme.

• Part VI provides context and conclusions for the work in this dissertation.

Chapter 16 describes related work, while Chapter 17 proposes future research.

We offer our final conclusions in Chapter 18.

CHAPTER 1. INTRODUCTION 6

The dissertation also includes four appendices. Appendix A contains several

generic helper functions that could be part of any standard Scheme library. Ap-

pendix B describes and defines pmatch, a simple pattern matching macro for

Scheme programs. Appendix C describes and defines matche and λe, pattern

matching macros for writing concise miniKanren relations. Appendix D contains

our implementation of nestable engines, which are used in our embedding of ferns.

1.3 Relational Programming

Relational programming is a discipline of logic programming in which every goal is

written as a “pure” relation. Each relation produces meaningful answers, even when

all of its arguments are unbound logic variables. For example, Chapter 6 presents

plus o, which performs addition over natural numbers. (plus o 1 2 3)2 succeeds, since

1 + 2 = 3—that is, the triple (1, 2, 3) is in the ternary addition relation. We can

use plus o to add two numbers: (plus o 1 2 z) associates the logic variable z with 3.

We can also subtract numbers using plus o: (plus o 1 y 3) associates y with 2, since

3 − 1 = 2. We can even call plus o with only logic variables: (plus o x y z) produces

an infinite number of answers in which the natural numbers associated with x, y,

and z satisfy x+y=z. For example, one such answer associates x with 3, y with 4,

and z with 7.

To write relational goals, programmers must avoid a variety of powerful logic

programming constructs, such as Prolog’s cut (!), var/1, and copy_term/2 oper-
21, 2, and 3 are shorthand for the little-endian binary lists representing the numbers 1, 2, and

3—see Chapter 6 for details.

CHAPTER 1. INTRODUCTION 7

ators. These operators inhibit relational programming, since their proper use is

dependent upon the groundness or non-groundness of terms3. Programmers who

wish to write relations must avoid these constructs, and instead use language fea-

tures compatible with the relational paradigm.

A critical aspect of relational programming is the desire for relations to terminate

whenever possible. Writing a goal without mode restrictions is not very interesting

if the goal diverges when passed one or more fresh variables. In particular, we desire

the finite failure property for our goals—if a goal is asked to produce an answer,

yet no answer exists, that goal should fail in a finite amount of time. Although

Gödel and Turing showed that it is impossible to guarantee termination for all

goals we might wish to write, the use of clever data encoding, nominal unification,

tabling, and the derivation of bounds on the maximum size of terms allows a careful

miniKanren programmer to write surprisingly sophisticated programs that exhibit

finite failure.

Our emphasis on both pure relations and finite failure leads to different design

choices than those of more established logic programming languages such as Pro-

log (Intl. Organization for Standardization 1995, 2000), Mercury (Somogyi et al.

1995), and Curry (Hanus et al. 1995; Hanus 2006). For example, unlike Prolog,

miniKanren uses a complete (interleaving) search strategy by default. Unlike Mer-

cury, miniKanren uses full unification, required to implement goals that take only
3A term is ground if it does not contain unassociated logic variables.

CHAPTER 1. INTRODUCTION 8

fresh logic variables as their arguments4. And our desire for termination prevents

us from adapting Curry’s residuation5.

1.4 miniKanren

This dissertation presents miniKanren, a language designed for relational program-

ming, along with various language extensions that add expressive power without

sacrificing the ability to write relations.

miniKanren is implemented as an embedding in Scheme, using only a handful

of special forms and functions. The concise and purely functional implementation

of the core operators makes the language easy to extend. miniKanren programmers

have access to all of Scheme, including higher-order functions, first-class continu-

ations, and Scheme’s unique and powerful hygienic macro system. Having access

to Scheme’s features makes it easy for implementers to extend miniKanren; for ex-

ample, from a single figure explaining XSB-style OLDT resolution we were able to

design and implement a tabling system for miniKanren in under a week.
4Mercury is statically typed, and requires programmers to specify “mode annotations” (Apt and

Marchiori 1994) indicating whether each argument to a goal is an “input” (that is, fully ground) or
an “output” (that is, an unassociated logic variable). Programmers also specify whether each goal
can produce one, finitely many, or infinitely many answers. Given all this information, the Mercury
compiler can generate multiple specialized functions that perform the work of a single goal. For
example, a ternary goal that expresses addition (similar to the plus o function described above)
might be compiled into separate functions that perform addition or subtraction; at runtime, the
appropriate function will be called depending on which arguments are ground. In fact, compiled
Mercury programs do not use logic variables or unification, and are therefore extremely efficient.
Unfortunately, this lack of unification means it is not possible to write Mercury goals that take
only “output” variables.

5Residuation (Hanus 1995) suspends certain operations on non-ground terms, until those terms
become ground. For example, we could use residuation to express addition using Scheme’s built-in
+ procedure. If we try to add x and 5, and x is an unassociated logic variable, we suspend the
addition, and instead try running another goal. Hopefully this goal will associate x with a number;
when that happens, we can perform the addition. However, if x never becomes ground, we will be
unable to perform the addition, and we will never produce an answer.

CHAPTER 1. INTRODUCTION 9

This thesis presents complete Scheme implementations of core miniKanren and

its extensions, including two versions of nominal unification, a simple constraint sys-

tem, a streams-based tabling system, and a minimal implementation of a miniKanren-

like language using the bottom-avoiding fern data-structure. Our implementation

of core miniKanren is purely functional, and is designed to be easily modifiable,

encouraging readers to experiment with and extend miniKanren.

1.5 Typographical Conventions

The code in this dissertation uses the following typographic conventions. Lexical

variables are in italic, forms are in boldface, and quoted symbols are in sans serif.

Quotes, quasiquotes, and unquotes are suppressed, and quoted or quasiquoted lists

appear with bold parentheses—for example (()) and ((x � x)) are entered as '() and

`(x . ,x), respectively. By our convention, names of relations end with a super-

script o—for example subst o, which is entered as substo. Relational operators do

not follow this convention: ≡ (entered as ==), conde (entered as conde), and exist.

Chapter 7 introduces the relational operator ̸= (entered as =/=), while Chapter 9

introduces fresh, # (entered as hash), and the term constructor ◃▹ (entered as tie).

Similarly, (run5 (q) body) and (run∗ (q) body) are entered as (run 5 (q) body)

and (run* (q) body), respectively.

λ is entered as lambda. λe from Appendix C is entered as lambdae. The arith-

metic relations6l o and6o from Chapter 6 are entered as <=lo and <=o, respectively.

occurs
√

from Chapter 3 is entered as occurs-check.

Part I

Core miniKanren

10

Chapter 2

Introduction to Core
miniKanren

This chapter introduces the core miniKanren language, provides several short ex-

ample programs, and shows how to translate a simple Scheme function into a mini-

Kanren relation.

This chapter is organized as follows. Section 2.1 introduces the core miniKan-

ren language. In section 2.2 we show how to translate the standard Scheme append

function into a miniKanren relation. Section 2.3 describes several “impure” oper-

ators that, while not part of the pure miniKanren core language, are useful when

trying to model Prolog programs.

2.1 Core miniKanren

miniKanren extends Scheme with three operators: ≡, conde, and exist. There is

also run, which serves as an interface between Scheme and miniKanren, and whose

value is a list.

11

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 12

exist, which syntactically looks like λ, introduces new variables into its scope;

≡ unifies two values. Thus

(exist (x y z) (≡ x z) (≡ 3 y))

would associate x with z and y with 3. This, however, is not a legal miniKanren

program—we must wrap a run around the entire expression.

(run1 (q) (exist (x y z) (≡ x z) (≡ 3 y))) ⇒ ((_
0
))

The value returned is a list containing the single value _
0
; we say that _

0
is the

reified value of the fresh variable q. q also remains fresh in

(run1 (q) (exist (x y) (≡ x q) (≡ 3 y))) ⇒ ((_
0
))

We can get back other values, of course.
(run1 (y)

(exist (x z)
(≡ x z)
(≡ 3 y)))

(run1 (q)
(exist (x z)

(≡ x z)
(≡ 3 z)
(≡ q x)))

(run1 (y)
(exist (x y)

(≡ 4 x)
(≡ x y))

(≡ 3 y))

Each of these examples returns ((3)); in the rightmost example, the y introduced by

exist is different from the y introduced by run because the variables are lexically

scoped. run can also return the empty list, indicating that there are no values.

(run1 (x) (≡ 4 3)) ⇒ (())

We use conde to get several values—syntactically, conde looks like cond but

without ⇒ or else. For example,

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 13

(run2 (q)
(exist (x y z)

(conde

((≡ ((x y z x)) q))
((≡ ((z y x z)) q))))) ⇒

((((_
0

_
1

_
2

_
0
)) ((_

0
_

1
_

2
_

0
))))

Although the two conde-clauses are different, the values returned are identical. This

is because distinct reified fresh variables are assigned distinct numbers, increasing

from left to right—the numbering starts over again from zero within each value,

which is why the reified value of x is _
0

in the first value but _
2

in the second

value.

Here is a simpler example using conde.

(run5 (q)
(exist (x y z)

(conde

((≡ a x) (≡ 1 y) (≡ d z))
((≡ 2 y) (≡ b x) (≡ e z))
((≡ f z) (≡ c x) (≡ 3 y)))

(≡ ((x y z)) q))) ⇒

((((((((a 1 d)))) ((((b 2 e)))) ((((c 3 f))))))))

The superscript 5 denotes the maximum length of the resultant list. If the super-

script ∗ is used, then there is no maximum imposed. This can easily lead to infinite

loops:

(run∗ (q)
(let loop ()

(conde

((≡ #f q))
((≡ #t q))
((loop)))))

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 14

Had the ∗ been replaced by a non-negative integer n, then a list of n alternating #f’s

and #t’s would be returned. The conde succeeds while associating q with #f, which

accounts for the first value. When getting the second value, the second conde-clause

is tried, and the association made between q and #f is forgotten—we say that q has

been refreshed. In the third conde-clause, q is refreshed once again.

We now look at several interesting examples that rely on any o.

(define any o

(λ (g)
(conde

(g)
((any o g)))))

any o tries g an unbounded number of times. Here is our first example using any o.

(run∗ (q)
(conde

((any o (≡ #f q)))
((≡ #t q))))

This example does not terminate, because the call to any o succeeds an unbounded

number of times. If ∗ is replaced by 5, then instead we get ((#t #f #f #f #f)). (The

user should not be concerned with the order in which values are returned.)

Now consider

(run10 (q)
(any o

(conde

((≡ 1 q))
((≡ 2 q))
((≡ 3 q))))) ⇒

((((1 2 3 1 2 3 1 2 3 1))))

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 15

Here the values 1, 2, and 3 are interleaved; our use of any o ensures that this sequence

will be repeated indefinitely.

Here is always o,

(define always o (any o (≡ #f #f)))

along with two run expressions that use it.

(run1 (x)
(≡ #t x)
always o

(≡ #f x))

(run5 (x)
(conde

((≡ #t x))
((≡ #f x)))

always o

(≡ #f x))

The left-hand expression diverges—this is because always o succeeds an unbounded

number of times, and because (≡ #f x) fails each of those times.

The right-hand expression returns a list of five #f’s. This is because both conde-

clauses are tried, and both succeed. However, only the second conde-clause con-

tributes to the values returned. Nothing changes if we swap the two conde-clauses.

If we change the last expression to (≡ #t x), we instead get a list of five #t’s.

Even if some conde-clauses loop indefinitely, other conde-clauses can contribute

to the values returned by a run expression. For example,

(run3 (q)
(let ((never o (any o (≡ #f #t))))

(conde

((≡ 1 q))
(never o)
((conde

((≡ 2 q))
(never o)
((≡ 3 q)))))))

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 16

returns ((1 2 3)); replacing run3 with run4 causes divergence, however, since there

are only three values, and since never o loops indefinitely.

2.2 Translating Scheme Code to miniKanren

In this section we translate the standard Scheme function append to the equivalent

miniKanren relation, appendo. append takes two lists as arguments, and returns

the appended list.

(append ((a b c)) ((d e))) ⇒ ((a b c d e))

Here is the definition of append.

(define append
(λ (l s)

(cond
((null? l) s)
(else (cons (car l) (append (cdr l) s))))))

Rather than translate the Scheme definition directly to miniKanren, we will

massage the Scheme code to make it closer in spirit to a miniKanren relation. Only

after we have performed several Scheme-to-Scheme transformations will we translate

to miniKanren1.

First we replace the always-true else test with an explicit pair? test, making

the cond clauses non-overlapping2.

1This approach differs from that of (Friedman et al. 2005), which translates Scheme functions
directly to miniKanren.

2The concept of non-overlapping clauses is revisited in section 7.3.

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 17

(define append
(λ (l s)

(cond
((null? l) s)
((pair? l) (cons (car l) (append (cdr l) s))))))

Next we replace cond with the pmatch pattern-matching macro from Ap-

pendix B. The use of pattern matching is close in spirit to unification, and lets us

easily translate the code to use matche or λe from Appendix C.

(define append
(λ (l s)

(pmatch ((l s))
((((()) s)) s)
(((((a � d)) s))
(cons a (append d s))))))

We then perform an unnesting step reminiscent of the Continuation-Passing

Style (CPS) transformation3 (see, for example, Friedman and Wand (2008)): we

unnest any nested calls, introducing let-bound variables where necessary4.

(define append
(λ (l s)

(pmatch ((l s))
((((()) s)) s)
(((((a � d)) s))
(let ((res (append d s)))

(cons a res))))))

After unnesting, we are ready to translate the Scheme function into a miniKan-

ren relation. We add a superscript o to the name, to indicate the new function is a
3More correctly, the unnested program is similar to one in A-Normal Form (ANF) (Flanagan

et al. 1993).
4Unlike in the CPS transformation we must unnest every call, even those guaranteed to termi-

nate. For example, unnesting (cons (cons 1 2) 3) results in (let ((tmp (cons 1 2))) (cons tmp 3)).

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 18

relation. We add an “output” argument5 and change pmatch to matche. We add

the output argument to the list of values being matched against by matche, and

the individual patterns. Any value that would have previously been returned must

now be unified with the out argument, either explicitly using ≡ or implicitly using

pattern matching. We also change the let to exist introducing a “temporary” logic

variable.

(define appendo

(λ (l s out)
(matche ((l s out))

((((()) s s)))
(((((a � d)) s out))
(exist (res)

(appendo d s res)
(≡ (cons a res) out))))))

Since we are matching against all the arguments of appendo, we can use λe

rather than matche. Also, we may wish to replace (cons a res) with ((a � res)) to

reflect our use of unification as pattern matching.

(define appendo

(λe (l s out)
((((()) s s)))
(((((a � d)) s out))
(exist (res)

(appendo d s res)
(≡ ((a � res)) out)))))

If we do not wish to use the matche or λe pattern matching macros, we can

rewrite appendo in core miniKanren.
5When translating a Scheme predicate to a miniKanren relation we do not add an “output”

argument. This is because success or failure of a call to the relation is equivalent to the Scheme
predicate returning #t or #f, respectively.

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 19

(define appendo

(λ (l s out)
(conde

((≡ (()) l) (≡ s out))
((exist (a d)

(≡ ((a � d)) l)
(exist (res)

(appendo d s res)
(≡ ((a � res)) out)))))))

Of course we can use the appendo relation to append two lists.

(run∗ (q) (appendo ((a b c)) ((d e)) q)) ⇒ ((((a b c d e))))

But we can also find all pairs of lists that, when appended, produce ((a b c d e)).

(run6 (q)
(exist (l s)

(appendo l s ((a b c d e)))
(≡ ((l s)) q))) ⇒

(((((()) ((a b c d e))))
((((a)) ((b c d e))))
((((a b)) ((c d e))))
((((a b c)) ((d e))))
((((a b c d)) ((e))))
((((a b c d e)) (())))))

Unfortunately, replacing run6 with run7 results in divergence, for reasons explained

in Chapter 5. We can avoid this problem if we swap the last two lines of appendo.

(define appendo

(λ (l s out)
(conde

((≡ (()) l) (≡ s out))
((exist (a d)

(≡ ((a � d)) l)
(exist (res)

(≡ ((a � res)) out)
(appendo d s res)))))))

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 20

This final version of appendo illustrates an important principle: unifications should

always come before recursive calls, or calls to other “serious” relations.

2.3 Impure Operators

In this section we include several impure operators that appear in earlier work

on miniKanren, notably Friedman et al. (2005) and Near et al. (2008): project,

conda, condu, once o, and copy-termo. These operators are not considered part

of core miniKanren, and are inherently non-relational since they may not work

correctly for every goal ordering of a program; also, it is not legal to pass only fresh

variables to some of these operators, namely once o and copy-termo. As a result we

only use these operators to demonstrate impure Prolog-like features, for example

in Chapter 10 during translation of the leanTAP theorem prover from Prolog to

miniKanren. Importantly, the final version of the translated prover does not use

any impure operators.

project can be used to access the values associated with logic variables. For

example, the expression

(run∗ (q)
(exist (x)

(≡ 5 x)
(≡ (∗ x x) q)))

has no value, since Scheme’s multiplication function operates only on numbers, not

logic variables associated with numbers. We can solve this problem by projecting

x: within the body of the project form, x is a lexical variable bound to 5.

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 21

(run∗ (q)
(exist (x)

(≡ 5 x)
(project (x)

(≡ (∗ x x) q)))) ⇒

((25))

Unfortunately, the expression

(run∗ (q)
(exist (x)

(project (x)
(≡ (∗ x x) q))

(≡ 5 x)))

has no value, since x is unassociated when (∗ x x) is evaluated. This example

demonstrates that project is not a relational operator6.

conda and condu are used to prune a program’s search tree, and can be used

in place of Prolog’s cut (!)7. The examples from chapter 10 of The Reasoned

Schemer (Friedman et al. 2005) demonstrate uses of conda and condu, and the

pitfalls that await the unsuspecting programmer.

conda and condu differ from conde in that at most one clause can succeed.

Furthermore, the clauses are tried in order, from top to bottom. Also, the first

goal in each clause is treated specially, as a “test” goal that determines whether to

commit to that clause; in this way, conda and condu are reminiscent of cond.

6We explore a relational approach to arithmetic in Chapter 6.
7More specifically, conda corresponds to a soft-cut (Clocksin 1997), while condu corresponds

to Mercury’s committed-choice (Henderson et al. 1996; Naish 1995).

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 22

For example,

(run∗ (x)
(conda

((≡ olive x))
((≡ oil x))))

returns ((olive)) since conda commits to the first clause when (≡ olive x) succeeds.

However,

(run∗ (x)
(conda

((≡ virgin x) (≡ #t #f))
((≡ olive x))
((≡ oil x))))

returns (()) since (≡ #t #f) fails, and since conda committed to the first clause once

(≡ virgin x) succeeded. The expression

(run∗ (q)
(conda

((≡ #t #f))
(always o))

(≡ #t q))

diverges. The “test” goal for the first clause, (#t #f), fails. The test goal for the

second clause, always o, succeeds; therefore conda commits to this clause. Since

always o can succeed an unbounded number of times, the run∗ expression diverges.

However, if we replace conda with condu, the resulting expression

(run∗ (q)
(condu

((≡ #t #f))
(always o))

(≡ #t q))

CHAPTER 2. INTRODUCTION TO CORE MINIKANREN 23

returns ((#t)). This is because the test goal of a condu clause can succeed at most

once, which is the only difference between conda and condu.

The next impure operator, once o, can be trivially defined using condu. once o

takes a single argument, which must be a goal; once o ensures that when the goal is

run it produces at most a single answer.

(define once o

(λ (g)
(condu

(g))))

For example, (run∗ (q) (once o always o)) produces ((_
0
)).

copy-termo creates a copy of its first argument, consistently replacing unassoci-

ated logic variables with new variables; the resulting copy is then associated with

the second argument.

(run∗ (q)
(exist (w x y z)

(≡ ((a x 5 y x)) w)
(copy-termo w z)
(≡ ((w z)) q))) ⇒

((((((a _
0

5 _
1

_
0
)) ((a _

2
5 _

3
_

2
))))))

A major theme of Chapter 10 is how copy-termo can be replaced with a relational

combination of nominal unification and tagging, at least in certain cases.

Chapter 3

Implementation I: Core
miniKanren

In this chapter we present the implementation of the core miniKanren operators

described in Chapter 2. Later chapters describe additions or modifications to this

core implementation; unless otherwise stated, these later chapters only present the

definitions that differ from those of the core implementation.

This chapter is organized as follows. In section 3.1 we describe our representation

of variables and substitutions, and define the unify function, which uses the walk

function to look up variables in a triangular substitution. Section 3.2 presents our

reification algorithm, which converts miniKanren terms into regular Scheme values

without logic variables. Finally, in section 3.3, we discuss miniKanren goals, which

map substitutions to (potentially infinite) streams of substitutions. We then define

the core miniKanren goal constructors ≡, exist, and conde, along with the interface

operator run.

24

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 25

3.1 Variables, Substitutions, and Unification

We represent logic variables as vectors of length one1.

(define-syntax var
(syntax-rules ()

((_ x) (vector x))))

(define-syntax var?
(syntax-rules ()

((_ x) (vector? x))))

The single argument to the var constructor is a symbol representing the name of

the variable2.

A substitution s is a mapping between logic variables and values (also called

terms). We represent a substitution as an association list, which is a list of pairs

associating vectors to values; we construct an empty substitution using empty-s

(define empty-s (()))

and extend an existing substitution s with a new association between a variable x

and a value v using ext-s-no-check

(define ext-s-no-check (λ (x v s) (cons ((x � v)) s)))

If x, y, and z are logic variables constructed using var, then the association list

((((x � 5)) ((y � #t)))) represents a substitution that associates x with 5, y with #t, and

leaves z unassociated.
1R6RS Scheme supports records, which arguably provide a better abstraction for logic variables.

We use vectors for compatibility with R5RS Scheme—one consequence is that vectors should not
appear in arguments passed to unify.

2This name is useful for debugging. More importantly, we must ensure that the vectors created
with var are non-empty. This is because we use Scheme’s eq? test to distinguish between variables,
and eq? is not guaranteed to distinguish between two non-empty vectors.

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 26

The right-hand-side (rhs) of an association may itself be a logic variable. In

the substitution ((((y � 5)) ((x � y)))), x is associated with y, which in turn is associ-

ated with 5. Thus, both x and y are associated with 5. This representation is

known as a “triangular” substitution, as opposed to the more common “idempo-

tent” representation3 of ((((y � 5)) ((x � 5)))). (See Baader and Snyder (2001) for more

on substitutions.) One advantage of triangular substitutions is that they can be eas-

ily extended using cons, without side-effecting or rebuilding the substitution. This

lack of side-effects permits sharing of substitutions, while substitution extension

remains a constant-time operation. This sharing, in turn, gives us backtracking

for free—we just “forget” irrelevant associations by using an older version of the

substitution, which is always a suffix of the current substitution.

Triangular substitution representation is well-suited for functional implementa-

tions of logic programming, since it allows sharing of substitutions. Unfortunately,

there are several significant disadvantages to the triangular representation. The

major disadvantage is that variable lookup is both more complicated and more

expensive4 than with idempotent substitutions. With idempotent substitutions,

variable lookup can be defined as follows, where rhs5 returns the right-hand-side of

an association.

3In an idempotent substitution, a variable that appears on the left-hand-side of an association
never appears on the rhs.

4In Chapter 4 we will explore several ways to improve the efficiency of variable lookup when
using triangular substitutions.

5rhs is just defined to be cdr.

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 27

(define lookup
(λ (v s)

(cond
((var? v)
(let ((a (assq v s)))

(cond
(a (rhs a))
(else v))))

(else v))))

If v is an unassociated variable, or a non-variable term, lookup6 just returns v.

When looking up a variable in a triangular substitution, we must instead use

the more complicated walk function.

(define walk
(λ (v s)

(cond
((var? v)
(let ((a (assq v s)))

(cond
(a (walk (rhs a) s))
(else v))))

(else v))))

If, when walking a variable x in a substitution s, we find that x is bound to

another variable y, we must then walk y in the original substitution s. walk is

therefore not primitive recursive (Kleene 1952)—in fact, walk can diverge if used on

a substitution containing a circularity; for example, when walking x in either the
6For fans of syntactic sugar, this definition can be shortened using cond’s arrow notation.

(define lookup
(λ (v s)

(cond
((and (var? v) (assq v s)) ⇒ rhs)
(else v))))

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 28

substitution ((((x � x)))) or ((((y � x)) ((x � y)))). miniKanren’s unification function, unify,

ensures that these kinds of circularities are never introduced into a substitution. In

addition, unify prohibits circularities of the form ((((x � ((x)))))) from being added to the

substitution. Although this circularity will not cause walk to diverge, it can cause

divergence during reification (described in section 3.2). To prevent circularities from

being introduced, we extend the substitution using ext-s rather than ext-s-no-check.

(define ext-s
(λ (x v s)

(cond
((occurs

√
x v s) #f)

(else (ext-s-no-check x v s)))))

(define occurs
√

(λ (x v s)
(let ((v (walk v s)))

(cond
((var? v) (eq? v x))
((pair? v) (or (occurs

√
x (car v) s) (occurs

√
x (cdr v) s)))

(else #f)))))

ext-s calls the occurs
√

predicate, which returns #t if adding an association between

x and v would introduce a circularity. If so, ext-s returns #f instead of an extended

substitution, indicating that unification has failed.

unify unifies two terms u and v with respect to a substitution s, returning

a (potentially extended) substitution if unification succeeds, and returning #f if

unification fails or would introduce a circularity7.

7Observe that unify calls ext-s-no-check rather than ext-s if u and v are distinct unassociated
variables, thereby avoiding an unnecessary call to walk from inside occurs

√
.

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 29

(define unify
(λ (u v s)

(let ((u (walk u s))
(v (walk v s)))

(cond
((eq? u v) s)
((var? u)
(cond

((var? v) (ext-s-no-check u v s))
(else (ext-s u v s))))

((var? v) (ext-s v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))

(and s (unify (cdr u) (cdr v) s))))
((equal? u v) s)
(else #f)))))

The call to occurs
√

from within ext-s is potentially expensive, since it must per-

form a complete tree walk on its second argument. Therefore, we also define unify-

no-check, which performs unsound unification but is more efficient than unify8.

(define unify-no-check
(λ (u v s)

(let ((u (walk u s))
(v (walk v s)))

(cond
((eq? u v) s)
((var? u) (ext-s-no-check u v s))
((var? v) (ext-s-no-check v u s))
((and (pair? u) (pair? v))
(let ((s (unify-no-check (car u) (car v) s)))

(and s (unify-no-check (cdr u) (cdr v) s))))
((equal? u v) s)
(else #f)))))

8Apt and Pellegrini (1992) point out that, in practice, omission of the occurs check is usually
not a problem. However, the type inferencer presented in section 9.3 requires sound unification to
prevent self-application from typechecking.

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 30

3.2 Reification

Reification is the process of turning a miniKanren term into a Scheme value that

does not contain logic variables. The reify function takes a substitution s and an

arbitrary value v, perhaps containing variables, and returns the reified value of v.

(define reify
(λ (v s)

(let ((v (walk∗ v s)))
(walk∗ v (reify-s v empty-s)))))

For example, (reify ((5 x ((#t y x)) z)) empty-s) returns ((5 _
0

((#t _
1

_
0
)) _

2
)).

reify uses walk∗ to deeply walk a term with respect to a substitution. If s is

the substitution ((((z � 6)) ((y � 5)) ((x � ((y z)))))), then (walk x s) returns ((y z)) while

(walk∗ x s) returns ((5 6))9.

(define walk∗
(λ (v s)

(let ((v (walk v s)))
(cond

((var? v) v)
((pair? v) (cons (walk∗ (car v) s) (walk∗ (cdr v) s)))
(else v)))))

reify also calls reify-s, which is the heart of the reification algorithm.

(define reify-s
(λ (v s)

(let ((v (walk v s)))
(cond

((var? v) (ext-s v (reify-name (length s)) s))
((pair? v) (reify-s (cdr v) (reify-s (car v) s)))
(else s)))))

9If s is idempotent, walk∗ is equivalent to walk.

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 31

reify-s takes a walk∗ed term as its first argument; its second argument starts out as

empty-s. The result of invoking reify-s is a reified name substitution, associating

logic variables to distinct symbols of the form _
n
.

reify-s in turn relies on reify-name to produce the actual symbol.

(define reify-name
(λ (n)

(string�symbol (string-append "_." (number�string n)))))

3.3 Goals and Goal Constructors

A goal g is a function that maps a substitution s to an ordered sequence of zero or

more values—these values are almost always substitutions. (For clarity, we notate

λ as λG when creating such a function g.) Because the sequence of values may be

infinite, we represent it not as a list but as a special kind of stream, a∞ .

Such streams contain either zero, one, or more values (Kiselyov et al. 2005;

Spivey and Seres 2003). We use (mzero) to represent the empty stream of values.

If a is a value, then (unit a) represents the stream containing just a. To represent

a non-empty stream we use (choice a f), where a is the first value in the stream,

and where f is a function of zero arguments. (For clarity, we notate λ as λF when

creating such a function f .) Invoking the function f produces the remainder of the

stream. (unit a) can be represented as (choice a (λF () (mzero))), but the unit

constructor avoids the cost of building and taking apart pairs and invoking functions,

since many goals return only singleton streams. To represent an incomplete stream,

we create an f using (inc e), where e is an expression that evaluates to an a∞ .

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 32

(define-syntax mzero
(syntax-rules ()

((_) #f)))

(define-syntax unit
(syntax-rules ()

((_ a) a)))

(define-syntax choice
(syntax-rules ()

((_ a f) (cons a f))))

(define-syntax inc
(syntax-rules ()

((_ e) (λF () e))))

To ensure that streams produced by these four a∞ constructors can be distin-

guished, we assume that a singleton a∞ is never #f, a function, or a pair whose cdr

is a function. To discriminate among these four cases, we define case∞ .

(define-syntax case∞

(syntax-rules ()
((_ e (() e0) ((f̂) e1) ((â) e2) ((a f) e3))
(let ((a∞ e))

(cond
((not a∞) e0)
((procedure? a∞) (let ((f̂ a∞)) e1))
((and (pair? a∞) (procedure? (cdr a∞)))
(let ((a (car a∞)) (f (cdr a∞))) e3))

(else (let ((â a∞)) e2)))))))

The simplest goal constructor is ≡, which returns either a singleton stream or

an empty stream, depending on whether the arguments unify with the implicit

substitution. As with the other goal constructors, ≡ always expands to a goal, even

if an argument diverges.

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 33

(define-syntax ≡
(syntax-rules ()

((_ u v)
(λG (a)

(cond
((unify u v a) ⇒ (λ (a) (unit a)))
(else (mzero)))))))

We can also define ≡-no-check, which performs unsound unification without the

occurs check.

(define-syntax ≡-no-check
(syntax-rules ()

((_ u v)
(λG (a)

(cond
((unify-no-check u v a) ⇒ (λ (a) (unit a)))
(else (mzero)))))))

conde is a goal constructor that combines successive conde-clauses using mplus∗.

To avoid unwanted divergence, we treat the conde-clauses as a single inc stream.

Also, we use the same implicit substitution for each conde-clause. mplus∗ relies on

mplus, which takes an a∞ and an f and combines them (a kind of append). Using

inc, however, allows an argument to become a stream, thus leading to a relative

fairness because all of the stream values will be interleaved.

(define-syntax conde

(syntax-rules ()
((_ (g0 g . . .) (g1 ĝ . . .) . . .)
(λG (a)

(inc
(mplus∗ (bind∗ (g0 a) g . . .) (bind∗ (g1 a) ĝ . . .) . . .))))))

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 34

(define-syntax mplus∗
(syntax-rules ()

((_ e) e)
((_ e0 e . . .) (mplus e0 (λF () (mplus∗ e . . .))))))

(define mplus
(λ (a∞ f)

(case∞ a∞

(() (f))
((f̂) (inc (mplus (f) f̂)))
((a) (choice a f))
((a f̂) (choice a (λF () (mplus (f) f̂)))))))

If the body of conde were just the mplus∗ expression, then the inc clauses of

mplus, bind, and take (defined below) would never be reached, and there would be

no interleaving of values.

exist is a goal constructor that first lexically binds its variables (created by

var) and then, using bind∗, combines successive goals. bind∗ is short-circuiting:

since the empty stream (mzero) is represented by #f, any failed goal causes bind∗

to immediately return #f. bind∗ relies on bind (Moggi 1991; Wadler 1992), which

applies the goal g to each element in a∞ . These a∞ ’s are then merged together

with mplus yielding an a∞ . (bind is similar to Lisp’s mapcan, with the arguments

reversed.)

(define-syntax exist
(syntax-rules ()

((_ (x . . .) g0 g . . .)
(λG (a)

(inc
(let ((x (var x)) . . .)

(bind∗ (g0 a) g . . .)))))))

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 35

(define-syntax bind∗

(syntax-rules ()
((_ e) e)
((_ e g0 g . . .) (bind∗ (bind e g0) g . . .))))

(define bind
(λ (a∞ g)

(case∞ a∞

(() (mzero))
((f) (inc (bind (f) g)))
((a) (g a))
((a f) (mplus (g a) (λF () (bind (f) g)))))))

To minimize heap allocation we create a single λG closure for each goal construc-

tor, and we define bind∗ and mplus∗ to manage sequences, not lists, of goal-like

expressions.

run, and therefore take, converts an f to a list.

(define-syntax run
(syntax-rules ()

((_ n (x) g0 g . . .)
(take n

(λF ()
((exist (x) g0 g . . .

(λG (a)
(cons (reify x a) (()))))

empty-s))))))

(define take
(λ (n f)

(if (and n (zero? n))
(())
(case∞ (f)

(() (()))
((f) (take n f))
((a) a)
((a f) (cons (car a) (take (and n (− n 1)) f)))))))

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 36

We wrap the result of (reify x s) in a list so that the case∞ in take can distinguish

a singleton a∞ from the other three a∞ types. We could simplify run by using var

to create the unassociated variable x, but we prefer that exist be the only operator

that calls var10. If the first argument to take is #f, we get the behavior of run∗.

It is trivial to write a read-eval-print loop that uses run∗’s interface by redefining

take.

3.4 Impure Operators

We conclude this chapter by defining the impure operators introduced in section 2.3:

project, which can be used to access the values of variables, conda and condu,

which can be used to prune the search tree of a program, and copy-termo, which

copies a term, consistently replacing unassociated logic variables with new variables.

project applies the implicit substitution to zero or more lexical variables, re-

binds those variables to the values returned, and then evaluates the goal expressions

in its body. The body of a project typically includes at least one begin expres-

sion—any expression is a goal expression if its value is a miniKanren goal.

(define-syntax project
(syntax-rules ()

((_ (x . . .) g g∗ . . .)
(λG (s)

(let ((x (walk∗ x s)) . . .)
((exist () g g∗ . . .) s))))))

10This becomes important in Chapter 4, when we redefine the way exist uses var.

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 37

copy-termo creates a copy of its first argument, consistently replacing unassoci-

ated variables with new logic variables in the copy. The term u is projected before

copying, to avoid accidentally replacing associated variables with new variables.

(define copy-termo

(λ (u v)
(project (u)

(≡ (walk∗ u (build-s u (())) v))))

(define build-s
(λ (u s)

(cond
((var? u) (if (assq u s) s (cons (cons u (var ignore)) s)))
((pair? u) (build-s (cdr u) (build-s (car u) s)))
(else s))))

Unlike conde, only one conda-clause or condu-clause can return an a∞ : the

first clause whose first goal succeeds. With conda, the entire stream returned by

the first goal is passed to bind∗. With condu, a singleton stream is passed to

bind∗—this stream contains the first value of the stream returned by the first goal.

(define-syntax conda

(syntax-rules ()
((_ (g0 g . . .) (g1 ĝ . . .) . . .)
(λG (a)

(inc
(if a ((g0 a) g . . .)

((g1 a) ĝ . . .) . . .))))))

(define-syntax condu

(syntax-rules ()
((_ (g0 g . . .) (g1 ĝ . . .) . . .)
(λG (a)

(inc
(ifu ((g0 a) g . . .)

((g1 a) ĝ . . .) . . .))))))

CHAPTER 3. IMPLEMENTATION I: CORE MINIKANREN 38

(define-syntax if a

(syntax-rules ()
((_) (mzero))
((_ (e g . . .) b . . .)
(let loop ((a∞ e))

(case∞ a∞

(() (if a b . . .))
((f) (inc (loop (f))))
((a) (bind∗ a∞ g . . .))
((a f) (bind∗ a∞ g . . .)))))))

(define-syntax ifu

(syntax-rules ()
((_) (mzero))
((_ (e g . . .) b . . .)
(let loop ((a∞ e))

(case∞ a∞

(() (ifu b . . .))
((f) (inc (loop (f))))
((a) (bind∗ a∞ g . . .))
((a f) (bind∗ (unit a) g . . .)))))))

Chapter 4

Implementation II: Optimizing
walk

In this chapter we examine the efficiency of the walk algorithm presented in Chap-

ter 3, which is the heart of the unification algorithm. We present various optimiza-

tions to walk, which significantly improve performance of unification, and indeed

the entire miniKanren implementation.

This chapter is organized as follows. In section 4.1 we examine the worst-case

performance of the walk algorithm, with emphasis on the cost of looking up an

unassociated variable. Section 4.2 introduces an optimization using birth records,

which can greatly increase the speed of looking up an unassociated variable. In

section 4.3 we look at an additional optimization that requires we rewrite walk using

explicit recursion instead of assq. Finally, section 4.4 shows how we can further

improve on the birth-records optimization by storing the current substitution in a

variable when it is first introduced.

39

CHAPTER 4. IMPLEMENTATION II: OPTIMIZING WALK 40

4.1 Why walk is Expensive

In the worst case, the number of cdrs and tests performed by walk is quadratic

in the length of the substitution. This happens when looking up a variable at

the beginning of a long “unification chain”—for example, when looking up v in

the “perfectly triangular” substitution ((((y � z)) ((x � y)) ((w � x)) ((v � w)))). Contrast

this with the linear cost of looking up v in the equivalent idempotent substitution

((((y � z)) ((x � z)) ((w � z)) ((v � z)))).

Fortunately, extremely long unification chains rarely occur in real logic pro-

grams. Rather, the major cost of variable lookups is in walking unassociated vari-

ables. When using triangular substitutions (or even idempotent substitutions), the

entire substitution must be examined to determine that a variable in unassociated1.

One solution to this problem is to use a more sophisticated data structure to rep-

resent triangular substitutions—for example, we might use a trie (Fredkin 1960) in-

stead of a list, to ensure logarithmic cost when looking up an unassociated variable2.

For simplicity we will retain our association list representation of substitutions. In-

stead of changing the substitution representation, we will use a trick to determine

if a variable is unassociated without having to look at the entire substitution.
1Prolog implementations based on the Warren Abstract Machine (Aït-Kaci 1991) do not use

explicit substitutions to represent variable associations. Instead, they represent each variable as
a mutable box, and side-effect the box during unification. This makes variable lookup extremely
fast, but requires remembering and undoing these side-effects during backtracking. In addition, this
simple model assumes a depth-first search strategy, whereas our purely functional representation
can be used with interleaving search without modification.

2Abdulaziz Ghuloum has implemented miniKanren using a trie-based representation of trian-
gular substitutions. David Bender and Lindsey Kuper have extended this work, using a variety of
purely functional data structures to represent triangular substitutions. These more sophisticated
representations of substitutions can result in much faster walking of variables, which can greatly
speed up many miniKanren programs. The best performance for their benchmarks was achieved
using a skew binary number representation within a random access list (Okasaki 1995).

CHAPTER 4. IMPLEMENTATION II: OPTIMIZING WALK 41

4.2 Birth Records

To avoid examining the entire substitution when walking an unassociated variable,

we will add a birth record to the substitution whenever we introduce a variable

using exist. For example, to run the goal (exist (x y) (≡ 5 x)) we would add the

birth records ((x � x)) and ((y � y)) to the current substitution, then run (≡ 5 x) in the

extended substitution. Unifying x with 5 requires us to walk x: when we do so, we

immediately encounter the birth record ((x � x)), indicating x is unassociated. Unifi-

cation then succeeds, adding the association ((x � 5)) to the substitution to produce

((((x � 5)) ((x � x)) ((y � y)) . . .)).

Here are exist and walk, modified to use birth records.

(define-syntax exist
(syntax-rules ()

((_ (x . . .) g0 g . . .)
(λG (s)

(inc
(let ((x (var x)) . . .)

(let∗ ((s (ext-s x x s))
. . .)

(bind∗ (g0 s) g . . .))))))))

(define walk
(λ (v s)

(cond
((var? v)
(let ((a (assq v s)))

(cond
(a (if (eq? (rhs a) v) v (walk (rhs a) s)))
(else v))))

(else v))))

CHAPTER 4. IMPLEMENTATION II: OPTIMIZING WALK 42

Technically, birth records ensure that we need not examine the entire substitu-

tion to determine a variable is unassociated. However, in the worst case our situation

has not improved3: if a variable is introduced at the beginning of a program, but

is not unified until the end of the program, the birth record will occur at the very

end of the substitution, and lookup will still take linear time. Fortunately, in most

real-world programs variables are unified shortly after they have been introduced.

This locality of reference means that, in practice, birth records significantly reduce

the cost of walking unassociated variables.

4.3 Eliminating assq and Checking the rhs

We can optimize walk in another way, although we will need to eliminate our call

to assq, and introduce a recursion using “named” let 4. Here is the standard walk,

without birth records.

(define walk
(λ (v ŝ)

(let loop ((s ŝ))
(cond

((var? v)
(cond

((null? s) v)
((eq? v (lhs (car s))) (walk (rhs (car s)) ŝ))
(else (loop (cdr s)))))

(else v)))))
3Indeed, the situation is even worse, since the birth records more than double the length of the

substitution that must be walked.
4This chapter assumes miniKanren is run under an optimizing compiler, such as Ikarus Scheme

or Chez Scheme. When run under an interpreter, the “named”-let based walk described in this
section may run much slower than the assq-based version, since assq is often hand-coded in C. When
running under an interpreter, the assq-based walk with birth records will probably be fastest.

CHAPTER 4. IMPLEMENTATION II: OPTIMIZING WALK 43

We can optimize walk by exploiting an important property of the triangular

substitutions produced by unify: in the substitution ((((x � y)) � ŝ)), the variable y

will never appear in the left-hand-side (lhs) of any binding in ŝ. Therefore, when

walking a variable y we can look for y in both the lhs and rhs of each association.

If y is the lhs, we found the variable we are looking for, and need to walk the rhs

in the original substitution. However, if we find y in the rhs of an association, we

know that y is unassociated.

Here is the optimized version of walk

(define walk
(λ (v ŝ)

(let loop ((s ŝ))
(cond

((var? v)
(cond

((null? s) v)
((eq? v (rhs (car s))) v)
((eq? v (lhs (car s))) (walk (rhs (car s)) ŝ))
(else (loop (cdr s)))))

(else v)))))

where lhs and rhs5 return the left-hand-side and right-hand-side of an association,

respectively6.
5lhs is just defined to be car; rhs is just defined to be cdr.
6By checking the rhs before the lhs, we ensure that walk always terminates, even with substi-

tutions that contain circularities. If the substitution contains a circularity of the form ((x � x)) (a
birth record), then walking x clearly terminates, since the rhs test will find x before performing the
recursion. If the substitution contains associations ((x � y)) and ((y � x)), walking x still terminates
despite the circularity. Assume ((y � x)) appears after ((x � y)) (which will never happen for substitu-
tions returned by unify); then when we walk x, we will end up walking y in the recursion. But we
will then find y on the rhs of ((x � y)), which will end the walk. The only other possibility is that
((y � x)) appears before ((x � y)). In this case, walking x does not result in a recursive call, since we
find x on the rhs of ((y � x)). Similar reasoning applies for arbitrarily complicated circularity chains.

CHAPTER 4. IMPLEMENTATION II: OPTIMIZING WALK 44

Once we make a recursive call to walk, the null? test becomes superfluous, so

we redefine walk using the step helper function.

(define walk
(λ (v ŝ)

(let loop ((s ŝ))
(cond

((var? v)
(cond

((null? s) v)
((eq? v (rhs (car s))) v)
((eq? v (lhs (car s))) (step (rhs (car s)) ŝ))
(else (loop (cdr s)))))

(else v)))))

(define step
(λ (v ŝ)

(let loop ((s ŝ))
(cond

((var? v)
(cond

((eq? v (rhs (car s))) v)
((eq? v (lhs (car s))) (step (rhs (car s)) ŝ))
(else (loop (cdr s)))))

(else v)))))

4.4 Storing the Substitution in the Variable

We now combine the birth records optimization presented in section 4.2 with check-

ing for the walked variable in the rhs of each association, described in section 4.3.

However, we wish to avoid polluting the substitution with birth records, which not

only lengthen the substitution but also violate important invariants of our substi-

tution representation7. Instead of adding birth records to the substitution, we will
7Namely, that a variable never appears on the lhs of more than one association, and that

substitutions never contain circularities of the form ((x � x)).

CHAPTER 4. IMPLEMENTATION II: OPTIMIZING WALK 45

add a “birth substitution” to each variable by storing the current substitution in

the variable when it is created.

(define-syntax exist
(syntax-rules ()

((_ (x . . .) g0 g . . .)
(λG (s)

(inc
(let ((x (var s)) . . .)

(bind∗ (g0 s) g . . .)))))))

Now, instead of checking for the birth records as we walk down the substitution,

we check if the entire substitution is eq? to the substitution stored in the walked

variable; if so, we know the variable is unassociated8.

Here, then, is the most efficient definition of walk9.

(define walk
(λ (v ŝ)

(let loop ((s ŝ))
(cond

((var? v)
(cond

((eq? (vector-ref v 0) s) v)
((eq? v (rhs (car s))) v)
((eq? v (lhs (car s))) (step (rhs (car s)) ŝ))
(else (loop (cdr s)))))

(else v)))))

8It should be noted that none of these optimizations avoid the n + 1 passes that might be
required when looking up a variable in a perfectly triangular substitution of length n.

9Exercise for the reader: show that this definition of walk works correctly on the renaming
substitution used in reification (section 3.2)

Chapter 5

A Slight Divergence

In this chapter we explore the divergence of relational programs. We present several

divergent miniKanren programs; for each program we consider different techniques

that can be used to make the program terminate.

By their very nature, relational programs are prone to divergence. As relational

programmers, we may ask for an infinite number of answers from a program, or we

may look for a non-existent answer in an infinite search tree. In fact, miniKanren

programs can (and do!) diverge for a variety of reasons. A frustration common

to beginning miniKanren programmers is that of carefully writing or deriving a

program, only to have it diverge on even simple test cases. Learning to recognize

the sources of divergence in a program, and which techniques can be used to achieve

termination, is a critical stage in the evolution of every relational programmer.

To help miniKanren programmers write relations that terminate, this chapter

presents several divergent example programs; for each program, we discuss why it

diverges, and how the divergence can be avoided.

46

CHAPTER 5. A SLIGHT DIVERGENCE 47

It is important to remember that a single relational program may contain mul-

tiple, and completely different, causes of divergence; such programs may require a

variety of techniques in order to terminate1. Also, a single technique may be useful

for avoiding multiple causes of divergence, as will be made clear in the examples

below. miniKanren does not currently support all of these techniques (such as op-

erators on cyclic terms)—unsupported techniques are clearly identified in the text.

Even techniques not yet supported by miniKanren are of value, however, since they

may be supported by other programming languages.

We now present the divergent example programs, along with techniques for

avoiding divergence.

Example 1

Consider the divergent run∗ expression

(run∗ (q)
(exist (x y z)

(plus o x y z)
(≡ ((x y z)) q)))

where plus o is the ternary addition relation defined in Chapter 6. This expression

diverges because (plus o x y z) succeeds an unbounded number of times; therefore,

the run∗ never stops producing answers. Although it could be argued that this is

a “good” infinite loop, and that we got what we asked for, presumably we want to
1Challenge for the reader: construct a single miniKanren program that contains every cause

of divergence discussed in this chapter. Then use the techniques from this chapter to “fix” the
program.

CHAPTER 5. A SLIGHT DIVERGENCE 48

see some of these answers. Also, the user has no way of knowing that the system is

producing any answers, since the divergence might be due to one of the other causes

described below. (Not to mention that, in general, the user cannot tell whether the

program is diverging or merely taking a very long time to produce an answer.)

We can avoid this divergence in several different ways:

1. We could replace the run∗ with runn, where n is some positive integer. This

will return the n answers, although miniKanren’s interleaving search makes

the order in which answers are produced difficult to predict.

2. Instead of using the run interface, we could directly manipulate the answer

stream passed as the second argument to take (Chapter 3), and examine the

answers one at a time. This the “read-eval-print loop” approach is used by

Prolog systems, and is trivial to implement in miniKanren by redefining take.

3. We can use once o or condu to ensure that goals that might succeed an un-

bounded number of times succeed only once. Of course, these operators are

non-declarative, so we reject this approach. Instead, it would be better to use

a run1.

4. A more sophisticated approach is to represent infinitely many answers as a

single answer by using constraints. For example, one way to express that x

is a natural number other than 2 is to associate x with 0, 1, 3, Clearly,

there are infinitely many such associations, and enumerating them can lead

CHAPTER 5. A SLIGHT DIVERGENCE 49

to an unbounded number of answers. Instead, we might represent the same

information using the single disequality constraint (̸= 2 x).

Similarly, we might use a clever data representation rather than a constraint

to represent infinitely many answers as a single term. For example, using the

little-endian binary representation of natural numbers presented in Chapter 6,

the term ((1 � x)) represents any one of the infinitely many odd naturals.

Using this technique, programs that previously produced infinitely many an-

swers may fail finitely, proving that no more answers exist. Unfortunately, it

is not always possible to find a constraint or data representation to concisely

represent infinitely many terms. For example, although the data representa-

tion from Chapter 6 makes it easy to express every odd natural as a single

term, there is no little-endian binary list that succinctly represents every prime

number. Similarly, disequality constraints are not sufficient to concisely ex-

press that some term does not appear in an uninstantiated tree2.

Example 2

Consider the divergent run1 expression

(run1 (q) (≡-no-check ((q)) q))

The unification of q with ((q)) results in a substitution containing a circularity3:

((((q � ((q)))))). However, it is not unification that diverges, or subsequent calls to walk.
2However, the freshness constraint (#) described in Chapter 9 allows us to express a similar

constraint.
3The ̸=-no-check disequality operator (Chapter 7) suffers from the same problem, since it can

add circularities to the constraint store.

CHAPTER 5. A SLIGHT DIVERGENCE 50

Rather, the reification of q at the end of the computation calls walk∗ (Chapter 3),

which diverges4.

We can avoid this divergence in several different ways:

1. We can use ≡ rather than ≡-no-check to perform sound unification with the

occurs check. The goal (≡ ((q)) q) violates the occurs check and therefore

fails; hence, (run1 (q) (≡ ((q)) q)) returns (()) rather than diverging5. Since

the occurs check can be expensive, we may wish to restrict ≡ to only those

unifications that might introduce a circularity, such as in the application line

of a type inferencer; this requires reasoning about the program. Alternatively,

we can always be safe by using only ≡ rather than ≡-no-check6.

2. Since the reification of q causes divergence in this example, the run expression

will terminate if we do not reify the variable associated with the circularity.

For example,

(run1 (q) (exist (x) (≡-no-check ((x)) x)))

returns ((_
0
)). Although the run expression terminates, the resulting substitu-

tion is still circular: ((((x � ((x)))))). However, unless we allow infinite terms, the

unification (≡-no-check ((x)) x) is unsound. This is a problem for the type

inferencers based on the simply typed λ-calculus, for example, since self-
4The non-logical operator project also calls walk∗, and can therefore diverge on circular

substitutions.
5Similarly, we can use ̸= rather than ̸=-no-check when introducing disequality constraints.
6As pointed out by Apt and Pellegrini (1992) this approach may be overly conservative. However,

since our primary interest is in avoiding divergence, this approach seems reasonable.

CHAPTER 5. A SLIGHT DIVERGENCE 51

applications such as (f f) should not type check (see the inferencer in sec-

tion 9.3). If we do not perform the occurs check, and the circular term is not

reified, the type inference will succeed instead of failing. Clearly this is not an

acceptable way to avoid divergence. However, it is important to understand

why the program above terminates, since it is possible to unintentionally write

programs that abuse unsound unification, unless we use ≡ everywhere.

3. Since reification is the cause of divergence in this example, we can just avoid

reification entirely and return the raw substitution. The user must determine

which associations in the substitution are of interest; furthermore, the user

must check the substitution for circularities introduced by unsound unifica-

tion. There is one more problem with both this approach and the previous

one: the occurs check can prevent divergence by making the program fail

early, which may avoid an unbounded number of successes or a futile search

for a non-existent answer in an infinite search space.

4. Another approach to avoiding divergence is to allow infinite (or cyclic) terms,

as introduced by Prolog II (Colmerauer 1985, 1984, 1982). Then the uni-

fication (≡-no-check ((q)) q) is sound, even though it returns a circular sub-

stitution. miniKanren does not currently support infinite terms; however, it

would not be difficult to extend the reifier to handle cyclic terms, just as many

Scheme implementations can print circular lists.

CHAPTER 5. A SLIGHT DIVERGENCE 52

Example 3

Consider the divergent run1 expression7

(run1 (q) always o fail)

where fail is defined as (≡ #t #f). Recall that the body of a run is an implicit

conjunction8. In order for the run expression to succeed, both always o and fail must

succeed. First, always o succeeds, then fail fails. We then backtrack into always o,

which succeeds again, followed once again by failure of the fail goal. Since always o

succeeds an unbounded number of times, we repeat the cycle forever, resulting in

divergence.

We can avoid this divergence in several different ways:

1. We could simply reorder the goals: (run1 (q) fail always o). This expression

returns (()) rather than diverging, since fail fails before always o is even tried.

miniKanren’s conjunction operator (exist) is commutative, but only if an

answer exists. If no answer exists, then reordering goals within an exist may

result in divergence rather than failure9.
7Recall that always o was defined in Chapter 2 as (define always o (any o (≡ #f #f))). However,

for the purposes of this chapter we define always o as
(define always o

(letrec ((always o (λ ()
(conde

((≡ #f #f))
((always o))))))

(always o)))

This is because tabling (Chapters 12 and 13) uses reification to determine if a call is a variant of a
previously tabled call. Since all procedures have the same reified form (#<procedure> under Chez
Scheme, for example), and since any o takes a goal (a procedure) as its argument, tabling any o can
lead to unsound behavior.

8(run1 (q) g1 g2) expands into an expression containing (exist () g1 g2).
9We say that conjunction is commutative, modulo divergence versus failure.

CHAPTER 5. A SLIGHT DIVERGENCE 53

However, reordering goals has its disadvantages. For many programs, no

ordering of goals will result in finite failure (see the remaining example in

this chapter). Also, by committing to a certain goal ordering we are giving up

on the declarative nature of relational programming: we are specifying how

the program computes, rather than only what it computes. For these reasons,

we should consider alternative solutions.

2. We may be able to use constraints or clever data structures to represent in-

finitely many terms as a single term (as described in Example 1). If we can

use these techniques to make all the conjuncts succeed finitely many times,

then the program will terminate regardless of goal ordering.

3. Another approach to making the conjuncts succeed finitely many times is to

use tabling, described in Chapter 12. Tabling is a form of memoization—we

remember every distinct call to the tabled goal, along with the answers pro-

duced. When a tabled goal is called, we check whether the goal has previously

been called with similar arguments—if so, we use the tabled answers.

In addition to potentially making goals more efficient by avoiding duplicate

work, tabling can improve termination behavior by cutting off infinite recur-

sions. For example, the tabled version of always o succeeds exactly once rather

than an unbounded number of times. Therefore, (run1 (q) always o fail) re-

turns (()) rather than diverging when always o is tabled.

CHAPTER 5. A SLIGHT DIVERGENCE 54

Unfortunately, tabling has a major disadvantage: it does not work if one or

more of the arguments to a tabled goal changes with each recursive call10.

4. We could perform a dependency analysis on the conjuncts—if the goals do

not share any logic variables, they cannot affect each other. Therefore we

can run the goals in parallel, passing the original substitution to each goal. If

either goal fails, the entire conjunction fails. If both goals succeed, we take the

Cartesian product of answers from the goals, and use those new associations

to extend the original substitution.

miniKanren does not currently support this technique; however, miniKanren’s

interleaving search should make it straightforward to run conjuncts in parallel.

A run-time dependency analysis would also be easy to implement11.

5. We could address the problem directly by trying to make our conjunction

operator commutative. For example, we could run both goal orderings in

parallel12, (exist () always o fail) and (exist () always o fail), and see if either

ordering converges. If so, we could commit to this goal ordering. Unfortu-

nately, this commitment may be premature, since the goal ordering we picked

might diverge when we ask for a second answer, while the other ordering may

fail finitely after producing a single answer.

10As demonstrated by the gen o example in a later footnote.
11Ciao Prolog (Hermenegildo and Rossi 1995) performs dependency analysis of conjuncts, along

with many other analyses, to support efficient parallel logic programming.
12We might do this by wrapping the goals in a fern (Chapter 14).

CHAPTER 5. A SLIGHT DIVERGENCE 55

We could try all possible goal orderings, but this is prohibitively expensive

for all but the simplest programs. In particular, recursive goals containing

conjunctions will result in an exponential explosion in the number of orderings.

For these reasons, miniKanren does not currently provide a commutative con-

junction operator. However, future versions of miniKanren may include an

operator that simulates full commutative conjunction using a combination

of tabling, parallel goal evaluation, and continuations (see the Future Work

chapter).

Example 4

Consider the run1 expression (run1 (x) (plus o 2 x 1)). If plus o represents the

ternary addition relation over natural numbers, there is no value for q that sat-

isfies (plus o 2 x 1) (since 2 + x = 1 has no solution in the naturals). Ideally, the

run1 expression will return (()). However, a naive implementation of plus o that enu-

merates values for x will diverge, since it will keep associating x with larger numbers

without bound. Since x grows with each recursive call, tabling plus o will not help.

We can avoid this divergence in several different ways:

1. We can relax the domain of x to include negative integers—then the run1

expression will return ((-1)). However, changing run1 to run2 still results in

divergence, since 2 + x = 1 has only a single solution in the integers.

CHAPTER 5. A SLIGHT DIVERGENCE 56

2. We could use a domain-specific constraint system. For example, instead of

writing an addition goal, we could use Constraint Logic Programming over

the integers (also known as “CLP(Z)”). If we restrict the sizes of our numbers,

we could use CLP(FD) (Constraint Logic Programming over finite domains).

Alas, no single constraint system can express every interesting relation in a

non-trivial application. We could try to create a custom constraint system

for each application we write, but this may be a very difficult task, especially

since constraints may interact with other language features in complex ways.

miniKanren currently supports four kinds of constraints: unification and dis-

unification constraints using ≡ and ̸= (Chapters 2 and 7); α-equivalence con-

straints using nominal unification (Chapter 9); and freshness constraints using

(Chapter 9)13. Future versions of miniKanren will likely support more so-

phisticated constraints.

3. Another approach is to bound the size of the terms in the recursive calls to

plus o. For example, if we represent numbers as binary lists, we know that

the lengths of the first two arguments to plus o (the summands) should never

exceed the length of the third argument (the sum). By encoding these bounds

on term size in our plus o relation, the call (plus o 2 x 1) will fail finitely. We

use exactly this technique when defining plus o in Chapter 6.
13Some non-published versions of miniKanren have also supported pa/ir constraints: (pa/ir x)

expresses that x can never be instantiated as a pair. Uses of pa/ir can typically be removed through
careful use of tagging, however, so we do not include the constraint in this dissertation.

CHAPTER 5. A SLIGHT DIVERGENCE 57

Bounding term sizes is a very powerful technique, as is demonstrated in the

relational arithmetic chapter of this dissertation. But as with the other tech-

niques presented in this chapter, it has its limitations. Establishing relation-

ships between argument sizes may require considerable insight into the relation

being expressed. In fact, the arithmetic definitions in Chapter 6, including

the bounds on term size, were derived from mathematical equations; this code

would be almost impossible to write otherwise14.

Furthermore, overly-eager bounds on term size can themselves cause diver-

gence. For example, assume that we know arguments x and y represent lists,

which must be of the same length. We might be tempted to first determine

the length of x, then determine the length of y, and finally compare the re-

sult. However, if x is an unassociated logic variable, it has no fixed length:

we could cdr down x forever, inadvertently lengthening x as we go. Instead,

we must simultaneously compare the lengths of x and y. To make the task

more difficult, we want to enforce the bounds while we are performing the pri-

mary computation of the relation (for example, while performing addition in

the case of plus o). In fact, lazily enforcing complex bounds between multiple

arguments is likely to be more difficult than writing the underlying relation.

Another problem with bounds on term sizes is that they may not help when

arguments share logic variables. For example, consider the lessl o relation:
14For example, see the definition of log o in section 6.6.

CHAPTER 5. A SLIGHT DIVERGENCE 58

(lessl o x y) succeeds if x and y are lists, and y is longer than x. We can easily

implement lessl o by simultaneously cdring down x and y:

(define lessl o

(λe (x y)
((((()) ((_ � _)))))
(((((_ � xd)) ((_ � yd))))
(lessl o xd yd))))

However, consider the call (lessl o x x). The first λe clause fails, while the

second clause results in a recursive call where both arguments are the same

uninstantiated variable. Therefore (lessl o x x) diverges.

If we were to table lessl o, (lessl o x x) would fail instead of diverging. Unfor-

tunately, sharing of arguments in more complicated relations may result in

arguments growing with each recursive call, which would defeat tabling.

In this section we have examined several divergent miniKanren programs, inves-

tigated the causes of their divergence15, and considered techniques we can use to

make these programs converge. As miniKanren programmers, divergence, and how

to avoid it, should never be far from our minds. Indeed, every extension to the core

miniKanren language can be viewed as a new technique for avoiding divergence16.

In the next chapter we present a relational arithmetic system that uses bounds

on term size to establish strong termination guarantees.

15miniKanren’s interleaving search avoids some forms of divergence that afflict Prolog, which
uses an incomplete search strategy equivalent to depth-first search. For example, the left-recursive
swappendo relation from Chapter 2 is equivalent to the standard appendo relation in miniKanren.
In Prolog, however, swappendo diverges in many cases that appendo terminates, even when answers
exist. (Although tabling can be used to avoid divergence for left-recursive Prolog goals—indeed,
this is one of the main reasons for including tabling in a Prolog implementation.)

16For example, the freshness constraints of nominal logic allow us to express that a nom a does
not occur free within a variable x. Without such a constraint, we would need to instantiate x to a
potentially unbounded number of ground terms to establish that a does not appear in the term.

Chapter 6

Applications I: Pure Binary
Arithmetic

This chapter presents relations for arithmetic over the non-negative integers: ad-

dition, subtraction, multiplication, division, exponentiation, and logarithm. Im-

portantly, these relations are refutationally complete—if an individual arithmetic

relation is called with arguments that do not satisfy the relation, the relation will

fail in finite time rather than diverge. The conjunction of two or more arithmetic re-

lations may not fail finitely, however. This is because the conjunction of arithmetic

relations can express Diophantine equations; were such conjunctions guaranteed

to terminate, we would be able to solve Hilbert’s 10th problem, which is unde-

cidable (Matiyasevich 1993). We also do not guarantee termination if the goal’s

arguments share variables, since sharing can express the conjunction of sharing-free

relations.

59

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 60

Kiselyov et al. (2008) gives proofs of refutational completeness for these relations.

Friedman et al. (2005) and Kiselyov et al. (2008) give additional examples and

exposition of these arithmetic relations1.

This chapter is organized as follows. Section 6.1 describes our representation of

numbers. In section 6.2 we present a naive implementation of addition and show its

limitations. Section 6.3 presents a more sophisticated implementation of addition,

inspired by the half-adders and full-adders of digital hardware. Sections 6.4 and 6.5

present the multiplication and division relations, respectively. Finally in section 6.6

we define relations for logarithm and exponentiation.

6.1 Representation of Numbers

Before we can write our arithmetic relations, we must decide how we will repre-

sent numbers. For simplicity, we restrict the domain of our arithmetic relations

to non-negative integers2. We might be tempted to use Scheme’s built-in numbers

for our arithmetic relations. Unfortunately, unification cannot decompose Scheme

numbers. Instead, we need an inductively defined representation of numbers that

can be constructed and deconstructed using unification. We will therefore represent

numbers as lists.

1The definition of log o in the first printing of Friedman et al. (2005) contains an error, which
has been corrected in the second printing and in section 6.6.

2We could extend our treatment to negative integers by adding a sign tag to each number.

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 61

The simplest approach would be to use a unary representation3; however, for

efficiency we will represent numbers as lists of binary digits. Our lists of binary

digits are little-endian: the car of the list contains the least-significant-bit, which

is convenient when performing arithmetic. We can define the build-num helper

function, which constructs binary little-endian lists from Scheme numbers.

(define build-num
(λ (n)

(cond
((zero? n) (()))
((and (not (zero? n)) (even? n))
(cons 0 (build-num (quotient n 2))))

((odd? n)
(cons 1 (build-num (quotient (− n 1) 2)))))))

For example (build-num 6) returns ((0 1 1)), while (build-num 19) returns ((1 1 0 0 1)).

To ensure there is a unique representation of every number, we suppress trailing

0’s. Thus ((0 1)) is the unique representation of the number two; both ((0 1 0)) and

((0 1 0 0)) are illegal. Similarly, (()) is the unique representation of zero; ((0)) is illegal.

Lists representing numbers may be partially instantiated: ((1 � x)) represents any odd

integer, while ((0 � y)) represents any positive even number. We must ensure that our

relations never instantiate variables representing numbers to illegal values—in these

examples, x can be instantiated to any legal number, while y can be instantiated to

any number other than zero to avoid creating the illegal value ((0)).

3Even when using unary numbers, defining refutationally complete arithmetic relations is non-
trivial, as demonstrated by Kiselyov et al. (2008).

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 62

We can now define the simplest useful arithmetic relations, pos o and >1o. The

pos o relation is satisfied if its argument represents a positive integer.

(define pos o

(λe (n)
(((((a � d)))))))

The >1o relation is satisfied if its argument represents an integer greater than one.

(define >1o

(λe (n)
(((((a b � d)))))))

We will use pos o and >1o in more sophisticated arithmetic relations, starting with

addition.

6.2 Naive Addition

Now that we have decided on a representation for numbers, we can define the

addition relation, plus o.

(define plus o

(λe (n m s)
(((x (()) x)))
((((()) y y)))
(((((0 � x)) ((b � y)) ((b � res))))
(plus o x y res))

(((((b � x)) ((0 � y)) ((b � res))))
(plus o x y res))

(((((1 � x)) ((1 � y)) ((0 � res))))
(exist (res-1)

(plus o x y res-1)
(plus o ((1)) res-1 res)))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 63

The first two clauses handle when n or m is zero. The next two clauses handle when

both n and m are positive integers, at least one of which is even. The final clause

handles when n and m are both positive odd integers.

At first glance, our definition of plus o seems to work fine.

(run1 (q) (plus o ((1 1)) ((0 1 1)) q)) ⇒ ((((1 0 0 1))))

As expected, adding three and six yields nine. However, replacing run1 with run∗

results in the answer ((1 0 0 1) (1 0 0 1)). The duplicate value is due to the over-

lapping of clauses in plus o—for example, both of the first two clauses succeed when

n, m, and s are all zero. Even worse, (run∗ (q) (plus o ((0 1)) q ((1 0 1)))) returns

((((1 1)) ((1 1)) ((1 1 0)) ((1 1 0)))). The last two values are not even legal representa-

tions of a number, since the most-significant bit is zero.

We can fix these problems by making the clauses of plus o non-overlapping, and

by adding calls to pos o to ensure the most-significant bit of a positive number is

never instantiated to zero.

(define plus o

(λe (n m k)
(((x (()) x)))
((((()) ((x � y)) ((x � y)))))
(((((0 � x)) ((0 � y)) ((0 � res)))) (pos o x) (pos o y)
(plus o x y res))

(((((0 � x)) ((1 � y)) ((1 � res)))) (pos o x)
(plus o x y res))

(((((1 � x)) ((0 � y)) ((1 � res)))) (pos o y)
(plus o x y res))

(((((1 � x)) ((1 � y)) ((0 � res))))
(exist (res-1)

(plus o x y res-1)
(plus o ((1)) res-1 res)))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 64

We separated the third clause of the original plus o into two clauses, so we can use

pos o to avoid illegal instantiations of numbers.

The improved definition of plus o no longer produces duplicate or illegal values.

(run∗ (q) (plus o ((1 1)) ((0 1 1)) q)) ⇒ ((((1 0 0 1))))

(run∗ (q) (plus o ((0 1)) q ((1 0 1)))) ⇒ ((((1 1))))

It may appear that our new plus o is refutationally complete, since attempting

to add eight to some number q to produce six fails finitely:

(run∗ (q) (plus o ((0 0 0 1)) q ((0 1 1)))) ⇒ (())

Unfortunately, this example is misleading—plus o is not refutationally complete.

The expression (run1 (q) (plus o q ((1 0 1)) ((0 0 0 1)))) returns ((((1 1)))) as expected,

but replacing run1 with run2 results in divergence. Similarly,

(run6 (q)
(exist (x y)

(plus o x y ((1 0 1)))
(≡ ((x y)) q)))

returns

((((((1 0 1)) (())))
(((()) ((1 0 1))))
((((0 0 1)) ((1))))
((((1)) ((0 0 1))))
((((0 1)) ((1 1))))
((((1 1)) ((0 1))))))

but run7 diverges. If we were to swap the recursive calls in last clause of plus o,

the previous expressions would converge when using run∗; unfortunately, many

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 65

previously convergent expressions would then diverge4. If we want plus o to be

refutationally complete, we must reconsider our approach.

6.3 Arithmetic Revisited

In this section we develop a refutationally complete definition of plus o, inspired by

the half-adders and full-adders of digital logic5.

We first define half-adder o, which, when given the binary digits x, y, r, and c,

satisfies the equation x + y = r + 2 · c.

(define half-adder o

(λ (x y r c)
(exist ()

(bit-xor o x y r)
(bit-and o x y c))))

half-adder o is defined using bit-wise relations for logical and and exclusive-or.

(define bit-and o

(λe (x y r)
(((0 0 0)))
(((1 0 0)))
(((0 1 0)))
(((1 1 1)))))

(define bit-xor o

(λe (x y r)
(((0 0 0)))
(((0 1 1)))
(((1 0 1)))
(((1 1 0)))))

4These examples demonstrate why an efficient implementation (or simulation) of commutative
conjunction would be useful.

5See Hennessy and Patterson (2002) for a description of hardware adders.

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 66

Now that we have defined half-adder o, we can define full-adder o. full-adder o

is similar to half-adder o, but takes a carry-in bit b; given bits b, x, y, r, and c,

full-adder o satisfies b + x + y = r + 2 · c.

(define full-adder o

(λ (b x y r c)
(exist (w xy wz)

(half-adder o x y w xy)
(half-adder o w b r wz)
(bit-xor o xy wz c))))

half-adder o and full-adder o add individual bits. We now define adder o in terms

of full-adder o; adder o adds a carry-in bit d to arbitrarily large numbers n and m to

produce a number r.

(define adder o

(λ (d n m r)
(matche ((d n m))

(((0 _ (()))) (≡ n r))
(((0 (()) _)) (≡ m r) (pos o m))
(((1 _ (())))
(adder o 0 n ((1)) r))

(((1 (()) _))
(pos o m)
(adder o 0 ((1)) m r))

(((_ ((1)) ((1))))
(exist (a c)

(≡ ((a c)) r)
(full-adder o d 1 1 a c)))

(((_ ((1)) _))
(gen-adder o d n m r))

(((_ _ ((1))))
(>1o n) (>1o r)
(adder o d ((1)) n r))

(((_ _ _))
(>1o n)
(gen-adder o d n m r)))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 67

The last clause of adder o calls gen-adder o; given the bit d and numbers n, m,

and r, gen-adder o satisfies d + n + m = r, provided that m and r are greater than

one and n is positive.

(define gen-adder o

(λ (d n m r)
(matche ((n m r))

(((((a � x)) ((b � y)) ((c � z))))
(exist (e)

(pos o y) (pos o z)
(full-adder o d a b c e)
(adder o e x y z))))))

We are finally ready to redefine plus o.

(define plus o (λ (n m k) (adder o 0 n m k)))

As proved by Kiselyov et al. (2008), this definition of plus o is refutationally complete.

Using the new plus o all the addition examples from the previous section terminate,

even when using run∗. We can also generate triples of numbers, where the sum of

the first two numbers equals the third.

(run9 (q)
(exist (x y r)

(plus o x y r)
(≡ ((x y r)) q))) ⇒

((((_
0

(()) _
0
))

(((()) ((_
0
� _

1
)) ((_

0
� _

1
))))

((((1)) ((1)) ((0 1))))
((((1)) ((0 _

0
� _

1
)) ((1 _

0
� _

1
))))

((((1)) ((1 1)) ((0 0 1))))
((((0 _

0
� _

1
)) ((1)) ((1 _

0
� _

1
))))

((((1)) ((1 0 _
0
� _

1
)) ((0 1 _

0
� _

1
))))

((((0 1)) ((0 1)) ((0 0 1))))
((((1)) ((1 1 1)) ((0 0 0 1))))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 68

We can take advantage of the flexibility of the relational approach by defining

subtraction in terms of addition.

(define minus o (λ (n m k) (plus o m k n)))

minus o works as expected:

(run∗ (q) (minus o ((0 0 0 1)) ((1 0 1)) q)) ⇒ ((((1 1))))

eight minus five is indeed three. minus o is also refutationally complete:

(run∗ (q) (minus o ((0 1 1)) q ((0 0 0 1)))) ⇒ (())

there is no non-negative integer q that, when subtracted from six, produces eight.

6.4 Multiplication

Next we define the multiplication relation mul o, which satisfies n · m = p.

(define mul o

(λ (n m p)
(matche ((n m))

((((()) _)) (≡ () p))
(((_ (()))) (≡ () p) (pos o n))
(((((1)) _)) (≡ m p) (pos o m))
(((_ ((1)))) (≡ n p) (>1o n))
(((((0 � x)) _))
(exist (z)

(≡ ((0 � z)) p)
(pos o x) (pos o z) (>1o m)
(mul o x m z)))

(((((1 � x)) ((0 � y))))
(pos o x) (pos o y)
(mul o m n p))

(((((1 � x)) ((1 � y))))
(pos o x) (pos o y)
(odd-mul o x n m p)))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 69

mul o is defined in terms of the helper relation odd-mul o.

(define odd-mul o

(λ (x n m p)
(exist (q)

(bound-mul o q p n m)
(mul o x m q)
(plus o ((0 � q)) m p))))

For detailed descriptions of mul o and odd-mul o, see (Friedman et al. 2005) and

(Kiselyov et al. 2008). From a refutational-completeness perspective, the definition

of bound-mul o is most interesting.

bound-mul o ensures that the product of n and m is no larger than p by enforcing

that the length6 of n plus the length of m is an upper bound for the length of p.

In the process of enforcing this bound, bound-mul o length-instantiates q—that is,

q becomes a list of fixed length containing uninstantiated variables representing

binary digits. The length of q, written ∥q∥, satisfies ∥q∥ < min(∥p∥, ∥n∥+∥m∥+1).

(define bound-mul o

(λ (q p n m)
(matche ((q p))

((((()) ((_ � _)))))
(((((_ � x)) ((_ � y))))
(exist (a z)

(conde

((≡ (()) n)
(≡ ((a � z)) m)
(bound-mul o x y z (())))

((≡ ((a � z)) n)
(bound-mul o x y z m))))))))

6More correctly, the length of the list representing the number.

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 70

mul o works as expected:

(run∗ (p) (mul o ((1 0 1)) ((1 1)) p)) ⇒ ((1 1 1 1))

multiplying five by three yields fifteen. Thanks to the bounds on term sizes enforced

by bound-mul o, mul o is refutationally complete:

(run∗ (q) (mul o ((0 1)) q ((1 1)))) ⇒ (())

there exists no non-negative integer q that, when multiplied by two, yields three.

As we expect of all our relations, mul o is flexible—it can even be used to factor

numbers. For example, this run∗ expression returns all the factors of twelve.

(run∗ (q)
(exist (m)

(mul o q m ((0 0 1 1))))) ⇒

((((1)) ((0 0 1 1)) ((0 1)) ((0 0 1)) ((1 1)) ((0 1 1))))

6.5 Division

Next we define a relation that performs division with remainder. We will need

additional bounds on term sizes to define division (and logarithm in section 6.6).

The relation =l o ensures that the lists representing the numbers n and m are

the same length. As before, we must take care to avoid instantiating either number

to an illegal value like ((0)).

(define =l o

(λe (n m)
((((()) (()))))
(((((1)) ((1)))))
(((((a � x)) ((b � y)))) (pos o x) (pos o y)
(=l o x y))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 71

<l o ensures that the length of the list representing n is less than that of m.

(define <l o

(λe (n m)
((((()) _)) (pos o m))
(((((1)) _)) (>1o m))
(((((a � x)) ((b � y)))) (pos o x) (pos o y)
(<l o x y))))

We can now define 6l o by combining =l o and <l o.

(define 6l o

(λ (n m)
(conde

((=l o n m))
((<l o n m)))))

Using <l o and =l o we can define <o, which ensures that the value of n is less

than that of m.

(define <o

(λ (n m)
(conde

((<l o n m))
((=l o n m)
(exist (x)

(pos o x)
(plus o n x m))))))

Combining <o and ≡ leads to the definition of 6o.

(define 6o

(λ (n m)
(conde

((≡ n m))
((<o n m)))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 72

With the bounds relations in place, we can define division with remainder. The

div o relation takes numbers n, m, q, and r, and satisfies n = m·q+r, with 0 ≤ r < m;

this is equivalent to the equation n
m = q with remainder r, with 0 ≤ r < m. A

simple definition of div o is

(define div o

(λ (n m q r)
(exist (mq)

(<o r m)
(6l o mq n)
(mul o m q mq)
(plus o mq r n))))

Unfortunately, (run∗ (m) (exist (r) (div o ((1 0 1)) m ((1 1 1)) r))) diverges. Because

we want refutational completeness, we instead use the more sophisticated definition

(define div o

(λ (n m q r)
(matche q

((()) (≡ r n) (<o n m))
(((1)) (=l o n m) (plus o r m n) (<o r m))
(_ (<l o m n) (<o r m) (pos o q)
(exist (nh nl qh ql qlm qlmr rr rh)

(split o n r nl nh)
(split o q r ql qh)
(conde

((≡ (()) nh)
(≡ (()) qh)
(minus o nl r qlm)
(mul o ql m qlm))

((pos o nh)
(mul o ql m qlm)
(plus o qlm r qlmr)
(minus o qlmr nl rr)
(split o rr r (()) rh)
(div o nh m qh rh))))))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 73

The refutational completeness of div o is largely due to the use of <o, <l o, and =l o

to establish bounds on term sizes. div o is described in detail in Friedman et al.

(2005).

div o relies on the relation split o to ‘split’ a binary numeral at a given length:

(split o n r l h) holds if n = 2s+1 · l + h where s = ∥r∥ and h < 2s+1. split o

can construct n by combining the lower-order bits7 of l with the higher-order bits

of h, inserting padding bits as specified by the length of r—split o is essentially a

specialized version of appendo. split o ensures that illegal values like ((0)) are not

constructed by removing the rightmost zeros after splitting the number n into its

lower-order bits and its higher-order bits.

(define split o

(λe (n r l h)
((((()) _ (()) (()))))
(((((0 b � n̂)) (()) (()) ((b � n̂)))))
(((((1 � n̂)) (()) ((1)) n̂)))
(((((0 b � n̂)) ((a � r̂)) (()) _))
(split o ((b � n̂)) r̂ (()) h))

(((((1 � n̂)) ((a � r̂)) ((1)) _))
(split o n̂ r̂ (()) h))

(((((b � n̂)) ((a � r̂)) ((b � l̂)) _))
(pos o l̂)
(split o n̂ r̂ l̂ h))))

6.6 Logarithm and Exponentiation

We end this chapter by defining relations for logarithm with remainder and expo-

nentiation.
7The lowest bit of a positive number n is the car of n.

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 74

(define log o

(λe (n b q r)
(((((1)) _ (()) (()))) (pos o b))
(((_ _ (()) _)) (<o n b) (plus o r ((1)) n))
(((_ _ ((1)) _)) (>1o b) (=l o n b) (plus o r b n))
(((_ ((1)) _ _)) (pos o q) (plus o r ((1)) n))
(((_ (()) _ _)) (pos o q) (≡ r n))
(((((a b̂ � dd)) ((0 1)) _ _)) (pos o dd)
(exp2 o n (()) q)
(exist (s) (split o n dd r s)))

(((_ _ _ _))
(exist (a b̂ add ddd)

(conde

((≡ ((1 1)) b))
((≡ ((a b̂ add � ddd)) b))))

(<l o b n)
(exist (bw1 bw nw nw1 ql1 ql s)

(exp2 o b (()) bw1)
(plus o bw1 ((1)) bw)
(<l o q n)
(exist (q̂ bwq1)

(plus o q ((1)) q̂)
(mul o bw q̂ bwq1)
(<o nw1 bwq1))

(exp2 o n (()) nw1)
(plus o nw1 ((1)) nw)
(div o nw bw ql1 s)
(plus o ql ((1)) ql1)
(6l o ql q)
(exist (bql qh s qdh qd)

(repeated-mul o b ql bql)
(div o nw bw1 qh s)
(plus o ql qdh qh)
(plus o ql qd q)
(6o qd qdh)
(exist (bqd bq1 bq)

(repeated-mul o b qd bqd)
(mul o bql bqd bq)
(mul o b bq bq1)
(plus o bq r n)
(<o n bq1)))))))

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 75

Given numbers n, b, q, and r, log o satisfies n = bq + r, where 0 ≤ n and where

q is the largest number that satisfies the equation. The log o definition is similar to

div o, but uses exponentiation rather than multiplication8.

log o relies on helpers exp2 o and repeated-mul o. exp2 o is a simplified version of

exponentiation; given our binary representation of numbers, exponentiation using

base two is particularly simple. (exp2 o n (()) q) satisfies n = 2q; the more general

(exp2 o n b q) satisfies n = (∥b∥ + 1)q + r for some r, where q is the largest such

number and 0 ≤ 2 · r < n, provided that b is length-instantiated and ∥b∥ + 1 is a

power of two.

(define exp2 o

(λ (n b q)
(matche ((n q))

(((((1)) (()))))
(((_ ((1))))
(>1o n)
(exist (s)

(split o n b s ((1)))))
(((_ ((0 � q̂))))
(exist (b̂)

(pos o q̂)
(<l o b n)
(appendo b ((1 � b)) b̂)
(exp2 o n b̂ q̂)))

(((_ ((1 � q̂))))
(exist (nh b̂ s)

(pos o q̂)
(pos o nh)
(split o n b s nh)
(appendo b ((1 � b)) b̂)
(exp2 o nh b̂ q̂))))))

8A line-by-line description of the Prolog version of log o and its helper relations can be found at
http://okmij.org/ftp/Prolog/Arithm/pure-bin-arithm.prl

http://okmij.org/ftp/Prolog/Arithm/pure-bin-arithm.prl

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 76

(repeated-mul o n q nq) satisfies nq = nq provided n is length-instantiated and q

is fully instantiated.

(define repeated-mul o

(λ (n q nq)
(matche q

((()) (≡ (1) nq) (pos o n))
(((1)) (≡ n nq))
(_

(>1o q)
(exist (q̂ nq1)

(plus o q̂ ((1)) q)
(repeated-mul o n q̂ nq1)
(mul o nq1 n nq))))))

This simple log o example shows that 14 = 23 + 6.

(run∗ (q) (log o ((0 1 1 1)) ((0 1)) ((1 1)) q)) ⇒ ((0 1 1))

A more sophisticated example of log o is

(run9 (s)
(exist (b q r)

(log o ((0 0 1 0 0 0 1)) b q r)
(>1o q)
(≡ ((b q r)) s))) ⇒

(((((()) ((_
0

_
1
� _

2
)) ((0 0 1 0 0 0 1))))

((((1)) ((_
0

_
1
� _

2
)) ((1 1 0 0 0 0 1))))

((((0 1)) ((0 1 1)) ((0 0 1))))
((((1 1)) ((1 1)) ((1 0 0 1 0 1))))
((((0 0 1)) ((1 1)) ((0 0 1))))
((((0 0 0 1)) ((0 1)) ((0 0 1))))
((((1 0 1)) ((0 1)) ((1 1 0 1 0 1))))
((((0 1 1)) ((0 1)) ((0 0 0 0 0 1))))
((((1 1 1)) ((0 1)) ((1 1 0 0 1)))))),

which shows that:

68 = 0n + 68 where n is greater than one,

CHAPTER 6. APPLICATIONS I: PURE BINARY ARITHMETIC 77

68 = 1n + 67 where n is greater than one,

68 = 26 + 4,

68 = 33 + 59,

68 = 43 + 4,

68 = 82 + 4,

68 = 52 + 43,

68 = 62 + 32, and

68 = 72 + 19.

We can define the exponentiation relation in terms of log o.

(define exp o (λ (b q n) (log o n b q (()))))

We can use exp o to show that three to the fifth power is 243:

(run∗ (q) (exp o ((1 1)) ((1 0 1)) q)) ⇒ ((1 1 0 0 1 1 1 1)).

The code in this chapter demonstrates the difficulty of achieving refutational

completeness, even for relatively simple relations. Bounding the sizes of terms is a

very powerful technique for ensuring termination, but can be tricky to apply. The

definitions in this chapter were derived from equations defining arithmetic operators,

and from the design of hardware half-adders and full-adders. It would have been

extremely difficult to write this code from first principles.

Part II

Disequality Constraints

78

Chapter 7

Techniques I: Disequality
Constraints

In this chapter we naively translate a Scheme program to miniKanren, and observe

that the miniKanren relation exhibits undesirable behavior. This behavior is due to

our inability to express negation in core miniKanren. We improve our miniKanren

relation through the use of disequality constraints, which can express a limited form

of negation.

This chapter is organized as follows. In section 7.1 we translate the Scheme

function rember into the miniKanren relation rembero. In section 7.2 we observe

that rembero produces unexpected answers that do not correspond to answers pro-

duced by rember. In section 7.3 we show that the unexpected answers are due

to our failure to translate implicit tests in the rember function. Section 7.4 intro-

duces disequality constraints, which allow us to express a limited form of negation.

In section 7.5 we fix our definition of rembero by adding a disequality constraint,

thereby eliminating the unexpected answers. Finally in section 7.6 we point out

79

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 80

several disadvantages of disequality constraints, and discuss when these constraints

should be used.

7.1 Translating rember into miniKanren

We begin by naively translating the rember function into miniKanren. rember

takes two arguments: a symbol x and a list of symbols ls, and removes the first

occurrence of x from ls.

(rember b ((a b c b d))) ⇒ ((a c b d))

(rember d ((a b c))) ⇒ ((a b c))

Here is rember

(define rember
(λ (x ls)

(cond
((null? ls) (()))
((eq? (car ls) x) (cdr ls))
(else (cons (car ls) (rember x (cdr ls)))))))

To translate rember into the miniKanren relation rembero we add a third ar-

gument out, change cond to conde, and replace uses of null?, eq?, cons, car, and

cdr with calls to ≡. We also unnest the recursive call, using a temporary variable

res to hold the “output” value of the recursive call.

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 81

(define rembero

(λ (x ls out)
(conde

((≡ (()) ls) (≡ (()) out))
((exist (a d)

(≡ ((a � d)) ls)
(≡ a x)
(≡ d out)))

((exist (a d res)
(≡ ((a � d)) ls)
(≡ ((a � res)) out)
(rembero x d res))))))

7.2 The Trouble with rembero

For simple tests, it may seem that rembero works as expected, mimicking the be-

havior of rember.

(run1 (q) (rembero b ((a b c b d)) q)) ⇒ ((((a c b d))))

(run1 (q) (rembero d ((a b c)) q)) ⇒ ((((a b c))))

However, we notice a problem if we replace the run1 with run∗.

(run∗ (q) (rembero b ((a b c b d)) q)) ⇒ ((((a c b d)) ((a b c d)) ((a b c b d))))

Now there are multiple answers. The first answer is expected, but in the second

answer rembero removes the second occurrence of b rather than the first occurrence.

The last answer is even worse—rembero does not remove either b, as is evidenced

by the run expression

(run∗ (q) (rembero b ((b)) ((b)))) ⇒ ((_
0
))

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 82

7.3 Reconsidering rember

Where did we go wrong? Is our miniKanren translation not faithful to the original

Scheme program?

Not quite. The problem is that cond tries its clauses in order, stopping at the

first clause whose test evaluates to a true value, while conde tries every possible

clause. But isn’t there only one cond clause that matches any given values of x and

ls? Actually, no.

Let us examine the definition of rember once again.

(define rember
(λ (x ls)

(cond
((null? ls) (()))
((eq? (car ls) x) (cdr ls))
(else (cons (car ls) (rember x (cdr ls)))))))

Consider the call (rember a ((a b c))). Clearly the null? test keeps the first clause

from returning an answer, while the eq? test allows the second clause to produce

an answer. But the test of the final clause, the “always-true” else keyword, is

equivalent to the trivial #t test.

(define rember
(λ (x ls)

(cond
((null? ls) (()))
((eq? (car ls) x) (cdr ls))
(#t (cons (car ls) (rember x (cdr ls)))))))

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 83

If it were not for the second clause, the third clause would produce an answer for

the call (rember a ((a b c))). In fact, if we swap the last two clauses

(define rember
(λ (x ls)

(cond
((null? ls) (()))
(#t (cons (car ls) (rember x (cdr ls))))
((eq? (car ls) x) (cdr ls)))))

the call (rember a ((a b c))) returns ((a b c)) rather than ((b c)).

What does the else test really mean in the original definition of rember? It

means that the tests in all the above clauses must evaluate to #f. Similar reasoning

holds for the eq? test of the second clause—the test implies that the null? test in

the first clause returned #f. We can therefore redefine rember to make the implicit

tests explicit.

(define rember
(λ (x ls)

(cond
((null? ls) (()))
((and (not (null? ls)) (eq? (car ls) x))
(cdr ls))

((and (not (null? ls)) (not (eq? (car ls) x)))
(cons (car ls) (rember x (cdr ls)))))))

rember now produces the same answers no matter how we reorder the clauses;

the clauses are now non-overlapping, since only a single clause can produce an

answer for any specific call to rember1.

1Throughout this dissertation we strive to write programs that adhere to the non-overlapping
principle, to avoid duplicate or misleading answers. Such programs are similar to the guarded
command programs described in Dijkstra (1975, 1997).

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 84

(define rember
(λ (x ls)

(cond
((and (not (null? ls)) (not (eq? (car ls) x)))
(cons (car ls) (rember x (cdr ls))))

((and (not (null? ls)) (eq? (car ls) x))
(cdr ls))

((null? ls) (())))))

Even though we have reordered the cond clauses, rember works as expected.

(rember a ((a b c))) ⇒ ((b c))

7.4 Disequality Constraints

Now we can reconsider our definition of rembero, adding the equivalent of the

explicit tests to make our conde clauses non-overlapping2.

Unfortunately, we do not have a way to express negation in core miniKanren3.

However, we do not need full negation to express the test (not (null? ls)), since if ls

is not null it must be a pair4. In fact, we are already expressing the (not (null? ls))

test implicitly, through the unification (≡ ((a � d)) ls) that appears in the last two

conde clauses.

The only remaining test is (not (eq? (car ls) x)) in the last clause. How might

we express that the car of ls is not x? We could attempt to unify the car of ls

with every symbol other than x. Even if x were instantiated, to the symbol a for
2More than one conde clause may succeed if rembero is passed fresh variables. However, only

one clause will succeed if the first two arguments to rembero are fully ground.
3The impure operators conda and condu from section 2.3 can be used to express “negation as

failure”, as is commonly done in Prolog programs, but we eschew this non-declarative approach.
4This assumes, of course, that the second argument to rembero can be unified with a proper

list. Passing in 5 as the ls argument makes no more sense for rembero than it does for rember.

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 85

example, we would have to unify x with every symbol other than a, of which there

are infinitely many. Clearly this is problematic: enumerating an infinite domain

can easily lead to divergent behavior5.

Compare the tests in the second and third rember clauses: (eq? (car ls) x) and

(not (eq? (car ls) x)). We use (≡ a x) to express that the car of ls (which is a)

is equal to x. What we need is the ability to express the disequality constraint6

(̸= a x)7, which asserts that a and x are not equal, and can never be made equal

through unification.

Before we add a disequality constraint to rembero, let us examine some simple

uses of ̸=. In the first example, we unify q with 5, then specify that q can never be

5. As expected, the call to ̸= fails.

(run∗ (q) (≡ 5 q) (̸= 5 q)) ⇒ (())

If we swap the goals, the program behaves the same.

(run∗ (q) (̸= 5 q) (≡ 5 q)) ⇒ (())

̸= can take arbitrary expressions, as shown in the next two examples.

(run∗ (q) (̸= (+ 2 3) 5)) ⇒ (())

(run∗ (q) (̸= (∗ 2 3) 5)) ⇒ ((_
0
))

5It is possible to enumerate some infinite domains using a finite number of cases, through the
use of clever data representation. For example, using the binary list notation from Chapter 6 we
can express that a natural number x is not 5 by unifying x with the patterns (()), ((1)), ((a 1)), ((0 a 1)),
((1 1 1)), and ((a b c d � rest)). Although this approach avoids divergence, it requires us to know the
domain and representation of x. Furthermore, this approach may result in duplicate answers even
for programs that adhere to the non-overlapping principle, which can be a problem even when
enumerating finite domains.

6As opposed to an equality constraint, such as (≡ a x). Disequality is also known as disunifica-
tion.

7We may also wish to introduce an operator ̸=-no-check that performs unsound disunification,
to avoid the cost of the occurs check.

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 86

In this run∗ expression we assert that q can never be 5 or 6. We express the

latter constraint indirectly, by constraining x.

(run∗ (q)
(exist (x)

(̸= 5 q)
(≡ x q)
(̸= 6 x))) ⇒

((((((((_
0

: ((((never-equal ((((((((_
0
� 5)))))))) ((((((((_

0
� 6))))))))))))))))))))

The answer includes two reified constraints indicating that the output variable (q)

can never be 5 or 6.

Consider this run∗ expression.

(run∗ (q)
(exist (y z)

(̸= ((y � z)) q))) ⇒

((((_
0
))))

It may seem that the constraint on q should be reified. However, this constraint

can only be violated if q is unified with ((y � z)). Since y and z are not reified, the

constraint is not relevant and is therefore not reified.

To reify a constraint, we must reify all of the variables involved in the constraint.

(run∗ (q)
(exist (x y z)

(̸= ((y � z)) x)
(≡ ((x y z)) q))) ⇒

((((((((((((_
0

_
1

_
2
)))) : ((((never-equal ((((((((_

0
_

1
� _

2
))))))))))))))))))))

The constraint is easier to interpret if we remember that ((never-equal ((((_
0

_
1
� _

2
))))))

is equivalent to ((never-equal ((((_
0
� ((_

1
� _

2
)))))))).

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 87

Here is a slightly more complicated example of ̸=.

(run∗ (q)
(exist (x y z)

(≡ ((y � z)) x)
(̸= ((5 � 6)) x)
(≡ 5 y)
(≡ ((x y z)) q))) ⇒

((((((((((((((((5 � _
0
)))) 5 _

0
)))) : ((((never-equal ((((((((_

0
� 6))))))))))))))))))))

Here is the same program, but with (≡ 6 y) instead of (≡ 5 y).

(run∗ (q)
(exist (x y z)

(≡ ((y � z)) x)
(̸= ((5 � 6)) x)
(≡ 6 y)
(≡ ((x y z)) q))) ⇒

((((((((((((6 � _
0
)))) 6 _

0
))))))))

Since y cannot be 5, (̸= ((5 � 6)) x) cannot be violated and is therefore discarded.

We end this section with a final example, to demonstrate how to interpret more

complicated reified constraints.

(run∗ (q)
(exist (x y z)

(̸= 5 x)
(̸= 6 x)
(̸= ((y 1)) ((2 z)))
(≡ ((x y z)) q))) ⇒

((((((((((((_
0

_
1

_
2
)))) : ((((never-equal ((((((((_

1
� 2)))) ((((_

2
� 1)))))))) ((((((((_

0
� 6)))))))) ((((((((_

0
� 5))))))))))))))))))))

The constraints ((((_
0
� 6)))) and ((((_

0
� 5)))) are independent of each other, and indi-

cate that x can never be 5 or 6. However, ((((_
1
� 2)) ((_

2
� 1)))) represents a single

constraint, indicating that y cannot be 2 if z is 18.
8Reifying constraints in a friendly manner is non-trivial, as we will see in Chapter 8.

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 88

7.5 Fixing rembero

Now that we understand ̸=, and how to interpret reified constraints, we are ready

to add the disequality constraint (̸= a x) to the last clause of rembero.

(define rembero

(λ (x ls out)
(conde

((≡ (()) ls) (≡ (()) out))
((exist (a d)

(≡ ((a � d)) ls)
(≡ a x)
(≡ d out)))

((exist (a d res)
(≡ ((a � d)) ls)
(̸= a x)
(≡ ((a � res)) out)
(rembero x d res))))))

If we re-run the programs from section 7.2 we see that rembero’s behavior is

consistent with that of rember.

(run∗ (q) (rembero b ((a b c b d)) q)) ⇒ ((((a c b d))))

(run∗ (q) (rembero b ((b)) ((b)))) ⇒ (())

Of course, rembero is more flexible than rember.

(run∗ (q)
(exist (x out)

(rembero x ((a b c)) out)
(≡ ((x out)) q))) ⇒

((((((((a ((((b c))))))))
((((b ((((a c))))))))
((((c ((((a b))))))))
((((((((_

0
((((a b c)))))))) : ((((never-equal ((((((((_

0
� c)))))))) ((((((((_

0
� b)))))))) ((((((((_

0
� a))))))))))))))))))))

The final answer indicates that removing a symbol x from the list ((a b c)) results

in the original list, provided that x is not a, b, or c.

CHAPTER 7. TECHNIQUES I: DISEQUALITY CONSTRAINTS 89

7.6 Limitations of Disequality Constraints

Disequality constraints add expressive power to core miniKanren9, allowing us to

express a limited form of negation. However, disequality constraints have several

limitations and disadvantages.

First, the ̸= operator can only express that two terms are never the same.

This is much more limited than the ability to express full negation. For example,

consider the test (and (not (null? ls)) (not (eq? (car ls) x))) from the version of

rember in section 7.3. By de Morgan’s law, this test is logically equivalent to

(not (or (null? ls) (eq? (car ls) x))). We can use disequality constraints to express

the first version of the test, but not the second.

Answers containing reified disequality constraints can be more difficult to in-

terpret than answers without constraints. Also, it is not always obvious why a

constraint was not reified (whether it was not relevant or could not be violated).

Disequality constraints also complicate the implementation of the unifier, and

especially the reifier. Disequality constraints can also be expensive, since every

constraint must be checked after each successful unification.

Because of these disadvantages, it is preferable to use ≡ rather than ̸= when-

ever practical. For example, it is better to express the test (not (null? ls)) as

(≡ ((a � d)) ls) rather than as (̸= (()) ls).

Still, disequality constraints add expressive power to core miniKanren, and are

generally preferable to enumerating infinite (or even finite) domains.

9It seems that disequality constraints were present in a very early version of Prolog (Colmerauer
and Roussel 1996), although they were apparently removed after several years. Prolog II (Colmer-
auer 1985) reintroduced disequality constraints, which are now standard in most Prolog systems.

Chapter 8

Implementation III: Disequality
Constraints

In this chapter we implement the ̸= disequality constraint operator described in

Chapter 7. We implement disequality constraints using unification, which results

in remarkably concise and elegant code. The mathematics of this approach were

described by Comon in the 1980’s1—to our knowledge, our implementation is the

first to use this technique, for which triangular substitutions (section 3.1) are a

perfect match. We also present a sophisticated reifier that removes irrelevant and

redundant constraints.

This chapter is organized as follows. In section 8.1 we describe our representation

of the constraint store, which is passed to every goal as part of a package that also

contains the substitution. Section 8.2 presents the constraint solving algorithm,

which is based on unification, while section 8.3 defines the ̸= and ≡ operators and

related helpers. Finally in section 8.4 we present a sophisticated reifier that produces

human-friendly representations of constraints.
1See Comon (1991) and Comon and Lescanne (1989).

90

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 91

8.1 Constraints, Constraint Lists, and Packages

We represent a constraint c as a list of pairs associating variables with terms. For

example, the constraint (̸= 5 x) would be represented as ((((x � 5)))), while the con-

straint (̸= ((5 6)) ((y z))) would be represented as ((((y � 5)) ((z � 6)))). In fact, our rep-

resentation of disequality constraints is identical to our representation of substi-

tutions—indeed, a constraint can be viewed as a mini-substitution that indicates

which simultaneous variable associations would violate the constraint.

A program can introduce many constraints, which requires that we introduce the

notion of a constraint store that will be passed to every goal, along with the substitu-

tion. We represent our constraint store c∗ as a list of constraints (that is, a list of sub-

stitutions). For example, after running the goal (exist (x y z) (̸= 5 x) (̸= ((5 6)) ((y z))))

the constraint store would be ((((((y � 5)) ((z � 6)))) ((((x � 5)))))).

We define empty-c∗ to be the empty list: (define empty-c∗ (())). We extend c∗

using cons.

We must pass the constraint store to every goal. We could add an extra c∗

argument to each goal, but instead we pass around the substitution and constraint

store as a single value, which we call a package. Most goal constructors just pass

around the substitution—their definitions need not change. We only need to modify

goal constructors that extend or inspect the substitution (such as ≡). (We will use

the package abstraction whenever we need to pass around constraint information,

such as the freshness constraints of nominal logic in Chapter 11.)

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 92

Here are our package constructors and deconstructors2.

(define make-a (λ (s c∗) (cons s c∗)))
(define s-of (λ (a) (car a)))
(define c∗-of (λ (a) (cdr a)))
(define empty-a (make-a empty-s empty-c∗))

8.2 Solving Disequality Constraints

In this section we will use unification in a clever way to solve disequality constraints

after a call to ̸= or ≡, and to keep these constraints in simplified form. First, observe

that unifying terms t1 and t2 in a substitution s has three possible outcomes:

1. unification can fail, indicating there is no extension to s that will make t1 and

t2 equal;

2. unification can succeed without extending s—this implies that t1 and t2 are

already equal;

3. unification can succeed, returning an extended substitution containing new

associations—in this case, the “mini-substitution” ŝ containing only these new

associations represents the most general substitution that makes t1 and t2

equal3.
2The s-of deconstructor, which returns a package’s substitution, is all we need to update our

definition of the impure operator project.
(define-syntax project

(syntax-rules ()
((_ (x . . .) g g∗ . . .)
(λG (a)

(let ((s (s-of a)))
(let ((x (walk∗ x s)) . . .)

((exist () g g∗ . . .) a)))))))

3The technical term for this substitution is the most general unifier or mgu.

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 93

Now let us consider disequality constraints: instead of determining if t1 and t2

can be made equal, we wish to determine if t1 and t2 can be made disequal with

respect to s. Fortunately, this requires only a slight change in perspective. We unify

t1 and t2 with respect to s, but we interpret result of the unification differently:

1. if unification fails, t1 and t2 can never be made equal, and the disequality

constraint can never be violated—therefore, we can throw the constraint away;

2. if unification succeeds without extending s, then t1 and t2 are already equal—the

disequality constraint has been violated;

3. if unification succeeds and returns an extended substitution containing new

associations, then the constraint has not been violated, but could still be

violated through future calls to ≡—in this case, the “mini-substitution” ŝ that

contains the new associations represents the updated disequality constraint in

simplified form.

A few examples should clarify how unification can be used to solve disequality

constraints.

1. Running the goal (̸= 5 6) corresponds to the first case above: 5 and 6 fail to

unify in any substitution, which means the constraint can never be violated.

Therefore (̸= 5 6) succeeds, without extending the constraint store.

2. The goal (̸= 5 5) corresponds to the second case above: 5 unifies with it-

self, without extending the current substitution, which means the disequality

constraint has been violated. Therefore (̸= 5 5) fails.

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 94

3. The goal (̸= ((5 6)) ((x y))) corresponds to the third case above: ((5 6)) and ((x y))

unify in the empty substitution (let’s say), resulting in a substitution extended

with the associations ((x � 5)) and ((y � 6)). This means the constraint was not

violated, but could be violated in the future (if x is unified with 5 and y with

6). Therefore (̸= ((5 6)) ((x y))) succeeds, extending the constraint store with

the simplified constraint ((((x � 5)) ((y � 6)))).

Let us consider a final, more complicated example that uses both ̸= and ≡.

(exist (p x y)
(̸= ((5 6)) p)
(≡ ((x y)) p)
(≡ 5 x)
(≡ 7 y))

Let us assume that we run this goal in the empty package, containing the empty

substitution s = (()) and the empty constraint store c∗ = (()). First we run the goal

(̸= ((5 6)) p); p unifies with ((5 6)) in the empty substitution, extending the substitu-

tion with the association ((((p � ((5 6)))))). Therefore (̸= ((5 6)) p) succeeds, returning

a package with s = () and c∗ = ((((((p � ((5 6)))))))).

Next we run (≡ ((x y)) p); p unifies with ((x y)) in the empty substitution, return-

ing the extended substitution s = ((((p � ((x y)))))). But after the successful unification

we must verify all of the constraints in the constraint store. We have only the single

constraint ((((p � ((5 6)))))), which we verify by unifying p and ((5 6)) in the new substi-

tution ((((p � ((x y)))))). This unification succeeds, extending the substitution with the

associations ((x � 5)) and ((y � 6)). Therefore (≡ ((x y)) p) succeeds, returning a new

package with s = ((((p � ((x y)))))) and c∗ = ((((((x � 5)) ((y � 6)))))).

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 95

Next we run (≡ 5 x); x unifies with 5 in the substitution ((((p � ((x y)))))), return-

ing the extended substitution s = ((((x � 5)) ((p � ((x y)))))). Since the unification was

successful, we must verify our constraints. We still have only a single constraint,

((((x � 5)) ((y � 6)))), which we verify by simultaneously unifying x with 5 and y with

6 in the new substitution s = ((((x � 5)) ((p � ((x y)))))). This unification succeeds, ex-

tending s with the association ((y � 6)). Therefore (≡ 5 x) succeeds, returning a new

package with s = ((((x � 5)) ((p � ((x y)))))) and c∗ = ((((((y � 6)))))).

Finally we run (≡ 7 y); y unifies with 7 in the substitution ((((x � 5)) ((p � ((x y)))))),

returning the extended substitution s = ((((y � 7)) ((x � 5)) ((p � ((x y)))))). We then check

the constraint ((((y � 6)))) by unifying y and 6 in the new substitution; this unification

fails, indicating that the constraint can never be violated, and can therefore be dis-

carded. The goal (≡ 7 y) succeeds, as does the entire exist, returning the package

s = ((((y � 7)) ((x � 5)) ((p � ((x y)))))) and c∗ = ().

Had we replaced the final goal (≡ 7 y) with (≡ 6 y), y and 6 would have suc-

ceeded without extending the substitution; the constraint would therefore have been

violated, and the entire exist would fail.

8.3 Implementing ̸= and ≡

Now that we understand how to solve disequality constraints using unification, we

are ready to define ̸=. ̸= just unifies its arguments in the current substitution, then

passes the result of the unification, along with original package, to ̸=-verify.

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 96

(define-syntax ̸=
(syntax-rules ()

((_ u v)
(λG (a)

(̸=-verify (unify u v (s-of a)) a)))))

̸=-verify performs a case analysis on the result of the unification, ŝ, as described

in section 8.2. If unification failed, the constraint cannot be violated; therefore ̸=

succeeds, and just returns the package passed to it. Since we are using triangular

substitutions, we can use a single eq? test to determine if unification succeeded

without extending the substitution (the second cond clause); if so, the constraint

has been violated, and ̸= returns (mzero) to indicate failure. Otherwise, unification

returned an extended substitution. We therefore call the prefix-s helper (below),

which returns a mini-substitution c containing only the new associations added

during unification. We then construct a new package containing both the extended

substitution ŝ and the simplified constraint c.

(define ̸=-verify
(λ (ŝ a)

(cond
((not ŝ) (unit a))
((eq? (s-of a) ŝ) (mzero))
(else (let ((c (prefix-s ŝ (s-of a))))

(unit (make-a (s-of a) (cons c (c∗-of a)))))))))

Here is prefix-s, which returns the new associations in s that do not occur in the

older substitution <s. Our use of triangular substitutions makes it trivial to define

prefix-s, since the new substitutions always form a prefix of s.

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 97

(define prefix-s
(λ (s <s)

(cond
((eq? s <s) empty-s)
(else (cons (car s) (prefix-s (cdr s) <s))))))

We can now define ≡, which must check every constraint in the constraint store

after a successful unification. Constraint checking also ensures the constraints are

kept in simplified form, making future constraint checking more efficient. This

simplified form also simplifies reification4.

(define-syntax ≡
(syntax-rules ()

((_ u v)
(λG (a)

(≡-verify (unify u v (s-of a)) a)))))

≡-verify is similar to, but slightly more complicated than ̸=-verify, since upon

successful unification we need to verify all the constraints in c∗.

(define ≡-verify
(λ (ŝ a)

(cond
((not ŝ) (mzero))
((eq? (s-of a) ŝ) (unit a))
((verify-c∗ (c∗-of a) empty-c∗ ŝ)
⇒ (λ (c∗) (unit (make-a ŝ c∗))))

(else (mzero)))))

verify-c∗ verifies all the constraints in c∗ with respect to the current substitution

s, accumulating the verified (and simplified) constraints in ĉ∗. verify-c∗ uses unify∗

4We keep each individual constraint in simplified form. However, the constraint store itself is not
simplified, and may contain redundant constraints. Determining if a constraint subsumes another
is expensive, so we only remove redundant constraints at reification time.

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 98

(below) to simultaneously unify the left- and right-hand-sides of all the associations

within a given constraint.

(define verify-c∗
(λ (c∗ ĉ∗ s)

(cond
((null? c∗) ĉ∗)
((unify∗ (car c∗) s)
⇒ (λ (ŝ)

(cond
((eq? s ŝ) #f)
(else (let ((c (prefix-s ŝ s)))

(verify-c∗ (cdr c∗) (cons c ĉ∗) s))))))
(else (verify-c∗ (cdr c∗) ĉ∗ s)))))

(define unify∗
(λ (p∗ s)

(cond
((null? p∗) s)
((unify (lhs (car p∗)) (rhs (car p∗)) s)
⇒ (λ (s) (unify∗ (cdr p∗) s)))

(else #f))))

For completeness, here is ≡-no-check5.

(define-syntax ≡-no-check
(syntax-rules ()

((_ u v)
(λG (a)

(≡-verify (unify-no-check u v (s-of a)) a)))))
5We can also define ̸=-no-check, which performs unsound disunification, allowing circular con-

straints such as ((((x � ((x)))))).

(define-syntax ̸=-no-check
(syntax-rules ()

((_ u v)
(λG (a)

(̸=-verify (unify-no-check u v (s-of a)) a)))))

Reifying a circular constraint introduced by ̸=-no-check can result in divergence.

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 99

8.4 Reification

We want our reified constraints to be as concise and readable as possible; we there-

fore eliminate irrelevant constraints, which contain one or more variables that are

not themselves reified (see section 7.4). We also remove redundant constraints that

are subsumed by other reified constraints. Our subsumption check uses unification

and is potentially expensive, so we perform this check only during reification.

A relevant constraint contains no unreified variables. purify takes the constraint

store c∗ and the reified name substitution r (section 3.2), and returns a constraint

store containing only relevant constraints.

(define purify
(λ (c∗ r)

(cond
((null? c∗) empty-c∗)
((anyvar? (car c∗) r)
(purify (cdr c∗) r))

(else (cons (car c∗)
(purify (cdr c∗) r))))))

purify calls anyvar? on each constraint, which returns #t if the constraint con-

tains a variable that is unassociated in the reified name substitution. (The con-

straint store is walk∗ed in the package’s normal substitution before purification, so

that variables associated with ground terms do not affect purification.)

(define anyvar?
(λ (v r)

(cond
((var? v) (var? (walk v r)))
((pair? v) (or (anyvar? (car v) r) (anyvar? (cdr v) r)))
(else #f))))

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 100

In addition to removing irrelevant constraints, we also want to remove any con-

straint that is subsumed by another reified constraint. For example, after run-

ning the goal (exist (x y) (̸= ((5 6)) ((x y))) (̸= 5 x)) the constraint store will be

((((((x � 5)))) ((((x � 5)) ((y � 6)))))). Although the individual constraints are simplified,

the constraint ((((x � 5)))) subsumes the constraint ((((x � 5)) ((y � 6)))) (since it is not

possible to violate the latter constraint without also violating the former).

We can determine if a constraint c is subsumed by another constraint ĉ through

yet another clever use of unification. We use unify∗ to perform simultaneous uni-

fication of the left- and right-hand-sides of all the associations in ĉ, with respect

to the “substitution” c (see section 8.3); if unify∗ succeeds without extending the

substitution, then c is subsumed by ĉ. For example, to determine if the constraint

c = ((((x � 5)) ((y � 6)))) is subsumed by ĉ = ((((x � 5)))), we unify x and 5 in the substi-

tution ((((x � 5)) ((y � 6)))). This unification succeeds without extending c: therefore,

((((x � 5)) ((y � 6)))) is subsumed by ((((x � 5)))), and can be discarded.

The subsumed? predicate returns #t if the constraint c is subsumed by any

constraint in c∗.

(define subsumed?
(λ (c c∗)

(and (not (null? c∗))
(or (eq? (unify∗ (car c∗) c) c)

(subsumed? c (cdr c∗))))))

rem-subsumed takes a list of unseen constraints c∗ and previously seen con-

straints ĉ∗ (initially empty), and returns a new constraint store containing inde-

CHAPTER 8. IMPLEMENTATION III: DISEQUALITY CONSTRAINTS 101

pendent constraints, none of which are subsumed by any other. As rem-subsumed

cdrs down c∗, it checks if the car of c∗ is subsumed by any of the other constraints,

either in the rest of the unseen constraints in c∗, or the already seen constraints

accumulated in ĉ∗. If so, the car of c∗ is thrown away; otherwise, it is added to the

list of already seen constraints.

(define rem-subsumed
(λ (c∗ ĉ∗)

(cond
((null? c∗) ĉ∗)
((or (subsumed? (car c∗) ĉ∗) (subsumed? (car c∗) (cdr c∗)))
(rem-subsumed (cdr c∗) ĉ∗))

(else (rem-subsumed (cdr c∗) (cons (car c∗) ĉ∗))))))

Here is the updated definition of reify, which walk∗s the constraint store in the

package’s substitution before calling purify and rem-subsumed. reify returns only

the reified value if there are no relevant constraints; otherwise, reify returns a list

containing the reified value, followed by a tagged list of relevant, and independent,

reified constraints.

(define reify
(λ (v a)

(let ((s (s-of a)))
(let ((v (walk∗ v s))

(c∗ (walk∗ (c∗-of a) s)))
(let ((r (reify-s v empty-s)))

(let ((v (walk∗ v r))
(c∗ (walk∗ (rem-subsumed (purify c∗ r) empty-c∗) r)))

(cond
((null? c∗) v)
(else ((v : ((never-equal � c∗))))))))))))

Part III

Nominal Logic

102

Chapter 9

Techniques II: Nominal Logic

In this chapter we introduce αKanren, which extends core miniKanren with oper-

ators for nominal logic programming. αKanren was inspired by αProlog (Cheney

2004a; Cheney and Urban 2004) and MLSOS (Lakin and Pitts 2008), and their use

of nominal logic (Pitts 2003) to solve a class of problems more elegantly than is

possible with conventional logic programming.

Like αProlog and MLSOS, αKanren allows programmers to explicitly manage

variable names and bindings, making it easier to write interpreters, type inferencers,

and other programs that must reason about scope. αKanren also eases the burden

of implementing a language from its structural operational semantics, since the

requisite side-conditions can often be trivially encoded in nominal logic.

A standard class of such side conditions is to state that a certain variable name

cannot occur free in a particular expression. It is a simple matter to check for free

occurrences of a variable name in a fully-instantiated term, but in a logic program

the term might contain unbound logic variables. At a later point in the program

103

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 104

those variables might be instantiated to terms containing the variable name in

question. Also, when the writer of semantics employs the equality symbol, what they

really mean is that the two terms are the same up to α-equivalence, as in the variable

hygiene convention popularized by Barendregt (1984). As functional programmers,

we would never quibble with the statement: λx.x = λy.y, yet without the implicit

assumption that one can rename variables using α-conversion, we would have to

forgo this obvious equality. And again, if either expression contains an unbound

logic variable, it is impossible to perform a full parallel tree walk to determine if the

two expressions are α-equivalent: at least part of the tree walk must be deferred

until one or both expressions are fully instantiated.

This chapter is organized as follows. Section 9.1 introduces the αKanren opera-

tors, and provides trivial examples of their use. Section 9.2 provides a concise but

useful αKanren program that performs capture-avoiding substitution. Section 9.3

presents a second αKanren program: a type inferencer for a subset of Scheme.

9.1 Introduction to αKanren

αKanren extends miniKanren with two additional operators, fresh and # (entered

as hash), and one term constructor, ◃▹ (entered as tie).

fresh, which syntactically looks like exist, introduces new noms into its scope.

(Noms are also called “names” or “atoms”, overloaded terminology which we avoid.)

Conceptually, a nom represents a variable name1; however, a nom behaves more like
1Less commonly, a nom may represent a non-variable entity. For example, a nom may represent

a channel name in the π-calculus—see Cheney (2004a) for details.

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 105

a constant than a variable, since it only unifies with itself or with an unassociated

variable.

(run∗ (q) (fresh (a) (≡ a a))) ⇒ ((((_0))))

(run∗ (q) (fresh (a) (≡ a 5))) ⇒ (((())))

(run∗ (q) (fresh (a b) (≡ a b))) ⇒ (((())))

(run∗ (q) (fresh (b) (≡ b q))) ⇒ ((((a0))))

A reified nom is subscripted in the same fashion as a reified variable, but a is

used instead of an underscore (_)—hence the ((((a0)))) in the final example above.

fresh forms can be nested, which may result in noms being shadowed.

(run∗ (q)
(exist (x y z)

(fresh (a)
(≡ x a)
(fresh (a b)

(≡ y a)
(≡ ((x y z a b)) q))))) ⇒

((((((((a0 a1 _0 a1 a2))))))))

Here a0 , a1 , and a2 represent different noms, which will not unify with each other.

◃▹ is a term constructor used to limit the scope of a nom within a term.

(define-syntax ◃▹
(syntax-rules ()

((_ a t) ((tie a t)))))

Terms constructed using ◃▹ are called binders. In the term created by the expression

(◃▹ a t), all occurrences of the nom a within term t are considered bound. We refer

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 106

to the term t as the body of (◃▹ a t), and to the nom a as being in binding position.

The ◃▹ constructor does not create noms; rather, it delimits the scope of noms,

already introduced using fresh.

For example, consider this run∗ expression.

(run∗ (q)
(fresh (a b)

(≡ (◃▹ a ((foo a 3 b))) q))) ⇒

((((((((tie a0 ((((foo a0 3 a1))))))))))))

The tagged list ((((tie a0 ((((foo a0 3 a1)))))))) is the reified value of the term constructed

using ◃▹. (The tag name tie is a pun—the bowtie ◃▹ is the “tie that binds.”) The

nom whose reified value is a0 occurs bound within the term ((((tie a0 ((((foo a0 3 a1))))))))

while a1 occurs free in that same term.

introduces a freshness constraint (henceforth referred to as simply a con-

straint). The expression (# a t) asserts that the nom a does not occur free in term

t—if a occurs free in t, then (# a t) fails. Furthermore, if t contains an unbound

variable x, and some later unification involving x results in a occurring free in t,

then that unification fails.

(run∗ (q) (fresh (a) (≡ ((3 a #t)) q) (# a q))) ⇒ (((())))

(run∗ (q) (fresh (a) (# a q) (≡ ((3 a #t)) q))) ⇒ (((())))

(run∗ (q) (fresh (a b) (# a (◃▹ b a)))) ⇒ (((())))

(run∗ (q) (fresh (a) (# a (◃▹ a a)))) ⇒ ((((_0))))

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 107

(run∗ (q)
(exist (x y z)

(fresh (a)
(# a x)
(≡ ((y z)) x)
(≡ ((x a)) q)))) ⇒

((((((((((((((((_0 _1)))) a0)))) : ((((((((a0 � _0)))) ((((a0 � _1))))))))))))))))

In the fourth example, the constraint (# a (◃▹ a a)) is not violated because a does

not occur free in (◃▹ a a). In the final example, the partial instantiation of x causes

the constraint introduced by (# a x) to be “pushed down” onto the unbound vari-

ables y and z. The answer comprises two parts, separated by a colon and enclosed

in an extra set of parentheses: the reified value of ((((y z)) a)) and a list of reified

constraints indicating that a cannot occur free in either y or z.

The notion of a constraint is prominent in the standard definition of α-equivalence

(Stoy 1979):

λa.M ≡α λb.[b/a]M where b does not occur free in M .

In αKanren this constraint is expressed as (# b M). We shall revisit the connection

between constraints and α-equivalence shortly.

We now extend the standard notion of unification to that of nominal unification

(Urban et al. 2004), which equates α-equivalent binders. Consider this run∗ ex-

pression: (run∗ (q) (fresh (a b) (≡ (◃▹ a a) (◃▹ b b)))) ⇒ ((_0)). Although a and b

are distinct noms, (≡ (◃▹ a a) (◃▹ b b)) succeeds. According to the rules of nominal

unification, the binders (◃▹ a a) and (◃▹ b b) represent the same term, and therefore

unify.

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 108

The reader may suspect that, as in the definition of α-equivalence given above,

nominal unification uses substitution to equate binders

(◃▹ a a) ≡α (◃▹ b [b/a]a)

however, this is not the case.

Unfortunately, naive substitution does not preserve α-equivalence of terms, as

shown in the following example given by Urban et al. (2004). Consider the α-

equivalent terms (◃▹ a b) and (◃▹ c b); replacing all free occurrences of b with a in

both terms yields (◃▹ a a) and (◃▹ c a), which are no longer α-equivalent.

Rather than using capture-avoiding substitution to address this problem, nom-

inal logic uses the simple and elegant notion of a nom swap. Instead of performing

a uni-directional substitution of a for b, the unifier exchanges all occurrences of a

and b within a term, regardless of whether those noms appear free, bound, or in the

binding position of a ◃▹-constructed binder. Applying the swap ((a b)) to (◃▹ a b)

and (◃▹ c b) yields the α-equivalent terms (◃▹ b a) and (◃▹ c a).

When unifying (◃▹ a a) and (◃▹ b b) in the run∗ expression above, the nominal

unifier first creates the swap ((a b)) containing the noms in the binding positions of

the two terms. The unifier then applies this swap to (◃▹ a a), yielding (◃▹ b b) (or

equivalently, applies the swap to (◃▹ b b), yielding (◃▹ a a)). Obviously (◃▹ b b) uni-

fies with itself, according to the standard rules of unification, and thus the nominal

unification succeeds.

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 109

Of course, the terms being unified might contain unbound variables. In the

simple example

(run∗ (q) (fresh (a b) (≡ (◃▹ a q) (◃▹ b b)))) ⇒ ((((a0))))

the swap ((a b)) can be applied to (◃▹ b b), yielding (◃▹ a a). The terms (◃▹ a a)

and (◃▹ a q) are then unified, associating q with a. However, in some cases a swap

cannot be performed until a variable has become at least partially instantiated. For

example, in the first call to ≡ in

(run∗ (q)
(fresh (a b)

(exist (x y)
(≡ (◃▹ a (◃▹ a x)) (◃▹ a (◃▹ b y)))
(≡ ((x y)) q))))

the unifier cannot apply the swap ((a b)) to either x or y, since they are both unbound.

(The unifier does not generate a swap for the outer binders, since they have the same

nom in their binding positions.)

Nominal unification solves this problem by introducing the notion of a suspen-

sion, which is a record of delayed swaps that may be applied later. We represent a

suspension using the susp data structure, which comprises a list of suspended swaps

and a variable.

((susp ((((an bn)) . . . ((a1 b1)))) x))

The swaps are deferred until the variable x is instantiated (at least partially); at

this point the swaps are applied to the instantiated portion of the term associated

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 110

with x. Swaps are applied from right to left; that is, the result of applying the swaps

to a term t can be determined by first exchanging all occurrences of noms a1 and

b1 within t, then exchanging a2 and b2 within the resulting term, and continuing in

this fashion until finally exchanging an with bn.

Now that we have the notion of a suspension, we can define equality on binders

(adapted from Urban et al. 2004):

(◃▹ a M) and (◃▹ b N) are α-equivalent if and only if a and b are the same

nom and M is α-equivalent to N , or if ((susp ((((a b)))) M)) is α-equivalent

to N and (# b M).

The side condition (# b M) is necessary, since if b occurred free in M , then b would

be inadvertently captured (and replaced with a) by the suspension ((susp ((((a b)))) M)).

Having defined equality on binders, we can examine the result of the previous

run∗ expression.

(run∗ (q)
(fresh (a b)

(exist (x y)
(≡ (◃▹ a (◃▹ a x)) (◃▹ a (◃▹ b y)))
(≡ ((x y)) q)))) ⇒

((((((((((((((((susp ((((((((a0 a1)))))))) _0)))) _0)))) : ((((((((a0 � _0))))))))))))))))

The first call to ≡ applies the swap ((a b)) to the unbound variable y, and then

associates the resulting suspension ((susp ((((a b)))) y)) with x. Of course, the unifier

could have applied the swap to x instead of y, resulting in a symmetric answer. The

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 111

freshness constraint states that the nom a can never occur free within y, as required

by the definition of binder equivalence.

Here is a translation of a quiz presented in Urban et al. (2004), demonstrating

some of the finer points of nominal unification.

(run∗ (q)
(fresh (a b)

(exist (x y)
(conde

((≡ (◃▹ a (◃▹ b ((x b)))) (◃▹ b (◃▹ a ((a x))))))
((≡ (◃▹ a (◃▹ b ((y b)))) (◃▹ b (◃▹ a ((a x))))))
((≡ (◃▹ a (◃▹ b ((b y)))) (◃▹ b (◃▹ a ((a x))))))
((≡ (◃▹ a (◃▹ b ((b y)))) (◃▹ a (◃▹ a ((a x)))))))

(≡ ((x y)) q)))) ⇒

((((((((a0 a1))))
((((_0 ((((susp ((((((((a0 a1)))))))) _0))))))))
((((((((_0 ((((susp ((((((((a1 a0)))))))) _0)))))))) : ((((((((a1 � _0))))))))))))))))

The first conde clause fails, since x cannot be associated with both a and b. The

second clause succeeds, associating x with a and y with b. The third clause applies

the swap ((a b)) to (◃▹ a ((a x))), yielding ((tie b ((b ((susp ((((a b)))) x)))))). This term is

then unified with (◃▹ b ((b y))), associating y with the suspension ((susp ((((b a)))) x)).

The fourth clause should look familiar—it is similar to the previous run∗ expression.

We can interpret the successful unification of binders (◃▹ a a) and (◃▹ b b) as

showing that the λ-calculus terms λa.a and λb.b are identical, up to α-equivalence.

We need not restrict our interpretation to λ terms, however, since other scoping

mechanisms have similar properties. For example, the same successful unification

also shows that ∀a.a and ∀b.b are equivalent in first-order logic, and similarly, that

∃a.a and ∃b.b are equivalent.

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 112

We can tag terms in order to disambiguate their interpretation. For example,

this program shows that λa.λb.a and λc.λd.c are equivalent.

(run∗ (q)
(exist (t u)

(fresh (a b c d)
(≡ ((lam ((tie a ((lam ((tie b ((var a)))))))))) t)
(≡ ((lam ((tie c ((lam ((tie d ((var c)))))))))) u)))) ⇒

((((_0))))

Of course, not all λ-calculus terms are equivalent.

(run∗ (q)
(exist (t u)

(fresh (a b c d)
(≡ ((lam ((tie a ((lam ((tie b ((var a)))))))))) t)
(≡ ((lam ((tie c ((lam ((tie d ((var d)))))))))) u)))) ⇒

(((())))

Here (≡ ((lam t2)) ((lam u2))) fails, showing that terms λa.λb.a and λc.λd.d are not

α-equivalent.

9.2 Capture-avoiding Substitution

We now consider a simple, but useful, nominal logic program adapted from Ch-

eney and Urban (2004) that performs capture-avoiding substitution (that is, β-

substitution). subst o implements the relation [new/a]e = out where e, new, and out

are tagged lists representing λ-calculus terms, and where a is a nom representing

a variable name. (We refer the interested reader to Cheney and Urban for a full

description of subst o.)

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 113

(define subst o

(λ (e new a out)
(matche ((e out))

(((((var a)) new)))
(((((var y)) ((var y))))
(# a y))

(((((app rator rand)) ((app rator-res rand-res))))
(subst o rator new a rator-res)
(subst o rand new a rand-res))

(((((lam ((tie @c body)))) ((lam ((tie @c body-res))))))
(# c a)
(# c new)
(subst o body new a body-res)))))

The first subst o example shows that [b/a]λa.ab ≡α λc.cb.

(run∗ (q)
(fresh (a b)

(subst o ((lam ((tie a ((app ((var a)) ((var b)))))))) ((var b)) a q))) ⇒

((((((((lam ((((tie a0 ((((app ((((var a0)))) ((((var a1))))))))))))))))))))

Naive substitution would have produced λb.bb instead.

This second example shows that [a/b]λa.b ≡α λc.a.

(run∗ (x)
(fresh (a b)

(subst o ((lam ((tie a ((var b)))))) ((var a)) b x))) ⇒

((((((((lam ((((tie a0 ((((var a1))))))))))))))))

Naive substitution would have produced λa.a.

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 114

9.3 Type Inferencer

Let us consider a second non-trivial αKanren example: a type inferencer for a subset

of Scheme2. We begin with the typing rule for integer constants, which are tagged

with the symbol intc.

(define int-rel
(λ (g exp t)

(exist (n)
(≡ ((intc n)) exp)
(≡ int t))))

The ⊢ relation3 relates an expression exp to its type t in the type environment g.

(define ⊢
(λ (g exp t)

(conde

((int-rel g exp t)))))

We can now infer the types of integer constants: (run∗ (q) (⊢ (()) ((intc 5)) q)) returns

((int)).

Inferring the types of integer constants is not very interesting. We therefore add

typing rules for variables, λ expressions, and application.

(define var-rel
(λ (g exp t)

(exist (x)
(≡ ((var x)) exp)
(lookup o x t g))))

2This program is an extended and adapted version of the inferencer for the simply-type λ-
calculus presented in Cheney and Urban (2004).

3⊢ is entered as !- and is pronounced “turnstile”.

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 115

(define lambda-rel
(λ (g exp t)

(exist (body trand tbody)
(fresh (a)

(≡ ((lam ((◃▹ a body)))) exp)
(≡ ((→ trand tbody)) t)
(⊢ ((((a � trand)) � g)) body tbody)))))

(define app-rel
(λ (g exp t)

(exist (rator rand trand)
(≡ ((app rator rand)) exp)
(⊢ g rator ((→ trand t)))
(⊢ g rand trand))))

The lookup o helper relation finds the type tx associated with the type variable x in

the current type environment g.

(define lookup o

(λ (x tx g)
(exist (a d)

(≡ ((a � d)) g)
(conde

((≡ ((x � tx)) a))
((exist (x̂ tx̂)

(≡ ((x̂ � tx̂)) a)
(# x x̂)
(lookup o x tx d)))))))

We redefine ⊢ to include the new typing rules.

(define ⊢
(λ (g exp t)

(conde

((var-rel g exp t))
((int-rel g exp t))
((lambda-rel g exp t))
((app-rel g exp t)))))

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 116

We can now show that (λ (x) (λ (y) x)) has type (α → (β → α)).

(run∗ (q) (⊢ (()) (parse ((λ ((x)) ((λ ((y)) x))))) q)) ⇒ ((((((((→ _
0

((((→ _
1

_
0
))))))))))))

Here we use the parser from Appendix E to make the code more readable.

The next example shows that self-application doesn’t type check, since the nom-

inal unifier uses the occurs check (Lloyd 1987).

(run∗ (q) (⊢ (()) (parse ((λ ((x)) ((x x))))) q)) ⇒ (((())))

This example is more interesting, since it searches for expressions that inhabit

the type (→ int int).

(run5 (q) (⊢ (()) q ((→ int int)))) ⇒

((((((((lam ((((tie a.0 ((((intc _
0
))))))))))))

((((lam ((((tie a.0 ((((var a.0))))))))))))
((((lam ((((tie a.0 ((((app ((((lam ((((tie a.1 ((((intc _

0
)))))))))))) ((((intc _

1
))))))))))))))))

((((lam ((((tie a.0 ((((app ((((lam ((((tie a.1 ((((intc _
0
)))))))))))) ((((var a.0))))))))))))))))

((((app ((((lam ((((tie a.0 ((((var a.0)))))))))))) ((((lam ((((tie a.1 ((((intc _
0
))))))))))))))))))))

These expressions are equivalent to (in order)

(λ (x) n)

(λ (x) x)

(λ (x) ((λ (y) n) m))

(λ (x) ((λ (y) n) x))

((λ (x) x) (λ (y) n))

where n and m are some integer constants. Each expression inhabits the type

(int → int), although the principal type of the expression is either (α → α) (for the

identity function) or (α → int) (for the remaining expressions).

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 117

We now extend the language even further, adding boolean constants, zero?,

sub1, multiplication, if-expressions, and a fixed-point operator for defining recursive

functions.

(define bool-rel
(λ (g exp t)

(exist (b)
(≡ ((boolc b)) exp)
(≡ bool t))))

(define zero?-rel
(λ (g exp t)

(exist (e)
(≡ ((zero? e)) exp)
(≡ bool t)
(⊢ g e int))))

(define sub1-rel
(λ (g exp t)

(exist (e)
(≡ ((sub1 e)) exp)
(≡ t int)
(⊢ g e int))))

(define ∗-rel
(λ (g exp t)

(exist (e1 e2)
(≡ ((∗ e1 e2)) exp)
(≡ t int)
(⊢ g e1 int)
(⊢ g e2 int))))

(define if-rel
(λ (g exp t)

(exist (test conseq alt)
(≡ ((if test conseq alt)) exp)
(⊢ g test bool)
(⊢ g conseq t)
(⊢ g alt t))))

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 118

(define fix-rel
(λ (g exp t)

(exist (rand)
(≡ ((fix rand)) exp)
(⊢ g rand ((→ t t))))))

We redefine ⊢ one last time.

(define ⊢
(λ (g exp t)

(conde

((var-rel g exp t))
((int-rel g exp t))
((bool-rel g exp t))
((zero?-rel g exp t))
((sub1-rel g exp t))
((fix-rel g exp t))
((∗-rel g exp t))
((lambda-rel g exp t))
((app-rel g exp t))
((if-rel g exp t)))))

We can now infer the type of the factorial function.

(run∗ (q)
(⊢ () (parse ((fix (λ (!)

(λ (n)
(if (zero? n)

1
(∗ (! (sub1 n)) n))))) 5))

q)) ⇒

((((int))))

We can also generate pairs of expressions and their types.

(run13 (q)
(exist (exp t)

(⊢ (()) exp t)
(≡ ((exp t)) q))) ⇒

CHAPTER 9. TECHNIQUES II: NOMINAL LOGIC 119

((((((((((((intc _
0
)))) int))))

((((((((boolc _
0
)))) bool))))

((((((((zero? ((((intc _
0
)))))))) bool))))

((((((((sub1 ((((intc _
0
)))))))) int))))

((((((((zero? ((((sub1 ((((intc _
0
)))))))))))) bool))))

((((((((sub1 ((((sub1 ((((intc _
0
)))))))))))) int))))

((((((((zero? ((((sub1 ((((sub1 ((((intc _
0
)))))))))))))))) bool))))

((((((((sub1 ((((sub1 ((((sub1 ((((intc _
0
)))))))))))))))) int))))

((((((((zero? ((((sub1 ((((sub1 ((((sub1 ((((intc _
0
)))))))))))))))))))) bool))))

((((((((∗ ((((intc _
0
)))) ((((intc _

1
)))))))) int))))

((((((((lam ((((tie a.0 ((((intc _
0
)))))))))))) ((((→ _

1
int))))))))

((((((((zero? ((((∗ ((((intc _
0
)))) ((((intc _

1
)))))))))))) bool))))

((((((((lam ((((tie a.0 ((((var a.0)))))))))))) ((((→ _
0

_
0
))))))))))))

For example, the last answer shows that the identity function has type (α → α).

This ends the introduction to αKanren. For additional simple examples of nom-

inal logic programming, we suggest Cheney and Urban (2008), Cheney (2004a),

Cheney and Urban (2004), Urban et al. (2004), and Lakin and Pitts (2008), which

are also excellent choices for understanding the theory of nominal logic.

Chapter 10

Applications II: αleanTAP

In this chapter we examine a second application of nominal logic programming,

a declarative theorem prover for first-order classical logic. We call this prover

αleanTAP , since it is based on the leanTAP (Beckert and Posegga 1995) prover and

written in αKanren. Our prover is a relation, without mode restrictions; given a

logic variable as the theorem to be proved, αleanTAP generates valid theorems.

leanTAP is a lean tableau-based theorem prover for first-order logic due to Beck-

ert and Posegga (1995). Written in Prolog, it is extremely concise and is capable of

a high rate of inference. leanTAP uses Prolog’s cut (!) in three of its five clauses in

order to avoid nondeterminism, and uses copy_term/2 to make copies of universally

quantified formulas. Although Beckert and Posegga take advantage of Prolog’s uni-

fication and backtracking features, their use of the impure cut and copy_term/2

makes leanTAP non-declarative.

In this chapter we translate leanTAP from Prolog to impure miniKanren, using

matcha to mimic Prolog’s cut, and copy-termo to mimic copy_term/2. We then

120

CHAPTER 10. APPLICATIONS II: αLEANTAP 121

show how to eliminate these impure operators from our translation. To eliminate

the use of matcha, we introduce a tagging scheme that makes our formulas unam-

biguous. To eliminate the use of copy-termo, we use substitution instead of copying

terms. Universally quantified formulas are used as templates, rather than instan-

tiated directly; instead of representing universally quantified variables with logic

variables, we use the noms of nominal logic. We then use nominal unification to

write a substitution relation that replaces quantified variables with logic variables,

leaving the original template untouched.

The resulting declarative theorem prover is interesting for two reasons. First,

because of the technique used to arrive at its definition: we use declarative substi-

tution rather than copy-termo. To our knowledge, there is no method for copying

arbitrary terms declaratively. Our solution is not completely general but is useful

when a term is used as a template for copying, as in the case of leanTAP. Second,

because of the flexibility of the prover itself: αleanTAP is capable of instantiating

non-ground theorems during the proof process, and accepts non-ground proofs, as

well. Whereas leanTAP is fully automated and either succeeds or fails to prove

a given theorem, αleanTAP can accept guidance from the user in the form of a

partially-instantiated proof, regardless of whether the theorem is ground.

We present an implementation of αleanTAP in section 10.3 , demonstrating our

technique for eliminating cut and copy_term/2 from leanTAP. Our implementation

demonstrates our contributions: first, it illustrates a method for eliminating com-

CHAPTER 10. APPLICATIONS II: αLEANTAP 122

mon impure operators, and demonstrates the use of nominal logic for representing

formulas in first-order logic; second, it shows that the tableau process can be repre-

sented as a relation between formulas and their tableaux; and third, it demonstrates

the flexibility of relational provers to mimic the full spectrum of theorem provers,

from fully automated to fully dependent on the user.

This chapter is organized as follows. In section 10.1 we describe the concept

of tableau theorem proving. In section 10.2 we motivate our declarative prover by

examining its declarative properties and the proofs it returns. In section 10.3 we

present the implementation of αleanTAP , and in section 10.4 we briefly examine

αleanTAP ’s performance. Familiarity with tableau theorem proving would be help-

ful; for more on this topic, see the references given in section 10.1. In addition, a

reading knowledge of Prolog would be useful, but is not necessary; for readers un-

familiar with Prolog, carefully following the miniKanren and αKanren code should

be sufficient for understanding all the ideas in this chapter.

10.1 Tableau Theorem Proving

We begin with an introduction to tableau theorem proving and its implementation

in leanTAP.

Tableau is a method of proving first-order theorems that works by refuting

the theorem’s negation. In our description we assume basic knowledge of first-

order logic; for coverage of this subject and a more complete description of tableau

proving, see Fitting (1996). For simplicity, we consider only formulas in Skolemized

CHAPTER 10. APPLICATIONS II: αLEANTAP 123

negation normal form (NNF). Converting a formula to this form requires removing

existential quantifiers through Skolemization, reducing logical connectives so that

only ∧, ∨, and ¬ remain, and pushing negations inward until they are applied only

to literals—see section 3 of Beckert and Posegga (1995) for details.

To form a tableau, a compound formula is expanded into branches recursively

until no compound formulas remain. The leaves of this tree structure are referred to

as literals. leanTAP forms and expands the tableau according to the following rules.

When the prover encounters a conjunction x ∧ y, it expands both x and y on the

same branch. When the prover encounters a disjunction x ∨ y, it splits the tableau

and expands x and y on separate branches. Once a formula has been fully expanded

into a tableau, it can be proved unsatisfiable if on each branch of the tableau there

exist two complementary literals a and ¬a (each branch is closed). In the case of

propositional logic, syntactic comparison is sufficient to find complementary literals;

in first-order logic, sound unification must be used. A closed tableau represents a

proof that the original formula is unsatisfiable.

The addition of universal quantifiers makes the expansion process more compli-

cated. To prove a universally quantified formula ∀x.M , leanTAP generates a logic

variable v and expands M , replacing all occurrences of x with v (i.e., it expands

M ′ where M ′ = M [v/x]). If leanTAP is unable to close the current branch after this

expansion, it has the option of generating another logic variable and expanding the

original formula again. When the prover expands the universally quantified formula

CHAPTER 10. APPLICATIONS II: αLEANTAP 124

∀x.F (x) ∧ (¬F (a) ∨ ¬F (b)), for example, ∀x.F (x) must be expanded twice, since x

cannot be instantiated to both a and b.

10.2 Introducing αleanTAP

We begin by presenting some examples of αleanTAP ’s abilities, both in proving

ground theorems and in generating theorems. We also explore the proofs generated

by αleanTAP , and show how passing partially-instantiated proofs to the prover can

greatly improve its performance.

10.2.1 Running Forwards

Both leanTAP and αleanTAP can prove ground theorems; in addition, αleanTAP pro-

duces a proof. This proof is a list representing the steps taken to build a closed

tableau for the theorem; Paulson (1999) has shown that translation to a more stan-

dard format is possible. Since a closed tableau represents an unsatisfiable formula,

such a list of steps proves that the negation of the formula is valid. If the list of

steps is ground, the proof search becomes deterministic, and αleanTAP acts as a

proof checker.

leanTAP encodes first-order formulas using Prolog terms. For example, the

term (p(b),all(X,(-p(X);p(s(X))))) represents p(b) ∧ ∀x.¬p(x) ∨ p(s(x)). In

our prover, we represent formulas using Scheme lists with extra tags:

((((and ((((pos ((((app p ((((app b)))))))))))) ((((forall ((((◃▹ a ((((or ((((neg ((((app p ((((var a))))))))))))
((((pos ((((app p ((((app s ((((var a))))))))))))))))))))))))))))))))

CHAPTER 10. APPLICATIONS II: αLEANTAP 125

Consider Pelletier Problem 18 (Pelletier 1986): ∃y.∀x.F (y) ⇒ F (x). To prove

this theorem in αleanTAP , we transform it into the following negation of the NNF:

((((forall ((((◃▹ a ((((and ((((pos ((((app f ((((var a)))))))))))) ((((neg ((((app f ((((app g1 ((((var a))))))))))))))))))))))))))))

where ((app g1 ((var a)))) represents the application of a Skolem function to the univer-

sally quantified variable a. Passing this formula to the prover, we obtain the proof

((univ conj savefml savefml univ conj close)). This proof lists the steps the prover

(presented in section 10.3.3) follows to close the tableau. Because both conjuncts of

the formula contain the nom a, we must expand the universally quantified formula

more than once.

Partially instantiating the proof helps αleanTAP prove theorems with similar

subparts. We can create a non-ground proof that describes in general how to prove

the subparts and have αleanTAP fill in the trivial differences. This can speed up

the search for a proof considerably. By inspecting the negated NNF of Pelletier

Problem 21, for example, we can see that there are at least two portions of the

theorem that will have the same proof. By specifying the structure of the first part

of the proof and constraining the identical portions by using the same logic variable

to represent both, we can give the prover some guidance without specifying the

whole proof. We pass the following non-ground proof to αleanTAP :

((((conj univ split ((((conj savefml savefml conj split x x))))
((((conj savefml savefml conj split ((((close)))) ((((savefml split y y))))))))))))

CHAPTER 10. APPLICATIONS II: αLEANTAP 126

On our test machine, our prover solves the original problem with no help in 68

milliseconds (ms); given the knowledge that the later parts of the proof will be

duplicated, the prover takes only 27 ms. This technique also yields improvement

when applied to Pelletier Problem 43: inspecting the negated NNF of the formula,

we see two parts that look nearly identical. The first part of the negated NNF—the

part representing the theorem itself—has the following form:

((((and ((((or ((((and ((((neg ((((app Q ((((app g4)))) ((((app g3))))))))))))
((((pos ((((app Q ((((app g3)))) ((((app g4))))))))))))))))

((((and ((((pos ((((app Q ((((app g4)))) ((((app g3))))))))))))
((((neg ((((app Q ((((app g3)))) ((((app g4)))))))))))))))))))) . . .))))

Since we suspect that the same proof might suffice for both branches of the theorem,

we give the prover the partially-instantiated proof ((conj split x x)). Given just this

small amount of help, αleanTAP proves the theorem in 720 ms, compared to 1.5

seconds when the prover has no help at all. While situations in which large parts

of a proof are identical are rare, this technique also allows us to handle situations

in which different parts of a proof are merely similar by instantiating as much or as

little of the proof as necessary.

10.2.2 Running Backwards

Unlike leanTAP, αleanTAP can generate valid theorems. Some interpretation of the

results is required since the theorems generated are negated formulas in NNF.1 In

the example
1The full implementation of αleanTAP includes a simple declarative translator from negated

NNF to a positive form.

CHAPTER 10. APPLICATIONS II: αLEANTAP 127

(run1 (q) (exist (x) (proveo q (()) (()) (()) x)))

⇒ ((((and ((pos ((app _
0
)))) ((neg ((app _

0
))))))))

the reified logic variable _
0

represents any first-order formula p, and the entire

answer represents the formula p ∧ ¬p. Negating this formula yields the original

theorem: ¬p∨ p, or the law of excluded middle. We can also generate more compli-

cated theorems; here we use the “generate and test” idiom to find the first theorem

matching the negated NNF of the inference rule modus ponens:

(run1 (q)
(exist (x)

(proveo x (()) (()) (()) q)
(≡ ((and ((and ((or ((neg ((app a)))) ((pos ((app b)))))) ((pos ((app a)))))) ((neg ((app b))))))

x)))

⇒ ((((conj conj split ((savefml close)) ((savefml savefml close))))))

This process takes about 5.1 seconds; modus ponens is the 173rd theorem to be

generated, and the prover also generates a proof of its validity. When this proof is

given to αleanTAP , modus ponens is the sixth theorem generated, and the process

takes only 20 ms.

Thus the declarative nature of αleanTAP is useful both for generating theorems

and for producing proofs. Due to this flexibility, αleanTAP could become the core of

a larger proof system. Automated theorem provers like leanTAP are limited in the

complexity of the problems they can solve, but given the ability to accept assistance

from the user, more problems become tractable.

CHAPTER 10. APPLICATIONS II: αLEANTAP 128

As an example, consider Pelletier Problem 47: Schubert’s Steamroller. This

problem is difficult for tableau-based provers like leanTAP and αleanTAP , and neither

can solve it automatically (Beckert and Posegga 1995). Given some help, however,

αleanTAP can prove the Steamroller. Our approach is to prove a series of smaller

lemmas that act as stepping stones toward the final theorem; as each lemma is

proved, it is added as an assumption in proving the remaining ones. The proof

process is automated—the user need only specify which lemmas to prove and in

what order. Using this strategy, αleanTAP proves the Steamroller in about five

seconds; the proof requires twenty lemmas.

αleanTAP thus offers an interesting compromise between large proof assistants

and smaller automated provers. It achieves some of the capabilities of a larger

system while maintaining the lean deduction philosophy introduced by leanTAP.

Like an automated prover, it is capable of proving simple theorems without user

guidance. Confronted with a more complex theorem, however, the user can provide

a partially-instantiated proof; αleanTAP can then check the proof and fill in the

trivial parts the user has left out. Because αleanTAP is declarative, the user may

even leave required axioms out of the theorem to be proved and have the system

derive them. This flexibility comes at no extra cost to the user—the prover remains

both concise and reasonably efficient.

The flexibility of αleanTAP means that it could be made interactive through the

addition of a read-eval-print loop and a simple proof translator between αleanTAP ’s

CHAPTER 10. APPLICATIONS II: αLEANTAP 129

proofs and a more human-readable format. Since the proof given to αleanTAP may

be partially instantiated, such an interface would allow the user to conveniently

guide αleanTAP in proving complex problems. With the addition of equality and

the ability to perform single beta steps, this flexibility would become more interest-

ing—in addition to reasoning about programs and proving properties about them,

αleanTAP would instantiate non-ground programs during the proof process.

10.3 Implementation

We now present the implementation of αleanTAP . We begin with a translation of

leanTAP from Prolog into αKanren. We then show how to eliminate the translation’s

impure features through a combination of substitution and tagging.

leanTAP implements both expansion and closing of the tableau. When the prover

encounters a conjunction, it uses its argument UnExp as a stack (Figure 10.1):

leanTAP expands the first conjunct, pushing the second onto the stack for later

expansion. If the first conjunct cannot be refuted, the second is popped off the

stack and expansion begins again. When a disjunction is encountered, the split

in the tableau is reflected by two recursive calls. When a universal quantifier is

encountered, the quantified variable is replaced by a new logic variable, and the

formula is expanded. The FreeV argument is used to avoid replacing the free vari-

ables of the formula. leanTAP keeps a list of the literals it has encountered on the

current branch of the tableau in the argument Lits. When a literal is encountered,

leanTAP attempts to unify its negation with each literal in Lits; if any unification

CHAPTER 10. APPLICATIONS II: αLEANTAP 130

succeeds, the branch is closed. Otherwise, the current literal is added to Lits and

expansion continues with a formula from UnExp.

10.3.1 Translation to αKanren

While αKanren is similar to Prolog with the addition of nominal unification, αKan-

ren uses a variant of interleaving depth-first search (Kiselyov et al. 2005), so the

order of conde or matche clauses in αKanren is irrelevant. Because of Prolog’s

depth-first search, leanTAP must use VarLim to limit its search depth; in αKanren,

VarLim is not necessary, and thus we omit it.

In Figure 10.1 we present mKleanTAP, our translation of leanTAP into αKanren;

we label two clauses (1⃝, 2⃝), since we will modify these clauses later. To express

Prolog’s cuts, our definition uses matcha. The final two clauses of leanTAP do not

contain Prolog cuts; in mKleanTAP, they are combined into a single clause containing

a conde. In place of leanTAP ’s recursive call to prove to check the membership of

Lit in Lits, we call membero, which performs a membership check using sound

unification.2

2We define membero in Figure 10.3; membero must use sound unification, and cannot use
≡-no-check.

CHAPTER 10. APPLICATIONS II: αLEANTAP 131

(define proveo

(λ (fml unexp lits freev)
(matcha fml

prove((E1,E2),UnExp,Lits,
FreeV,VarLim) :- !,

prove(E1,[E2|UnExp],Lits,
FreeV,VarLim).

((and e1 e2)
(proveo e1 ((e2 � unexp)) lits freev))

prove((E1;E2),UnExp,Lits,
FreeV,VarLim) :- !,

prove(E1,UnExp,Lits,FreeV,VarLim),
prove(E2,UnExp,Lits,FreeV,Varlim).

((or e1 e2)
(proveo e1 unexp lits freev)
(proveo e2 unexp lits freev))

prove(all(X,Fml),UnExp,Lits,
FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),

(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,

[X1|FreeV],VarLim).

1⃝(((forall x body))
(exist (x1 body1 unexp1)

(copy-termo ((x body freev))
((x1 body1 freev)))

(appendo unexp ((fml)) unexp1)
(proveo body1 unexp1 lits

((x1 � freev)))))

prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L);
prove(Lit,[],Lits,_,_)).

2⃝(fml
(conde

((matcha ((fml neg))
(((((not neg)) neg)))
(((fml ((not fml))))))

(membero neg lits))
prove(Lit,[Next|UnExp],Lits,

FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],

FreeV,VarLim).

((exist (next unexp1)
(≡ ((next � unexp1)) unexp)
(proveo next unexp1 ((fml � lits))

freev))))))))

Figure 10.1: leanTAP and mKleanTAP : a translation from Prolog to αKanren

10.3.2 Eliminating copy-termo

Since copy-termo is an impure operator, its use makes proveo non-declarative: re-

ordering the goals in the prover can result in different behavior. For example,

moving the call to copy-termo after the call to proveo causes the prover to diverge

when given any universally quantified formula. To make our prover declarative, we

must eliminate the use of copy-termo.

CHAPTER 10. APPLICATIONS II: αLEANTAP 132

Tagging the logic variables that represent universally quantified variables allows

the use of a declarative technique that creates two pristine copies of the original

term: one copy may be expanded and the other saved for later copying. Unfor-

tunately, this copying examines the entire body of each quantified formula and

instantiates the original term to a potentially invalid formula.

Another approach is to represent quantified variables with symbols or strings.

When a new instantiation is needed, a new variable name can be generated, and

the new name can be substituted for the old without affecting the original formula.

This solution does not destroy the prover’s input, but it is difficult to ensure that

the provided data is in the correct form declaratively: if the formula to be proved

is non-ground, then the prover must generate unique names. If the formula does

contain these names, however, the prover must not generate new ones. This problem

can be solved with a declarative preprocessor that expects a logical formula without

names and puts them in place. If the preprocessor is passed a non-ground formula,

it instantiates the formula to the correct form. The requirement of a preprocessor,

however, means the prover itself is not declarative.

We use nominal logic to solve the copy-termo problem. Nominal logic is a good

fit for this problem, as it is designed to handle the complexities of dealing with

names and binders declaratively. Since noms represent unique names, we achieve

the benefits of the symbol or string approach without the use of a preprocessor. We

can generate unique names each time we encounter a universally quantified formula,

CHAPTER 10. APPLICATIONS II: αLEANTAP 133

and use nominal unification to perform the renaming of the quantified variable. If

the original formula is uninstantiated, our newly-generated name is unique and is

put in place correctly; we no longer need a preprocessor to perform this function.

Using the tools of nominal logic, we can modify mKleanTAP to represent univer-

sally quantified variables using noms and to perform substitution instead of copying.

When the prover reaches a literal, however, it must replace each nom with a logic

variable, so that unification may successfully compare literals. To accomplish this,

we associate a logic variable with each unique nom, and replace every nom with its

associated variable before comparing literals. These variables are generated each

time the prover expands a quantified formula.

To implement this strategy, we change our representation of formulas slightly.

Instead of representing ∀x.F (x) as ((forall x ((f x)))), we use a nom wrapped in a

var tag to represent a variable reference, and the term constructor ◃▹ to represent

the ∀ binder: ((forall ((◃▹ a ((f ((var a)))))))), where a is a nom. The var tag allows us

to distinguish noms representing variables from other formulas. We now write a

relation subst-lito to perform substitution of logic variables for tagged noms in a

literal, and we modify the literal case of proveo to use it. We also replace the clause

handling forall formulas and define lookup o. The two clauses of lookup o overlap, but

since each mapping in the environment is from a unique nom to a logic variable, a

particular nom will never appear twice.

CHAPTER 10. APPLICATIONS II: αLEANTAP 134

We present the changes needed to eliminate copy-termo from mKleanTAP in

Figure 10.2. Instead of copying the body of each universally quantified formula, we

generate a logic variable x and add an association between the nom representing

the quantified variable and x to the current environment. When we prepare to close

a branch of the tableau, we call subst-lito, replacing the noms in the current literal

with their associated logic variables.

1⃝(((forall ((tie @a body))))
(exist (x unexp1)

(appendo unexp ((fml)) unexp1)
(proveo body unexp1 lits

((((a � x)) � env)))))

2⃝(fml
(exist (lit)

(subst-lito fml env lit)
(conde

((matcha ((lit neg))
(((((not neg)) neg)))
(((lit ((not lit))))))

(membero neg lits))
((exist (next unexp1)

(≡ ((next � unexp1)) unexp)
(proveo next unexp1 ((lit � lits))

env))))))

(define lookup o

(λ (a env out)
(matche env

(((((a � out)) � rest)))
(((first � rest))
(lookup o a rest out)))))

(define subst-lito
(λ (fml env out)

(matcha ((fml out))
(((((var a)) out))
(lookup o a env out))

(((((e1 � e2)) ((r1 � r2))))
(subst-lito e1 env r1)
(subst-lito e2 env r2))

(((fml fml))))))

Figure 10.2: Changes to mKleanTAP to eliminate copy-termo

The original copy_term/2 approach used by leanTAP and mKleanTAP avoids re-

placing free variables by copying the list ((x body freev)). The copied version is unified

with the list ((x1 body1 freev)), so that only the variable x will be replaced by a new

logic variable—the free variables will be copied, but those copies will be unified with

the original variables afterwards. Since our substitution strategy does not affect free

variables, the freev argument is no longer needed, and so we have eliminated it.

CHAPTER 10. APPLICATIONS II: αLEANTAP 135

10.3.3 Eliminating matcha

Both proveo and subst-lito use matcha because the clauses that recognize literals

overlap with the other clauses. To solve this problem, we have designed a tagging

scheme that ensures that the clauses of our substitution and proveo relations do not

overlap. To this end, we tag both positive and negative literals, applications, and

variables. Constants are represented by applications of zero arguments. Our prover

thus accepts formulas of the following form:

Fml → (and Fml Fml) | (or Fml Fml) | (forall (◃▹ Nom Fml)) | Lit
Lit → (pos Term) | (neg Term)
Term → (var Nom) | (app Symbol Term*)

This scheme has been chosen carefully to allow unification to compare liter-

als. In particular, the tags on variables must be discarded before literals are com-

pared. Consider the two non-ground literals ((not ((f x)))) and ((f ((p y)))). These lit-

erals are complementary: the negation of one unifies with the other, associating

x with ((p y)). When we apply our tagging scheme, however, these literals become

((neg ((app f ((var x)))))) and ((pos ((app f ((app p ((var y)))))))), respectively, and are no

longer complementary: their subexpressions ((var x)) and ((app p ((var y)))) do not

unify. To avoid this problem, our substitution relation discards the var tag when it

replaces noms with logic variables.

CHAPTER 10. APPLICATIONS II: αLEANTAP 136

(define proveo

(λ (fml unexp lits env proof)
(matche ((fml proof))

(((((and e1 e2)) ((conj � prf))))
(proveo e1 ((e2 � unexp))

lits env prf))
(((((or e1 e2)) ((split prf1 prf2))))
(proveo e1 unexp lits env prf1)
(proveo e2 unexp lits env prf2))

(((((forall ((tie @a body)))) ((univ � prf))))
(exist (x unexp1)

(appendo unexp ((fml)) unexp1)
(proveo body unexp1 lits

((((a � x)) � env)) prf)))
(((fml proof))
(exist (lit)

(subst-lito fml env lit)
(conde

((≡ ((close)) proof)
(matche ((lit neg))

(((((pos tm)) ((neg tm)))))
(((((neg tm)) ((pos tm))))))

(membero neg lits))
((exist (next unexp1 prf)

(≡ ((next � unexp1)) unexp)
(≡ ((savefml � prf)) proof)
(proveo next unexp1 ((lit � lits))

env prf)))))))))

(define appendo

(λe (ls s out)
((((()) s s)))
(((((a � d)) s ((a � r))))
(appendo d s r))))

(define subst-lito
(λe (fml env out)

(((((pos l)) env ((pos r))))
(subst-termo l env r))

(((((neg l)) env ((neg r))))
(subst-termo l env r))))

(define subst-termo

(λe (fml env out)
(((((var a)) env out))
(lookup o a env out))

(((((app f � d)) env ((app f � r))))
(subst-term∗o d env r))))

(define subst-term∗o

(λe (tm∗ env out)
((((()) _ (()))))
(((((e1 � e2)) env ((r1 � r2))))
(subst-termo e1 env r1)
(subst-term∗o e2 env r2))))

(define membero

(λ (x ls)
(exist (a d)

(≡ ((a � d)) ls)
(conde

((≡ a x))
((membero x d))))))

Figure 10.3: Final definition of αleanTAP

Given our new tagging scheme, we can easily rewrite our substitution relation

without the use of matcha. We simply follow the production rules of the grammar,

defining a relation to recognize each.

CHAPTER 10. APPLICATIONS II: αLEANTAP 137

Finally, we modify proveo to take advantage of the same tags. We also add a

proof argument to proveo. We call this version of the prover αleanTAP , and present

its definition in Figure 10.3. It is declarative, since we have eliminated the use of

copy-termo and every use of matcha. In addition to being a sound and complete

theorem prover for first-order logic, αleanTAP can now generate valid first-order

theorems.

10.4 Performance

Like the original leanTAP, αleanTAP can prove many theorems in first-order logic.

Because it is declarative, αleanTAP is generally slower at proving ground theorems

than mKleanTAP, which is slower than the original leanTAP. Figure 10.4 presents a

summary of αleanTAP ’s performance on the first 46 of Pelletier’s 75 problems (Pel-

letier 1986), showing it to be roughly twice as slow as mKleanTAP.

These performance numbers suggest that while there is a penalty to be paid

for declarativeness, it is not so severe as to cripple the prover. The advantage

mKleanTAP enjoys over the original leanTAP in Problem 34 is due to αKanren’s in-

terleaving search strategy; as the result for mKleanTAP shows, the original leanTAP is

faster than αleanTAP for any given search strategy.

Many automated provers now use the TPTP problem library (Sutcliffe and

Suttner 1998) to assess performance. Even though it is faster than αleanTAP ,

leanTAP solves few of the TPTP problems. The Pelletier Problems, on the other

hand, fall into the class of theorems leanTAP was designed to prove, and so we feel

they provide a better set of tests for the comparison between leanTAP and αleanTAP .

CHAPTER 10. APPLICATIONS II: αLEANTAP 138

leanTAP mKleanTAP αleanTAP

1 0.1 0.7 2.0
2 0.0 0.1 0.3
3 0.0 0.2 0.5
4 0.0 1.0 1.7
5 0.1 1.2 2.5
6 0.0 0.1 0.2
7 0.0 0.1 0.2
8 0.0 0.3 0.8
9 0.1 4.3 9.7

10 0.3 5.5 10.2
11 0.0 0.3 0.6
12 0.6 17.7 31.9
13 0.1 3.7 8.2
14 0.1 4.2 9.7
15 0.0 0.8 1.9
16 0.0 0.2 0.6
17 1.1 9.2 18.1
18 0.1 0.5 1.2
19 0.3 15.1 33.5
20 0.5 8.1 12.7
21 0.4 22.1 38.7
22 0.1 3.4 6.4
23 0.1 2.5 5.4

leanTAP mKleanTAP αleanTAP

24 1.7 31.9 60.3
25 0.2 7.5 14.1
26 0.8 130.9 187.5
27 2.3 40.4 79.3
28 0.3 19.1 29.6
29 0.1 27.9 57.0
30 0.1 4.2 9.6
31 0.3 13.2 23.1
32 0.2 23.9 42.4
33 0.1 15.9 39.2
34 199129.0 7272.9 8493.5
35 0.1 0.5 1.1
36 0.2 6.7 12.4
37 0.8 123.3 169.2
38 8.9 4228.8 8363.8
39 0.0 1.1 2.8
40 0.2 8.1 19.2
41 0.1 6.9 17.0
42 0.4 15.0 32.1
43 43.2 668.4 1509.6
44 0.3 15.1 35.7
45 3.4 145.3 239.7
46 7.7 505.5 931.2

Figure 10.4: Performance of leanTAP, mKleanTAP, and αleanTAP on the first 46
Pelletier Problems. All times are in milliseconds, averaged over 100 trials. All
tests were run under Debian Linux on an IBM Thinkpad X40 with a 1.1GHz Intel
Pentium-M processor and 768MB RAM. leanTAP tests were run under SWI-Prolog
5.6.55; mKleanTAP and αleanTAP tests were run under Ikarus Scheme 0.0.3+.

10.5 Applicability of These Techniques

To avoid the use of copy-termo, we have represented universally quantified vari-

ables with noms rather than logic variables, allowing us to perform substitution

instead of copying. To eliminate matcha, we have enhanced the tagging scheme for

representing formulas.

CHAPTER 10. APPLICATIONS II: αLEANTAP 139

Both of these transformations are broadly applicable. When matcha is used to

handle overlapping clauses, a carefully crafted tagging scheme can often be used to

eliminate overlapping. When terms must be copied, substitution can often be used

instead of copy-termo—in the case of αleanTAP , we use a combination of nominal

unification and substitution.

Chapter 11

Implementation IV: αKanren

In this chapter we present two implementations of αKanren based on two implemen-

tations of nominal unification: one using idempotent substitutions, and one using

triangular substitutions. The idempotent implementation mirrors the mathematical

description of nominal unification given by Urban et al. (2004), while the triangular

implementation is more efficient.

This chapter is organized as follows. In section 11.1 we present our implemen-

tation of nominal unification using idempotent substitutions. In section 11.2 we

implement αKanren’s goal constructors, using the unifier of section 11.1, and in

section 11.3 we implement reification. In section 11.4 we present a second imple-

mentation of nominal unification, using triangular substitutions.

11.1 Nominal Unification with Idempotent Substitutions

Nominal unification occurs in two distinct phases: the first processes equations,

while the second processes constraints. The first phase takes a set of equations

ϵ and transforms it into a substitution σ and a set of unresolved constraints δ.

140

CHAPTER 11. IMPLEMENTATION IV: αKANREN 141

The second phase combines the unresolved constraints with the previously resolved

constraints, which have both been brought up to date using apply-subst. Then, the

unifier transforms these combined constraints into a set of resolved constraints ∇,

and returns the list ((σ ∇)) as a package.

Nominal unification uses several data structures. A set of equations ϵ is repre-

sented as a list of pairs of terms. A substitution σ is represented as an association

list of variables to terms. A set of constraints δ is represented as a list of pairs

associating noms to terms; a ∇ is a δ in which all terms are unbound variables. In

a substitution, a variable may have at most one association. In a δ (and therefore

in a ∇) a nom may have multiple associations.

We represent a variable as a suspension containing an empty list of swaps. Sev-

eral functions reconstruct suspensions that represent variables. However, our im-

plementation of nominal unification assumes that variables can be compared using

eq?.

In order to ensure that a variable is always eq? to itself, regardless of how many

times it is reconstructed, we use a letrec trick: a suspension representing a variable

contains a procedure of zero arguments (a thunk) that, when invoked, returns the

suspension, thus maintaining the desired eq?-ness property. (In the text we conflate

variables with their associated thunks.)

(define var
(λ (ignore)

(letrec ((s (list susp (()) (λ () s))))
s)))

CHAPTER 11. IMPLEMENTATION IV: αKANREN 142

unify attempts to solve a set of equations ϵ in the context of a package ((σ ∇)).

unify applies σ to ϵ, and then calls apply-σ-rules on the resulting set of equations.

apply-σ-rules either successfully completes the first phase of nominal unification

by returning a new σ and δ, or invokes the failure continuation fk, a jump-out

continuation similar to Lisp’s catch (Steele Jr. 1990).

(define unify
(λ (ϵ σ ∇ fk)

(let ((ϵ (apply-subst σ ϵ)))
(mv-let ((σ̂ δ) (apply-σ-rules ϵ fk))

(unify# δ (compose-subst σ σ̂) ∇ fk)))))

mv-let, defined in Appendix B, deconstructs a list of values.

In the second phase of nominal unification, unify# calls apply-subst to bring ∇

and δ up to date, then passes their union to apply-∇-rules.

(define unify#
(λ (δ σ ∇ fk)

(let ((δ (apply-subst σ δ))
(∇ (apply-subst σ ∇)))

(let ((δ (δ-union ∇ δ)))
(list σ (apply-∇-rules δ fk))))))

apply-σ-rules is a recursive function whose only task is to combine results re-

turned by σ-rules. σ-rules takes two arguments: a single equation and the rest of

the equations. If σ-rules fails, then apply-σ-rules invokes fk, and the result of unify

is #f. Each successful call to σ-rules returns a new set of equations ϵ, a new σ, and

a set of (unresolved) constraints δ. Successive calls to σ-rules resolve the equations

in ϵ until there are no equations left.

CHAPTER 11. IMPLEMENTATION IV: αKANREN 143

(define apply-σ-rules
(λ (ϵ fk)

(cond
((null? ϵ) ((empty-σ empty-δ)))
(else
(let ((eqn (car ϵ)) (ϵ (cdr ϵ)))

(mv-let ((ϵ σ δ) (or (σ-rules eqn ϵ) (fk)))
(mv-let ((σ̂ δ̂) (apply-σ-rules ϵ fk))

(list (compose-subst σ σ̂) (δ-union δ̂ δ)))))))))

apply-∇-rules is similar to apply-σ-rules, but takes constraints instead of equa-

tions, and combines the results returned by ∇-rules.

(define apply-∇-rules
(λ (δ fk)

(cond
((null? δ) empty-∇)
(else
(let ((c (car δ)) (δ (cdr δ)))

(mv-let ((δ ∇) (or (∇-rules c δ) (fk)))
(δ-union ∇ (apply-∇-rules δ fk))))))))

empty-σ, empty-δ, and empty-∇ are defined in section 11.2.

In both σ-rules and ∇-rules we use untagged? to distinguish untagged pairs from

specially tagged pairs that represent binders, noms, and suspensions.

(define untagged?
(λ (x)

(not (memv x ((tie nom susp))))))

Here are the transformation rules of the nominal unification algorithm, derived

from the rules in Urban et al. (2004). (σ-rules relies on pmatch, which is defined

in Appendix B.)

CHAPTER 11. IMPLEMENTATION IV: αKANREN 144

(define σ-rules
(λ (eqn ϵ)

(pmatch eqn
(((c � ĉ))
(guard (not (pair? c)) (equal? c ĉ))
((ϵ empty-σ empty-δ)))

(((((tie a t)) � ((tie â t̂))))
(guard (eq? a â))
((((((t � t̂)) � ϵ)) empty-σ empty-δ)))

(((((tie a t)) � ((tie â t̂))))
(guard (not (eq? a â)))
(let ((û (apply-π ((((a â)))) t̂)))

((((((t � û)) � ϵ)) empty-σ ((((a � t̂))))))))
(((((nom _)) � ((nom _))))
(guard (eq? (car eqn) (cdr eqn)))
((ϵ empty-σ empty-δ)))

(((((susp π x)) � ((susp π̂ x̂))))
(guard (eq? (x) (x̂)))
(let ((δ (map (λ (a) (cons a (x)))

(disagreement-set π π̂))))
((ϵ empty-σ δ))))

(((((susp π x)) � t))
(guard (not (occurs

√
(x) t)))

(let ((x (x)) (t (apply-π (reverse π) t)))
(let ((σ ((((x � t))))))

(list (apply-subst σ ϵ) σ empty-δ))))
(((t � ((susp π x))))
(guard (not (occurs

√
(x) t)))

(let ((x (x)) (t (apply-π (reverse π) t)))
(let ((σ ((((x � t))))))

(list (apply-subst σ ϵ) σ empty-δ))))
(((((t1 � t2)) � ((t̂1 � t̂2))))
(guard (untagged? t1) (untagged? t̂1))
((((((t1 � t̂1)) ((t2 � t̂2)) � ϵ)) empty-σ empty-δ)))

(else #f))))

Clauses two and three in σ-rules implement α-equivalence of binders, as defined

in section 9.1 of Chapter 9. Clause five unifies two suspensions that have the same

variable; in this case, σ-rules creates as many new freshness constraints as there are

CHAPTER 11. IMPLEMENTATION IV: αKANREN 145

noms in the disagreement set (defined below) of the suspensions’ swaps. Clauses six

and seven are similar: each clause unifies a suspension containing a variable x and

a list of swaps π with a term t. σ-rules creates a substitution associating x with the

result of applying the swaps in π to t in reverse order, with the newest swap in π

applied first. This substitution is applied to the context ϵ.

apply-π, below, applies a list of swaps π to a term v.

(define apply-π
(λ (π v)

(pmatch v
(c (guard (not (pair? c))) c)
(((tie a t))
(let ((a (apply-π π a))

(t (apply-π π t)))
((tie a t))))

(((nom _))
(let loop ((v v) (π π))

(if (null? π)
v
(apply-swap (car π) (loop v (cdr π))))))

(((susp π̂ x))
(let ((π (append π π̂)))

(if (null? π)
(x)
((susp π x)))))

(((a � d)) (cons (apply-π π a) (apply-π π d))))))

If v is a nom, then π’s swaps are applied, with the oldest swap applied first. If v is

a suspension with a list of swaps π̂ and variable x, then the swaps in π are added

to the swaps in π̂. If this list is empty, then x’s suspension is returned; otherwise,

a new suspension is created with those swaps.

CHAPTER 11. IMPLEMENTATION IV: αKANREN 146

(define apply-swap
(λ (swap a)

(pmatch swap
(((a1 a2))
(cond

((eq? a a2) a1)
((eq? a a1) a2)
(else a))))))

The ∇-rules are much simpler than the σ-rules. In the second clause, the nom

â in the binding position of the binder is the same as a, so a can never appear free

in t. In the fifth clause, the list of swaps π in the suspension are applied, in reverse

order, to the nom a, yielding another nom. ∇-rules then adds a new constraint

associating this nom with the suspension’s variable.

(define ∇-rules
(λ (d δ)

(pmatch d
(((a � c))
(guard (not (pair? c)))
((δ empty-∇)))

(((a � ((tie â t))))
(guard (eq? â a))
((δ empty-∇)))

(((a � ((tie â t))))
(guard (not (eq? â a)))
((((((a � t)) � δ)) empty-∇)))

(((a � ((nom _))))
(guard (not (eq? a (cdr d))))
((δ empty-∇)))

(((a � ((susp π x))))
(let ((a (apply-π (reverse π) a)) (x (x)))

((δ ((((a � x))))))))
(((a � ((t1 � t2))))
(guard (untagged? t1))
((((((a � t1)) ((a � t2)) � δ)) empty-∇)))

(else #f))))

CHAPTER 11. IMPLEMENTATION IV: αKANREN 147

Finding the disagreement set of two lists of swaps π and π̂ requires forming a

set of all the noms in those lists, then applying both π and π̂ to each nom a in

this set. If (apply-π π a) and (apply-π π̂ a) produce different noms, then a is in the

disagreement set. (filter and remove-duplicates are defined in Appendix A.)

(define disagreement-set
(λ (π π̂)

(filter
(λ (a) (not (eq? (apply-π π a) (apply-π π̂ a))))
(remove-duplicates

(append (apply append π) (apply append π̂))))))

The occurs
√

is what one might expect.

(define occurs
√

(λ (x v)
(pmatch v

(c (guard (not (pair? c))) #f)
(((tie _ t)) (occurs

√
x t))

(((nom _)) #f)
(((susp _ x̂)) (eq? (x̂) x))
(((x̂ � ŷ)) (or (occurs

√
x x̂) (occurs

√
x ŷ)))

(else #f))))

11.1.1 Idempotent Substitutions

compose-subst’s definition is taken from Lloyd (1987). It takes two substitutions σ

and τ , and constructs a new substitution σ̂ in which each association ((x � v)) in σ is

replaced by ((x � v̂)), where v̂ is the result of applying τ to v. Any association in τ

whose variable has an association in σ̂ is then filtered from τ . Also, any association

of the form ((x � x)) is filtered from σ̂. These filtered substitutions are then appended.

CHAPTER 11. IMPLEMENTATION IV: αKANREN 148

(define compose-subst
(λ (σ τ)

(let ((σ̂ (map
(λ (a) (cons (car a) (apply-subst τ (cdr a))))
σ)))

(append
(filter (λ (a) (not (assq (car a) σ̂))) τ)
(filter (λ (a) (not (eq? (car a) (cdr a)))) σ̂)))))

Next we define apply-subst. In the suspension case, apply-subst applies the list

of swaps π to a variable, or to its binding.

(define apply-subst
(λ (σ v)

(pmatch v
(c (guard (not (pair? c))) c)
(((tie a t))
(let ((t (apply-subst σ t)))

((tie a t))))
(((nom _)) v)
(((susp π x)) (apply-π π (get (x) σ)))
(((x � y)) (cons (apply-subst σ x) (apply-subst σ y))))))

get, which is defined in Appendix A, finds the binding of a variable in a substitution

or returns the variable if no binding exists.

11.1.2 δ-union

Finally we define δ-union, which forms the union of two δ’s.

(define δ-union
(λ (δ δ̂)

(pmatch δ
((()) δ̂)
(((d � δ))
(if (term-member? d δ̂)

(δ-union δ δ̂)
(cons d (δ-union δ δ̂)))))))

CHAPTER 11. IMPLEMENTATION IV: αKANREN 149

(define term-member?
(λ (v v∗)

(pmatch v∗
((()) #f)
(((v̂ � v∗))
(or (term-equal? v̂ v) (term-member? v v∗))))))

(define term-equal?
(λ (u v)

(pmatch ((u v))
(((c ĉ)) (guard (not (pair? c)) (not (pair? ĉ)))
(equal? c ĉ))

(((((tie a t)) ((tie â t̂))))
(and (eq? a â) (term-equal? t t̂)))

(((((nom _)) ((nom _)))) (eq? u v))
(((((susp π x)) ((susp π̂ x̂))))
(and (eq? (x) (x̂)) (null? (disagreement-set π π̂))))

(((((x � y)) ((x̂ � ŷ))))
(and (term-equal? x x̂) (term-equal? y ŷ)))

(else #f))))

Recall that δ denotes a set of unresolved constraints, where a constraint is a

pair of a nom a and a term t. δ-union uses term-member?, which uses term-equal?

when comparing two constraints. The definition of term-equal? is straightforward

except when comparing two suspensions, in which case their variables must be the

same, and the disagreement set of their lists of swaps must be empty.

11.2 Goal Constructors

In the core miniKanren implementation of Chapter 3, a goal is a function that

maps a substitution s to an ordered sequence of zero or more substitutions (see

section 3.3). In αKanren, a goal g is a function that maps a package p to an

ordered sequence p∞ of zero or more packages.

CHAPTER 11. IMPLEMENTATION IV: αKANREN 150

We represent the empty substitution, along with the empty unresolved and

resolved constraint sets, as the empty list.

(define empty-σ (())) (define empty-δ (())) (define empty-∇ (()))

≡ and # construct goals that return either a singleton stream or an empty

stream.

(define-syntax ≡
(syntax-rules ()

((_ u v)
(unifier unify ((((u � v))))))))

(define-syntax #
(syntax-rules ()

((_ a t)
(unifier unify# ((((a � t))))))))

(define unifier
(λ (fn set)

(λG (p)
(mv-let ((σ ∇) p)

(call/cc (λ (fk) (fn set σ ∇ (λ () (fk #f)))))))))

The goal constructor fresh is identical to exist, except that it lexically binds

noms instead of variables.

(define-syntax fresh
(syntax-rules ()

((_ (a . . .) g0 g . . .)
(λG (p)

(inc
(let ((a (nom a)) . . .)

(bind∗ (g0 p) g . . .)))))))

(define nom
(λ (a)

(list nom (symbol�string a))))

CHAPTER 11. IMPLEMENTATION IV: αKANREN 151

11.3 Reification

As described in section 3.2, reification is the process of turning a miniKanren (or

αKanren) value into a Scheme value.

αKanren’s version of reify takes a variable x and a package p, and returns the

value associated with x in p (along with any relevant constraints), first replacing all

variables and noms with symbols representing those entities. A constraint ((a � y))

is relevant if both a and y appear in the value associated with x.

The first cond clause in the definition of reify below returns only the reified

value associated with x, when there are no relevant constraints. The else clause

returns both the reified value of x and the reified set of relevant constraints; we have

arbitrarily chosen the colon ‘:’ to separate the reified value from the list of reified

constraints.

(define reify
(λ (x p)

(mv-let ((σ ∇) p)
(let∗ ((v (get x σ)) (s (reify-s v)) (v (walk∗ v s)))

(let ((∇ (filter (λ (a) (and (symbol? (car a)) (symbol? (cdr a))))
(walk∗ ∇ s))))

(cond
((null? ∇) v)
(else ((v : ∇)))))))))

reify-s is the heart of the reifier. reify-s takes an arbitrary value v, and returns

a substitution that maps every distinct nom and variable in v to a unique symbol.

The trick to maintaining left-to-right ordering of the subscripts on these symbols

is to process v from left to right, as can be seen in the last pmatch clause. When

CHAPTER 11. IMPLEMENTATION IV: αKANREN 152

reify-s encounters a nom or variable, it determines if we already have a mapping for

that entity. If not, reify-s extends the substitution with an association between the

nom or variable and a new, appropriately subscripted symbol.

(define reify-s
(letrec

((r-s (λ (v s)
(pmatch v

(c (guard (not (pair? c))) s)
(((tie a t)) (r-s t (r-s a s)))
(((nom n))
(cond

((assq v s) s)
((assp nom? s)
⇒ (λ (p)

(let ((n (reify-n (cdr p))))
(cons ((v � n)) s))))

(else (cons ((v � a.0)) s))))
(((susp (()) _))
(cond

((assq v s) s)
((assp var? s)
⇒ (λ (p)

(let ((n (reify-n (cdr p))))
(cons ((v � n)) s))))

(else (cons ((v � __.0)) s))))
(((susp π x))
(r-s (x) (r-s π s)))

(((a � d)) (r-s d (r-s a s)))))))
(λ (v)

(r-s v (())))))

walk∗ applies a special substitution s, which maps noms and variables to symbols,

to an arbitrary value v.

CHAPTER 11. IMPLEMENTATION IV: αKANREN 153

(define walk∗
(λ (v s)

(pmatch v
(c (guard (not (pair? c))) c)
(((tie a t)) (list tie (get a s) (walk∗ t s)))
(((nom _)) (get v s))
(((susp (()) _)) (get v s))
(((susp π x)) (list susp (walk∗ π s) (get (x) s)))
(((a � d)) (cons (walk∗ a s) (walk∗ d s))))))

(define var?
(λ (x)

(pmatch x
(((susp (()) _)) #t)
(else #f))))

(define nom?
(λ (x)

(pmatch x
(((nom _)) #t)
(else #f))))

reify-n returns a symbol representing an individual variable or nom; this symbol

always ends with a period followed by a non-negative integer.

(define reify-n
(λ (a)

(let ((str∗ (string�list (symbol�string a))))
(let ((c∗ (memv #\. str∗)))

(let ((rn (string�number (list�string (cdr c∗)))))
(let ((n-str (number�string (+ rn 1))))

(string�symbol
(string-append

(string (car str∗)) "." n-str))))))))

CHAPTER 11. IMPLEMENTATION IV: αKANREN 154

11.4 Nominal Unification with Triangular Substitutions

In this section we modify the idempotent nominal unification implementation to

work with triangular substitutions, significantly improving the performance of αKan-

ren1. We present only the definitions that differ from those already presented.

Like the core miniKanren implementation of Chapter 3, our triangular unifier

relies on a walk function for looking up values in a triangular substitution. The

nominal walk function is complicated by the need to handle suspensions and per-

mutations.

(define walk
(λ (x s)

(let loop ((x x) (π (())))
(pmatch x

(((susp π̂ v))
(let ((v (assq (v) s)))

(cond
(v (loop (cdr v) (append π̂ π)))
(else (apply-π π x)))))

(else (apply-π π x))))))

We can now redefine walk∗ in terms of walk.

(define walk∗
(λ (v s)

(let ([v (walk v s)])
(pmatch v

(((tie a t)) (list tie a (walk∗ t s)))
(((a � d)) (guard (untagged? a))
(cons (walk∗ a s) (walk∗ d s)))

(else v)))))
1This implementation of triangular nominal unification is due to Joseph Near. Ramana Kumar

has implemented a somewhat faster triangular unifier; however, the resulting code bears little
resemblance to the idempotent algorithm of (Urban et al. 2004).

CHAPTER 11. IMPLEMENTATION IV: αKANREN 155

unify no longer uses compose-subst or apply-subst.

(define unify
(λ (ϵ σ ∇ fk)

(mv-let ((σ̂ δ) (apply-σ-rules ϵ σ fk))
(unify# δ σ̂ ∇ fk))))

Similarly, unify# no longer uses apply-subst.

(define unify#
(λ (δ σ ∇ fk)

(let ((δ (δ-union ∇ δ)))
(list σ (apply-∇-rules δ σ fk)))))

apply-σ-rules now takes σ as an additional argument, which it passes to σ-rules;

also, apply-σ-rules no longer uses compose-subst.

(define apply-σ-rules
(λ (ϵ σ fk)

(cond
((null? ϵ) ((σ empty-δ)))
(else
(let ((eqn (car ϵ)) (ϵ (cdr ϵ)))

(mv-let ((ϵ σ δ) (or (σ-rules eqn σ ϵ) (fk)))
(mv-let ((σ̂ δ̂) (apply-σ-rules ϵ σ fk))

(list σ̂ (δ-union δ̂ δ)))))))))

apply-∇-rules also takes σ as an additional argument, which it passes to ∇-rules.

(define apply-∇-rules
(λ (δ σ fk)

(cond
((null? δ) empty-∇)
(else
(let ((c (car δ)) (δ (cdr δ)))

(mv-let ((δ ∇) (or (∇-rules c σ δ) (fk)))
(δ-union ∇ (apply-∇-rules δ σ fk))))))))

CHAPTER 11. IMPLEMENTATION IV: αKANREN 156

σ-rules no longer uses apply-subst, but now walks ϵ in σ, which is passed in as

an additional argument.

(define σ-rules
(λ (eqn σ ϵ)

(let ((eqn (cons (walk (car eqn) σ) (walk (cdr eqn) σ))))
(pmatch eqn

(((c � ĉ))
(guard (not (pair? c)) (equal? c ĉ))
((ϵ σ empty-δ)))

(((((tie a t)) � ((tie â t̂))))
(guard (eq? a â))
((((((t � t̂)) � ϵ)) σ empty-δ)))

(((((tie a t)) � ((tie â t̂))))
(guard (not (eq? a â)))
(let ((û (apply-π ((((a â)))) t̂)))

((((((t � û)) � ϵ)) σ ((((a � t̂))))))))
(((((nom _)) � ((nom _))))
(guard (eq? (car eqn) (cdr eqn)))
((ϵ σ empty-δ)))

(((((susp π x)) � ((susp π̂ x̂))))
(guard (eq? (x) (x̂)))
(let ((δ (map (λ (a) (cons a (x)))

(disagreement-set π π̂))))
((ϵ σ δ))))

(((((susp π x)) � t))
(guard (not (occurs

√
(x) t)))

(let ((σ (ext-s (x) (apply-π (reverse π) t) σ)))
((ϵ σ empty-δ))))

(((t � ((susp π x))))
(guard (not (occurs

√
(x) t)))

(let ((σ (ext-s (x) (apply-π (reverse π) t) σ)))
((ϵ σ empty-δ))))

(((((t1 � t2)) � ((t̂1 � t̂2))))
(guard (untagged? t1) (untagged? t̂1))
((((((t1 � t̂1)) ((t2 � t̂2)) � ϵ)) σ empty-δ)))

(else #f)))))

CHAPTER 11. IMPLEMENTATION IV: αKANREN 157

∇-rules also takes σ as an additional argument, which it uses to walk d.

(define ∇-rules
(λ (d σ δ)

(let ((d (cons (walk (car d) σ) (walk (cdr d) σ))))
(pmatch d

(((a � c))
(guard (not (pair? c)))
((δ empty-∇)))

(((a � ((tie â t))))
(guard (eq? â a))
((δ empty-∇)))

(((a � ((tie â t))))
(guard (not (eq? â a)))
((((((a � t)) � δ)) empty-∇)))

(((a � ((nom _))))
(guard (not (eq? a (cdr d))))
((δ empty-∇)))

(((a � ((susp π x))))
(let ((a (apply-π (reverse π) a)) (x (x)))

((δ ((((a � x))))))))
(((a � ((t1 � t2))))
(guard (untagged? t1))
((((((a � t1)) ((a � t2)) � δ)) empty-∇)))

(else #f)))))

The redefinition of reify uses the new apply-reify-s function in place of some uses

of walk∗.

(define reify
(λ (x p)

(mv-let ((σ ∇) p)
(let∗ ((v (walk∗ x σ)) (s (reify-s v)) (v (apply-reify-s v s)))

(let ((∇ (filter (λ (a) (and (symbol? (car a)) (symbol? (cdr a))))
(apply-reify-s ∇ s))))

(cond
((null? ∇) v)
(else ((v : ∇)))))))))

CHAPTER 11. IMPLEMENTATION IV: αKANREN 158

apply-reify-s is new, but is almost identical to the old definition of walk∗ in

section 11.3.

(define apply-reify-s
(λ (v s)

(pmatch v
(c (guard (not (pair? c))) c)
(((tie a t)) (list tie (get a s) (apply-reify-s t s)))
(((nom _)) (get v s))
(((susp (()) _)) (get v s))
(((susp π x))
(list susp

(map (λ (swap)
(pmatch swap

(((a b)) (list (get a s) (get b s)))))
π)

(get (x) s)))
(((a � d)) (cons (apply-reify-s a s) (apply-reify-s d s))))))

By using triangular rather than idempotent substitutions, unification is as much

as ten times faster and is more memory efficient.

An important limitation of both the triangular and idempotent implementations

is that neither currently supports disequality constraints.

Part IV

Tabling

159

Chapter 12

Techniques III: Tabling

This chapter introduces tabling, an extension of memoization to logic programming.

We present a full implementation of tabling for miniKanren in Chapter 13.

This chapter is organized as follows. In section 12.1 we review memoization

as used in functional programming. Section 12.2 introduces tabling, explains how

tabling differs from memoization, and describes a few of the many applications of

tabling. In section 12.3 we present the tabled form, used to create tabled relations.

In section 12.4 we examine several examples of tabled relations, and in section 12.5

we discuss the limitations of tabling.

12.1 Memoization

Consider the naive Scheme implementation of the Fibonacci function.

160

CHAPTER 12. TECHNIQUES III: TABLING 161

(define fib
(λ (n)

(cond
((= 0 n) 0)
((= 1 n) 1)
(else (+ (fib (− n 1)) (fib (− n 2)))))))

The call (fib 5) results in calls to (fib 4) and (fib 3); the resulting call to (fib 4) also

calls (fib 3). The call (fib 5) therefore results in two calls to (fib 3), the second of

which performs duplicate work. Similarly, (fib 5) results in three calls to (fib 2), five

calls to (fib 1), and three calls to (fib 0). Due to these redundant calls, the time

complexity of fib is exponential in n.

To avoid this duplicate work, we could record each distinct call to fib in a table,

along with the answer returned by that call. Whenever a duplicate call to fib is

made, fib would return the answer stored in the table instead of recomputing the

result. This optimization technique, known as memoization (Michie 1968), can

result in a lower complexity class for the running time of the memoized function.

Indeed, the memoized version of fib runs in linear rather than exponential time.

Memoization is a common technique in functional programming, since it often

improves performance of recursive functions. In this chapter we consider the related

technique of tabling, which generalizes memoization to logic programming.

CHAPTER 12. TECHNIQUES III: TABLING 162

12.2 Tabling

Tabling is a generalization of memoization; tabling allows a relation to store and

reuse its previously computed results. Tabling a relation is more complicated than

memoizing a function, since a relation returns a potentially infinite stream of sub-

stitutions rather than a single value. Also, the arguments to a tabled relation can

contain unassociated logic variables or partially instantiated terms, which compli-

cates determining whether a call is a variant of a previously seen call.

Tabling, like memoization, can result in dramatic performance gains for some

programs. For example, combining tabling with Prolog’s Definite Clause Gram-

mars (Pereira and Warren 1986) makes it trivial to write efficient recursive descent

parsers that handle left-recursion1 (Becket and Somogyi 2008)—these parsers are

equivalent to “packrat” parsing (Ford 2002). Tabling is also useful for writing pro-

grams that must calculate fixed points, such as abstract interpreters and model

checkers (Warren 1992; Guo and Gupta 2009). However, the real reason we are

interested in tabling is that many relations that would otherwise diverge terminate

under tabling, as we will see in section 12.4.

An excellent introduction to tabling and its uses is Warren’s survey (Warren

1992).
1One important use of tabling by Prolog systems is to handle left-recursive definitions of goals;

due to Prolog’s incomplete depth-first search, calls to left-recursive goals often diverge. Since
miniKanren uses a complete search strategy, handling left-recursion is not a problem. However,
we will see in section 12.4 that there are other programs we want to write that terminate under
tabling but diverge otherwise.

CHAPTER 12. TECHNIQUES III: TABLING 163

12.3 The tabled Form

Tabled relations are constructed using the tabled form:

(tabled (x . . .) g g∗ . . .)

For example,

(define f o (tabled (z) (≡ z 5)))

defines a top-level tabled goal constructor named f o. Each tabled goal constructor

has its own local table, which can be garbage collected once there are no live refer-

ences to the goal constructor. Keep in mind that the table is associated with the

goal constructor, not the goal returned by the goal constructor.

Calls to a tabled relation come in two flavors: master calls and slave calls. A

master call is a call to a tabled relation whose arguments are not (yet) stored in

the table. A slave call is a call whose arguments are found in the table; each slave

call is a variant of some master call.

Two calls to the same tabled relation are variants of each other if their argu-

ments are the same, up to consistent renaming of unassociated logic variables2.

For example, consider the calls (mul o y z 5) and (mul o w w x) in the substitutions

((((y � z)))) and ((((x � 5)))), respectively. Taking the substitutions into account, these

calls are equivalent to (mul o z z 5) and (mul o w w 5), which are variants of each

other. However, the calls (mul o w w x) and (mul o y z z) are variants only if w is

associated with x, and y is associated with z, respectively. For the same reason,
2In other words, the two lists of arguments to the relation, when reified with respect to their

“current” substitutions, must be equal?.

CHAPTER 12. TECHNIQUES III: TABLING 164

(mul o w 5 6) and (mul o y z 6) are variants only if z is associated with 5 in the

substitution in place for the second call.

12.4 Tabling Examples

We are now ready to examine examples of tabled relations. The canonical example

relation, path o3, finds all paths between two nodes in a directed graph. The goal

(path o x y) succeeds if there is a directed edge from x to y, or if there is an edge

from x to some node z and there is a path from z to y.

(define path o

(λ (x y)
(conde

((arc o x y))
((exist (z)

(arc o x z)
(path o z y))))))

The goal (arc o x y) succeeds if there is a directed edge from node x to node y.

(define arc o

(λ (x y)
(conde

((≡ a x) (≡ b y))
((≡ c x) (≡ b y))
((≡ b x) (≡ d y)))))

This definition of arc o represents edges from a to b, c to b, and b to d.

The expression (run∗ (q) (path o a q)) returns ((b d)), indicating that only the nodes

b and d are reachable from a.
3The path examples in this section are taken from Warren (1992).

CHAPTER 12. TECHNIQUES III: TABLING 165

Now let us redefine arc o to represent a different set of directed edges, this time

with a circularity between nodes a and b.

(define arc o

(λ (x y)
(conde

((≡ a x) (≡ b y))
((≡ b x) (≡ a y))
((≡ b x) (≡ d y)))))

Using the new definition of arc o, the expression (run∗ (q) (path o a q)) now diverges.

We can understand the cause of this divergence if we replace run∗ with run10.

(run10 (q) (path o a q)) ⇒ ((b a d b a d b a d b))

Because of the circular path between a and b, (path o a q) keeps finding longer and

longer paths between a and the nodes b, a, and d. To avoid this problem, we can

table path o.

(define path o

(tabled (x y)
(conde

((arc o x y))
((exist (z)

(arc o x z)
(path o z y))))))

(run∗ (q) (path o a q)) then converges, returning ((b a d)).

CHAPTER 12. TECHNIQUES III: TABLING 166

Now let us consider a mutually recursive program.

(letrec ((f o (λ (x)
(conde

((≡ 0 x))
((g o x)))))

(g o (λ (x)
(conde

((≡ 1 x))
((f o x))))))

(run∗ (q) (f o q)))

This expression diverges. If we replace run∗ with run10 the program converges with

the value ((0 1 0 1 0 1 0 1 0 1)). If we table either f o, g o, or both, (run∗ (q) (f o q))

converges with the value ((0 1)).

12.5 Limitations of Tabling

Tabling is a remarkably useful addition to miniKanren, and can be used to im-

prove efficiency of relations and (sometimes) avoid divergence. Unfortunately,

tabling is not a panacea. In fact, tabling can be trivially defeated by changing

one or more arguments in each call to a tabled relation. For example, consider

the ternary multiplication relation mul o from Chapter 6. The arguments in the call

(mul o ((1 1 � x)) x ((0 0 0 1 � x)))4 all share the variable x. The resulting goal succeeds

only if there exists a non-negative integer x that satisfies (3 + 4x) · x = 8 + 16x.

mul o enumerates all non-negative integer values for x until it finds one that satisfies

this equation. However, if no such x exists the call to mul o will diverge. Tabling

will not help, since the value of x keeps changing.
4This example is due to Oleg Kiselyov (personal communication).

CHAPTER 12. TECHNIQUES III: TABLING 167

Another disadvantage of tabling is that it can greatly increase the memory

consumption of a program. This is a problem with memoization in general. For

example, consider the tail-recursive accumulator-passing-style Scheme definition of

factorial5.

(define !-aps
(λ (n a)

(cond
((zero? n) a)
(else (!-aps (sub1 n) (∗ n a))))))

Other than the space used to represent numbers, this function uses a bounded

amount of memory6. However, the memoized version of !-aps uses an unbounded

amount of memory if n is negative, and otherwise uses an amount of memory linear

in n.

Chapter 13 presents a complete implementation of tabling for miniKanren; this

implementation has several limitations. The first limitation is that tabled relations

must be closed; a tabled goal constructor cannot contain free logic variables, since

associations for those variables would be thrown away. This is a consequence of not

storing entire substitutions in a relation’s table, as described in section 13.1.

Another limitation is that arguments passed to tabled relations must be “print-

able” (or “reifiable”) values. For example, tabled relations should never be passed

functions, including goals, since all functions reify to the same value7.
5The call (!-aps n 1) calculates the factorial of n.
6Scheme implementations are required to handle tail calls properly—thus !-aps uses a constant

amount of stack space
7Pure relations should never take functions as arguments anyway, since miniKanren does

CHAPTER 12. TECHNIQUES III: TABLING 168

The most significant limitation of our tabling implementation is that it does

not currently support disequality constraints, nominal unification, or freshness con-

straints. How to best combine tabling and constraints is an open research prob-

lem (Schrijvers et al. 2008a).

not support higher-order unification, and cannot meaningfully construct functions when running
backwards.

Chapter 13

Implementation V: Tabling

In this chapter we implement the tabling scheme described in Chapter 12. Our

tabling implementation extends the streams-based implementation of miniKanren

from Chapter 3, preserving the original implementation’s interleaving search behav-

ior.

This chapter is organized as follows. In section 13.1 we describe the core data

structures used in the implementation. Section 13.2 gives a high-level description

of the tabling algorithm. In section 13.3 we introduce a new type of waiting stream,

which requires extending both case∞ and the operators that use it: take, bind, and

mplus. Section 13.4 extends the reifier from Chapter 3 with a new function reify-

var. Finally in section 13.5 we present the heart of the tabling implementation: the

user-level tabled form, and the master and reuse functions to handle master and

slave calls, respectively.

169

CHAPTER 13. IMPLEMENTATION V: TABLING 170

13.1 Answer Terms, Caches, and Suspended Streams

Like any goal, a goal returned by a tabled goal constructor is a function mapping

a substitution to a stream of substitutions. The goal constructor’s table does not

store entire substitutions; rather, the table stores answer terms. An answer term

is a list of the arguments from a master call, perhaps partially or fully instantiated

as a result of running the goal’s body. A cache associates each master call with a

set of answer terms. A subsequent slave call reuses the master call’s tabled answers

by unifying each answer term in the cache with the slave call’s actual parameters,

producing a stream of answer substitutions.

There may be multiple slave calls associated with each master call; each slave

call “consumes” all the tabled answer terms in the cache. Evaluation of the master

call and its slave calls are interleaved—slave calls may start consuming answer terms

before the master call has finished producing them. When a master call produces

new answer terms, the consumption of these answers by associated slave calls can

result in new master or slave calls. The algorithm reaches a fixed point when all

master calls have finished producing answers, and each slave call has consumed

every answer term produced by its associated master call.

CHAPTER 13. IMPLEMENTATION V: TABLING 171

To understand why we table answer terms rather than full substitutions, consider

this run∗ expression.

(let ((f (tabled (z) (≡ z 6))))
(run∗ (q)

(exist (x y)
(conde

((≡ x 5) (f y))
((f y)))

(≡ ((x y)) q))))

Imagine that the first conde clause is evaluated completely before the second clause.

When the master call (f y) in the first clause succeeds, the substitution will be

((((y � 6)) ((x � 5)))). If we were to table the full substitution, including the association

for x, the slave call in the second clause would incorrectly associate x with 5. The

run∗ expression would therefore return ((((5 6)) ((5 6)))) instead of the correct answer

((((5 6)) ((_
0

6)))).

Since the table records answer terms rather than entire substitutions, a tabled

goal constructor must be closed with respect to logic variables; values associated

with free logic variables would be forgotten. For example, the run∗ expression

(run∗ (q)
(exist (x y)

(let ((f (λ (z) (exist () (≡ x 5) (≡ z 6)))))
(conde

((f y) (≡ ((x y)) q))
((f y) (≡ ((x y)) q))))))

returns ((((5 6)) ((5 6)))), as expected. However, if we were to table f by replacing

CHAPTER 13. IMPLEMENTATION V: TABLING 172

(λ (z) (exist () (≡ x 5) (≡ z 6))) with (tabled (z) (exist () (≡ x 5) (≡ z 6))), the

run∗ expression would instead return ((((5 6)) ((_
0

6)))).

Each tabled goal constructor has its own local table represented as a list of

((key � cache)) pairs, where key is a list of reified arguments from a master call, and

where cache contains the set of answer terms for that master call.

A cache is represented as a tagged vector, and contains a list of tabled answer

terms. Each master call is associated with a single cache.

(define make-cache (λ (ansv∗) (vector cache ansv∗)))
(define cache-ansv∗ (λ (c) (vector-ref c 1)))
(define cache-ansv∗-set! (λ (c val) (vector-set! c 1 val)))

Each slave call is associated with a single suspended stream, or ss. Each sus-

pended stream is represented as a tagged vector containing a cache, a list of tabled

answer terms ansv∗, and a thunk that produces the remainder of the stream (an f ,

as described in section 3.3).

(define make-ss (λ (cache ansv∗ f) (vector ss cache ansv∗ f)))
(define ss? (λ (x) (and (vector? x) (eq? (vector-ref x 0) ss))))
(define ss-cache (λ (ss) (vector-ref ss 1)))
(define ss-ansv∗ (λ (ss) (vector-ref ss 2)))
(define ss-f (λ (ss) (vector-ref ss 3)))

The ansv∗ list indicates which of the master call’s answer terms the suspended

stream has already processed—ansv∗ is always a suffix of the list in cache. There

may be many suspended streams associated with a single cache—each of these ss’s

may contain a different ansv∗ list, representing a different “already seen” suffix of

answer terms from the cache.

CHAPTER 13. IMPLEMENTATION V: TABLING 173

The ss-ready? predicate indicates whether a suspended stream’s cache contains

new answer terms not yet consumed by the stream.

(define ss-ready? (λ (ss) (not (eq? (cache-ansv∗ (ss-cache ss)) (ss-ansv∗ ss)))))

13.2 The Tabling Algorithm

Now that we are familiar with the fundamental data structures, we can examine in

detail the steps performed when a tabled goal constructor is called:

1. The goal constructor creates a list of the arguments passed to the call, argv,

then returns a goal.

2. When passed a substitution s, the goal reifies argv in s, producing a list key

of reified arguments.

3. The goal uses the reified list of arguments as the lookup key in the goal

constructor’s local table, which is an association list of ((key � cache)) pairs.

4. If the key is not in the table’s association list we are making a new master

call. The goal constructs a new cache containing the empty list. The goal

then side-effects the local table, extending it with a pair containing the new

key and cache. Next, a “fake” subgoal is added to the body of the goal. When

passed a substitution, this “fake” goal checks if the answer term about to be

cached is equivalent to an existing answer term in the cache; if so, the fake goal

fails, keeping the master call from producing a duplicate answer. Otherwise,

CHAPTER 13. IMPLEMENTATION V: TABLING 174

the fake goal extends the cache with the new answer term, then returns the

answer substitution as a singleton stream1.

5. If, on the other hand, the key is found in the table’s association list, we are

making a slave call. Instead of re-running the body of the goal, we reuse the

tabled answers from the corresponding master call. The slave call produces a

stream of answer substitutions by unifying, in the current substitution, ansv∗

with each cached answer term. Due to miniKanren’s interleaving search, a

master call may not produce all of its answers immediately. Therefore, the

answer stream produced by a slave call may need to suspend periodically,

“awakening” when the master call produces new answer terms for the slave to

consume.

Recall that the algorithm reaches a fixed point when all the master calls have

finished producing answers, and each slave call has consumed every answer term

produced by its corresponding master call. In the process of consuming a cached

answer term, a slave call might make a new master or slave call.

13.3 Waiting Streams

We extend the a∞ stream datatype described in section 3.3 with a new variant: a

waiting stream w is a non-empty proper list ((ss ss∗ . . .)) of suspended streams. The

waiting stream datatype allows us to express a disjunction of suspended streams;
1This singleton stream is actually a waiting stream, described in section 13.3.

CHAPTER 13. IMPLEMENTATION V: TABLING 175

just as importantly, the datatype makes it easier to recognize when a fixed point

has been reached, as described below.

(define w? (λ (x) (and (pair? x) (ss? (car x)))))

New singleton waiting streams are created in the reuse function described in sec-

tion 13.5. The only way to create a waiting stream containing multiple suspended

streams is through disjunction (see the definition of mplus below).

The addition of the waiting stream type requires us to extend the definition of

case∞ from section 3.3 with a new w clause.

(define-syntax case∞

(syntax-rules ()
((_ e (() e0) ((f̂) e1) ((w) ew) ((â) e2) ((a f) e3))
(let ((a∞ e))

(cond
((not a∞) e0)
((procedure? a∞) (let ((f̂ a∞)) e1))
((and (pair? a∞) (procedure? (cdr a∞)))
(let ((a (car a∞)) (f (cdr a∞))) e3))

((w? a∞) (w-check a∞

(λ (f̂) e1)
(λ () (let ((w a∞)) ew))))

(else (let ((â a∞)) e2)))))))

The new clause of case∞ expands into a call to w-check, which takes a waiting

stream w, a success continuation sk, and a failure continuation fk. w-check plays a

critical role in finding the fixed point of a program.

w-check looks in w for the first suspended stream ss whose cache contains new

answer terms. If none of the suspended streams contain unseen answer terms, w-

check invokes the failure continuation. Otherwise, sk is passed an f -type stream

CHAPTER 13. IMPLEMENTATION V: TABLING 176

containing the new answers produced by ss, interleaved with answers from a new

waiting stream containing the remaining suspended streams in w.

(define w-check
(λ (w sk fk)

(let loop ((w w) (a (())))
(cond

((null? w) (fk))
((ss-ready? (car w))
(sk (λF ()

(let ((f (ss-f (car w)))
(w (append (reverse a) (cdr w))))

(if (null? w) (f) (mplus (f) (λF () w)))))))
(else (loop (cdr w) (cons (car w) a)))))))

The w case of case∞ actually represents two cases: in the first case, the waiting

stream can produce new answers; in the second case, the stream cannot produce

new answers, although it may be able to in the future.

In the first case, w contains a suspended stream ss ready to produce new answers.

w-check creates a new f -type stream encapsulating the answers from ss, along with

the remainder of the w stream (if non-empty). case∞ then processes this stream as

it would any other f : by evaluating the expression e1 in an extended environment

in which f̂ is bound to the new stream. To see this more clearly, think of the sk

passed to w-check, (λ (f̂) e1), as the equivalent (λ (a∞) (let ((f̂ a∞)) e1)), which

exactly mirrors the code produced in the f̂ case of case∞ .

In the second case, none of the suspended streams in w can produce new answers.

We have therefore reached a fixed point, at least temporarily; this case is analogous

to the () case of case∞ . Unlike in the () case, however, w might produce answers

CHAPTER 13. IMPLEMENTATION V: TABLING 177

later. ew is evaluated in an extended environment in which w is bound to the

waiting stream—this is made most clear in the w case of mplus, below.

Since we have added a clause to case∞ we must redefine take, bind, and mplus.

These functions differ from their definitions in section 3.3 only in the addition of the

w case. However, the w case implicitly uses the expression specified for the f case

as well2, if w contains a suspended stream ready to produce new answers. In this

event, a new f -type stream is constructed that contains not only these new answers

but also the remaining suspended streams in w; this new stream is then handled by

the f case of case∞ .

Here is the updated definition of take.

(define take
(λ (n f)

(if (and n (zero? n))
(())
(case∞ (f)

(() (()))
((f) (take n f))
((w) (()))
((a) a)
((a f) (cons (car a) (take (and n (− n 1)) f)))))))

If w contains a suspended stream ready to produce a new stream of answers, this

new stream is handled by the f case of case∞ . Otherwise, we have reached a fixed

point—therefore, take returns the empty list.

2Or the f̂ case, in the definition of mplus.

CHAPTER 13. IMPLEMENTATION V: TABLING 178

Here is the updated definition of bind.

(define bind
(λ (a∞ g)

(case∞ a∞

(() (mzero))
((f) (inc (bind (f) g)))
((w) (map (λ (ss)

(make-ss (ss-cache ss) (ss-ansv∗ ss)
(λF () (bind ((ss-f ss)) g))))

w))
((a) (g a))
((a f) (mplus (g a) (λF () (bind (f) g)))))))

If w contains a suspended stream ready to produce a new stream of answers, this

new stream is handled by the f case of case∞ . Otherwise, the binding of answer

substitutions to g must be delayed, because the streams in w are all suspended.

bind reconstructs the list w, pushing the bind operation into each rebuilt suspended

stream. If a stream is awakened later, it will then bind its new answers to g.

Here is the updated definition of mplus.

(define mplus
(λ (a∞ f)

(case∞ a∞

(() (f))
((f̂) (inc (mplus (f) f̂)))
((w) (λF () (let ((a∞ (f)))

(if (w? a∞)
(append a∞ w)
(mplus a∞ (λF () w))))))

((a) (choice a f))
((a f̂) (choice a (λF () (mplus (f) f̂)))))))

If w contains a suspended stream ready to produce a new stream of answers, this

new stream is handled by the f case of case∞ . Otherwise, mplus returns a new

CHAPTER 13. IMPLEMENTATION V: TABLING 179

f -type stream. If the second argument to mplus produces a waiting stream ŵ, then

mplus appends the lists ŵ and w, creating a single combined waiting stream. If

mplus’s second argument produces an a∞ that is not a waiting stream, then w is

“pushed” to the back of the new stream. Accumulating all suspended streams in

a single waiting stream at the end of an f -type stream allows w-check to easily

determine if a fixed point has been reached.

13.4 Extending and Abstracting Reification

To avoid prematurely instantiating logic variables, the master and reuse procedures

in section 13.5 copy the list argv of arguments passed to the tabled goal constructor.

This operation is performed by the reify-var function, which is similar in spirit to

Prolog’s copy_term/2, but is implemented by a function rather than a user-level

goal constructor.

Our implementation of reify-var is identical to that of the reify function from

Chapter 3, except that unassociated variables are consistently replaced with newly

created logic variables rather than with symbols. We therefore abstract the reifica-

tion operators, defining them in terms of the make-reify helper, which in turn uses

an abstracted version of reify-s.

(define make-reify
(λ (rep)

(λ (v s)
(let ((v (walk∗ v s)))

(walk∗ v (reify-s rep v empty-s))))))

(define reify (make-reify reify-name))

CHAPTER 13. IMPLEMENTATION V: TABLING 180

(define reify-var (make-reify reify-v))

(define reify-v
(λ (n)

(var n)))

(define reify-s
(λ (rep v s)

(let ((v (walk v s)))
(cond

((var? v) (ext-s-no-check v (rep (length s)) s))
((pair? v) (reify-s rep (cdr v) (reify-s rep (car v) s)))
(else s)))))

13.5 Core Tabling Operators

We are now ready to define the core tabling operators. The tabled user-level form

creates a tabled goal constructor, complete with an empty local association list table

that will contain ((key � cache)) pairs. Section 13.2 describes the behavior of tabled

goal constructors at a high level; most of the interesting work is performed in the

master and reuse helpers, defined below.

(define-syntax tabled
(syntax-rules ()

((_ (x . . .) g g∗ . . .)
(let ((table (())))

(λ (x . . .)
(let ((argv (list x . . .)))

(λG (s)
(let ((key (reify argv s)))

(cond
((assoc key table)
⇒ (λ (key.cache) (reuse argv (cdr key.cache) s)))

(else (let ((cache (make-cache (()))))
(set! table (cons ((key � cache)) table))
((exist () g g∗ . . . (master argv cache)) s))))))))))))

CHAPTER 13. IMPLEMENTATION V: TABLING 181

The master function is invoked during a master call, and returns a “fake” goal

run at the end of the body of the tabled goal. This fake goal checks if the answer term

about to be cached is equivalent to an answer term already in the cache. If so, the

call to the fake goal fails, to avoid producing a duplicate answer. Otherwise, the goal

succeeds, caching the new answer term before returning the answer substitution.

(define master
(λ (argv cache)

(λG (s)
(and

(for-all
(λ (ansv) (not (alpha-equiv? argv ansv s)))
(cache-ansv∗ cache))

(begin
(cache-ansv∗-set! cache (cons (reify-var argv s) (cache-ansv∗ cache)))
s)))))

alpha-equiv? returns true if x and y represent the same term, modulo consistent

replacement of unassociated logic variables.

(define alpha-equiv?
(λ (x y s)

(equal? (reify x s) (reify y s))))

reuse constructs a stream of answer substitutions for a slave call, using the

cached answer terms from the corresponding master call. Like w-check, reuse plays

a critical role in calculating the fixed point of a program. Each call to loop returns

an ((a � f))-type stream until all the answer terms in the cache have been consumed.

reuse then returns a waiting stream3 encapsulating a single suspended stream whose
3This is the only code that introduces a new waiting stream, as opposed to rebuilding or ap-

pending existing waiting streams.

CHAPTER 13. IMPLEMENTATION V: TABLING 182

f calls the outer fix loop, consuming any answer terms produced by the master call

while the stream was suspended. Invoking f restarts the search for a fixed point; to

avoid divergence, w-check does not invoke the f of any suspended stream that does

not contain unseen answer terms.

(define reuse
(λ (argv cache s)

(let fix ((start (cache-ansv∗ cache)) (end (())))
(let loop ((ansv∗ start))

(if (eq? ansv∗ end)
(list (make-ss cache start (λF () (fix (cache-ansv∗ cache) start))))
(choice (subunify argv (reify-var (car ansv∗) s) s)

(λF () (loop (cdr ansv∗)))))))))

reuse depends on subunify to unify the list of unreified arguments in the slave

call with a copy of each cached answer term. Since we know that the unification will

succeed, the definition of subunify is shorter and more efficient than the definition

of unify from Chapter 3.

(define subunify
(λ (arg ans s)

(let ((arg (walk arg s)))
(cond

((eq? arg ans) s)
((var? arg) (ext-s-no-check arg ans s))
((pair? arg) (subunify (cdr arg) (cdr ans)

(subunify (car arg) (car ans) s)))
(else s)))))

The code in this chapter is short but extremely subtle. This subtlety is due to

the use of side effects, interaction of multiple functions to calculate fixed points,

and introduction of the suspended stream and waiting stream datatypes. Under-

CHAPTER 13. IMPLEMENTATION V: TABLING 183

standing how the manipulation of waiting streams by mplus makes the definition of

w-check possible is especially subtle. To fully appreciate this last point, the reader

is encouraged to modify the implementation by replacing all uses of waiting streams

with suspended streams, and then ascertain why many tabled programs diverge as

a result.

Part V

Ferns

184

Chapter 14

Techniques IV: Ferns

In this chapter we provide a bottom-avoiding generalization of core miniKanren

using ferns (Friedman and Wise 1981), a shareable data structure designed to avoid

divergence.

The chapter is organized as follows. Section 14.1 introduces the ferns data struc-

ture and shows examples of familiar recursive functions using ferns. Section 14.2

describes the promotion algorithm (Friedman and Wise 1979) that characterizes

the necessary sharing properties of ferns. Section 14.3 defines bottom-avoiding

logic programming goal constructors, corresponding to core miniKanren with non-

interleaving search. Chapter 15 presents a complete shallow embedding (Boulton

et al. 1992) of the ferns data structure and related operators.

14.1 Introduction to Ferns

Ferns are constructed with cons and cons⊥, originally called frons (Friedman and

Wise 1980), and accessed by car⊥ and cdr⊥, generalizations of car and cdr, respec-

tively. Ferns built with cons⊥ are like streams in that the evaluation of elements is

185

CHAPTER 14. TECHNIQUES IV: FERNS 186

delayed, permitting unbounded data structures. In contrast to streams, the order-

ing of elements is also delayed: convergent values form the prefix in some unspecified

order, while divergent values form the suffix.

We begin with several examples that illustrate the properties of ferns, show-

ing their similarities to and differences from traditional lists and streams. Later,

we include examples that show that a natural recursive style can be used when

programming with ferns and point out the advantages ferns afford the user.

14.1.1 Two Simple Programs

Convergent elements of a fern form its prefix in some unspecified order. For example,

evaluating the expression

(let ((s (cons⊥ 0 (cons⊥ 1 (())))))
(display (car⊥ s)) (display (cadr⊥ s)) (display (car⊥ s)))

prints either 010 or 101, demonstrating that the order of values within a fern is not

specified in advance but remains consistent once determined, while

(let ((s1 (cons⊥ (! 6) ⊥)) (s2 (cons⊥ ⊥ (cons⊥ (! 5) ⊥))))
(cons (car⊥ s1) (car⊥ s2)))

returns (720 . 120), demonstrating that accessing a fern avoids divergence as much

as possible. (⊥ is any expression whose evaluation diverges.) In the latter example,

each fern contains only one convergent value; taking the cdr⊥ of s1 or the cadr⊥ of

s2 results in divergence.

CHAPTER 14. TECHNIQUES IV: FERNS 187

Ferns are shareable data structures; sharing, combined with delayed ordering of

values, can result in surprising behavior. For example, consider these expressions:

(let ((b (cons 2 (()))))
(let ((a (cons 1 b)))

(list (car a) (cadr a) (car b))))

and

(let ((b (cons⊥ 2 (()))))
(let ((a (cons⊥ 1 b)))

(list (car⊥ a) (cadr⊥ a) (car⊥ b))))

The first expression must evaluate to (1 2 2). The second expression may also return

this value—as expected, the car of b would then be equal to the cadr of a. The

second expression might instead return (2 1 2) however; in this case, the car of b

would be equal to the car of a rather than to its cadr. Section 14.2 discusses sharing

in detail.

14.1.2 Recursion

We now present examples of the use of ferns in simple recursive functions. Consider

the definition of ints-from⊥
1.

(define ints-from⊥
(λt (n)

(cons⊥ n (ints-from⊥ (+ n 1)))))

Then (caddr⊥ (ints-from⊥ 0)) could return any non-negative integer, whereas a

stream version would return 2.
1λt is identical to λ, except it creates preemptible procedures. (See Appendix D.)

CHAPTER 14. TECHNIQUES IV: FERNS 188

There is a tight relationship between ferns and lists, since every cons pair is a

fern. The empty fern is also represented by (()), and (pair? (cons⊥ e1 e2)) returns #t

for all e1 and e2. After replacing the list constructor cons with the fern constructor

cons⊥, many recursive functions operating on lists avoid divergence. For example,

map⊥ is defined by replacing cons with cons⊥, car with car⊥, and cdr with cdr⊥ in

the definition of map, and can map a function over an unbounded fern: the value

of (caddr⊥ (map⊥ add1 (ints-from⊥ 0))) can be any positive integer.

Ferns work especially well with annihilators. True values are annihilators for

or⊥

(define or⊥
(λt (s)

(cond
((null? s) #f)
((car⊥ s) (car⊥ s))
(else (or⊥ (cdr⊥ s))))))

which searches in a fern for a true convergent value and avoids divergence if it finds

one: (or⊥ (list⊥ ⊥ (odd? 1) (! 5) ⊥ (odd? 0))) returns some true value, where list⊥

is defined as follows.

(define-syntax list⊥
(syntax-rules ()

((_) (()))
((_ e e∗ . . .) (cons⊥ e (list⊥ e∗ . . .)))))

CHAPTER 14. TECHNIQUES IV: FERNS 189

Let us define append⊥ for ferns.

(define append⊥
(λt (s1 s2)

(cond
((null? s1) s2)
(else (cons⊥ (car⊥ s1) (append⊥ (cdr⊥ s1) s2))))))

To observe the behavior of append⊥, we define take⊥ whose first argument is either

#f (all results) or n > 0 (no more than n results).

(define take⊥
(λt (n s)

(cond
((null? s) (()))
(else (cons (car⊥ s)

(if (and n (= n 1)) (()) (take⊥ (and n (− n 1)) (cdr⊥ s))))))))

When determining the nth value, it is necessary to avoid taking the cdr⊥ after the

nth value is determined, since it is that cdr⊥ that might not terminate and we

already have n results.

The definition of append⊥ appears to work as expected:

(take⊥ 2 (append⊥ (list⊥ 1) (list⊥ ⊥ 2))) ⇒ (1 2).

Moving ⊥ from the second argument to the first, however, reveals a problem:

(take⊥ 2 (append⊥ (list⊥ ⊥ 1) (list⊥ 2))) ⇒ ⊥.

Even though the result of the call to append⊥ should contain two convergent el-

ements, taking the first two elements of that result diverges. This is because the

definition of append⊥ requires that s1 be completely exhausted before any elements

CHAPTER 14. TECHNIQUES IV: FERNS 190

from s2 can appear in the result. If one of the elements of s1 is ⊥, then no element

from s2 will ever appear. The same is true if s1 contains an unbounded number of

convergent elements: since s1 is never null, the result will never contain elements

from s2. With the definition of mplus⊥ in Section 14.3.1, it becomes clear that

the solution to these problems is to interleave the elements from s1 and s2 in the

resulting fern as in the next example.

Functional programs often share rather than copy data, and ferns are designed to

encourage this programming style. Consider a procedure to compute the Cartesian

product of two ferns:

(define Cartesian-product⊥
(λt (s1 s2)

(cond
((null? s1) (()))
(else (mplus⊥ (map⊥ (λt (e) (cons (car⊥ s1) e)) s2)

(Cartesian-product⊥ (cdr⊥ s1) s2))))))

(take⊥ 6 (Cartesian-product⊥ (list⊥ ⊥ a b) (list⊥ x ⊥ y ⊥ z)))

 ((((a � x)) ((a � y)) ((b � x)) ((a � z)) ((b � y)) ((b � z))))

where indicates one of the possible values. This definition ensures that the

resulting fern shares elements with the ferns passed as arguments. Many references

to a particular element may be made without repeating computations, hence the

expression

(take⊥ 2 (Cartesian-product⊥ (list⊥ (begin (display #t) 5)) (list⊥ a ⊥ b)))

((((5 � a)) ((5 � b))))

CHAPTER 14. TECHNIQUES IV: FERNS 191

prints #t exactly once. (There are more examples of the use of ferns in Johnson

(1983), Filman and Friedman (1984), and Jeschke (1995).)

In the next section we look at how the sharing properties of ferns are maintained

alongside bottom-avoidance.

14.2 Sharing and Promotion

In this section, we provide examples and a high-level description of the promotion

algorithm of Friedman and Wise (Friedman and Wise 1979). The values in a fern

are computed and promoted across the fern while ensuring that the correct values

are available from each subfern, ⊥’s are avoided, and non-⊥ values are computed

only once. Ferns have structure, and there may be references to more than one

subfern of a particular fern. Consider the example expression

(let ((δ (cons⊥ (! 6) (()))))
(let ((γ (cons⊥ (! 3) δ)))

(let ((β (cons⊥ (! 5) γ)))
(let ((α (cons⊥ ⊥ β)))

(list (take⊥ 3 α) (take⊥ 3 β) (take⊥ 2 γ) (take⊥ 1 δ))))))

 ((((6 120 720)) ((6 120 720)) ((6 720)) ((720))))

assuming list evaluates its arguments left-to-right. Importantly, accessing δ cannot

retrieve values in the prefix of the enclosing fern α. We now describe in detail

how the result of (take⊥ 3 α) is determined along with the necessary changes to the

fern data structure during this process. Whenever we encounter a choice, we shall

assume a choice consistent with the value returned in the example.

CHAPTER 14. TECHNIQUES IV: FERNS 192

During the first access of α the cdrs are evaluated, as indicated by the arrows in

Figure 14.1a. Figure 14.1b depicts the data structure after (car⊥ α) is evaluated.

We assume that, of the possible values for (car⊥ α), namely ⊥ (which is never

chosen), (! 5), (! 3), and (! 6), the value of (! 3) is chosen and promoted. Since the

value of (! 3) might be a value for (car⊥ β) and (car⊥ γ), we replace the cars of

all three pairs with the value of (! 3), which is 6. We replace the cdrs of α and β

with new frons pairs containing ⊥ and (! 5), which were not chosen. The new frons

pairs are linked together, and linked at the end to the old cdr of γ. Thus α, β, and

γ become a fern with 6 in the car and a fern of the rest of their original possible

values in their cdrs. As a result of the promotion, α, β, and γ become cons pairs,

represented in the figures by rectangles.

Figure 14.1c depicts the data structure after (cadr⊥ α) is evaluated. This time,

(! 5) is chosen from ⊥, (! 5), and (! 6). Since the value of (! 5) is also a possible

value for (cadr⊥ β), we replace the cadrs of both α and β with the value of (! 5),

which is 120, and replace the cddr of α with a frons pair containing the ⊥ that

was not chosen and a pointer to δ. The cddr of β points to δ; no new fern with

remaining possible values is needed because the value chosen for (cadr⊥ β) was the

first value available. As before, the pairs containing values become cons pairs.

CHAPTER 14. TECHNIQUES IV: FERNS 193

(a)

α

⊥

β

!5

γ

!3

δ

!6

(b)

α

6

⊥ !5

β

6

γ

6
δ

!6

(c)

α

6

120

⊥

120

β

6

γ

6
δ

!6

(d)

α

6

120

720

⊥

120

β

6

γ

6
δ
720

Figure 14.1: Fern α immediately after evaluation of cdrs, but before any cars have
finished evaluation (a) and after the values, 6 (b), 120 (c), and 720 (d) have been
promoted.

Figure 14.1d depicts the data structure after (caddr⊥ α) is evaluated. Of ⊥ and

(! 6), it comes as no surprise that (! 6) is chosen. Since the value of (! 6), which is

720, is also a possible value for (car⊥ δ) (and in fact the only one), we update the

car of δ and the car of the cddr of α with 720. The cdr of δ remains as the empty

list, and the cdr of the cddr of α becomes a new frons pair containing ⊥. The cdr of

the new frons pair is the empty list copied from the cdr of δ. The remaining values

are obvious given the final state of the data structure. No further manipulation of

the data structure is necessary to evaluate the three remaining calls to take⊥.

CHAPTER 14. TECHNIQUES IV: FERNS 194

In Figure 14.1d each of the ferns α, β, γ, and δ contains some permutation of

its original possible values, and ⊥ has been pushed to the end of α. Furthermore,

if there are no shared references to β, γ, and δ, the number of accessible pairs is

linear in the length of the fern. If there are references to subferns, for a fern of size

n, the worst case is (n2 + n)/2. But, as these shared references vanish, so do the

additional cons pairs.

If list evaluated from right-to-left instead of evaluating from left-to-right, the

example expression would return ((((720 6 120)) ((720 6 120)) ((720 6)) ((720)))). Each

list would be independent of the others and the last pair of α would be a frons pair

with ⊥ in the car and the empty list in the cdr. This demonstrates that if there

is sharing of these lists, the lists contain four pairs, three pairs, two pairs, and one

pair, respectively. If the example expression just returned α, then only four pairs

would be accessible.

The example presented in this section provides a direct view of promotion. When

a fern is accessed by multiple computations, the promotion algorithm must be able

to handle various issues such as multiple values becoming available for promotion

at once. The code presented in Chapter 15 handles these details.

We are now ready to consider a ferns-based implementation of miniKanren.

14.3 Ferns-based miniKanren

In this section we describe a simple bottom-avoiding logic programming language,

which corresponds to core miniKanren with non-interleaving search. We begin by

CHAPTER 14. TECHNIQUES IV: FERNS 195

describing and implementing operators mplus⊥ and bind⊥ over ferns, and go on

to implement goal constructors in terms of these operators. The fern-based goal

constructors are shown to be more general than the standard stream-based ones

presented in Chapter 32.

14.3.1 mplus⊥ and bind⊥

Since we are developing goal constructors in Scheme, a call-by-value language, we

make mplus⊥ itself lazy to avoid diverging when one or more of its arguments

diverge. This is accomplished by defining mplus⊥ as a macro that wraps its two

arguments in list⊥ before passing them to mplus-aux⊥. In addition, mplus⊥ must

interleave elements from both of its arguments so that a fern of unbounded length

in the first argument will not cause the second argument to be ignored.

(define-syntax mplus⊥
(syntax-rules ()

((_ s1 s2) (mplus-aux⊥ (list⊥ s1 s2)))))

(define mplus-aux⊥
(λt (p)

(cond
((null? (car⊥ p)) (cadr⊥ p))
(else (cons⊥ (caar⊥ p)

(mplus⊥ (cadr⊥ p) (cdar⊥ p)))))))

(define bind⊥
(λt (s f)

(cond
((null? s) (()))
(else (mplus⊥ (f (car⊥ s)) (bind⊥ (cdr⊥ s) f))))))

2See Wand and Vaillancourt (2004) for a historical account of logic combinators.

CHAPTER 14. TECHNIQUES IV: FERNS 196

bind⊥ avoids the same types of divergence as map⊥ described in Section 14.1.2 but

uses mplus⊥ to merge the results of the calls to f . Thus, (bind⊥ (ints-from⊥ 0) ints-from⊥)

is an unbounded fern of integers; for every (nonnegative) integer n, it contains the

integers starting from n and therefore every nonnegative integer n is contained n+1

times. The interleaving leads to duplicates in the following example:

(take⊥ 13 (bind⊥ (ints-from⊥ 0) ints-from⊥)) ((0 1 2 1 3 4 5 6 7 8 9 2 10)).

The addition of unit⊥ and mzero⊥ rounds out the set of operators we need to

implement a minimal miniKanren-like language.

(define unit⊥ (λt (s) (cons s (()))))

(define mzero⊥ (λt () (())))

Using these definitions, we can run programs that require multiple unbounded ferns,

such as this program inspired by Seres and Spivey (Spivey and Seres 2003) that

searches for a pair a and b of divisors of 9 by enumerating the integers from 2 in a

fern of possible values for a and similarly for b:

(car⊥ (bind⊥ (ints-from⊥ 2)
(λt (a)

(bind⊥ (ints-from⊥ 2)
(λt (b)

(if (= (∗ a b) 9) (unit⊥ (list a b)) (mzero⊥)))))))

⇒ ((3 3)).

Using streams instead of ferns in this example, which would be like nesting “for”

loops, would result in divergence since 2 does not evenly divide 9.

CHAPTER 14. TECHNIQUES IV: FERNS 197

14.3.2 Goal Constructors

We are now ready to define three goal constructors: ≡⊥, which unifies terms; disj⊥,

which performs disjunction over goals; and conj⊥, which performs conjunction over

goals3. These goal constructors are required to terminate, and they always return

a goal. A goal is a procedure that takes a substitution and returns a fern of substi-

tutions (rather than a stream of substitutions, as in Chapter 3).

(define-syntax ≡⊥
(syntax-rules ()

((_ u v)
(λt (s)

(let ((s (unify u v s)))
(if (not s) (mzero⊥) (unit⊥ s)))))))

(define-syntax disj⊥
(syntax-rules ()

((_ g1 g2) (λt (s) (mplus⊥ (g1 s) (g2 s))))))

(define-syntax conj⊥
(syntax-rules ()

((_ g1 g2) (λt (s) (bind⊥ (g1 s) g2)))))

A logic program evaluates to a goal; to obtain answers, this goal is applied to

the empty substitution. The result is a fern of substitutions representing answers.

We define run⊥ in terms of take⊥, described in Section 14.1.2, to obtain a list of

answers from the fern of substitutions

(define run⊥
(λt (n g)

(take⊥ n (g empty-s))))

where n is a non-negative integer (or #f) and g is a goal.
3disj⊥ is just a simplified version of conde, while conj⊥ is just a simplified version of exist.

CHAPTER 14. TECHNIQUES IV: FERNS 198

Given two logic variables x and y, here are some simple logic programs that pro-

duce the same answers using both fern-based and stream-based goal constructors.

(run⊥ #f (≡⊥ 1 x)) ⇒ (({x/1}))

(run⊥ 1 (conj⊥ (≡⊥ y 3) (≡⊥ x y))) ⇒ (({x/3, y/3}))

(run⊥ 1 (disj⊥ (≡⊥ x y) (≡⊥ y 3))) ⇒ (({x/y}))

(run⊥ 5 (disj⊥ (≡⊥ x y) (≡⊥ y 3))) ⇒ (({x/y} {y/3}))

(run⊥ 1 (conj⊥ (≡⊥ x 5) (conj⊥ (≡⊥ x y) (≡⊥ y 4)))) ⇒ (())

(run⊥ #f (conj⊥ (≡⊥ x 5) (disj⊥ (≡⊥ x 5) (≡⊥ x 6)))) ⇒ (({x/5}))

It is not difficult, however, to find examples of logic programs that diverge when

using stream-based goal constructors but converge using fern-based constructors:

(run⊥ 1 (disj⊥ ⊥ (≡⊥ x 3))) ⇒ (({x/3}))

(run⊥ 1 (disj⊥ (≡⊥ ⊥ x) (≡⊥ x 5))) ⇒ (({x/5}))

and given idempotent substitutions (Lloyd 1987), the fern-based operators can even

avoid some circularity-based divergence without the occurs-check, while stream-

based operators cannot:

(run⊥ 1 (disj⊥ (≡⊥ (list x) x) (≡⊥ x 6))) ⇒ (({x/6}))

There are functions that represent relations. The relation always-five⊥ associates

5 with its argument an unbounded number of times:

(define always-five⊥
(λt (x)

(disj⊥ (always-five⊥ x) (≡⊥ x 5))))

CHAPTER 14. TECHNIQUES IV: FERNS 199

Because both stream and fern constructors do not evaluate their arguments, we

may safely evaluate the goal (always-five⊥ x), obtaining an unbounded collection of

answers. Using run⊥, we can ask for a finite number of these answers. Because the

ordering of streams is determined at construction time, however, the stream-based

operators cannot even determine the first answer in that collection. This is because

the definition of always-five⊥ is left recursive. The fern-based operators, however,

compute as many answers as desired:

(run⊥ 4 (always-five⊥ x)) ⇒ (({x/5} {x/5} {x/5} {x/5})).

Chapter 15

Implementation VI: Ferns

In this chapter we present a complete, portable, R6RS compliant (Sperber et al.

2007) implementation of ferns1. We begin with a description of engines (Haynes

and Friedman 1987), which we use to handle suspended, preemptible computations.

We then describe and implement frons pairs, the building blocks of ferns. Next we

present car⊥ and cdr⊥, which work on both frons pairs and cons pairs. Taking the

car⊥ of a frons pair involves choosing one of the possible values in the fern and

promoting the chosen value. Taking the cdr⊥ of a frons pair ensures the first value

in the pair is determined and returns the rest of the fern. Taking the car⊥ (cdr⊥)

of a cons pair is the same as taking its car (cdr).

15.1 Engines

An engine is a procedure that computes a delayed value in steps2. To demonstrate

the use of engines, consider the procedure

1The ferns library is available at http://www.cs.indiana.edu/~webyrd/ferns.html
2See Appendix D for our implementation of nestable engines.

200

http://www.cs.indiana.edu/~webyrd/ferns.html

CHAPTER 15. IMPLEMENTATION VI: FERNS 201

(define wait
(λt (n)

(cond
((zero? n) done)
(else (wait (− n 1))))))

To create an engine e to delay a call to (wait 20), we write

(define e (engine (wait 20)))

To partially compute (wait 20), we call e with a number of ticks: (e 5), which

returns either a pair with false in the car and a new advanced engine (one advanced

5 ticks) in the cdr or a pair with unused ticks (always true) in the car and the value

of the computation (here done) in the cdr. In our embedding of engines, a tick is

spent on each call to a procedure defined with λt. Consider

(let loop ((p (e 5)))
(cons (car p) (if (car p) (list (cdr p)) (loop ((cdr p) 5)))))

⇒ ((#f #f #f #f 4 done)).

In this example, (wait 20) calls wait a total of 21 times (including the initial call),

so on the fifth engine invocation, it terminates with 4 unused ticks.

The delayed computation in an engine may involve creating and calling more

engines. When a nested engine (Hieb et al. 1994) consumes a tick, every frons-

enclosing engine also consumes a tick. To see this, we define choose⊥ using engines:

CHAPTER 15. IMPLEMENTATION VI: FERNS 202

(define-syntax choose⊥
(syntax-rules ()

((_ exp1 exp2) (choose-aux⊥ (engine exp1) (engine exp2)))))

(define choose-aux⊥
(λt (e1 e2)

(let ((p (e1 1)))
(if (car p) (cdr p) (choose-aux⊥ e2 (cdr p))))))

Nested calls to choose⊥, for example (choose⊥ v1 (choose⊥ v2 v3)), rely on nestable

engines. This implementation of choose⊥ is fair because our embedding of nested

engines is fair: every tick given to the second engine in the outer call to choose-aux⊥

is passed on to exactly one of the engines, alternating between the engines for v2

and v3, in the inner call to choose-aux⊥.

15.2 The Ferns Data Type

We represent a frons pair by a cons pair that contains at least one tagged engine

(te). Engines are tagged with either L when locked (being advanced by another

computation) or U when unlocked (runnable). We distinguish between locked and

unlocked engines because the car⊥ of a fern may be requested more than once

simultaneously. Thus, to manage effects, the locks prevent the same engine from

being advanced in more than one computation3.

We define simple predicates La?, Ua?, Ld?, and Ud? for testing whether one side

of a frons pair contains a locked or unlocked engine.

3A lock creates a localized critical region that corresponds to the intended use of sting-
unless (Friedman and Wise 1978).

CHAPTER 15. IMPLEMENTATION VI: FERNS 203

(define engine-tag-compare
(λ (get-te tag)

(λ (q)
(and (pair? q) (pair? (get-te q)) (eq? (car (get-te q)) tag)))))

(define La? (engine-tag-compare car L))
(define Ua? (engine-tag-compare car U))
(define Ld? (engine-tag-compare cdr L))
(define Ud? (engine-tag-compare cdr U))

The procedure coaxd (coaxa) takes a frons pair with an unlocked tagged en-

gine in the cdr (car) and locks and advances the tagged engine by nsteps ticks. If

coaxing (Friedman and Wise 1979) the engine does not finish, the tagged engine is

unlocked and updated with the advanced engine. If coaxing the engine finishes with

value v, then v becomes the frons pair’s cdr (car). In addition, the tagged engine

will be updated with an unlocked dummy engine that returns v. We do this because

the cdrs of multiple frons pairs may share a single engine, as will be explained at

the end of this section. Although the cars of frons pairs never share engines, we do

the same for the cars.

(define coaxer
(λ (get-te set-val!)

(λ (q)
(let ((te (get-te q)))

(set-car! te L)
(let ((p (coax (cdr te))))

(let ((b (car p)) (v (cdr p)))
(when b (set-val! q v))
(replace! te U (if b (engine v) v))))))))

(define coax (λ (e) (e nsteps)))
(define coaxa (coaxer car set-car!))
(define coaxd (coaxer cdr set-cdr!))

CHAPTER 15. IMPLEMENTATION VI: FERNS 204

(define replace!
(λ (p a d)

(set-car! p a)
(set-cdr! p d)))

Now we present the implementation of the fern operators.

15.3 cons⊥, car⊥, and cdr⊥

cons⊥ constructs a frons pair by placing unlocked engines of its unevaluated operands

in a cons pair.

(define-syntax cons⊥
(syntax-rules ()

((_ a d) (cons (cons U (engine a)) (cons U (engine d))))))

When the car⊥ (definition below), which is defined only for ferns, is requested,

parallel evaluation of the possible values is accomplished by a round-robin race of

the engines in the fern. During its turn, each engine is advanced a fixed, arbitrary

number of ticks until a value is produced. The race is accomplished by two mutually

recursive functions: racea, which works on the possible values of the fern, and raced,

which moves onto the next frons pair by either following the cdr of the current frons

pair or starting again at the beginning.

CHAPTER 15. IMPLEMENTATION VI: FERNS 205

(define car⊥
(λt (p)

(letrec ((racea

(λt (q)
(cond

((La? q) (wait nsteps) (raced q))
((Ua? q) (coaxa q) (raced q))
((not (pair? q)) (racea p))
(else (promote p) (car p)))))

(raced

(λt (q)
(cond

((Ld? q) (racea p))
((Ud? q) (coaxd q) (racea p))
(else (racea (cdr q)))))))

(racea p))))

racea dispatches on the current pair or value q. When the car of q is a locked engine,

racea waits for it to become unlocked by waiting nsteps ticks and then calling raced.

The call to wait is required to allow racea to be preempted at this point, so the owner

of the lock does not starve. When the car is an unlocked engine, racea advances

the unlocked engine nsteps ticks, then continues the race by calling raced. When q

is not a pair, racea simply starts the race again from the beginning. This happens

when racing over a finite fern and emerges from the else clause of raced. When the

car contains a value, we call promote which ensures a value is promoted to the car

of p, then return that value.

One subtlety of the definition of racea is that after coaxing an engine it does not

check if the coaxing has led to completion. If it has, the value will be picked up the

next time the race comes around, if necessary. Calling promote immediately would

be incorrect because an engine may be preempted while advancing, at which point

CHAPTER 15. IMPLEMENTATION VI: FERNS 206

promotion from p may be performed by another computation with a different value

for the car of p.

raced also dispatches on q, this time examining its cdr. When the cdr of q is

a locked engine, raced, being unable to proceed further down the fern, restarts the

race by calling racea on p. When the cdr of q contains an unlocked engine, raced

advances the engine nsteps ticks as in racea, and then restarts the race. If that

engine finishes with a new frons pair, the new pair will then be competing in the

race and will be examined next time around. When the cdr of q is a value, usually

a fern, raced continues the race by passing it to racea; if a non-pair value is at the

end of a fern, it will be picked up by the third clause in racea.

car⊥ avoids starvation by running each engine in a subfern for the same number

of ticks. During a race, a subfern of the fern in question is in a fair state: for some

(potentially empty) prefix of the subfern there are no engines in the cdrs, so each

potential value in a fair subfern is considered equally. When this fair subfern is not

the entire fern, the race devotes the same number of ticks to lengthening the fair

subfern as it does to each element of that subfern. Since cdr engines often evaluate

to pairs quickly, the entire fern usually becomes fair in a number of races equal to

the length of the fern. When cdr engines do not finish quickly, however, the process

of making the entire fern fair can take much longer, especially for long ferns. The

cost of finding the value of an element occurring near the end of such a fern can be

much greater than the cost for an element near the beginning.

CHAPTER 15. IMPLEMENTATION VI: FERNS 207

Starting from p, promote (definition below) finds the first pair r whose car

contains a convergent value, and propagates that value back to p. Each frons pair

in this chain (excluding r) is transformed into a cons pair whose car is the convergent

value. These new frons pairs are connected as a fern and the last one shares r’s

cdr. When promote is called from racea, we know that q’s car is a value but we

don’t know for certain that there is no other pair, say r, in the chain from p to q.

Thus, we must search from p without preemption to find the closest value to p. This

situation can arise when there are two calls to car⊥ on the same fern competing:

(let ((α (list⊥ (! 5) (! 6))))
(car⊥ (list⊥ ⊥ (car⊥ α) ⊥ (car⊥ α) ⊥)))

If a call to racea finds the value 720 and tries to promote it, but the value 120 has

already been promoted, we don’t want to change the car of α. Instead, the call to

promote when 720 is found will find the 120 first and stop.

(define-syntax lett

(syntax-rules ()
((_ ((x e) . . .) b0 b . . .) ((λt (x . . .) b0 b . . .) e . . .))))

(define promote
(λt (p)

(cond
((La? p) (wait nsteps) (promote p))
((Ua? p)
(set-car! (car p) L)
(lett ((te (car p)))

(lett ((r (promote (cdr p))))
(replace! p (car r) (cons te (cdr r)))
(set-car! te U)
p)))

(else p))))

CHAPTER 15. IMPLEMENTATION VI: FERNS 208

The cdr⊥ of a fern (definition below) cannot be determined until the fern’s car⊥

has been determined. Once the car has been determined, there is no longer parallel

competition between potential cdrs. Thus, we can use cdrs, which takes the cdr of

a stream. Then, since p’s car has been determined, p has therefore become a cons

pair, so cdr⊥ returns the value in p’s cdr. (cars’s definition follows by replacing

all ds by as. conss is the same as cons⊥, and the definitions of the other stream

operators follow the definitions with operators f⊥ replaced by fs.)

(define cdr⊥ (λt (p) (car⊥ p) (cdrs p)))

(define cdrs
(λt (p)

(cond
((Ld? p) (wait nsteps) (cdrs p))
((Ud? p) (coaxd p) (cdrs p))
(else (cdr p)))))

If the engine being advanced by cdrs completes, cdrs indicates that coaxd should

replace the tagged engine in p by the computed value. However, raced and cdr⊥

are required not only to update the frons pair with the calculated value, but also

to update the tagged engine because there might be a fern other than p sharing

this engine. Consider the following expression where we assume list evaluates its

arguments from left to right.

(let ((β (cons⊥ 1 (ints-from⊥ 2))))
(let ((α (cons⊥ ⊥ β)))

(list (car⊥ α) (cadr⊥ β) (cadr⊥ α))))

 ((1 2 2))

CHAPTER 15. IMPLEMENTATION VI: FERNS 209

Figure 15.1 shows the data structures involved in evaluating the expression.

(a)

α

⊥ β

(b)

α

⊥

β
1

ι2

(c)

α

1

⊥

β
1

ι2

(d)

α

1

⊥ γ

β

1

γ
2

ι3

(e)

α

1

2

⊥

β

1

γ
2

ι3

Figure 15.1: Fern α after construction (a); after β in the cdr of α has been evaluated
(b); after 1 from the car of β has been promoted to the car of α, resulting in a
shared tagged engine (c); after the shared engine is run, while evaluating (cadr⊥ β),
to produce a fern γ (d); after 2 from the car of γ has been promoted to the cadr of
α (e).

Figure 15.1a shows α immediately after it has been constructed, with engines delay-

ing evaluation of ⊥ and β. In evaluating (car⊥ α), the engine for β finishes, resulting

in Figure 15.1b. β can now participate in the race for (car⊥ α). Suppose the value

1 found in the car of β is chosen and promoted. The result is Figure 15.1c, in which

the engine delaying (ints-from⊥ 2) is shared by both β and the cdr of α. (cadr⊥

β) forces calculation of (ints-from⊥ 2), which results in a fern, γ, whose first value

(in this example) is 2. Figure 15.1d now shows why coaxd updates the current pair

(β) and creates a new dummy engine with the calculated value (γ): the cddr of α

needs the new engine to avoid recalculation of (ints-from⊥ 2). In Figure 15.1e when

CHAPTER 15. IMPLEMENTATION VI: FERNS 210

(cadr⊥ α) is evaluated, the value 2, calculated already by (cadr⊥ β), is promoted

and the engine delaying (ints-from⊥ 3) is shared by both α and β.

Part VI

Context and Conclusions

211

Chapter 16

Related Work

This chapter describes some of the work by other researchers that is related to the

research presented in this dissertation.

Lloyd (1987) is the standard work on the theoretical foundations of logic pro-

gramming; Doets (1994) has written a more recent introduction to the theory of

logic programming.

The most popular logic programming language is Prolog (Intl. Organization for

Standardization 1995, 2000). Clocksin and Mellish (2003) have written one of the

most popular introductions to the language. Prolog was designed by Colmerauer

(Colmerauer 1985, 1990); Colmerauer and Roussel (1996) describe the early history

of Prolog.

Most modern implementations of Prolog are based on the Warren Abstract

Machine (WAM) (Warren 1983); Aït-Kaci (1991) presents a tutorial reconstruction

of the WAM. Van Roy (1994) describes in detail the first decade of sequential Prolog

implementation techniques after the invention of the WAM.

212

CHAPTER 16. RELATED WORK 213

Apt has advocated using Prolog for declarative programming (1993); unfortu-

nately, Prolog’s design and implementation encourages the use of cut and other

non-logical features. For example, Naish (1995) argues that Prolog programming

without cut is impractical.

There is a long tradition of embedding logic programming operators in Scheme

(Ruf and Weise 1990; Sitaram 1993; Felleisen 1985; Abelson and Sussman 1996;

Bonzon 1990; Haynes 1987). Most of this work was done during the mid-1980’s to

early-1990’s, and most of these embeddings can be seen as attempts to combine

Prolog’s unification and backtracking search with Scheme’s lexical scope and first-

class functions. Similarly, there have been attempts to embed logic programming in

other functional languages, such as Lisp (Robinson and Sibert 1982; Cattaneo and

Loia 1988; Nayak 1989; Komorowski 1979; Kahn and Carlsson 1984) and Haskell

(Spivey and Seres 1999; Seres and Spivey 2000; Spivey and Seres 2003; Claessen

and Ljunglöf 2000; Todoran and Papaspyrou 2000). However, the extent to which

these languages truly integrate functional programming and logic programming is

debatable; as with miniKanren, these embeddings are not functional logic program-

ming languages in the modern sense; they do not provide higher-order unification or

higher-order pattern matching, as in λProlog (Nadathur and Miller 1988; Nadathur

2001), nor do they use narrowing or residuation.

Two modern languages that combine logic programming with functional pro-

gramming are Mercury (Somogyi et al. 1995) and Curry (Hanus et al. 1995). The

syntax and type systems of both languages are inspired by Haskell.

CHAPTER 16. RELATED WORK 214

The Mercury compiler uses programmer-supplied type, mode, and determinism

annotations to compile each goal into multiple functions. this results in very efficient

code, which is essential to the Mercury team’s objective of facilitating declarative

programming “in-the-large”. Unfortunately, this emphasis on the efficiency comes at

the expense of relational programming—forcing, or even permitting, a programmer

to explicitly specify an argument’s mode as “input” or “output” is the antithesis of

relational programming.

The Curry language takes a different approach, integrating functional and logic

programming through the single implementation strategy of narrowing (Antoy et al.

2001); that is, lazy term rewriting, with the ability to instantiate logic variables.

Curry also supports residuation, which allows a goal to suspend if its arguments

are not sufficiently instantiated. For example, a goal that performs addition might

suspend if its first two arguments are not ground. While residuation is a useful

language feature, it inhibits relational programming since the program will diverge

if the arguments never become instantiated.

miniKanren is the descendant of Kanren (Friedman and Kiselyov 2005), another

embedding of logic programming in Scheme. Kanren is closer in spirit to Prolog

than is miniKanren. Philosophically, Kanren was designed for efficiency rather

than for relational programming. Kanren supports neither nominal logic, disequal-

ity constraints, nor tabling. Kanren allows programmers to easily extend existing

relations1.
1This can be done in miniKanren as well, through the technique of function extension. However,

Kanren provides an explicit form for extending a relation.

CHAPTER 16. RELATED WORK 215

Sokuza Kanren is a minimal embedding of logic programming in Scheme; it is

essentially a stripped down version of the core miniKanren implementation from

Chapter 32.

16.1 Purely Relational Arithmetic

Chapter 6 presents a purely relational binary arithmetic system.

We first presented arithmetic predicates over binary natural numbers (including

division and logarithm) in a book (Friedman et al. 2005). That presentation had no

detailed explanations, proofs, or formal analysis; this was the focus of a later paper

(Kiselyov et al. 2008) that presented the arithmetic relations in Prolog rather than

miniKanren. A lengthier, unpublished version of this paper3 includes appendices

containing additional proofs.

Braßel, Fischer, and Huch’s paper (2007) appears to be the only previous de-

scription of declarative arithmetic. It is a practical paper, based on the functional

logic language Curry. It argues for declaring numbers and their operations in the

language itself, rather than using external numeric data types and operations. It

also uses a little-endian binary encoding of positive integers (later extended to signed

integers).

Whereas our implementation of arithmetic uses a pure logic programming lan-

guage, Braßel, Fischer, and Huch use a non-strict functional-logic programming

language. Therefore, our implementations use wildly different strategies and are

not directly comparable. Also, we implement the logarithm relation.
2For example, Sokuza Kanren does not include a reifier.
3http://okmij.org/ftp/Prolog/Arithm/arithm.pdf

http://okmij.org/ftp/Prolog/Arithm/arithm.pdf

CHAPTER 16. RELATED WORK 216

Braßel, Fischer, and Huch leave it to future work to prove termination of their

predicates. In contrast, we have formulated and proved decidability of our predicates

under interleaving search (as used in miniKanren) and depth-first search (used in

Prolog).

Our approach is minimalist and pure; therefore, its methodology can be used in

other logic systems—specifically, Haskell’s type classes. Hallgren (2001) first imple-

mented (unary) arithmetic in such a system, but with restricted modes. Kiselyov

(2005, §6) treats decimal addition more relationally. Kiselyov and Shan (2007) first

demonstrated all-mode arithmetic relations for arbitrary binary numerals, to repre-

sent numerical equality and inequality constraints in the type system. Their type-

level declarative arithmetic library enables resource-aware programming in Haskell

with expressive static guarantees.

16.2 αKanren

αKanren, presented in Chapters 9 and 11, is a nominal logic programming language;

it was based on both miniKanren and αProlog (Cheney 2004a; Cheney and Urban

2004).

Early versions of αProlog implemented equivariant unification (Cheney 2005),

which allows the permutations associated with suspensions to contain logic vari-

ables. The expense of equivariant unification (Cheney 2004b) led Urban and Ch-

eney to replace full equivariant unification with nominal unification (Urban and

Cheney 2005). Cheney’s dissertation presents numerous examples of nominal logic

programming in αProlog (Cheney 2004a).

CHAPTER 16. RELATED WORK 217

MLSOS (Lakin and Pitts 2008) is another nominal logic language, designed for

easily expressing the rules and side-conditions of Structured Operational Semantics

(Plotkin 2004). MLSOS uses nominal unification, and introduces name constraints,

which are essentially disequality constraints restricted to noms (or to suspensions

that will become noms).

Nominal logic was introduced by Pitts (2003). Nominal functional languages

include FreshML (Shinwell et al. 2003), Fresh O’Caml (Shinwell 2006), and Cαml

(Pottier 2006).

The first nominal unification algorithm was presented and proved correct by

Urban et al. (2004); the algorithm was described using idempotent substitutions.

A naive implementation of the Urban et al. algorithm has exponential time

complexity; however, by representing nominal terms as graphs, and by lazily pushing

in swaps, it is possible to implement a polynomial-time version of nominal unification

(Calvès and Fernández 2008; Calvès and Fernández 2007).

More recently, Dowek et al. (2009) presented a variant of nominal unification us-

ing “permissive” nominal terms, which do not require explicit freshness constraints.

To our knowledge, there are no programming languages that currently support per-

missive nominal terms.

16.3 αleanTAP

The αleanTAP relational theorem prover presented in Chapter 10 is based on leanTAP,

a lean tableau-based prover for first-order logic due to Beckert and Posegga (1995).

CHAPTER 16. RELATED WORK 218

Through his integration of leanTAP with the Isabelle theorem prover, Paulson

(1999) shows that it is possible to modify leanTAP to produce a list of Isabelle tactics

representing a proof. This approach could be reversed to produce a proof translator

from Isabelle proofs to αleanTAP proofs, allowing αleanTAP to become interactive

as discussed in section 10.2.2.

The leanTAP Frequently Asked Questions (Beckert and Posegga) states that

leanTAP might be made declarative through the elimination of Prolog’s cuts but

does not address the problem of copy_term/2 or specify how the cuts might be elim-

inated. Other provers written in Prolog include those of Manthey and Bry (1988)

and Stickel (1988), but each uses some impure feature and is thus not declarative.

Christiansen (1998) uses constraint logic programming and metavariables (sim-

ilar to nominal logic’s names) to build a declarative interpreter based on Kowalski’s

non-declarative demonstrate predicate (Kowalski 1979). This approach is similar

to ours, but the Prolog-like language is not complicated by the presence of binders.

Higher-order abstract syntax (HOAS), presented in Pfenning and Elliot (1988),

can be used instead of nominal logic to perform substitution on quantified formulas.

Felty and Miller (1988) were among the first to develop a theorem prover using

HOAS to represent formulas; Pfenning and Schurmann (1999) also use a HOAS

encoding for formulas.

Kiselyov uses a HOAS encoding for universally quantified formulas in his original

translation of leanTAP into miniKanren (Friedman and Kiselyov 2005). Since mi-

CHAPTER 16. RELATED WORK 219

niKanren does not implement higher-order unification, the prover cannot generate

theorems.

Lisitsa’s λleanTAP (2003) is a prover written in λProlog that addresses the prob-

lem of copy_term/2 using HOAS, and is perhaps closest to our own work. Like

αleanTAP , λleanTAP replaces universally quantified variables with logic variables

using substitution. However, λleanTAP is not declarative, since it contains cuts.

Even if we use our techniques to remove the cuts from λleanTAP, the prover does

not generate theorems, since λProlog uses a depth-first search strategy. Generating

theorems requires the addition of a tagging scheme and iterative deepening on every

clause of the program. Even with these additions, however, λleanTAP often gener-

ates theorems that do not have the proper HOAS encoding, since that encoding is

not specified in the prover.

16.4 Tabling

Tabling is essentially an efficient way to find fixed points. Tabling can be used to

implement model checkers, abstract interpreters, deductive databases, and other

useful programs that must calculate fixed points (Guo and Gupta 2009; Warren

1992).

Many Prolog implementations support some form of tabling. XSB Prolog (Sago-

nas et al. 1994), which uses SLG Resolution (Chen and Warren 1996) and the SLG-

WAM abstract machine (Sagonas and Swift 1998), remains the standard testbed

for advanced tabling implementation. Our implementation was originally inspired

CHAPTER 16. RELATED WORK 220

by the Dynamic Reordering of Alternatives (DRA) approach to tabling (Guo and

Gupta 2009, 2001).

16.5 Ferns

Chapter 14 describes ferns, a shareable, bottom-avoiding data structure invented

by Friedman and Wise (1981). Chapter 15 presents our shallow embedding of ferns

in Scheme.

Previous implementations of ferns have been for a call-by-need language. The

work of Friedman and Wise (1979, 1980, 1981) presumes a deep embedding whereas

our approach is a shallow embedding. The function coax is taken from their con-

ceptualization (Friedman and Wise 1979):

COAX is a function which takes a suspension as an argument and returns

a field as a value; that field may have its exists bit true and its pointer

referring to its existent value, or it may have its exists bit false and its

pointer referring to another suspension.

Thus, engines are a user-level, first-class manifestation of suspensions where true

above corresponds to the unused ticks. Johnson’s master’s thesis (1977) under

Friedman’s direction presents a deep embedding in Pascal for a lazy ferns language.

Subsequently, Johnson and his doctoral student Jeschke implemented a series of

native C symbolic multiprocessing systems based on the Friedman and Wise model.

This series culminated with the parallel implementation Jeschke describes in his dis-

CHAPTER 16. RELATED WORK 221

sertation (Jeschke 1995). In their Daisy language, ferns are the means of expressing

explicit concurrency (Johnson 1983).

Chapter 17

Future Work

In this chapter we propose future work related to miniKanren, and to relational

programming in general.

This chapter is organized as follows. In section 17.1 we discuss how our work

on miniKanren might be formalized. Section 17.2 presents possible improvements

to the existing miniKanren implementation, while section 17.3 suggests how the

miniKanren language might be extended. Section 17.4 considers future work on

relational idioms, while section 17.5 proposes future applications of miniKanren.

Finally, in section 17.6 we propose tools that might ease the burden on relational

programmers.

17.1 Formalization

From a formalization standpoint, the most important future work is to create a

formal semantics for miniKanren. Perhaps the simplest approach would be to start

from the operational semantics of the nominal logic programming language MLSOS,

as described in Lakin and Pitts (2008). Of course, miniKanren’s semantics would

222

CHAPTER 17. FUTURE WORK 223

become more complex if the language extensions proposed in section 17.3 were

added. Indeed, it is the interaction between different language features (nominal

unification and constraint logic programming, for example) that will make extending

miniKanren challenging.

The core miniKanren implementation presented in Chapter 3 uses a stream-

based interleaving search strategy. The use of incs (thunks) to force interleaving

makes it difficult to exactly characterize the search behavior, and therefore the order

in which miniKanren produces answers. It would be both interesting and useful to

mathematically describe this interleaving behavior (see section 17.2).

In Chapter 10 we replaced leanTAP’s use of Prolog’s copy_term/2 with a purely

declarative combination of tagging and nominal unification; this technique was key

to making αleanTAP purely relational. Unfortunately, this approach can only be

used when the programmer knows the structure of the terms to be copied. It would

be useful to formalize this technique, to better understand its applicability and

limitations.

The relational arithmetic system presented in Chapter 6 uses bounds on term

sizes to provide strong termination guarantees for arithmetic relations1. A sys-

tematic approach to deriving such bounds on term sizes would be very helpful for

relational programmers. Of course, Gödel and Turing showed that it is impossible to

guarantee termination for all goals we might wish to write, so in general we will not
1At least, for single arithmetic relations whose arguments do not share unassociated logic

variables.

CHAPTER 17. FUTURE WORK 224

be able to achieve finite failure through bounds, or any other technique2. However,

even when such bounds exist, it may be difficult to express them in miniKanren.

Indeed, poorly expressed bounds may themselves cause divergence—for example,

by attempting to eagerly determine the length of an uninstantiated (and therefore

unbounded) list3. A systematic approach to expressing bounds already derived by

the programmer would be most useful.

Section 11.4 presents a Scheme implementation of a nominal unifier that uses

triangular substitutions. This algorithm should be formalized and proved correct,

similar to the presentation of (idempotent) nominal unification in Urban et al.

(2004).

Herman and Wand (2008) use nominal logic to describe an idealized version of

Scheme’s syntax-rules hygienic macro system. It would be interesting to extend

this work to the full syntax-rules system, perhaps by implementing the macro

system as an αKanren relation.

A more speculative area of future work is the connection between the various

causes of divergence described in Chapter 5. As discussed in the conclusion of this

dissertation, there may be a deep connection between these causes of divergence,

and between the techniques for avoiding them. Since divergence is an effect, mon-

ads (Moggi 1991) or arrows (Hughes 1998) may provide the best framework for

exploring these ideas.
2For example, the strong termination guarantees for our arithmetic system do not hold for

conjunction of addition and multiplication goals.
3See Chapter 5 for more on the difficulty of expressing bounds on term sizes.

CHAPTER 17. FUTURE WORK 225

17.2 Implementation

The core miniKanren implementation presented in Chapter 3 uses streams to im-

plement backtracking search4. As described in Wand and Vaillancourt (2004), our

use of streams could be modelled using explicit success and failure continuations.

When extending the miniKanren language, it is sometimes more convenient to use

this two-continuation model of backtracking—for example, the first implementation

of tabling for miniKanren used continuations rather than streams.

The streams implementation of miniKanren makes liberal use of incs (thunks)

to force interleaving in the search. Unfortunately, it is difficult to exactly repli-

cate this interleaving search behavior in the two-continuation model. As a result,

continuation-based implementations of miniKanren may produce answers in a dif-

ferent order than stream-based implementations, which makes it difficult to test,

benchmark, or otherwise compare different implementations. It therefore would be

extremely convenient to have a continuation-based implementation of miniKanren

that exactly mirrors the search behavior of the streams-based implementation from

Chapter 3. This may require a formal characterization of the stream-based search

strategy, as discussed in section 17.1.

We currently use association lists to represent substitutions; we may wish to

consider other purely functional representations of substitutions that would make

variable lookup less expensive. For example, Abdulaziz Ghuloum previously imple-
4Although one could argue that the stream-based implementation performs backtracking search

without actually backtracking.

CHAPTER 17. FUTURE WORK 226

mented a trie-based representation of substitutions that performs at least as well as

the fastest walk-based algorithm presented in Chapter 4. Using a trie-based repre-

sentation of substitutions may mean giving up on the clever method of implementing

disequality constraints described in Chapter 8.

Relational programming is inherently parallelizable. In fact, we have already

implemented two parallel versions of miniKanren: one written in Scheme and one

in Erlang (Armstrong 2003). However, neither parallel implementation runs as

quickly as the sequential implementation of miniKanren presented in Chapter 3.

One difficulty in making a parallel implementation run efficiently is that miniKanren

suffers from an “embarrassment of parallelism”. For example, a recursive goal might

contain a conde whose first clause contains a single unification. The overhead of

sending this single unification to a new core or processor may be more expensive

than just performing the unification. Ciao Prolog solves this problem by performing

a “granularity analysis” to determine which parts of a program perform enough

computation to offset the overhead of parallelization (Debray et al. 1990; Lopez

et al. 1996).

Our purely functional implementation of miniKanren also implies a different set

of design choices than would be made when parallelizing a Prolog implementation

based on the Warren Abstract Machine. In particular, our stream-based search im-

plementation, combined with our functional representation of substitutions5, means
5Gupta and Jayaraman (1993) have explored the tradeoffs of different environment representa-

tions in the context of parallel logic programming.

CHAPTER 17. FUTURE WORK 227

that disjunction is truly parallel: failure of one disjunct does not require communi-

cation with other disjuncts.

Reification of nominal terms is another area for future work. The core-miniKanren

reifier presented in Chapter 3 enforces several important invariants: swapping adja-

cent calls to ≡, swapping arguments within a single call to ≡, or reordering nested

exist clauses6 cannot affect reified answers. We would like αKanren to ensure simi-

lar invariants; however, reification in αKanren is more complicated, since each term

containing a ◃▹ now represents an infinite equivalence class of α-equivalent terms.

Additionally, we do not have a canonical representation for permutations associated

with suspensions. Finally, reification must also handle freshness constraints.

miniKanren uses a complete interleaving search strategy, which ensures disjunc-

tion (conde) is commutative—swapping the order of conde clauses can affect the

order in which answers are returned, but cannot affect whether a goal diverges. In

contrast, miniKanren’s conjunction operators (exist and fresh) are not commu-

tative—swapping conjuncts can cause a goal that previously failed finitely to now

diverge. It is easy to see that commutative conjunction can be implemented: just

run in parallel every possible ordering of conjuncts. Unfortunately, this simplistic

approach is far too expensive to be used in practice. However, it may be possible to

more efficiently implement commutative conjunction by interleaving the evaluation

of conjuncts, and allowing each conjunct to partially extend the substitution. This
6Assuming this is done without inadvertently shadowing variables, or leaving previously bound

variables unbound.

CHAPTER 17. FUTURE WORK 228

would allow conjuncts to communicate with each other by extending the substitu-

tion, thereby allowing the conjunction to “fail fast”, and avoiding the duplication

of work inherent in the naive approach described above. It is not clear whether this

approach is efficient enough to be used throughout an entire program; the program-

mer may need to restrict use of commutative conjunction to conjunctions containing

multiple recursive goals.

Alternatively, it may be possible to simulate commutative conjunction using a

combination of continuations, interleaving search, and tabling. This approach would

only be a simulation of true commutative conjunction because tabling is defeated if

an argument changes with each recursive call.

The core miniKanren implementation presented in Chapter 3 is an embedding

in Scheme, using a combination of procedures and hygienic macros. Although this

embedding allows us to easily benefit from the optimizations provided by a host

Scheme implementation, we lose the ability to analyze or transform entire mini-

Kanren programs. A miniKanren compiler would allow us to perform more sophis-

ticated program analyses. Finally, a miniKanren interpreter7 or abstract machine

would be useful from both an implementation and formalization standpoint.

17.3 Language Extensions

αKanren’s support for nominal logic programming could be extended in several

ways. Perhaps the simplest extension would be to add MLSOS’s name inequal-
7In the long tradition of writing meta-circular Scheme interpreters, a meta-circular miniKanren

interpreter would be especially satisfying.

CHAPTER 17. FUTURE WORK 229

ity constraint (Lakin and Pitts 2008), which is essentially a disequality constraint

limited to noms (and to suspensions that will become noms). A more ambitious

extension would be to add full disequality constraints to αKanren. One might also

implement equivariant unification (Cheney 2005), which extends nominal unifica-

tion with the ability to include logic variables in permutations; however, the expense

of equivariant unification (Cheney 2004b) limits its appeal8. Dowek et al. (2009) re-

cently presented a variant of nominal unification using “permissive” nominal terms,

which do not require explicit freshness constraints; permissive nominal terms might

simplify reification of αKanren answers.

Our tabling implementation does not currently work with disequality constraints

or freshness constraints. It would be very useful to extend tabling to work with these

constraints. Alternatively, it may be possible to add tabling to αKanren by using

permissive nominal terms, which do not require freshness constraints.

Gupta et al. (2007) have implemented a coinductive logic programming language

that can express infinite streams using coinductive definitions of goals. The heart

of their system is an implementation of tabling, in which unification rather than

reification is used to determine whether a call is a variant of an already tabled call.

It should be straightforward to add coinductive logic programming to miniKanren,

since we have already implemented tabling. Also, it would be interesting to inves-

tigate if other notions of variant calls make sense—for example, what if we used
8Although Urban and Cheney (2005) show that it is often possible to avoid full equivariant

unification in real programs.

CHAPTER 17. FUTURE WORK 230

subsumption instead of reification or unification? Would we get a different type

of logic programming? Finally, the streams that can be created using the system

of Gupta et al. must have a regular structure—for example, their system cannot

represent a stream of all the prime numbers. How might more sophisticated streams

be expressed?

One alternative to requiring the occurs check for sound unification is to allow

infinite terms, as in Prolog II. This would require changing the reifier to print

circular terms. We would also want our core language forms, such as disequality

constraints, to handle infinite terms9.

An extremely useful extension to miniKanren would be the addition of constraint

logic programming, or CLP (Jaffar and Maher 1994)10. The notation ‘CLP(X)’

refers to constraint logic programming over some domain ‘X’; common domains

include the integers (CLP(Z)), rational numbers (CLP(Q)), real numbers (CLP(R)),

and finite domains (CLP(FD)). Most useful for existing applications of miniKanren

would be CLP(FD) and CLP(Z), which would allow us to declaratively express

arithmetic in a more efficient manner than the arithmetic system of Chapter 611.

miniKanren, like Scheme, is dynamically-typed. Siek and Taha (2006) show how
9SWI Prolog (Wielemaker 2003) includes many predicates that work on infinite terms, and

might serve as an inspiration.
10Actually, miniKanren and αKanren already support several types of constraints: unification

(≡) and dis-unification (̸=) constraints, and the freshness constraints of nominal logic. However,
there are many other types of constraints we might want to add.

11The declarative arithmetic system of Chapter 6 has several advantages over the constraint
approach, however. As opposed to CLP(FD), our system works on numbers of arbitrary size.
Our system is also implemented entirely at the user-level language, without any constraints other
than unification, while adding CLP(FD) or CLP(Z) requires significant changes to the underlying
implementation, and may interact in undesirable ways with other language features.

CHAPTER 17. FUTURE WORK 231

gradual typing can be used to add a sophisticated type system to a dynamically

typed language, without giving up the flexibility of dynamic typing12. It would

be interesting to apply this typing scheme to miniKanren, since supporting logic

variables and constraints may require extending the notions of gradual typing.

Relational goals often append two lists; if the first list is an uninstantiated logic

variable, this results in infinitely many answers, which can easily lead to divergence.

It may be possible to create an append constraint that represents the delayed ap-

pending of two lists, and avoids enumerating infinitely many appended lists.

Another line of future work would be to implement non-standard logics for rela-

tional programming, such as temporal logic, linear logic, and modal logic. Of course,

supporting any of these logics would require significant changes to miniKanren, and

would require careful consideration of how various language extensions would inter-

act with the new logic.

Modern functional logic programming languages like Curry are based on nar-

rowing (Antoy et al. 2001), which combines term rewriting with the ability to in-

stantiate logic variables. It would be interesting to implement a language based

on nominal narrowing—that is, narrowing based on nominal rewriting (Fernández

and Gabbay 2007). This would allow a single implementation to express nominal

functional programming (as in FreshML (Shinwell et al. 2003) or Cαml (Pottier

2006)), nominal logic programming (as in αProlog (Cheney and Urban 2004), ML-
12There has also been recent work on adding something like gradual typing to Prolog (see (Schri-

jvers et al. 2008b), although it is unclear whether these researchers are aware of the Scheme com-
munity’s work on gradual typing and soft typing (Cartwright and Fagan 1991).

CHAPTER 17. FUTURE WORK 232

SOS (Lakin and Pitts 2008), or αKanren), hygienic macros (as in Scheme13), and

nominal term rewriting (as in Maude (Clavel et al. 2003), Stratego (Visser 2001),

or PLT Redex (Matthews et al. 2004), but with the addition of nominal logic).

Like MLSOS and αProlog, αKanren is well suited for expressing the rules and

side-conditions of Structural Operational Semantics (SOS) (Plotkin 2004). It would

be informative to explore which SOS rules or side-conditions cannot be easily ex-

pressed in αKanren; such an exercise would likely result in new constraints and

other language extensions. Similarly, it would be informative to investigate which

Scheme, Prolog, and Curry programs we cannot satisfactorily express in a purely

relational manner.

Perhaps the greatest challenge in extending miniKanren is to combine all of these

language features in a meaningful way. Ciao Prolog attempts to control interactions

between language features through a module system (Gras and Hermenegildo 1999).

The addition of libraries to the R6RS Scheme standard (Sperber et al. 2007) should

allow us to do the same. However, a more sophisticated approach based on mon-

ads and monad transformers may better control the interaction between language

features.

17.4 Idioms

Okasaki (1999) has investigated the use of purely functional data structures, many

of which are comparable in efficiency to imperative data structures14. Even more
13Herman and Wand (2008) describe a simplified version of Scheme’s syntax-rules macro system

using nominal logic.
14Indeed, uses of purely functional data structures can be even more efficient than uses of im-

perative data structures, due to sharing.

CHAPTER 17. FUTURE WORK 233

so than in functional programming, data representation is essential to relational

programming. Therefore, it would be interesting and useful to investigate the use

of purely relational data structures—that is, data structures and data representa-

tions that are especially well-suited for relational programming. Some of these data

structures might take advantage of relational language features such as nominal

unification or constraints.

Also, as mentioned in section 17.1, it would be useful to formalize our combi-

nation of tagging and nominal unification to emulate Prolog’s copy_term/2 in a

purely declarative manner.

17.5 Applications

It should be relatively easy to extend the arithmetic system of Chapter 6 to han-

dle rational numbers. Probably the most difficult part of this exercise would be

maintaining fractions in simplified form.

An interesting extension to the type inferencer in section 9.3 would be to support

polymorphic-let (Pierce 2002). At a minimum, this would require a declarative

way to perform a combination of substitution and term copying. Of course, the

implementation of αleanTAP in Chapter 10 also uses these techniques. However,

there may be enough differences between αleanTAP and the type inferencer to make

applying these techniques difficult or impossible. If so, a new type of constraint

may be called for.

CHAPTER 17. FUTURE WORK 234

As described in Chapter 10, the αleanTAP theorem prover allows a user to guide

the proof search by partially instantiating the prover’s proof-tree argument. It

should be possible to extend αleanTAP , making it act as a rudimentary interactive

proof assistant. This would further demonstrate the flexibility of relational pro-

gramming; more importantly, creating such a tool might require new techniques

that would be useful for writing relational programs in general.

17.6 Tools

As mentioned in section 17.1, integrating bounds on term size into an existing

relation can be difficult. A tool that could take a relation, along with a specification

of bounds on the argument sizes, and synthesize a new relation that incorporates

those bounds would be extremely helpful.

A tool to automatically translate Scheme programs to miniKanren would also

be handy. Ideally, this tool would generate purely relational miniKanren code ad-

hering to the non-overlapping principle (see section 7.3). This may be possible, at

least for many simple Scheme functions, if the programmer were to help the tool

by specifying how to represent terms, along with an appropriate tagging scheme.

However, deriving miniKanren relations from Scheme functions is not the real diffi-

cultly—rather, ensuring finite failure for a wide variety of arguments is what makes

relational programming so difficult.

A Prolog-to-Scheme translator would also be useful. Translating pure Prolog

programs into miniKanren should be very easy, especially since the λe pattern-

matching macro is similar to Prolog’s pattern matching syntax.

Chapter 18

Conclusions

This dissertation presents the following high-level contributions:

1. A collection of idioms, techniques, and language constructs for relational pro-

gramming, including examples of their use, and a discussion of each technique

and when it should or should not be used.

2. Various implementations of core miniKanren and its variants, which utilize

the full power of Scheme, are concise and easily extensible, allow sharing of

substitutions, and provide backtracking “for free”.

3. A variety of programs demonstrating the power of relational programming.

4. A clear philosophical framework for the practicing relational programmer.

More specifically, this dissertation presents:

1. A novel constraint-free binary arithmetic system with strong termination guar-

antees.

235

CHAPTER 18. CONCLUSIONS 236

2. A novel technique for eliminating uses of copy_term/2, using nominal logic

and tagging.

3. A novel and extremely flexible lean tableau theorem prover that acts as a

proof generator, theorem generator, and even a simple proof assistant.

4. The first implementation of nominal unification using triangular substitutions,

which is much faster than a naive implementation that follows the formal

specification by using idempotent substitutions.

5. An elegant, streams-based implementation of tabling, demonstrating the ad-

vantage of embedding miniKanren in a language with higher-order functions.

6. A novel walk-based algorithm for variable lookup in triangular substitutions,

which is amenable to a variety of optimizations.

7. A novel approach to expression-level divergence avoidance using ferns, includ-

ing the first shallow embedding of ferns.

The result of these contributions is a set of tools and techniques for relational

programming, and example applications informing the use of these techniques.

As stated in the introduction, the thesis of this dissertation is that miniKanren

supports a variety of relational idioms and techniques, making it feasible and use-

ful to write interesting programs as relations. The technique and implementation

chapters should establish that miniKanren supports a variety of relational idioms

CHAPTER 18. CONCLUSIONS 237

and techniques. The application chapters should establish that it is feasible and

useful to write interesting programs as relations in miniKanren, using these idioms

and techniques.

A common theme throughout this dissertation is divergence, and how to avoid it.

Indeed, an alternative title for this dissertation could be, “Relational Programming

in miniKanren: Taming ⊥.”1 As we saw in Chapter 5, there are many causes

of divergent behavior, and different techniques are required to tame each type of

divergence. Some of these techniques merely require programmer ingenuity, such as

the data representation and bounds on term size used in the arithmetic system of

Chapter 6. Other techniques, such as disequality constraints and tabling, require

implementation-level support.

Gödel and Turing showed that it is impossible to guarantee termination for every

goal we might wish to write. However, this does not mean that we should give up the

fight. Rather, it means that we must be willing to thoughtfully employ a variety

of techniques when writing our relations—as a result, we can write surprisingly

sophisticated programs that exhibit finite failure, such as our declarative arithmetic

system. It also means we must be creative, and willing to invent new declarative

techniques when necessary—perhaps a new type of constraint or a clever use of

nominal logic, for example2.
1With apologies to Olin Shivers.
2We can draw inspiration and encouragement from work that has been done on NP-complete

and NP-hard problems. Knowing that a problem is NP hard is not the end of the story, but rather
the beginning. Special cases of the general problem may be computationally tractable, while
probabilistic or approximation algorithms may prove useful in the general case. (A good example
is probabilistic primality testing, used in cryptography for decades. Although Agrawal et al. (2002)

CHAPTER 18. CONCLUSIONS 238

Of course, no one is forcing us to program relationally. After trying to wrangle

a few recalcitrant relations into termination, we may be tempted to abandon the

relational paradigm, and use miniKanren’s impure features like conda and project.

We might then view miniKanren as merely a “cleaner”, lexically scoped version of

Prolog, with S-expression syntax and higher-order functions. However tempting

this may be, we lose more than the flexibility of programs once we abandon the

relational approach: we lose the need to construct creative solutions to difficult yet

easily describable problems, such as the rembero problem in Chapter 7.

The difficulties of relational programming should be embraced, not avoided. The

history of Haskell has demonstrated that a commitment to purity, and the severe

design constraints this commitment implies, leads to a fertile and exciting design

space. From this perspective, the relationship between miniKanren and Prolog is

analogous to the relationship between Haskell and Scheme. Prolog and Scheme

allow, and even encourage, a pure style of programming, but do not require it; in a

pinch, the programmer can always use the “escape hatch” of an impure operator, be

it cut, set!, or a host of other convenient abominations, to leave the land of purity.

miniKanren and Haskell explore what is possible when the escape hatch is welded

shut. Haskell programmers have learned, and are still learning, to avoid explicit

effects by using an ever-expanding collection of monads; miniKanren programmers

recently showed that primality testing can be performed deterministically in polynomial time, the
potentially fallible probabilistic approach is still used is practice, since it is more efficient.) A
researcher in this area must be willing to master and apply a variety of techniques to construct
tractable variants of these problems. Similarly, a relational programmer must be willing to master
and apply a variety of techniques in order to construct a relation that fails finitely. This often
involves trying to find approximations of logical negation (such as various types of constraints).

CHAPTER 18. CONCLUSIONS 239

are learning to avoid divergence by using an ever-expanding collection of declarative

techniques, many of which express limited forms of negation in a bottom-avoiding

manner. Haskell and miniKanren show that, sometimes, painting yourself into a

corner can be liberating3.

A final, very speculative observation: it may be possible to push the analogy

between monads and techniques for bottom avoidance further. Before Moggi’s work

on monads (Moggi 1991), the relationship between different types of effects was not

understood—signaling an error, printing a message, and changing a variable’s value

in memory seemed like very different operations. Moggi showed how these appar-

ently unrelated effects could be encapsulated using monads, providing a common

framework for a wide variety of effects. Could it be that the various types of di-

vergence described in Chapter 5 are also related, in a deep and fundamental way?
3President John F. Kennedy expressed this idea best, in his remarks at the dedication of the

Aerospace Medical Health Center, the day before he was assassinated.
We have a long way to go. Many weeks and months and years of long, tedious

work lie ahead. There will be setbacks and frustrations and disappointments. There
will be, as there always are,. . .temptations to do something else that is perhaps easier.
But this research here must go on. This space effort must go on. . . . That much we
can say with confidence and conviction.

Frank O’Connor, the Irish writer, tells in one of his books how, as a boy, he and
his friends would make their way across the countryside, and when they came to an
orchard wall that seemed too high and too doubtful to try and too difficult to permit
their voyage to continue, they took off their hats and tossed them over the wall—and
then they had no choice but to follow them.

This Nation has tossed its cap over the wall of space, and we have no choice but
to follow it. Whatever the difficulties, they will be overcome. Whatever the hazards,
they must be guarded against. With the. . .help and support of all Americans, we will
climb this wall with safety and with speed—and we shall then explore the wonders
on the other side.

Remarks at the Dedication of the Aerospace Medical Health Center
President John F. Kennedy
San Antonio, Texas
November 21, 1963

CHAPTER 18. CONCLUSIONS 240

Indeed, divergence itself is an effect. From the monadic viewpoint, divergence is

equivalent to an error, while from the relational programming viewpoint, divergence

is equivalent to failure; is there a deeper connection?

Appendix A

Familiar Helpers

The auxiliaries below are used in the implementation of αKanren in Chapter 11.

(define get
(λ (x s)

(cond
((assq x s) ⇒ cdr)
(else x))))

(define assp
(λ (p s)

(cond
((null? s) #f)
((p (car (car s))) (car s))
(else (assp p (cdr s))))))

(define filter
(λ (p s)

(cond
((null? s) (()))
((p (car s)) (cons (car s) (filter p (cdr s))))
(else (filter p (cdr s))))))

(define remove-duplicates
(λ (s)

(cond
((null? s) (()))
((memq (car s) (cdr s)) (remove-duplicates (cdr s)))
(else (cons (car s) (remove-duplicates (cdr s)))))))

241

Appendix B

pmatch

In this appendix we describe pmatch, a simple pattern matcher written by Oleg

Kiselyov. Let us first consider a simple example of pmatch.

(define h
(λ (x y)

(pmatch ((x � y))
(((a � b)) (guard (number? a) (number? b)) (+ a b))
(((_ � c)) (guard (number? c)) (∗ c c))
(else (∗ x x)))))

(list (h 1 2) (h w 5) (h 6 w)) ⇒ ((3 25 36))

In this example, a dotted pair is matched against three different kinds of patterns.

In the first pattern, the value of x is lexically bound to a and the value of y

is lexically bound to b. Before the pattern match succeeds, however, an optional

guard is run within the scope of a and b. The guard succeeds only if x and y are

numbers; if so, then the sum of x and y is returned.

The second pattern matches against a pair, provided that the optional guard

succeeds. If so, the value of y is lexically bound to c, and the square of y is returned.

242

APPENDIX B. PMATCH 243

If the second pattern fails to match against ((x � y)), because y is not a number,

then the third and final clause is tried. An else pattern matches against any value,

and never includes a guard. In this case, the clause returns the square of x, which

must be a number in order to avoid an error at runtime.

Below is the definition of pmatch, which is implemented using continuation-

passing-style macros (Hilsdale and Friedman 2000).

(define-syntax pmatch
(syntax-rules (else guard)

((_ (op arg . . .) cs . . .)
(let ((v (op arg . . .)))

(pmatch v cs . . .)))
((_ v) (if #f #f))
((_ v (else e0 e . . .)) (begin e0 e . . .))
((_ v (pat (guard g . . .) e0 e . . .) cs . . .)
(let ((fk (λ () (pmatch v cs . . .))))

(ppat v pat
(if (and g . . .) (begin e0 e . . .) (fk))
(fk))))

((_ v (pat e0 e . . .) cs . . .)
(let ((fk (λ () (pmatch v cs . . .))))

(ppat v pat (begin e0 e . . .) (fk))))))

(define-syntax ppat
(syntax-rules (_ quote unquote)

((_ v _ kt kf) kt)
((_ v () kt kf) (if (null? v) kt kf))
((_ v (quote lit) kt kf)
(if (equal? v (quote lit)) kt kf))

((_ v (unquote var) kt kf) (let ((var v)) kt))
((_ v (x . y) kt kf)
(if (pair? v)

(let ((vx (car v)) (vy (cdr v)))
(ppat vx x (ppat vy y kt kf) kf))

kf))
((_ v lit kt kf) (if (equal? v (quote lit)) kt kf))))

APPENDIX B. PMATCH 244

The first clause ensures that the expression whose value is to be pmatched

against is evaluated only once. The second clause returns an unspecified value if no

other clause matches.

The remaining clauses represent the three types of patterns supported by pmatch.

The first is the trivial else clause, which matches against any datum, and which

behaves identically to an else clause in a cond expression. The other two clauses

are identical, except that the first one includes a guard containing one or more

expressions—if the datum matches against the pattern, the guard expressions are

evaluated in left-to-right order. If a guard expression evaluates to #f, then it is as

if the datum had failed to match against the pattern: the remaining guard expres-

sions are ignored, and the next clause is tried. The expression (fk) is evaluated if

the pattern it is associated with fails to match, or if the pattern matches but the

guard fails.

ppat does the actual pattern matching over constants and pairs. The wild-

card pattern _ matches against any value1; the second pattern matches against

the empty list; the third pattern matches against a quoted value; and the fourth

pattern matches against any value, and binds that value to a lexical variable with

the specified identifier name. The fifth pattern matches against a pair, tears it

apart, and recursively matches the car of the value against the car of the pattern.

If that succeeds, the cdr of the value is recursively matched against the cdr of the
1The pmatch presented in (Byrd and Friedman 2007) uses a single underscore (_) as the wild-

card pattern. Here we use a double underscore (__) for compatibility with R6RS.

APPENDIX B. PMATCH 245

pattern. (We use let to avoid building long car/cdr chains.) The last pattern

matches against constants, including symbols.

Here is the definition of h after expansion.

(define h
(λ (x y)

(let ((v ((x � y))))
(let ((fk (λ ()

(let ((fk (λ () (∗ x x))))
(if (pair? v)

(let ((vx (car v)) (vy (cdr v)))
(let ((c vy))

(if (number? c) (∗ c c) (fk))))
(fk))))))

(if (pair? v)
(let ((vx (car v)) (vy (cdr v)))

(let ((a vx))
(let ((b vy))

(if (and (number? a) (number? b))
(+ a b)
(fk)))))

(fk))))))

There are four kinds of improvements that should be resolved by the compiler.

First, vx is not used in the top definition of fk, so it should not get a binding. Second,

the binding to a and b should be parallel let bindings. Third, where c is bound,

could have been where vy is bound, and where a and b are bound, could have been

where vx and vy are bound, respectively. Fourth, thunk creation is unnecessary

where no guard is present.

APPENDIX B. PMATCH 246

The mv-let macro used in Chapter 11 can be defined using pmatch.

(define-syntax mv-let
(syntax-rules ()

((_ ((x . . .) e) b0 b . . .) (pmatch e ((x . . .) b0 b . . .)))))

(mv-let ((x y z) (list 1 2 3)) (+ x y z)) ⇒ 6

Appendix C

matche and λe

In this appendix we describe matche and λe, pattern-matching macros for writ-

ing concise miniKanren programs. These macros were designed by Will Byrd and

implemented by Ramana Kumar with the help of Dan Friedman.

To illustrate the use of matche and λe we will rewrite the explicit definition of

appendo, which uses the core miniKanren operators ≡, conde, and exist.

(define appendo

(λ (l s out)
(conde

((≡ (()) l) (≡ s out))
((exist (a d res)

(≡ ((a � d)) l)
(≡ ((a � res)) out)
(appendo d s res))))))

We can shorten the appendo definition using matche. matche resembles pmatch

(Appendix B) syntactically, but uses unification rather than uni-directional pattern

matching. matche expands into a conde; each matche clause becomes a

247

APPENDIX C. MATCHE AND λE 248

conde clause1. As with pmatch the first expression in each clause is an implicitly

quasiquoted pattern. Unquoted identifiers in a pattern are introduced as unassoci-

ated logic variables whose scope is limited to the pattern and goals in that clause.

Here is appendo defined with matche.

(define appendo

(λ (l s out)
(matche ((l s out))

((((()) s s)))
(((((a � d)) s ((a � res)))) (appendo d s res)))))

The pattern in the first clause attempts to unify the first argument of appendo with

the empty list, while also unifying appendo’s second and third arguments. The

same unquoted identifier can appear more than once in a matche pattern; this is

not allowed in pmatch.

We can make appendo even shorter by using λe. λe just expands into a λ wrapped

around a matche—the matche matches against the λ’s argument list2.

(define appendo

(λe (l s out)
((((()) s s)))
(((((a � d)) s ((a � res)))) (appendo d s res))))

The double-underscore symbol _ represents a pattern wildcard that matches

any value without binding it to a variable. For example, the pattern in pairo

1The matcha and matchu forms are identical to matche, except they expand into uses of
conda and condu, respectively.

2The λa and λu forms are identical to λe, except they expand into uses of matcha and matchu,
respectively.

APPENDIX C. MATCHE AND λE 249

(define pairo

(λe (x)
(((((_ � _)))))))

matches any pair, regardless of the values of its car and cdr.

λe and matche also support nominal logic (see Chapter 9). Just as unquoted

identifiers in a pattern are introduced as unassociated logic variables, using unquote

splicing in a pattern introduces a fresh nom whose scope is limited to the pattern

and goals in that clause. For example, the goal constructor

(define foo
(λ (t)

(fresh (a b)
(exist (x y)

(conde

((≡ (◃▹ a (◃▹ b ((x b)))) t))
((≡ (◃▹ a (◃▹ b ((y b)))) t))
((≡ (◃▹ a (◃▹ b ((b y)))) t))
((≡ (◃▹ a (◃▹ b ((b y)))) t)))))))

can be re-written as

(define foo
(λe (t)

(((tie @a ((tie @b ((x @b)))))))
(((tie @a ((tie @b ((y @b)))))))
(((tie @a ((tie @b ((@b y)))))))
(((tie @a ((tie @b ((@b y)))))))))

where tie is the tag returned by the ◃▹ constructor3.

3Unfortunately, this explicit pattern matching breaks the abstraction of the ◃▹ constructor.

APPENDIX C. MATCHE AND λE 250

Here is the definition of λe, and its impure variants λa and λu.

(define-syntax λe

(syntax-rules ()
((_ (x . . .) c c∗ . . .)
(λ (x . . .) (matche (quasiquote (unquote x) . . .) (c c∗ . . .) ())))))

(define-syntax λa

(syntax-rules ()
((_ (x . . .) c c∗ . . .)
(λ (x . . .) (matcha (quasiquote (unquote x) . . .) (c c∗ . . .) ())))))

(define-syntax λu

(syntax-rules ()
((_ (x . . .) c c∗ . . .)
(λ (x . . .) (matchu (quasiquote (unquote x) . . .) (c c∗ . . .) ())))))

Here is the definition of matche, and its impure variants matcha and matchu.

(define-syntax exist∗
(syntax-rules ()

((_ (x . . .) g0 g . . .)
(λG (a)

(inc
(let∗ ((x (var x)) . . .)

(bind∗ (g0 a) g . . .)))))))

(define-syntax fresh∗

(syntax-rules ()
((_ (x . . .) g0 g . . .)
(λG (a)

(inc
(let∗ ((x (nom x)) . . .)

(bind∗ (g0 a) g . . .)))))))

(define-syntax matche

(syntax-rules ()
((_ (f x . . .) g∗ . cs)
(let ((v (f x . . .))) (matche v g∗ . cs)))

((_ v g∗ . cs) (mpat conde v (g∗ . cs) ()))))

APPENDIX C. MATCHE AND λE 251

(define-syntax matcha

(syntax-rules ()
((_ (f x . . .) g∗ . cs)
(let ((v (f x . . .))) (matcha v g∗ . cs)))

((_ v g∗ . cs) (mpat conda v (g∗ . cs) ()))))

(define-syntax matchu

(syntax-rules ()
((_ (f x . . .) g∗ . cs)
(let ((v (f x . . .))) (matchu v g∗ . cs)))

((_ v g∗ . cs) (mpat condu v (g∗ . cs) ()))))

(define-syntax mpat
(syntax-rules (_ quote unquote unquote-splicing expand cons)

((_ co v () (l . . .)) (co l . . .))
((_ co v (pat) xs as ((g . . .) . cs) (l . . .))
(mpat co v cs (l . . . ((fresh∗ as (exist∗ xs (≡ pat v) g . . .))))))

((_ co v ((_ g0 g . . .) . cs) (l . . .))
(mpat co v cs (l . . . ((exist () g0 g . . .)))))

((_ co v (((unquote y) g0 g . . .) . cs) (l . . .))
(mpat co v cs (l . . . ((exist (y) (≡ y v) g0 g . . .)))))

((_ co v (((unquote-splicing b) g0 g . . .) . cs) (l . . .))
(mpat co v cs (l . . . ((fresh (b) g0 g . . .)))))

((_ co v ((pat g . . .) . cs) ls)
(mpat co v (pat expand) () () ((g . . .) . cs) ls))

((_ co v (_ expand . k) (x . . .) as cs ls)
(mpat co v ((unquote y) . k) (y x . . .) as cs ls))

((_ co v ((unquote y) expand . k) (x . . .) as cs ls)
(mpat co v ((unquote y) . k) (y x . . .) as cs ls))

((_ co v ((unquote-splicing b) expand . k) xs (a . . .) cs ls)
(mpat co v ((unquote b) . k) xs (b a . . .) cs ls))

((_ co v ((quote c) expand . k) xs as cs ls)
(mpat co v (c . k) xs as cs ls))

((_ co v ((a . d) expand . k) xs as cs ls)
(mpat co v (d expand a expand cons . k) xs as cs ls))

((_ co v (d a expand cons . k) xs as cs ls)
(mpat co v (a expand d cons . k) xs as cs ls))

((_ co v (a d cons . k) xs as cs ls)
(mpat co v ((a . d) . k) xs as cs ls))

((_ co v (c expand . k) xs as cs ls)
(mpat co v (c . k) xs as cs ls))))

Appendix D

Nestable Engines

Our implementation of ferns in Chapter 15 requires nestable engines (Dybvig and

Hieb 1989; Hieb et al. 1994), which we present here with minimal comment. The

implementation uses a global variable, state, which holds two values: the number

of ticks available to the currently running engine or #f representing infinity; and

a continuation. make-engine makes an engine out of a thunk. engine is a macro

that makes an engine from an expression. λt is like λ except that it passes its

body as a thunk to expend-tick-to-call, which ensures a tick is spent before the

body is evaluated and passes the suspended body to the continuation if no ticks are

available. Programs that use this embedding of nestable engines (and by extension

our embedding of cons⊥) should not use call/cc, because the uses of call/cc in

the nestable engines implementation may interact with other uses in ways that are

difficult for the programmer to predict.

(define-syntax engine
(syntax-rules ()

((_ e) (make-engine (λ () e)))))

252

APPENDIX D. NESTABLE ENGINES 253

(define-syntax λt

(syntax-rules ()
((_ formals b0 b . . .) (λ formals (expend-tick-to-call (λ () b0 b . . .))))))

(define state (cons #f 0))

(define expend-tick-to-call
(λ (thunk)

((call/cc
(λ (k)

(let th ()
(cond

((not (car state)) (k thunk))
((zero? (car state)) ((cdr state) th))
(else (set-car! state (− (car state) 1)) (k thunk)))))))))

(define make-engine
(λ (thunk)

(λ (ticks)
(let∗ ((gift (if (car state) (min (car state) ticks) ticks))

(saved-state (cons (and (car state) (− (car state) gift)) (cdr state)))
(caught (call/cc

(λ (k)
(replace! state gift k)
(let ((result (thunk)))

((cdr state) (cons (car state) result)))))))
(replace! state (car saved-state) (cdr saved-state))
(let ((owed (− ticks gift)))

(cond
((pair? caught)
(and (car state) (set-car! state (+ (car state) (car caught))))
(cons (+ (car caught) owed) (cdr caught)))

(else (let ((e (make-engine caught)))
(if (zero? owed) (cons #f e)

(let ((th (λ () (e owed))))
((call/cc (λ (k̂) ((cdr state) (λ () (k̂ th))))))))))))))))

Appendix E

Parser for Nominal Type
Inferencer

This parser is used by the nominal type inferencer is section 9.3.

(define parse (λ (exp) (parse-aux exp (()))))

(define parse-aux
(λ (exp env)

(pmatch exp
(x (guard (symbol? x))
(let ((v (cdr (assq x env))))

((var v))))
(n (guard (number? n)) ((intc n)))
(b (guard (boolean? b)) ((boolc b)))
(((zero? e)) (let ((e (parse-aux e env))) ((zero? e))))
(((sub1 e)) (let ((e (parse-aux e env))) ((sub1 e))))
(((fix e)) (let ((e (parse-aux e env))) ((fix e))))
(((∗ e1 e2)) (let ((e1 (parse-aux e1 env)) (e2 (parse-aux e2 env))) ((∗ e1 e2))))
(((if e1 e2 e3))
(let ((e1 (parse-aux e1 env)) (e2 (parse-aux e2 env)) (e3 (parse-aux e3 env)))

((if e1 e2 e3))))
(((λ ((x)) e))
(let∗ ((a (nom x)) (e (◃▹ a (parse-aux e (cons (cons x a) env)))))

((lam e))))
(((e1 e2))
(let ((e1 (parse-aux e1 env)) (e2 (parse-aux e2 env)))

((app e1 e2)))))))

254

Bibliography

H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Programs.

MIT Press, Cambridge, MA, second edition, 1996.

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann. of Math., 2:781–793,

2002.

H. Aït-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,

Cambridge, MA, 1991.

S. Antoy, M. Hanus, B. Massey, and F. Steiner. An implementation of narrowing

strategies. In PPDP ’01: Proc. of the 3rd Intl. ACM SIGPLAN Conf. on Prin-

ciples and Practice of Declarative Programming, Florence, Italy, Sep. 5–7, 2001,

pages 207–217. ACM, 2001.

K. R. Apt. Declarative programming in Prolog. In D. Miller, editor, ILPS ’93:

Proc. of the 1993 Intl. Symp. on Logic Programming, Vancouver, Oct. 26–29,

1993, pages 12–35, Cambridge, MA, 1993. MIT Press.

K. R. Apt and E. Marchiori. Reasoning about Prolog programs: From modes

through types to assertions. Formal Aspects of Comp., 6(6A):743–764, 1994.

255

BIBLIOGRAPHY 256

K. R. Apt and A. Pellegrini. Why the occur-check is not a problem. In

M. Bruynooghe and M. Wirsing, editors, PLILP ’92: Proc. of the 4th Intl. Symp.

on Programming Language Implementation and Logic Programming, Leuven, Bel-

gium, Aug. 26–28, 1992, pages 69–86, London, 1992. Springer.

J. Armstrong. Making Reliable Distributed Systems in the Presence of Software

Errors. PhD thesis, The Royal Institute of Technology, Stockholm, Sweden, De-

cember 2003.

F. Baader and W. Snyder. Unification theory. In J. A. Robinson and A. Voronkov,

editors, Handbook of Automated Reasoning, pages 445–532. Elsevier and MIT

Press, Amsterdam and Cambridge, MA, 2001.

H. Barendregt. The Lambda Calculus, its Syntax and Semantics. Number 103 in

Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

B. Beckert and J. Posegga. The leanTAP-FAQ: Frequently asked questions about

leanTAP. http://www.uni-koblenz.de/~beckert/pub/LeanTAP_FAQ.pdf.

B. Beckert and J. Posegga. leanTAP: Lean tableau-based deduction. J. Auto.

Reason., 15(3):339–358, 1995.

R. Becket and Z. Somogyi. DCGs + memoing = packrat parsing but is it worth it?

In P. Hudak and D. S. Warren, editors, PADL ’08: Practical Aspects of Declarative

Languages, 10th Intl. Symp., San Francisco, January 7–8, 2008, volume 4902 of

LNCS, pages 182–196. Springer, 2008.

http://www.uni-koblenz.de/~beckert/pub/LeanTAP_FAQ.pdf

BIBLIOGRAPHY 257

P. E. Bonzon. A metacircular evaluator for a logical extension of Scheme. Lisp

Symb. Comput., 3(2):113–134, 1990.

R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. V. Tassel.

Experience with embedding hardware description languages in HOL. In Theo-

rem Provers in Circuit Design: Proc. of the IFIP TC10/WG 10.2 Intl. Conf.,

Nijmegen, The Netherlands, Jun. 22–24, 1992, pages 129–156. North-Holland,

1992.

B. Braßel, S. Fischer, and F. Huch. Declaring numbers. In R. Echahed, editor,

WFLP ’07: Proc. of 16th Intl. Workshop on Functional and (Constraint) Logic

Programming, Paris, June 25, 2007, pages 23–36, 2007.

W. E. Byrd and D. P. Friedman. αKanren: A fresh name in nominal

logic programming. In D. Dubé, editor, Proc. of the 2007 Workshop on

Scheme and Functional Programming, Freiburg, Germany, Sep. 30, 2007,

Université Laval Technical Report DIUL-RT-0701, pages 79–90 (see also

http://www.cs.indiana.edu/~webyrd for improvements), 2007.

C. Calvès and M. Fernández. A polynomial nominal unification algorithm. Theor.

Comput. Sci., 403(2-3):285–306, 2008.

C. Calvès and M. Fernández. Implementing nominal unification. Electr. Notes

Theor. Comput. Sci., 176(1):25–37, 2007.

http://www.cs.indiana.edu/~webyrd

BIBLIOGRAPHY 258

R. Cartwright and M. Fagan. Soft typing. In PLDI ’91: Proc. of the ACM SIGPLAN

1991 Conf. on Programming Language Design and Implementation, Toronto, Jun.

26–28, 1991, pages 278–292, New York, 1991. ACM.

G. Cattaneo and V. Loia. A Common-LISP implementation of an extended Prolog

system. SIGPLAN Notices, 23(4):87–102, 1988.

W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic

programs. J. ACM, 43(1):20–74, 1996.

J. Cheney. Nominal Logic Programming. PhD thesis, Cornell University, Aug.

2004a.

J. Cheney. The complexity of equivariant unification. In J. Díaz, J. Karhumäki,

A. Lepistö, and D. Sannella, editors, ICALP ’04: Proc. of the 31st Intl. Colloq.

on Automata, Languages and Programming, Turku, Finland, Jul. 12–16, 2004,

volume 3142 of LNCS, pages 332–344. Springer, 2004b.

J. Cheney. Equivariant unification. In J. Giesl, editor, RTA ’05: Proc. of the 16th

Intl. Conf. on Rewriting Techniques and Applications, Nara, Japan, Apr. 19–21,

2005, volume 3467 of LNCS, pages 74–89. Springer, 2005.

BIBLIOGRAPHY 259

J. Cheney and C. Urban. αProlog: A logic programming language with names,

binding and α-equivalence. In B. Demoen and V. Lifschitz, editors, ICLP ’04:

Proc. of the 20th Intl. Conf. on Logic Programming, Saint-Malo, France, Sep.

6–10, 2004, volume 3132 of LNCS, pages 269–283, Saint-Malo, France, Sept. 6–10,

2004. Springer.

J. Cheney and C. Urban. Nominal logic programming. ACM Trans. Program. Lang.

and Syst., 30(5):1–47, 2008.

H. Christiansen. Automated reasoning with a constraint-based metainterpreter. J.

Log. Program., 37(1-3):213–254, 1998.

K. Claessen and P. Ljunglöf. Typed logical variables in Haskell. In Proc. of the

Haskell Workshop. ACM SIGPLAN, 2000.

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Tal-

cott. The Maude 2.0 system. In R. Nieuwenhuis, editor, RTA ’03: Proc. of the

14th Intl. Conf. on Rewriting Techniques and Applications, Valencia, Spain, Jun.

9–11, 2003, number 2706 in LNCS, pages 76–87. Springer, June 2003.

W. F. Clocksin. Clause and Effect: Prolog Programming for the Working Program-

mer. Springer, Secaucus, NJ, 1997.

W. F. Clocksin and C. S. Mellish. Programming in Prolog: Using the ISO Standard.

Springer, 2003.

BIBLIOGRAPHY 260

A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-A. Tärnlund, editors,

Logic Programming, pages 231–251. Academic Press, London, 1982.

A. Colmerauer. Equations and inequations on finite and infinite trees. In FGCS

’84: Proc. of the Intl. Conf. on Fifth Generation Computer Systems, Tokyo, Nov.

6–9, 1984, pages 85–99, Tokyo, 1984.

A. Colmerauer. Prolog in 10 figures. Commun. ACM, 28(12):1296–1310, 1985.

A. Colmerauer. An introduction to Prolog III. Commun. ACM, 33(7):69–90, 1990.

A. Colmerauer and P. Roussel. The birth of Prolog. In History of programming

languages—II, pages 331–367. ACM, New York, 1996.

H. Comon. Disunification: a survey. In Computational Logic: Essays in Honor of

Alan Robinson, pages 322–359, Cambridge, MA, 1991. MIT Press.

H. Comon and P. Lescanne. Equational problems and disunification. J. Symb.

Comput., 7(3-4):371–425, 1989.

S. K. Debray, N.-W. Lin, and M. V. Hermenegildo. Task granularity analysis in logic

programs. In PLDI ’90: Proc. of the ACM SIGPLAN 1990 Conf. on Programming

Language Design and Implementation, White Plains, New York, Jun. 20–22,

1990, pages 174–188, New York, 1990. ACM.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle

River, NJ, 1997.

BIBLIOGRAPHY 261

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM, 18(8):453–457, 1975.

K. Doets. From Logic to Logic Programming. MIT Press, Cambridge, MA, 1994.

G. Dowek, M. Gabbay, and D. Mulligan. Permissive nominal terms and their uni-

fication. In M. Gavanelli and F. Riguzzi, editors, CILC ’09: 24-esimo Convegno

Italiano di Logica Computazionale, Ferrara, Italy, Jun. 2009, Ferrara, Italy, June

2009.

R. K. Dybvig and R. Hieb. Engines from continuations. Comput. Lang, 14(2):

109–123, 1989.

M. Felleisen. Transliterating Prolog into Scheme. Technical report, Indiana Uni-

versity Computer Science Department, Oct. 1985. Indiana University Computer

Science Department Technical report No. 182.

A. Felty and D. Miller. Specifying theorem provers in a higher-order logic program-

ming language. In E. Lusk and R. Overbeek, editors, CADE ’88: Proc. of the

9th Intl. Conf. on Automated Deduction, Argonne, IL, May 23–26, 1988, pages

61–80. Springer, 1988.

M. Fernández and M. J. Gabbay. Nominal rewriting. Inf. Comput., 205(6):917–965,

2007.

R. E. Filman and D. P. Friedman. Coordinated Computing: Tools and Techniques

for Distributed Software. McGraw-Hill, 1984.

BIBLIOGRAPHY 262

M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling

with continuations. In PLDI ’93: Proc. of the ACM SIGPLAN 1993 Conf. on

Programming Language Design and Implementation, Albuquerque, Jun. 23–25,

1993, pages 237–247, New York, 1993. ACM.

B. Ford. Packrat parsing: Simple, powerful, lazy, linear time, functional pearl.

In ICFP ’02: Proc. of the Seventh ACM SIGPLAN Intl. Conf. on Functional

Programming, Pittsburgh, Oct. 4–6, 2002, pages 36–47, New York, 2002. ACM.

E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.

D. P. Friedman and O. Kiselyov. A declarative applicative logic programming sys-

tem. http://kanren.sourceforge.net, 2005.

D. P. Friedman and M. Wand. Essentials of Programming Languages. MIT Press,

third edition, 2008.

D. P. Friedman and D. S. Wise. An indeterminate constructor for applicative pro-

gramming. In POPL ’80: Conf. Record of the 7th Annual ACM Symp. on Prin-

ciples of Programming Languages, Las Vegas, Jan. 1980, pages 245–250, New

York, Jan. 1980. ACM Press.

http://kanren.sourceforge.net

BIBLIOGRAPHY 263

D. P. Friedman and D. S. Wise. An approach to fair applicative multiprogram-

ming. In G. Kahn, editor, Proc. of the Intl. Symp. on Semantics of Concurrent

Computation, Evian, France, Jul. 2–4, 1979, volume 70 of LNCS, pages 203–225.

Springer, July 1979.

D. P. Friedman and D. S. Wise. Sting-unless: a conditional, interlock-free store

instruction. In 16th Annual Allerton Conf. on Communication, Control, and

Computing, University of Illinois (Urbana-Champaign), pages 578–584. Univer-

sity of Illinois, Urbana-Champaign, 1978.

D. P. Friedman and D. S. Wise. Fancy ferns require little care. In S. Holmström,

B. Nordström, and Å. Wikström, editors, Symp. on Functional Languages and

Computer Architecture, Göteborg, Sweden, 1981, pages 124–156, Göteborg, Swe-

den, June 1981. Laboratory for Programming Methodology, University of Göte-

borg and Chalmers University of Technology.

D. P. Friedman, W. E. Byrd, and O. Kiselyov. The Reasoned Schemer. MIT Press,

Cambridge, MA, 2005.

D. C. Gras and M. V. Hermenegildo. The Ciao module system: A new module

system for Prolog. Electr. Notes Theor. Comput. Sci., 30(3), 1999.

H.-F. Guo and G. Gupta. Dynamic reordering of alternatives for definite logic

programs. Comput. Lang. Syst. Struct., 35(3):252–265, 2009.

BIBLIOGRAPHY 264

H.-F. Guo and G. Gupta. A simple scheme for implementing tabled logic pro-

gramming systems based on dynamic reordering of alternatives. In P. Codognet,

editor, ICLP ’01: Proc. of the 17th Intl. Conf. on Logic Programming, Paphos,

Cyprus, Nov. 26–Dec. 1, 2001, volume 2237 of LNCS, pages 181–196, London,

2001. Springer.

G. Gupta and B. Jayaraman. Analysis of or-parallel execution models. ACM Trans.

on Program. Lang. and Syst., 15(4):659–680, September 1993.

G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic program-

ming and its applications. In V. Dahl and I. Niemelä, editors, ICLP ’07: Proc.

of the 23rd Intl. Conf. on Logic Programming, Porto, Portugal, Sep. 8–13, 2007,

volume 4670 of LNCS, pages 27–44. Springer, 2007.

T. Hallgren. Fun with functional dependencies. http://www.cs.chalmers.se/

~hallgren/Papers/wm01.html, 2001.

M. Hanus. Report on Curry (ver.0.8.2). Inst. für Informatik, Christian-Albrechts-

Universität, Germany, 2006.

M. Hanus. Analysis of Residuating Logic Programs. J. Log. Program., 24(3):

219–245, Sept. 1995.

M. Hanus, H. Kuchen, and J. Moreno-Navarro. Curry: A truly functional logic

language. In ILPS ’95: Proc. Workshop on Visions for the Future of Logic

Programming, Portland, pages 95–107, 1995.

http://www.cs.chalmers.se/~hallgren/Papers/wm01.html
http://www.cs.chalmers.se/~hallgren/Papers/wm01.html

BIBLIOGRAPHY 265

C. T. Haynes. Logic continuations. J. Log. Program., 4(2):157–176, 1987.

C. T. Haynes and D. P. Friedman. Abstracting timed preemption with engines. J.

Comp. Lang., 12(2):109–121, 1987.

F. Henderson, T. Conway, Z. Somogyi, and D. Jeffery. The Mercury language

reference manual. Technical Report 96/10, University of Melbourne, 1996.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, third edition, 2002.

D. Herman and M. Wand. A theory of hygienic macros. In ESOP ’08: Proc. of the

17th European Symp. on Programming, Budapest, Mar. 29–Apr. 6, 2008, volume

4960 of LNCS. Springer, Mar. 2008.

M. V. Hermenegildo and F. Rossi. Strict and non-strict independent and-parallelism

in logic programs: Correctness, efficiency, and compile-time conditions. J. Log.

Program., 22(1):1–45, 1995.

R. Hieb, K. Dybvig, and C. W. Anderson, III. Subcontinuations. Lisp and Symb.

Comp., 7(1):83–110, 1994.

E. Hilsdale and D. P. Friedman. Writing macros in continuation-passing style. In

Scheme and Functional Programming 2000, Montréal, Sep. 17, 2000, Sept. 5,

2000.

BIBLIOGRAPHY 266

J. Hughes. Generalising monads to arrows. Science of Comp. Program., 37:67–111,

1998.

Intl. Organization for Standardization. ISO/IEC 13211-1:1995: Information Tech-

nology — Programming Languages — Prolog — Part 1: General Core. 1995.

Intl. Organization for Standardization. ISO/IEC 13211-2:2000: Information Tech-

nology – Programming Languages – Prolog – Part 2: Modules. 2000.

J. Jaffar and M. J. Maher. Constraint logic programming: A Survey. J. Log.

Program., 19/20:503–581, 1994.

E. R. Jeschke. An Architecture for Parallel Symbolic Processing Based on Suspending

Construction. PhD thesis, Indiana University Computer Science Department,

May 1995. Technical Report No. 445, 152 pages.

S. D. Johnson. An interpretive model for a language based on suspended construc-

tion. Master’s thesis, Indiana University Computer Science Department, 1977.

Indiana University Computer Science Department Technical Report No. 68.

S. D. Johnson. Circuits and systems: Implementing communication with streams.

IMACS Trans. on Sci. Comp., Vol. II, pages 311–319, 1983.

K. M. Kahn and M. Carlsson. How to implement Prolog on a LISP machine. In

Implementations of Prolog, Ellis Horwood Series in Artificial Intelligence, pages

117–134. Ellis Horwood/Halsted Press/Wiley, 1984.

BIBLIOGRAPHY 267

O. Kiselyov. Number-parameterized types. The Monad.Reader, 5, 2005. URL

http://www.haskell.org/tmrwiki/NumberParamTypes.

O. Kiselyov and C. chieh Shan. Lightweight static resources: Sexy types for em-

bedded and systems programming. In M. T. Morazán, editor, Draft Proc. of

the 8th Symp. on Trends in Functional Programming, , New York City, 2–4

Apr. 2007. Seton Hall University, 2007. URL http://cs.shu.edu/tfp2007/

draftProcDocument.pdf. TR-SHU-CS-2007-04-1.

O. Kiselyov, C. chieh Shan, D. P. Friedman, and A. Sabry. Backtracking, inter-

leaving, and terminating monad transformers. In O. Danvy and B. C. Pierce,

editors, ICFP ’05: Proc. of the 10th ACM SIGPLAN Intl. Conf. on Functional

Programming, Tallinn, Estonia, Sep. 26–28, 2005, pages 192–203, Sept. 2005.

O. Kiselyov, W. E. Byrd, D. P. Friedman, and C. chieh Shan. Pure, declarative, and

constructive arithmetic relations (declarative pearl). In J. Garrigue and M. V.

Hermenegildo, editors, FLOPS ’08: Proc. of the 9th Intl. Symp. on Functional

and Logic Programming, Ise, Japan, Apr. 14–16, 2008, volume 4989 of LNCS,

pages 64–80. Springer, 2008.

S. C. Kleene. Introduction to Metamathematics. Bibl. Mathematica. North-Holland,

Amsterdam, 1952.

http://www.haskell.org/tmrwiki/NumberParamTypes
http://cs.shu.edu/tfp2007/draftProcDocument.pdf
http://cs.shu.edu/tfp2007/draftProcDocument.pdf

BIBLIOGRAPHY 268

H. J. Komorowski. QLOG interactive environment—the experience from embedding

a generalized Prolog in Interlisp. Technical report, Linkoping University, 1979.

LiTH-MAT-R-79-19.

R. A. Kowalski. Logic for Problem Solving. Prentice Hall PTR, Upper Saddle River,

NJ, 1979.

M. R. Lakin and A. M. Pitts. A metalanguage for structural operational semantics.

In M. T. Morazán, editor, Trends in Functional Programming, volume 8, pages

19–35. Intellect/The University of Chicago Press, 2008.

A. Lisitsa. λleanTAP: lean deduction in λProlog. Technical report, ULCS-03-017,

University of Liverpool, Department of Computer Science, 2003.

J. W. Lloyd. Foundations of Logic Programming. Springer, New York, second

extended edition, 1987.

P. Lopez, M. V. Hermenegildo, and S. K. Debray. A methodology for granularity-

based control of parallelism in logic programs. J. Symb. Comp., 21(4):715–734,

1996.

R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in Prolog. In

E. Lusk and R. Overbeek, editors, CADE ’88: Proc. of the 9th Intl. Conf. on

Automated Deduction, Argonne, IL, May 23–26, 1988, pages 415–434, Argonne,

IL, 1988. Springer.

BIBLIOGRAPHY 269

Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, MA, 1993.

J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A visual environment

for developing context-sensitive term rewriting systems. In V. van Oostrom,

editor, RTA ’04: Proc. of the 15th Intl. Conf. on Rewriting Techniques and

Applications, Aachen, Germany, Jun. 3–5, 2004, volume 3091 of LNCS, pages

301–311. Springer, 2004.

D. Michie. “Memo” functions and machine learning. Nature, 218:19–22, April 1968.

E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.

G. Nadathur. The metalanguage λProlog and its implementation. In H. Kuchen

and K. Ueda, editors, FLOPS ’01: Proc. of the 5th Intl. Symp. on Functional and

Logic Programming, Waseda University, Tokyo, Mar. 7–9, 2001, volume 2024 of

LNCS, pages 1–20, London, 2001. Springer.

G. Nadathur and D. Miller. An overview of λProlog. In K. A. Bowen and R. A.

Kowalski, editors, Proc. of the Fifth Intl. Conf. and Symp. on Logic Programming,

Seattle, Aug. 1988, pages 810–827, Aug. 1988.

L. Naish. Pruning in logic programming. Technical Report 95/16, Department of

Computer Science, University of Melbourne, Melbourne, June 1995.

H. R. Nayak. Concurrent LogLISP. PhD thesis, Syracuse University, Syracuse,

1989.

BIBLIOGRAPHY 270

J. P. Near, W. E. Byrd, and D. P. Friedman. αleanTAP : A declarative theorem

prover for first-order classical logic. In M. G. de la Banda and E. Pontelli, editors,

ICLP ’08: Proc. of the 24th Intl. Conf. on Logic Programming, Udine, Italy, Dec.

9–13, 2008, volume 5366 of LNCS, pages 238–252. Springer, 2008. ISBN 978-3-

540-89981-5.

C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1999.

C. Okasaki. Purely functional random-access lists. In FPCA ’95: Proc. of the 7th

Intl. Conf. on Functional Programming Languages and Computer Architecture,

La Jolla, CA, Jun. 25–28, 1995, pages 86–95, New York, 1995. ACM.

L. C. Paulson. A generic tableau prover and its integration with Isabelle. J. of

Univ. Comp. Sci., 5(3):73–87, 1999.

F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. J.

Auto. Reason., 2(2):191–216, 1986.

F. Pereira and D. Warren. Definite clause grammars for language analysis. In

Readings in Natural Language Processing, pages 101–124. Morgan Kaufmann,

San Francisco, 1986.

F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI ’88: Proc. of the

ACM SIGPLAN 1988 Conf. on Programming Language Design and Implementa-

tion, Atlanta, Jun. 22–24, 1988, pages 199–208, New York, 1988. ACM.

BIBLIOGRAPHY 271

F. Pfenning and C. Schurmann. System description: Twelf—a meta-logical frame-

work for deductive systems. In H. Ganzinger, editor, CADE ’99: Proc. of the

16th Intl. Conf. on Automated Deduction, Trento, Italy, Jul. 7–10, 1999, pages

202–206, Trento, Italy, 1999. Springer.

B. C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,

2002.

A. M. Pitts. Nominal logic, a first order theory of names and binding. Inf. Comput.,

186(2):165–193, 2003.

G. D. Plotkin. A structural approach to operational semantics. J. Logic and Alge-

braic Program., 60–61:17–139, 2004.

F. Pottier. Cαml Reference Manual. INRIA, 2006-12-14 edition, Dec. 2006.

J. A. Robinson and E. E. Sibert. LOGLISP: An alternative to Prolog. In J. Hayes,

D. Michie, and Y.-H. Pao, editors, Machine Intelligence 10, pages 399–419. Ellis

Horwood Ltd., Chicester, England, 1982.

E. Ruf and D. Weise. LogScheme: Integrating logic programming into Scheme. Lisp

Symb. Comput., 3(3):245–288, 1990.

K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order

stratified logic programs. ACM Trans. Program. Lang. and Syst., 20(3):586–634,

1998.

BIBLIOGRAPHY 272

K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database

engine. In R. T. Snodgrass and M. Winslett, editors, SIGMOD ’94: Proc. of

the 1994 ACM SIGMOD Intl. Conf. on Management of Data, Minneapolis, May

24–27, 1994, pages 442–453, New York, 1994. ACM.

T. Schrijvers, B. Demoen, and D. S. Warren. TCHR: a framework for tabled CLP.

Theory and Practice of Logic Program., 8(04):491–526, 2008a.

T. Schrijvers, V. Santos Costa, J. Wielemaker, and B. Demoen. Towards typed

Prolog. In ICLP ’08: Proc. of the 24th Intl. Conf. on Logic Programming, Udine,

Italy, Dec. 9–13, 2008, pages 693–697, Berlin, 2008b. Springer.

S. Seres and M. Spivey. Functional reading of logic programs. J. of Univ. Comp.

Sci., 6(4):433–446, 2000.

M. R. Shinwell. Fresh O’Caml: Nominal abstract syntax for the masses. Electr.

Notes Theor. Comput. Sci., 148(2):53–77, 2006.

M. R. Shinwell, A. M. Pitts, and M. Gabbay. FreshML: programming with binders

made simple. In C. Runciman and O. Shivers, editors, ICFP ’03: Proc. of the

8th ACM SIGPLAN Intl. Conf. on Functional Programming, Uppsala, Sweden,

Aug. 25–29, 2003, pages 263–274. ACM Press, 2003.

BIBLIOGRAPHY 273

J. G. Siek and W. Taha. Gradual typing for functional languages. In R. Findler,

editor, Proc. of the 2006 Scheme and Functional Programming Workshop, Port-

land, Sep. 17, 2006, University of Chicago Technical Report TR-2006-06, pages

81–92, 2006.

D. Sitaram. Programming in Schelog.

http://www.ccs.neu.edu/home/dorai/schelog/schelog.html, 1993.

Z. Somogyi, F. J. Henderson, and T. C. Conway. Mercury, an efficient purely

declarative logic programming language. In Proc. of the Australian Computer

Science Conf., Glenelg, Australia, pages 499–512, 1995.

M. Sperber, R. K. Dybvig, M. Flatt, and van Straaten, A. (eds.). Revised6 report

on the algorithmic language Scheme, Sept. 2007. URL http://www.r6rs.org/.

J. M. Spivey and S. Seres. Combinators for logic programming. In J. Gibbons and

O. de Moor, editors, The Fun of Programming, Cornerstones in Computing, pages

177–200. Palgrave, 2003.

J. M. Spivey and S. Seres. Embedding Prolog in Haskell. In E. Meijer, editor, Proc.

of the 1999 Haskell Workshop, Technical Report UU-CS-1999-28, Department of

Computer Science, University of Utrecht, 1999.

G. L. Steele Jr. COMMON LISP: The Language. Digital Press, second edition,

1990.

http://www.ccs.neu.edu/home/dorai/schelog/schelog.html
http://www.r6rs.org/

BIBLIOGRAPHY 274

M. Stickel. A Prolog technology theorem prover. In E. Lusk and R. Overbeek,

editors, CADE ’88: Proc. of the 9th Intl. Conf. on Automated Deduction, Argonne,

IL, May 23–26, 1988, pages 752–753. Springer, 1988.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, 1979.

G. Sutcliffe and C. Suttner. The TPTP Problem Library. J. Auto. Reason., 21(2):

135–277, 1998.

E. Todoran and N. S. Papaspyrou. Continuations for parallel logic programming.

In PPDP ’00: Proc. of the 2nd ACM SIGPLAN Intl. Conf. on Principles and

Practice of Declarative Programming, Montréal, Sep. 20–22, 2000, pages 257–267,

New York, 2000. ACM.

C. Urban and J. Cheney. Avoiding equivariance in Alpha-Prolog. In P. Urzyczyn,

editor, TLCA ’05: 7th Intl. Conf. on Typed Lambda Calculi and Applications,

Nara, Japan, Apr. 21–23, 2005, volume 3461 of LNCS, pages 401–416. Springer,

2005.

C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theor. Comput. Sci.,

323(1-3):473–497, 2004.

P. Van Roy. 1983–1993: The wonder years of sequential Prolog implementation. J.

Log. Program., 19/20:385–441, 1994.

BIBLIOGRAPHY 275

E. Visser. Stratego: A language for program transformation based on rewriting

strategies. In A. Middeldorp, editor, RTA ’01: Proc. of the 12th Intl. Conf. on

Rewriting Techniques and Applications, Utrecht, The Netherlands, May 22–24,

2001, volume 2051 of LNCS, pages 357–362, London, 2001. Springer.

P. Wadler. The essence of functional programming. In POPL ’92: Conf. Record of

the 19th Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming

Languages, Albuquerque, Jan. 1992, pages 1–14, Albuquerque, Jan., 1992. ACM

Press.

M. Wand and D. Vaillancourt. Relating models of backtracking. In ICFP ’04: Proc.

of the 9th ACM SIGPLAN Intl. Conf. on Functional Programming, Snow Bird,

UT, Sep. 19–22, 2004, pages 54–65, New York, 2004. ACM.

D. H. D. Warren. An abstract Prolog instruction set. Technical Report 309, AI

Center, SRI Intl., Menlo Park, CA, Oct. 1983.

D. S. Warren. Memoing for logic programs. Commun. ACM, 35(3):93–111, 1992.

J. Wielemaker. An overview of the SWI-Prolog programming environment. In

F. Mesnard and A. Serebenik, editors, WLPE ’03: Proc. of the 13th Intl. Work-

shop on Logic Programming Environments, Tata Institute of Fundamental Re-

search, Mumbai, India, Dec. 8, 2003, pages 1–16, Heverlee, Belgium, Dec. 2003.

Katholieke Universiteit Leuven.

William E. Byrd
Dept. of Computer Science
Lindley Hall 215
Indiana University
Bloomington, IN 47405
webyrd@cs.indiana.edu
(812) 855-4885

home:
3488 E. Covenanter Dr.
Bloomington, IN 47401
(812) 320-8505

Degrees
B.S. in Computer Science, 1999, University of Maryland Baltimore County,

Baltimore, Maryland, cum laude
B.S. in Special Education, 1994, College of Charleston, Charleston,

South Carolina, magna cum laude

Current Position
Assistant Instructor under the direction of Dan Friedman.

Honors
Benefitfocus.com “Medal of Honor”, Benefitfocus.com, 2001.
AppNet Excellence Award, AppNet, 2000.
Outstanding Senior in Computer Science and Electrical Engineering,

University of Maryland, Baltimore County, 1999.

Books
Friedman, D. P., Byrd, W. E., and Kiselyov, O. The Reasoned Schemer,

The MIT Press, 2005.

Conferences
Near, J., Byrd, W. E., and Friedman, D. P. “αleanTAP : A Declarative

Theorem Prover for First-Order Classical Logic”, In Proceedings of the
24th International Conference on Logic Programming, volume 5366 of
Lecture Notes in Computer Science, pp. 238–252, 2008.

Kiselyov, O., Byrd, W. E., Friedman, D. P., and Shan, C. “Pure, Declarative,
and Constructive Arithmetic Relations (Declarative Pearl)”, In Proceedings
of the 9th International Symposium on Functional and Logic Programming,
volume 4989 of Lecture Notes in Computer Science, pp. 64–80, 2008.

Workshops
Byrd, W. E. and Friedman, D. P. “αKanren: A Fresh Name in Nominal

Logic Programming”, In Proceedings of the 2007 Workshop on Scheme
and Functional Programming, Université Laval Technical Report
DIUL-RT-0701, pp. 79–90, 2007.

Byrd, W. E. and Friedman, D. P. “From Variadic Functions to Variadic
Relations”, In Proceedings of the 2006 Scheme and Functional
Programming Workshop, University of Chicago Technical Report
TR-2006-06, pp. 105–117, 2006.

	1 Introduction
	1.1 My Thesis
	1.2 Structure of this Dissertation
	1.3 Relational Programming
	1.4 miniKanren
	1.5 Typographical Conventions

	I Core miniKanren
	2 Introduction to Core miniKanren
	2.1 Core miniKanren
	2.2 Translating Scheme Code to miniKanren
	2.3 Impure Operators

	3 Implementation I: Core miniKanren
	3.1 Variables, Substitutions, and Unification
	3.2 Reification
	3.3 Goals and Goal Constructors
	3.4 Impure Operators

	4 Implementation II: Optimizing walk
	4.1 Why walk is Expensive
	4.2 Birth Records
	4.3 Eliminating assq and Checking the rhs
	4.4 Storing the Substitution in the Variable

	5 A Slight Divergence
	6 Applications I: Pure Binary Arithmetic
	6.1 Representation of Numbers
	6.2 Naive Addition
	6.3 Arithmetic Revisited
	6.4 Multiplication
	6.5 Division
	6.6 Logarithm and Exponentiation

	II Disequality Constraints
	7 Techniques I: Disequality Constraints
	7.1 Translating rember into miniKanren
	7.2 The Trouble with rembero
	7.3 Reconsidering rember
	7.4 Disequality Constraints
	7.5 Fixing rembero
	7.6 Limitations of Disequality Constraints

	8 Implementation III: Disequality Constraints
	8.1 Constraints, Constraint Lists, and Packages
	8.2 Solving Disequality Constraints
	8.3 Implementing = and
	8.4 Reification

	III Nominal Logic
	9 Techniques II: Nominal Logic
	9.1 Introduction to Kanren
	9.2 Capture-avoiding Substitution
	9.3 Type Inferencer

	10 Applications II: leanTAP
	10.1 Tableau Theorem Proving
	10.2 Introducing leanTAP
	10.3 Implementation
	10.4 Performance
	10.5 Applicability of These Techniques

	11 Implementation IV: Kanren
	11.1 Nominal Unification with Idempotent Substitutions
	11.2 Goal Constructors
	11.3 Reification
	11.4 Nominal Unification with Triangular Substitutions

	IV Tabling
	12 Techniques III: Tabling
	12.1 Memoization
	12.2 Tabling
	12.3 The tabled Form
	12.4 Tabling Examples
	12.5 Limitations of Tabling

	13 Implementation V: Tabling
	13.1 Answer Terms, Caches, and Suspended Streams
	13.2 The Tabling Algorithm
	13.3 Waiting Streams
	13.4 Extending and Abstracting Reification
	13.5 Core Tabling Operators

	V Ferns
	14 Techniques IV: Ferns
	14.1 Introduction to Ferns
	14.2 Sharing and Promotion
	14.3 Ferns-based miniKanren

	15 Implementation VI: Ferns
	15.1 Engines
	15.2 The Ferns Data Type
	15.3 cons, car, and cdr

	VI Context and Conclusions
	16 Related Work
	16.1 Purely Relational Arithmetic
	16.2 Kanren
	16.3 leanTAP
	16.4 Tabling
	16.5 Ferns

	17 Future Work
	17.1 Formalization
	17.2 Implementation
	17.3 Language Extensions
	17.4 Idioms
	17.5 Applications
	17.6 Tools

	18 Conclusions
	A Familiar Helpers
	B pmatch
	C matche and e
	D Nestable Engines
	E Parser for Nominal Type Inferencer
	Bibliography

