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Abstract

Constraints on different manifestations of data are a central concept in numerous areas of

computer science. Examples include mathematical logic, database systems (functional and

multivalued dependencies), data mining (association rules), and reasoning under uncertainty

(conditional independence statements). One is often interested in a process that derives all

or most of the constraints that are entailed by a set of known ones, without the expense and

error-proneness of repeatedly analyzing the data. This is what is generally known as the

implication problem for data constraints. We present a theoretical framework for disjunctive

data constraints and the associated implication problems based on the observation that

many instances can be reduced to an implication problem for additive constraints on specific

classes of real-valued functions. Furthermore, we provide inference systems and testable

properties of classes of real-valued functions which imply the soundness and completeness of

these systems. We also derive properties of classes of functions that imply the non-existence

of finite, complete axiomatizations. The theoretical framework is applied to derive novel

results in the areas of uncertain reasoning and graphical models.
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CHAPTER 1

Introduction

1. Motivation

Many concepts in data mining, machine learning, and database research can be under-

stood by examining, discovering, and reasoning about constraints on (or properties of) the

data that is to be mined and modeled. In frequent pattern mining, for example, association

rules often indicate constraints that hold in the data [5]. They often reveal unexpected and

valuable knowledge about the data under investigation (such as patterns in log-files, trans-

action databases, and text documents). Another example are conditional independence

statements which are used in reasoning under uncertainty to factorize joint probability

distributions. Conditional independence statements play a fundamental role in machine

learning approaches such as Markov and Bayesian networks [31]. Again, every conditional

independence statement is a specific constraint on the probability distribution that one

wants to model and query efficiently. In relational databases, functional dependencies are

constraints that express a direct functional relationship between attributes of the database

schema. For example, in a human resources database, a functional dependency can be used

to model that every employee has a single unique employee identification number.

These examples illustrate the importance of data constraints – the more constraints we

have knowledge about, the better we can understand and model the data. However, even

though these data constraints play a crucial role in numerous areas, a clear theoretical frame-

work that unifies these types of data constraints, syntactically and semantically, did not

exist. If such a framework was to be developed, it had to be able to include a process which

derives all or most of these constraints that are entailed by a set of known ones, without the

expense and error-proneness of repeatedly analyzing the data. This is what we call the im-

plication problem for data constraints. Analogous to implication problems in mathematical

1
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logic, the following two questions are pivotal: (1) does there exist a finite axiomatization of

the implication problem using inference rules, and (2) what is the computational complexity

of the implication problem? If the answer to the first question is positive, we would know

that the implication problem is decidable and that there exists a finite set of inference rules

that are sound (i.e., all the inferred constraints do in fact hold in the data) and complete

(i.e., every entailed constraint can be inferred under the system). Finding answers to the

second question is important because it would determine whether the use of inference rules

has advantages over repeatedly analyzing the data. Furthermore, knowledge about the com-

putational complexity of the implication problems opens the possibility of leveraging new

and existing algorithms to efficiently compute more concise representations of the known

constraints. While these questions are theoretically interesting and important, they also

have significant practical ramifications. In data mining, for example, inference rules are

successfully employed to increase the efficiency of association rule mining algorithms [5]

and to compute compact representations of frequent patterns [4]. In the area of reasoning

under uncertainty, inference systems for conditional independence statements have been

successfully used to learn the structure of probabilistic graphical models [13]. The notion

of conditional independence is at the heart of the foundations of probabilistic graphical

models [8, 31] and other paradigms for representing and reasoning in artificial intelligence.

In relational databases, inference rules are used to infer new dependencies from a given set

of known ones, supporting optimal database design and physical data representations such

as indexes. Functional and multivalued dependencies are also leveraged for more efficient

query processing [14].

While studying this variety of domain applications, we noticed a syntactic commonality

of the different types of constraints. In particular, we observed in many situations involving

reasoning about data that the distribution of the data is restricted by constraints which

can be specified syntactically as disjunctive statements of the form X → {Y1, . . . , Yn}, with

X,Y1, . . . , Yn pairwise disjoint subsets of some finite set S. (We will call n the order of this

disjunctive statement.) If X ∪ Y1 ∪ ... ∪ Yn = S, we say that the disjunctive statements

is saturated. In the remainder of this section, we will try to convince the reader of the
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widespread occurrence of disjunctive statements in applications by presenting a variety of

more concrete examples from different application areas. We will show that disjunctive

statements occur naturally in various areas such as data mining, database theory, reasoning

under uncertainty, and propositional logic. In each of these areas, disjunctive statements

are at the basis of methods and tools used by researchers and practitioners. Our theoret-

ical framework, which we will introduce more formally in the following chapter, will unify

these seemingly unrelated areas, and this broader scope will provide a new angle of attack

on existing open problems and future investigations. Indeed, we will demonstrate how the

framework allowed us to solve some open problems in these areas. Furthermore, this unifying

framework will enable cross-fertilization between these different areas: a concept developed

in one area can be transformed into a corresponding concept in another area. Despite this

variety of application areas, we will be able to show that, in all these instances, disjunctive

statements can be interpreted as difference equations [16] of real-valued functions set to

zero, a notion which we will refer to as additive constraints on real-valued functions.

Let us start by presenting some examples in which disjunctive statements occur syntac-

tically. In the context of frequent pattern mining, let S be a set of items. For example,

in a grocery store application, this set would represent items that can be bought by a cus-

tomer. By definition, a basket database B is a set of subsets of S. Each subset (basket)

represents a set of items bought by a shopper and B is the set of all shoppers’ baskets. One is

often interested in finding associations and correlations between sets of items. For instance,

knowing that a customer who buys bread often also buys milk might be useful information

for the vendor. We say that a basket database B satisfies the generalized disjunctive rule

X → Y1 ∨ . . . ∨ Yn, with X,Y1, . . . , Yn pairwise disjoint subsets of S, if for each basket B

in B which contains all items in X, there is some i, 1 ≤ i ≤ n, such that B also contains

all items in Yi. In our example, this means that, whenever a customer bought the set of

items X, then he also bought at least one of the sets of items Y1, . . . , Yn. The generalized

disjunctive rule above can be re-interpreted as a disjunctive statement of order n. Associa-

tion rules and disjunctive rules are generalized disjunctive rules of order 1 and order 2 [5],
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r :=

a b c d

1 1 0 0

1 0 1 0

1 1 0 0

0 0 0 1

Figure 1.1. A basket database B over the set of items S = {a, b, c, d}. B

satisfies the association rule constraint (AR) {c} → {a} and the disjunctive

rule constraint {a} → {b} ∨ {c}.

respectively. For example, the basket database in Figure 1.1 satisfies the association rule

constraint {c} → {a} and the disjunctive rule constraint {a} → {b} ∨ {c}. Association

rules and disjunctive association rules play an important role in frequent itemset mining.

The objective here is to mine for itemsets that, relative to some threshold value, are fre-

quently contained in the baskets of a basket database. These rules are particularly useful

to prune the search space of the frequent itemsets (i.e., sets of items that are frequently

bought together), leading to a succinct representation of the set of all frequent itemsets [4].

The rationale behind pruning the frequent itemsets search space is that, if association rules

or disjunctive rules are known to exist, then the frequency of certain itemsets can be in-

ferred from the known frequency of others, and this without having to count their frequency

explicitly in the baskets database. Indeed, if B satisfies the association rule X → Y , then,

from knowing how many baskets contain X, we can infer the number of baskets that contain

X ∪ Y .

In the context of relational databases, all data is viewed as being stored in tables

which are called relations. The rows of these relations are referred to as tuples and they

summarize some object or relationship in the real world [25]. Each relation in the database

is specified by a schema, which is a set of attributes that correspond to the columns of

the relation. A relation instance is a particular instantiation of such a relation schema,
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r :=

a b c d

a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c1 d1

a1 b2 c1 d2

a2 b1 c2 d1

Figure 1.2. A relation instance r over the set of attributes S = {a, b, c, d}.

The instance r satisfies the functional dependency {a} → {c} which can be

re-written as the disjunctive statement {a} → {{c}}. The instance also sat-

isfies the MVD {a} → {b} | {c, d} which can be re-written as the disjunctive

statement {a} → {{b}, {c, d}}.

that is, a set of tuples over that schema. We recall that a relation instance r satisfies the

functional dependency X → Y if, for any tuples t1 and t2 in r, t1[X] = t2[X] implies

t1[Y ] = t2[Y ].1 A relation instance r satisfies the multivalued dependency X ։ Y |Z, with

X ∪ Y ∪Z = S, if r can be losslessly decomposed into its projections on X ∪ Y and X ∪Z,

that is, if r =
∏

X∪Y (r) ⊲⊳
∏

X∪Z(r), where
∏

X(r) is the projection of r on X and ⊲⊳ is

the natural join operator.2 This decomposition removes redundancy and prevents update

anomalies, thus leading to a better database design. In the context of relation instances

over a schema S, functional and multivalued dependencies can be interpreted as disjunctive

statements of order 1 and order 2, respectively. Indeed, the FD X → Y can be re-written

as the disjunctive statement X → Y , and the MVD X → Y | Z can be re-written as the

disjunctive statement X → {Y,Z}. Figure 1.2 illustrates the concepts above.

Let S be a set of random variables in the context of probability theory and reasoning

under uncertainty. A probability measure P satisfies a conditional independence statement

1t1[Y ] represents the content of tuple t1 restricted to the attribute set Y .
2Note that the functional dependency X → Y logically implies the multivalued dependency X ։ Y |Z,

for any Z with X ∪ Y ∪ Z = S.
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c

b

d

a

Figure 1.3. A Markov network over a set of statistical variables S =

{a, b, c, d}. Different separation criteria in graphical models “encode” con-

ditional independence statements. For example, the Markov network shown

above encodes the CI statements I(a, b|{c, d}) and I(c, d|{a, b}).

I(Y,Z|X), with X, Y , and Z pairwise disjoint subsets of S, if, for every assignment x, y,

and z to the variables in X, Y , and Z, respectively, P (x)P (x,y, z) = P (x,y)P (x, z) [15].

Conditional independence (CI) is a central concept in reasoning about uncertainty [17],

because it allows for more compact representations of probability distributions. The con-

ditional independence statement I(Y,Z|X) can be rewritten as the disjunctive statement

X → {Y,Z} of order 2. Figure 1.3 depicts a Markov network representing a set of CI state-

ments over four random variables. We will discuss conditional independence statements

and the applications of the presented theory in the area of reasoning under uncertainty in

Chapter 5.

We next consider propositional logic, which is extensively used in numerous applica-

tions. Let S be a set of propositional variables. A truth assignment w over S satisfies an

implication formula X → Y , with X and Y disjoint subsets of S, if w satisfies the proposi-

tional formula
∧

x∈X x →
∨

y∈Y y. In the syntax of disjunctive statements, the implication

formula X → Y takes the form X → {{y} | y ∈ Y }. Its order is |Y |. Notice that each propo-

sitional formula can be rewritten into a conjunction of implication formulae. For example,

the formula in conjunctive normal form (p ∨ q ∨ ¬r ∨ ¬s)∧(p ∨ r)∧(¬q ∨ ¬s) is equivalent
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to (r ∧ s → p ∨ q) ∧ (true → p ∨ r) ∧ (q ∧ s → false). The conjuncts correspond to the

implication formulae {r, s} → {p, q}, ∅ → {p, r}, and {q, s} → ∅, respectively. Finally,

these implication formulae correspond to the disjunctive statements {r, s} → {{p}, {q}},

∅ → {{p}, {r}}, and {q, s} → ∅

Our final example concerns cooperative game theory. The main objective of cooper-

ative game theory is to provide a formal framework for reasoning about multi-player games

in which players can form coalitions for joint cooperations [23, 1]. Let S be a non-empty set

of players. An interaction statement over S has the form X → {i, j}, with X a set of players,

and i and j two other players in S. A worth function w assigns to each subset X of S a worth

value w(X) representing the combined worth of the coalition X in the game. It is generally

assumed that w(∅) = 0. We say that w satisfies X → {i, j} if player i and j act without

interference when joining the coalition X in the game. This is formally defined by requiring

that w satisfies the additive constraint w(X ∪{i, j})−w(X ∪{i})−w(X ∪{j})+w(X) = 0.

In the syntax of disjunctive statements, the interference statement X → {i, j} takes the

form X → {{i}, {j}}. Its order is 2. Various classes of cooperative games have been con-

sidered on the basis of certain properties of their worth functions. For instance, a worth

function w is convex (or supermodular) if w(X ∪ Y ) + w(X ∩ Y ) ≥ w(X) + w(Y ), and

concave (or submodular) if w(X ∪ Y ) + w(X ∩ Y ) ≤ w(X) + w(Y ), in both cases for each

X,Y ⊆ S.

2. Disjunctive Statements as Constraints on Real-Valued Functions

In the previous section, we presented a wide variety of examples in which data are

restricted by constraints which can be formalized syntactically as disjunctive statements.

Despite this syntactic uniformity, the types of data on which these constraints operate are

extremely diverse and, therefore, also their semantics. However, semantic uniformity can

be achieved by characterizing the various constraints in terms of additive constraints on

real-valued functions associated with the data, as we will demonstrate next.
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We first return to frequent pattern mining. Given a set of items S and a basket

database B, the support function supportB is the function that associates with each subset

X of S the number of baskets in B that include X, i.e., supportB(X) = |{B ∈ B | X ⊆ B}|.

It can now be verified that B satisfies the generalized disjunctive rule X → Y1 ∨ . . . ∨ Yn

if
∑

Z⊆Y (−1)|Z|supportB(X ∪
⋃

Z∈Z Z) = 0, where Y = {Y1, . . . , Yn} [38]. In particular,

B satisfies the association rule constraint X → Y if supportB(X) − supportB(X ∪ Y ) =

0 [40, 38]. Similarly, B satisfies the disjunctive rule constraint X → Y ∨ Z if and only

if supportB(X)−supportB(X∪Y )−supportB(X∪Z)+supportB(X∪Y ∪Z) = 0 [40, 38].

We next come back to relational databases. Given a relation schema S and a relation

instance r over S, we define a real-valued function Hr as follows. Let P be the uniform

probability distribution over the tuples of r, i.e., for each tuple t in r, P (t) = 1/|r|. The

Shannon entropy Hs is defined by

Hr(X) = −
∑

x∈πX(s)

PX(x) log(PX(x)),

where PX(x) =
∑

t∈s & t[X]=x P (t) is the marginal probability measure induced by P on

X. It can be shown that r satisfies the functional dependency X → Y if and only if

Hr(X)−Hr(X ∪ Y ) = 0 [26, 21, 7]. Similarly, it can be show that r satisfies the multival-

ued dependency X ։ Y |Z if and only if Hr(X)−Hr(X∪Y )−Hr(X∪Z)+Hr(X∪Y ∪Z) =

0 [26, 21, 7].

Let us now return to reasoning under uncertainty. Given a set S of random variables

and a probability measure P over S, we associate a real-valued function with P as follows.

Let HP be the relative entropy (Kullback-Leibler divergence) [20]. The multi-information

function MP : 2S → [0,∞) is defined by MP (∅) = 0 and

MP (X) = HP (PX |
∏

x∈X

P {x}),
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for each non-empty subset X of S. As in the previous example, PX and P {x} represent

marginal probability measures. It can now be shown that P satisfies the conditional inde-

pendence statement I(Y,Z|X) if and only if MP (X)−MP (X ∪Y )−MP (X ∪Z)+MP (X ∪

Y ∪ Z) = 0 [46].

Let us again consider propositional logic. Given a set S of propositional variables

and a truth-assignment w over S, we define the real-valued function Ww by Ww(X) = 1 if

each variable in X evaluates to true under w, and Ww(X) = 0 otherwise. It can now be

shown that w satisfies the implication formula X → Y if and only if
∑

Z⊆Y (−1)|Z| Ww(X∪
⋃

Z∈Z Z) = 0, where Y = {{y} | y ∈ Y }.

Finally, notice that, in cooperative game theory, interaction statement constraints

on worth functions are already defined as additive constraints.

3. Implication Problems and Inference Systems

The consideration of constraints in applications such as the ones we have previously

discussed leads naturally to the implication problems for these constraints. For example,

it is known that if a relation instance satisfies the functional dependencies X → Y and

Y → Z, it also satisfies the functional dependency X → Z. More generally, the implication

problem is, given some set S over which the constraints are defined, a set C of disjunctive

statements over S, and a single disjunctive statement c over S, to decide whether C |= c,

i.e., whether each data set satisfying all disjunctive statements in C also satisfies c.

Deciding instances of the implication problem is at the heart of the applications iden-

tified in the examples. A classic way to decide or to facilitate decision of these implication

problems is to design and apply inference systems that are sound, or complete, or, prefer-

ably, both. When we revisit the previous examples, we observe that the inference systems

introduced for these in the literature have a significant amount of syntactic commonality.

For instance, in Figure 1.4, we exhibit a sound and complete inference system for functional

dependencies and association rules [40]; in Figure 1.5, we exhibit a sound and complete
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inference system for multivalued dependencies [2]; in Figure 1.6, we exhibit a sound, but

not complete, inference system for conditional independence statements [33, 46]; and in

Figure 1.7, we exhibit a sound and complete inference system for implication formulae.

Clearly, the semantic definitions of the constraints involved do not share a strong resem-

blance. Nevertheless, it is possible to reformulate them as additive constraints on specific

classes of real-valued functions associated with the data. This observation is a key motiva-

tion to formally introduce a generalized unifying framework for disjunctive statements. By

doing so, we will also achieve semantic uniformity at the level of the implication problems.

4. Outline

In Chapter 2, we formally define real-valued functions, differentials, semi-lattice de-

compositions, and the Möbius transform, all of which are notions employed to develop the

theoretical framework for disjunctive statements. We show how differentials of a real-valued

function correspond to sums of elements of its densities specified by the Möbius transform

and semi-lattice decompositions. We introduce the important class of Choquet capacities, a

generalization of supermodular and submodular real-valued functions which occur in many

of the applications covered in this dissertation. We show how disjunctive statements can

be interpreted as additive constraints on real-valued functions. Finally, we introduce the

associated implication problem.

In Chapter 3, we present inference systems that are sound and/or complete for several

well-known implication problems. These inference systems serve as templates for specialized

inference systems in the context of implication problems with bounds on the order of the

disjunctive statements. We prove these inference systems to be sound and complete with

respect to semi-lattice inclusion, that is, we show that if the semi-lattice of a disjunctive

statement is a subset of the union of semi-lattices of a set of CI statements, then the single CI

statement can be derived from the set of CI statements. We harness this characterization to

derive testable properties that imply the soundness and/or completeness of the two inference

systems for instances of the implication problem.
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Reflexivity

X ⊇ Y : X → Y

Augmentation

X → Y

X ∪ W → Y

Transitivity

X → Y

Y → Z

X → Z

Union

X → Y

X → Z

X → Y ∪ Z

Figure 1.4. Sound and complete inference system for functional depen-

dencies and association rules.
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Triviality

X → ∅ | X

Augmentation

X → Y ∪ W | Z

X ∪ W → Y | Z

Transitivity

X → Y | W

Y → Z | V

X → Z − Y | W ∪ (Y ∩ V )

Symmetry

X → Y | Z

X → Z | Y

Figure 1.5. Sound and complete inference system for multivalued dependencies.
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Triviality

I(∅,X |X)

Weak Augmentation

I(Y,Z ∪ W |X)

I(Y,Z|X ∪ W )

Contraction

I(Y,Z|X)

I(Y,W |X ∪ Z)

I(Y,Z ∪ W |X)

Decomposition

I(Y,Z ∪ W |X)

I(Y,Z|X)

Figure 1.6. Sound, but not complete, inference system for conditional

independence statements.
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Augmentation

X → Y

X ∪ W → Y

Composition

X → Y

X → Z

X → Y ∪ Z

Strong Resolution

X → Y ∪ Z

∀z ∈ Z : X ∪ {z} → Y ∪ V

X → Y ∪ V

Decomposition

X → Y ∪ Z

X → Y

Figure 1.7. Sound and complete inference system for implication formulae.
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In Chapter 4, we specify properties of real-valued functions that imply the non-existence

of a finite axiomatization for the implication problem for disjunctive statements interpreted

as additive constraints on specific classes of real-valued functions. These properties, which

hold for many classes of real-valued functions, allow us to solve some open problems in

several areas of computer science. The theory builds on, and generalizes, previous ideas of

non-existence proofs in the areas of embedded multivalued dependencies [35] and conditional

independence in reasoning under uncertainty [44]. We show the theoretical framework to

be applicable to a variety of instances of the implication problem for disjunctive statements.

In Chapter 5, we employ the framework within the area of reasoning under uncertainty.

Using the previously developed theory, we show that an extension of the semi-graphoid

axioms is (1) sound and complete for saturated CI statements, (2) complete for general

CI statements, and (3) sound and complete for stable CI statements (de Waal and van

der Gaag [9]), all relative to the class of discrete probability measures. By interpreting

conditional independence statements as disjunctive statements and applying the theoretical

framework, we first prove that the inference system is sound and complete relative to certain

inclusion relationships on the involved semi-lattices. To make the connection between the

theoretical framework for disjunctive statements and the conditional independence implica-

tion problem, we discuss the concept of multi-information functions induced by probability

measures (Studený [46]). This class of real-valued functions allows us to link the implication

problem for additive constraints on real-valued functions to the probabilistic CI implication

problem. We introduce an approximate logical inference algorithm that combines a pow-

erful falsification algorithm and a novel validation algorithm which represents implication

problems as instances of linear programming problems. We show experimentally that the

falsification and validation criteria, some of which can be tested in polynomial time, work

very effectively. We will relate the experimental results to those obtained for the existing

racing algorithm introduced by Bouckaert and Studený [3].

Finally, in Chapter 6, we harness the theoretical framework to further investigate the

logical and algorithmic properties of stable conditional independence structures, an impor-

tant concept for representing and reasoning about conditional independence information.
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We show that stable CI structures are a powerful generalization of Markov networks. Fur-

thermore, the theory establishes a direct connection between sets of stable CI statements

and propositional formulae in conjunctive normal form. We leverage this connection to

prove that the implication problem for stable conditional independence is coNP-complete.

We derive a linear time reduction to the Boolean satisfiability problem (SAT), and verify

empirically that existing SAT solvers can be used to efficiently decide the implication prob-

lem and to compute concise, non-redundant representations of stable CI structures, even

for instances involving hundreds of variables.

5. Related Work

Some of the concepts we will use throughout the thesis are based on previous work by

Bassem Sayrafi, Dirk Van Gucht, Marc Gyssens, and Paul Purdom [36, 37, 39, 38, 40].

While the previous work has specifically focused on applications in data mining and initi-

ated the development of the lattice-theoretic framework, this work focuses on disjunctive

statements interpreted as additive constraints with bounded order, making the theory ap-

plicable to existing concepts in various areas of computer science. Bassem Sayrafi’s work

focused primarily on the class of frequency functions over finite databases [38]. The de-

rived inference rules were used in frequent itemset mining algorithms as heuristics to prune

the search space [41]. Among the first to discover a relationship between functional de-

pendencies in databases and the mathematical notion of a lattice were János Demetrovics,

Leonid Libkin, and Ilya B. Muchnik [11]. Our work was additionally influenced by Mehmet

Dalkilic and Edward Robertson’s theoretical investigation of information dependencies in

databases [7] and Francesco Malvestuto’s work on information content of a database [26].

A rigorous investigation and classification of properties of real-valued functions based on

their differentials, was first undertaken in Gustave Choquet’s seminal monograph [6].

In more recent work [30, 29, 28], we extended and applied the theory in the context

of probabilistic systems, analyzing the conditional independence implication problem. Of

course, a vast amount of related work existed in this area. The work with the greatest

impact on our research was Milan Studený’s monograph on structural representations of
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conditional independence structures [46], Dan Geiger and Judea Pearl’s paper about the

algorithmic and logical properties of conditional independence [15], and Peter de Waal and

Linda van der Gaag’s paper introducing the notion of stable independence [9]. Conditional

independence structures are algorithmically challenging since their combinatorics are of

super-exponential magnitude, rendering some of the associated computational problems

intractable. For example, algorithms existed only for instances of the implication problem

for at most six variables [3]. Using our theory, we were able to increase the number of

variables of computable instances to more than 20 by improving both the effectiveness and

efficiency of the algorithms [28]. We also succeeded in gaining deeper insights into some of

the underlying theoretical problems and, as a consequence, were able to settle some existing

open problems.

6. Publications

Some of the content of this thesis has appeared in previous publications.

• Mathias Niepert. Logical Inference Algorithms and Matrix Representa-

tions for Probabilistic Conditional Independence. In Proceedings of the

25th Conference on Uncertainty in Artificial Intelligence (UAI), Montreal, Canada,

2009 (to appear).

• Mathias Niepert and Dirk Van Gucht. Logical Properties of Stable Condi-

tional Independence. In Proceedings of the 4th European Workshop on Proba-

bilistic Graphical Models, Hirtshals, Denmark, pages 225–232, 2008. (The paper

was selected for a special issue of the International Journal of Approximate Rea-

soning)

• Mathias Niepert, Dirk Van Gucht, and Marc Gyssens. On the Conditional

Independence Implication Problem: A Lattice-Theoretic Approach. In

Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence,

Helsinki, Finland, pages 435–443, AUAI Press, 2008. (Best student paper

runner-up award; extended version will be submitted to the journal Artificial

Intelligence following an invitation).



CHAPTER 2

A Unifying Framework for Disjunctive Statements

In the previous chapter, we have observed that disjunctive statements occur both syn-

tactically and semantically in various disciplines such as computer science, artificial intel-

ligence, and game theory. We will now formalize this observation by introducing a general

theoretical framework for disjunctive statements. We will first formally define disjunctive

statements. Since we will interpret disjunctive statements as additive constraints on real-

valued functions, we also introduce the notion of an additive constraint as well as several

other important concepts related to real-valued functions, such as the concept of the Möbius

transform, differentials on real-valued functions, and Choquet capacities [6]. The goal of

this chapter is to provide a clear theoretical framework that captures a wide variety of

implication problems both syntactically and semantically.

1. Real-valued Functions, Differentials, and Densities

Definition 2.1 (Real-valued function). Let S be a finite set. A real-valued function

F : 2S → R over S associates a real number to each subset of S.

Definition 2.2 (Differential). Let S be a finite set, let F : 2S → R be a real-valued

function, and let Y be a set of subsets of S. The Y-differential of F is the function ∆YF :

2S → R, and is defined recursively by

∆∅F (X) = F (X); and

∆Y∪{Y }F (X) = ∆YF (X) − ∆YF (X ∪ Y ),

for each X ⊆ S.

Note the analogy with the definition of derivatives of real functions. Here, |Y| corre-

sponds to the order of differentiation.

18
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Example 2.3. According to Definition 2.2, we have, for a finite set S, a function F :

2S → R, and X,Y,Z ⊆ S, that

∆∅F (X) = F (X);

∆{Y }F (X) = F (X) − F (X ∪ Y ); and

∆{Y,Z}F (X) = F (X) − F (X ∪ Y ) − F (X ∪ Z) + F (X ∪ Y ∪ Z).

Notice that the last expression is symmetric in Y and Z. For a formal proof of the

well-definedness of differentials, we refer to Sayrafi and Van Gucht [38].

We will now define the notion of a density of a real-valued function. Alternative terms

used in the literature are Möbius inversion or Möbius transform.

Definition 2.4 (Density). Let S be a finite set and let F be a real-valued function over

S. The density of F is the real-valued function over S defined by

∆F (X) =
∑

X⊆U⊆S

(−1)|U |−|X|F (U),

for each X ⊆ S.

Example 2.5. Let S = {a, b, c} and let F be a real-valued function over S. Then,

∆F ({a, b, c}) = F ({a, b, c});

∆F ({a, b}) = F ({a, b}) − F ({a, b, c}); and

∆F ({a}) = F ({a}) − F ({a, b}) − F ({a, c}) + F ({a, b, c}).

2. Semi-lattice Decompositions

We will later derive and analyse properties of classes of real-valued function and relate

these properties to soundness and completeness properties of inference systems. An impor-

tant concept needed for this purpose are so-called semi-lattices associated with disjunctive

statements. Let us begin with the definition of a lattice spanned by two sets. For a finite set

S and X,Y ⊆ S, the lattice [X,Y ] is defined as {U | X ⊆ U ⊆ Y }. Note that, by definition,

[X,Y ] = ∅ if X * Y . We can now define the notion of a semi-lattice decomposition of a

disjunctive statement.
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Figure 2.1. Let S = {a, b, c} be a finite set. Then the semi-lattice decom-

position of {b} relative to {{a}} is equal to {{b}, {b, c}}, or, equivalently,

L({b}, {{a}}) = {{b}, {b, c}}.

Definition 2.6 (Semi-Lattice decomposition). Let S be a finite set, let X ⊆ S, and

let Y be a set of subsets of S. The semi-lattice decomposition of X relative to Y are the

supersets of X which are not supersets of any element in Y. More formally, the semi-lattice

decomposition of X relative to Y is defined by

L(X,Y) = [X,S] −

(

⋃

Y ∈Y

[Y, S]

)

.

Example 2.7. Let S = {a, b, c} be a finite set. Then L({b}, {{a}}) = [{b}, {a, b, c}] −

[{a}, {a, b, c}] = {{b}, {b, c}}. Figure 2.1 illustrates how the semi-lattice is constructed using

Hasse diagrams.

Example 2.8. Let S = {a, b, c, d} be a finite set. Then,

L({a}, {{b, c}, {d}}) = [{a}, {a, b, c, d}] − ([{b, c}, {a, b, c, d}] ∪ [{d}, {a, b, c, d}])

= {{a}, {a, b}, {a, c}};

L(∅, {{a, b}, {c, d}}) = [∅, {a, b, c, d}] − ([{a, b}, {a, b, c, d}] ∪ [{c, d}, {a, b, c, d}])

= {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}}; and

L({a}, {{b, c}, ∅}) = [{a}, {a, b, c, d}] − ([{b, c}, {a, b, c, d}] ∪ [∅, {a, b, c, d}])

= ∅.

For a disjunctive statement c = X → Y, we will sometimes write L(c) instead of

L(X,Y). Similarly, for a set of disjunctive statements C, we will sometimes write L(C)
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instead of
⋃

c′∈C L(c′). The semi-lattice decomposition of a disjunctive statement can be

used to express differentials induced by the disjunctive statements in terms of the densities

of the real-valued functions [38].

proposition 2.9. Let S be a finite set, let F be a real-valued function over S, and let

X ⊆ S. Then,

∆YF (X) =
∑

U∈L(X,Y)

∆F (U).

Example 2.10. Let S = {a, b, c, d} be a finite set. Then,

∆{{b,c},{d}}F ({a}) = F ({a}) − F ({a, b, c}) − F ({a, d}) + F ({a, b, c, d})

= ∆F ({a}) + ∆F ({a, b}) + ∆F ({a, c});

∆{{a,b},{c,d}}F (∅) = F (∅) − F ({a, b}) − F ({c, d}) + F ({a, b, c, d})

= ∆F (∅) + ∆F ({a, c}) + ∆F ({a, d}) + ∆F ({b, c}) + ∆F ({b, d});

∆{{b,c},∅}F ({a}) = F ({a}) − F ({a, b, c}) − F ({a}) + F ({a, b, c})

= 0.

We now introduce a generalization of the supermodularity and submodularity proper-

ties, respectively, of a class of real-valued functions.

Definition 2.11 (Choquet capacities [6]). Let S be a finite set, let F be a real-valued

function over S, and let k be a natural number, k ≥ 1.

• The function F is a positive k-alternating capacity if, for each subset X of S and

for each non-empty set Y of k subsets of S, ∆YF (X) ≥ 0.

• The function F is a negative k-alternating capacity if, for each subset X of S and

for each non-empty set Y of k subsets of S, ∆YF (X) ≤ 0.

Please note that the notion of a positive (negative) 1-alternating capacity is equivalent

to the notions of decreasing (increasing) real-valued function. Analogously, the notion of

a positive (negative) 2-alternating capacity is equivalent to the notion of supermodular

(submodular) real-valued function. Choquet capacities occur in areas such as game theory,
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fuzzy measures, belief and plausibility functions, and possibility measures. We will show in

later chapters that classes of functions that are Choquet capacities have some interesting

properties with respect to inference systems for the implication problem for disjunctive

statements. For an introduction to, and discussion of, Choquet capacities in the area of

reasoning about uncertainty, we refer the reader to Halpern [17].

3. Disjunctive Statements as Additive Constraints

Definition 2.12 (Disjunctive statement). Let S be a finite set. A disjunctive statement

over S is an expression of the form X → Y with {X} ∪ Y a set of pairwise disjoint subsets

of S.1 The size of Y, |Y|, is called the order of X → Y. If X ∪
⋃

Y = S, the statement is

called saturated.

Example 2.13. Let S = {A,B,C,D}. The following are disjunctive statements of order

0, 1, 2, and 3, respectively:

{A,B,C} → ∅;

{C} → {{A,B}};

{A,B} → {{C}, {D}}; and

∅ → {{A,B}, {C}, {D}}.

Disjunctive statements can be interpreted as additive constraints on real-valued func-

tions.

Definition 2.14 (Disjunctive statements as additive constraints). Let S be a finite set,

let X ⊆ S and Y ⊆ 2S such that {X} ∪ Y consists of pairwise disjoint sets, and let F be a

real-valued function over S. Then F satisfies the disjunctive statement X → Y if and only

if ∆YF (X) = 0.

1In some applications, overlap between X and the members of Y is possible. All results still hold

in this case, provided that the triviality rule in inference systems K (Figure 3.1) and G is replaced by

X ⊇ Y : X → Y ∪ {Y }. The proofs require only minor modifications.
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We can now define the bounded logical implication problem for disjunctive statements

with respect to a class of real-valued functions.

For a finite set S, a set of disjunctive statements C over S, a disjunctive statement

c over S, and a class of real-valued functions F over S, we say that C logically implies

c relative to F , and write C |=F c, if every function F ∈ F that satisfies all disjunctive

statements in C also satisfies c.

By the implication problem, we mean the problem of deciding logical implication with

S as a parameter of the problem. This means that, for each finite set S, an appropriate

set of real-valued functions of the form F : 2S → R is given. This leads to the following

definition.

Definition 2.15 (Class of functions). A class of real-valued functions F is a mapping

that associates to each finite set S a set of real-valued functions over S. Whenever F is

a class of real-valued functions, and S is a finite set, FS denotes the set of real-valued

functions over S associated to S by F .

Definition 2.15 allows us to speak about the implication problem relative to a class of

real-valued functions. In many cases, bounds are imposed on the order of the disjunctive

statements under consideration. For natural numbers ℓ and u, 1 ≤ ℓ ≤ u, we mean by

the [ℓ, u]-bounded implication problem (or bounded implication problem if the bounds are

implicit) the special case of the implication problem where only disjunctive statements

of order at least ℓ and at most u are considered. It follows from the examples in the

introduction that the bounded implication problem for disjunctive statements is a unifying

framework for a wide variety of seemingly unrelated implication problems that have been

considered in the literature.

The theoretical framework presented here unifies important implication problems oc-

curring in computer science. We have shown that many concepts such as functional depen-

dencies (FDs), association rules (ARs), multivalued dependencies (MVDs), and conditional

independence statements (CIs) can be rewritten as disjunctive statements having a par-

ticular order. For example, in the context of conditional independence statements, the
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Application-specific Corresponding classes of real-valued functions

semantics (FFDs,FARs, ...)

(FDs, ARs, ...): ⇔ and implicit bounds on the order; here: [1, 1].

X1 → {Y1}

X2 → {Y2}

. . .

Xk → {Yk}

X → {Y }

⇔

F (X1) = F (X1 ∪ Y1)

F (X2) = F (X2 ∪ Y2)

. . .

F (Xk) = F (Xk ∪ Yk)

F (X) = F (X ∪ Y )

Application-specific Corresponding classes of real-valued functions

semantics (FMV Ds,FCIs, ...)

(MVDs, CIs, ...): ⇔ and implicit bounds on the order; here: [2, 2].

X1 → {Y1, Z1}

X2 → {Y2, Z2}

. . .

Xk → {Yk, Zk}

X → {Y,Z}

⇔

F (X1) + F (X1 ∪ Y1 ∪ Z1) = F (X1 ∪ Y1) + F (X1 ∪ Z1)

F (X2) + F (X2 ∪ Y2 ∪ Z2) = F (X2 ∪ Y2) + F (X2 ∪ Z2)

. . .

F (Xk) + F (Xk ∪ Yk ∪ Zk) = F (Xk ∪ Yk) + F (Xk ∪ Zk)

F (X) + F (X ∪ Y ∪ Z) = F (X ∪ Y ) + F (X ∪ Z)

Figure 2.2. The theoretical framework unifies important implication prob-

lems occurring in computer science. Instances of implication problems with

application-specific semantics are equivalent to instances of implication prob-

lems for additive constraints relative to the corresponding classes of func-

tions.
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implication problem is [2, 2]-bounded, that is, it only involves disjunctive statements of

order exactly 2.

After this syntactic unification, we can also unify the semantics, by considering the

implication problem for disjunctive statements relative to the corresponding class of real-

functions for the application-specific semantics. For example, for FDs this is the class of

Shannon entropy functions, and for conditional independence, this is the class of multi-

information functions induced by the class of discrete probability measures. Instances of

the implication problem for FDs/CI Statements are then equivalent to implication prob-

lems on additive constraints relative to these classes of functions. Figure 2.2 depicts these

correspondences for disjunctive statements of order exactly 1 and 2, respectively. Instances

of implication problems with the application-specific semantics (e.g., FDs and ARs) are

equivalent to instances of implication problems on additive constraints with order exactly

1, relative to the corresponding classes of functions (here: Shannon entropy and frequency

functions).



CHAPTER 3

Inference Systems

Given a class of real-valued functions F and the previously defined (bounded) implica-

tion problem relative to F , we would like to determine inference systems that are sound,

complete, or both for this implication problem. The usefulness of this approach has already

been demonstrated time and again in a wide variety of application areas.

Therefore, in this chapter, we consider inference systems which are sound and/or com-

plete for several well-known implication problems: an inference system that we refer to

as system K (see Figure 3.1) and a generalization of the semi-graphoid axioms [8, 31]

for statements of arbitrary order that we refer to as system G (see Figure 3.4). These

inference systems will serve as templates for specialized inference systems in the context

of implication problems with bounds on the order of the disjunctive statements. For ex-

ample, Figure 3.2 depicts inference system K specialized to the [2, 2]-bounded implication

problem, and Figure 3.3 depicts the same inference system specialized to the [1, 1]-bounded

implication problem. Indeed, observe the syntactic similarities with the inference systems

shown in Figures 1.4, 1.5, 1.6, and 1.7. Furthermore, note that the inference rule symmetry

is implicitly sound for disjunctive statements, as the right-hand-side of each disjunctive

statement is always a set of sets. We will prove these inference systems to be sound with

respect to semi-lattice inclusion, that is, we will show that if the semi-lattice of a disjunctive

statement is a subset of the union of semi-lattices of a set of CI statements, then the single

CI statement can be derived from the set of CI statements. We will be able to harness this

property of the inference systems to derive testable properties that imply the soundness

and/or completeness of the systems. Before doing so however, we will introduce some basic

definitions.

26



3. INFERENCE SYSTEMS 27

Augmentation

X → Y

X ∪ W → Y

Composition

X → Y ∪ {Y }

X → Y ∪ {Z}

X → Y ∪ {Y ∪ Z}

Triviality

X → Y ∪ {∅}

Strong Transitivity

X → Y ∪ Z

∀Z ∈ Z : X ∪ Z → Y ∪ V

X → Y ∪ V

Decomposition

X → Y ∪ {Y ∪ Z}

X → Y ∪ {Y }

Figure 3.1. Inference system K which servers as a template for specific

instances of inference systems for bounded implication problems.
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Augmentation

X → {Y,Z}

X ∪ W → {Y,Z}

Strong Transitivity (1)

X → {Y } ∪ {Z}

X ∪ Z → {Y } ∪ {V }

X → {Y } ∪ {V }

Composition

X → {Y } ∪ {W}

X → {Y } ∪ {Z}

X → {Y } ∪ {W ∪ Z}

Triviality

X → {Y } ∪ {∅}

Strong Transitivity (2)

X → {Z} ∪ {Z ′}

X ∪ Z → {V } ∪ {V ′}

X ∪ Z ′ → {V } ∪ {V ′}

X → {V } ∪ {V ′}

Decomposition

X → {Y } ∪ {W ∪ Z}

X → {Y } ∪ {Z}

Figure 3.2. Inference system K2 specialized to the [2, 2]-bounded impli-

cation problem for disjunctive statements.
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Augmentation

X → {Y }

X ∪ W → {Y }

Composition

X → {Y }

X → {Z}

X → {Y ∪ Z}

Triviality

X → {∅}

Strong Transitivity

X → {Z}

X ∪ Z → {V }

X → {V }

Decomposition

X → {Y ∪ Z}

X → {Y }

Figure 3.3. Inference system K1 specialized to the [1, 1]-bounded impli-

cation problem for disjunctive statements.
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Triviality

X → Y ∪ {∅}

Weak Contraction

X → Y ∪ {Y } ∪ {Z ∪ W}

X ∪ Y → Y ∪ {Z} ∪ {W}

X → Y ∪ {Y ∪ Z} ∪ {W}

Weak Augmentation

X → Y ∪ {Y ∪ Z}

X ∪ Z → Y ∪ {Y }

Figure 3.4. Semi-graphoid inference system G which servers as a template

for specific instances of inference systems for bounded implication problems

for saturated disjunctive statements.
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Triviality

X → {Y } ∪ {∅}

Weak Contraction

X → {Y } ∪ {Z ∪ W}

X ∪ Y → {Z} ∪ {W}

X → {Y ∪ Z} ∪ {W}

Weak Augmentation

X → {Y } ∪ {W ∪ Z}

X ∪ Z → {W} ∪ {Y }

Figure 3.5. Semi-graphoid inference system G specialized to the [2, 2]-

bounded implication problem for saturated disjunctive statements.
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1. Preliminaries

Definition 3.1. Let S be a finite set, let I be an inference system for disjunctive

statements, let C be a set of disjunctive statements over S, and let c be a disjunctive

statement over S. We say that c can be derived from C under I, if there exists a finite

sequence of disjunctive statements c1, . . . , cn such that

(1) for i = 1, . . . , n, ci is either given (i.e., an element of C) or ci can be derived from

some of the constraints c1, . . . , ci−1 using an inference rule in I;

(2) cn = c.

The sequence c1, . . . , cn is called a derivation.

Consider an [ℓ, u]-bounded implication problem. Let (C, c) be an instance of this

bounded implication problem over some finite set S. If all disjunctive statements in a

derivation of c from C have order at most u, we say that the derivation is upper bounded. If

all the disjunctive statements in a derivation of c from C have order at least ℓ, we say that

the derivation is lower bounded. Finally, if a derivation is both lower bounded and upper

bounded, we say that it is bounded. The bounded derivability of c from C under I is denoted

by C ⊢I c. It goes without saying that bounded derivability is very desirable as it restricts

the possible intermediate disjunctive statements to a finite number.

Example 3.2. Consider the inference system K in Figure 3.1. Let S = {a, b, c, d}, let

C = {{a} → {{b, c}, {d}}, {c} → {{d}}}, and let c be {a, b} → {{d}}. Observe that all

disjunctive statements in C ∪{c} are of order 1 or 2. We can show that C ⊢K c by exhibiting
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a derivation:

(1) {c} → {{d}} (given)

(2) {a, b, c} → {{d}} (augmentation)

(3) {a} → {{b, c}, {d}} (given)

(4) {a} → {{c}, {d}} (decomposition)

(5) {a, b} → {{c}, {d}} (augmentation)

(6) {a, b} → {{d}} (strong transitivity on (5) and (2)),

with X = {a, b},Y = {{d}},V = ∅, and Z = {{c}}).

All disjunctive statements in the above derivation have order 1 or 2. We may therefore

conclude that this derivation is bounded.

Notice that the only disjunctive statements that can be inferred from the empty set,

that is, the set containing no disjunctive statements, are precisely those that satisfy the

triviality rule. We shall therefore call these disjunctive statements trivial.

2. Semi-Lattice Characterization of Inference Systems

Based on the notion of bounded derivability, we prove that (i) K is sound and complete

with respect to semi-lattice inclusion for disjunctive statements, and (ii) G is sound and

complete with respect to semi-lattice inclusion for saturated disjunctive statements. To

prove this, we will first need to introduce the notion of a witness set.

Definition 3.3 (Witness set). Let S be a finite set and Y = {Y1, . . . , Yn} be a set of

subsets of S. The set W(Y) of all witness sets of Y is defined by

W(Y) = {{w1, . . . , wn} | w1 ∈ Y1 ∧ . . . ∧ wn ∈ Yn}.

Every element in W(Y) is called a witness set. Notice that the size of a witness set

always equals the size of Y. Furthermore, we have that W(∅) = {∅} and W(Y) = ∅ if

∅ ∈ Y.
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Example 3.4. Let S = {a, b, c, d}. Then,

W({{b, c}, {d}}) = {{b, d}, {c, d}};

W({{a, b}, {c, d}}) = {{a, c}, {a, d}, {b, c}, {b, d}};

W({{a}, {c}}) = {{a, c}};

W({{a, b}, ∅}) = ∅; and

W(∅) = {∅}.

We will now show that the semi-lattice decomposition of a disjunctive statement can

be equivalently expressed using lattices induced by the witness sets of the disjunctive state-

ments.

proposition 3.5. Let S be a finite set, let X ⊆ S, and let Y a set of subsets of S.

Then,

L(X,Y) =
⋃

W∈W(Y)

[X,W ].

Proof: We first show that L(X,Y) ⊆
⋃

W∈W(Y)[X,W ]. Let Y = {Y1, . . . , Yn}, U ∈

L(X,Y), and Y ′ = {Y1 −U, . . . , Yn −U}. Note that U ⊇ X, and that every element of Y ′ is

non-empty since U ⊆ Y for all Y ∈ Y. Now, for W ∈ W(Y ′) we have that U ⊆ W . Thus,

U ∈ [X,W ]. It now suffices to observe that W is also a witness set of Y.

To show the converse inclusion, let U ∈ [X,W ] for some witness set W of Y. Since

U ∩ W = ∅, it follows that U + Y for all Y ∈ Y, and, therefore, U ∈ L(X,Y).
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Example 3.6. Let S = {a, b, c, d} be a finite set. Then,

L({a}, {{b, c}, {d}}) = [{a}, {a, b, c, d}] − ([{b, c}, {a, b, c, d}] ∪ [{d}, {a, b, c, d}])

= {{a}, {a, b}, {a, c}} = [{a}, {a, b}] ∪ [{a}, {a, c}]

= [{a}, {c, d}] ∪ [{a}, {b, d}] =
⋃

W∈W({{b,c},{d}})[{a},W ];

L(∅, {{a, b}, {c, d}}) = [∅, {a, b, c, d}] − ([{a, b}, {a, b, c, d}] ∪ [{c, d}, {a, b, c, d}])

= {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}}

= [∅, {b, d}] ∪ [∅, {b, c}] ∪ [∅, {a, d}] ∪ [∅, {a, c}]

= [∅, {a, c}] ∪ [∅, {a, d}] ∪ [∅, {b, c}] ∪ [∅, {b, d}]

=
⋃

W∈W({{a,b},{c,d}})[∅,W ]; and

L({a}, {{b, c}, ∅}) = [{a}, {a, b, c, d}] − ([{b, c}, {a, b, c, d}] ∪ [∅, {a, b, c, d}])

= ∅ =
⋃

W∈W({{b,c},∅})[{a},W ].

The following proposition states that inference system K is sound with respect to

bounded semi-lattice inclusion, that is, when some of the inference rules of inference system

K are applied to a set of disjunctive statements C to derive a single disjunctive statement

c, then L(C) ⊇ L(c).

proposition 3.7. Let S be a finite set, let ℓ, u ∈ N with 1 ≤ ℓ ≤ u be bounds on

the order of the disjunctive statements under consideration, let C be a set of disjunctive

statements, and let c be a single disjunctive statement, all over S and satisfying the given

bounds. If C ⊢K c, then L(C) ⊇ L(c).

Proof: It suffices to show that, for each inference rule of system K, the semi-lattice

decomposition of the consequence of the inference rule is a subset of the union of the semi-

lattice decompositions of the antecedents of the inference rule. We start by showing this

for strong transitivity (see Figure 3.1). Thus, let U ∈ L(X,Y ∪ V). By Definition 2.6,

U ⊇ X. We distinguish two cases. Case 1 : There exists Z in Z such that U ⊇ Z. Then

U ⊇ X ∪Z and, therefore, U ∈ L(X ∪Z,Y ∪V). Case 2 : There does not exist Z ∈ Z such

that U ⊇ Z. Then, U ∈ L(X,Y ∪ Z).
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Consider inference rule augmentation. Thus, let U ∈ L(X ∪W,Y). By Definition 2.6,

U ⊇ X ∪ W and for all Y ∈ Y we have that U + Y . But then we also have that U ⊇ X

and for all Y ∈ Y we have that U + Y . Hence, U ∈ L(X,Y).

Consider inference rule decomposition. Thus, let U ∈ L(X,Y ∪ {Y }). By Defini-

tion 2.6, U ⊇ X, Y * U and for all V ∈ Y we have that U + V . But then we also have that

U ⊇ X, Y ∪Z * U , and for all V ∈ Y we have that U + V . Hence, U ∈ L(X,Y ∪{Y ∪Z}).

Finally, consider inference rule composition. Thus, let U ∈ L(X,Y ∪ {Y ∪ Z}). By

Definition 2.6, U ⊇ X, Y ∪ Z * U , and for all V ∈ Y we have that U + V . We distinguish

two cases. Case 1 : We have that Y ⊆ U . Then Z + U because otherwise we would have

that Y ∪ Z ⊆ U . Hence, U ∈ L(X,Y ∪ {Z}). Case 2 : We have that Y * U . Then,

U ∈ L(X,Y ∪ {Y }).

We proceed with showing that inference system K is also complete with respect to

bounded semi-lattice inclusion. Therefore, we first define the witness decomposition of a

disjunctive statement.

Definition 3.8 (Witness decomposition). Let S be a finite set. The witness decompo-

sition of the disjunctive statement X → Y over S is defined by

wdec(X → Y) := {X → A(W ) | W ∈ W(Y)},

with A(W ) = {{w} | w ∈ W}.

The following proposition states that a witness decomposition of a disjunctive statement

is a normal form of the disjunctive statement relative to both the semi-lattice inclusion and

the inference system K, that is, one representation can be derived from the other using

inference rules from K, and both representations have the same associated semi-lattice.

proposition 3.9. Let c be a disjunctive statement over some finite set S satisfying the

bounds of the implication problem under consideration. Then (1) {c} ⊢K c′ for each c′ in

wdec(c); (2) wdec(c) ⊢K c; and (3) L(c) = L(wdec(c)).
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Proof: To prove the first statement, let c = X → Y and X → A(W ) ∈ wdec(c). Then

X → A(W ) can be derived from X → Y by applications of the decomposition rule.

Hence, {c} ⊢K c′.

By Definition 3.8, we know that, for every W ∈ W(Y), we have that X → A(W ) ∈

wdec(c). Let Y ∈ Y. We know that W(Y−{Y })∪{{y}} is an element of W(Y), for all y ∈ Y ,

and, therefore, X → W(Y − {Y }) ∪ {{y}} ∈ wdec(c), for all y ∈ Y . Now, by repeatedly

applying composition, we can infer the disjunctive statements X → W(Y − {Y }) ∪ {Y },

for all Y ∈ Y. The process of repeatedly applying composition can be continued to these

statements to finally derive the disjunctive statement X → Y. Hence, wdec(c) ⊢K c.

To prove the third statement, let X → A(W ) ∈ wdec(c). Then L(X,A(W )) = [X,W ].

The statement now follows directly from Definition 3.8 and Proposition 3.5.

We are now ready to prove our first main result, that is, the soundness and completeness

of inference system K with respect to semi-lattice inclusion.

Theorem 3.10. Let C be a set of disjunctive statements, and let c be a disjunctive

statement, all over some finite set S and satisfying the bounds of the implication problem

under consideration. Then C ⊢K c if and only if L(C) ⊇ L(c).

Proof: The “only if” was already shown in Proposition 3.7, so we now turn to the “if.”

Let us denote wdec(C) =
⋃

c′∈C wdec(c
′) and suppose c = X → Y. Let X → A(W ) ∈

wdec(c) with W = {w1, . . . , wn}. From the assumption L(C) ⊇ L(c) and Proposition 3.9(3),

it follows that L(C) ⊇ L(X,A(W )) (1). By Proposition 3.9(1), it suffices to show that

wdec(C) ⊢K X → A(W ). In order to achieve this, we prove the stronger statement

∀V ∈ [X,W ] : wdec(C) ⊢K V → A(W )

by downward induction on the lattice [X,W ].

For the base case, we need to show that wdec(C) ⊢K W → A(W ). By (1), W is in L(C).

Hence, by Proposition 3.9, (1), there exists a disjunctive statement X ′ → A(W ′) ∈ wdec(C)

such that W ∈ L(X ′,A(W ′)). Note that W ′ ⊆ W . If W ′ 6= W , we first derive X ′ → A(W )
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from X ′ → A(W ′) using strong transitivity. Next, we derive W → A(W ) from X ′ →

A(W ′) by augmentation.

For the induction step, let X ⊆ V ⊂ W . The induction hypothesis states that, for

all V ′ with V ⊂ V ′ ⊆ W , wdec(C) ⊢K V ′ → A(W ). By (1), V is in L(C). Hence, by

Proposition 3.9,(1), there exists a disjunctive statement X ′ → A(W ′) ∈ wdec(C) such that

V ∈ L(X ′,A(W ′)). Since X ′ ⊆ V , we can use augmentation to derive V → A(W ′). We

may write V → A(W ′) as V → A(W ′∩W )∪A(W ′∩W ) (a). Furthermore, by the induction

hypothesis and W ′ ∩ V = ∅, we have, for all w′ in W ′ ∩ W , that wdec(C) ⊢K V ∪ {w′} →

A(W ) (b). Now, by applying strong transitivity to (a) and the statements (b), we can

finally infer V → A(W ).

Please note that the above proof provides an algorithm to construct the derivation for

any given instance of the implication problem. We will now use the semi-lattice inclusion

property of inference system K to derive properties of classes of real-valued functions that

imply the soundness and completeness of the system.

3. Semantic Properties of Inference Systems

So far, as we have unified a large class of implication problems by reducing them to

instances of bounded implication problems on additive constraints on real-valued functions.

We will now derive properties of classes of real-valued functions that guarantee soundness

and completeness or both of the two inference systems introduced in this chapter. In par-

ticular, if we could succeed in deriving testable properties of classes of real-valued functions

that imply soundness and completeness properties, the framework would allow us to ap-

proach numerous implication problems from a new angle of attack.

3.1. Soundness. First, we define the notion of bounded soundness. Of course, we

want the theoretical framework to be applicable to existing important applications. Most

of these applications restrict the order of the disjunctive statements under consideration.

For example, since multivalued dependencies can be interpreted as saturated disjunctive

statements of order exactly 2, we want to be able to generally restrict the corresponding

implication problems and inference systems to disjunctive statements of order exactly 2.
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Therefore, the discussion of the inference systems and their semantic properties will be in

the context of the [ℓ, u]-bounded implication problem relative to some class F of real-valued

functions, for two natural numbers u and ℓ with 1 ≤ ℓ ≤ u.

Let I be an inference system for disjunctive statements. We say that I is [ℓ, u]-sound

relative to F if, for each finite set S, for each set C of disjunctive statements over S, and for

each single disjunctive statement C over S, all of order at least ℓ and at most u, we have

that C ⊢I c implies C |=FS
c.

Notice that K is a “stronger” inference system than G in the sense that every derivation

under the inference system G is also achievable under the inference system K.

Lemma 3.11. Let ℓ, u ∈ N with 1 ≤ ℓ ≤ u. If K is [ℓ, u]-sound relative to F , then G is

[ℓ, u]-sound relative to F .

In order to characterize bounded soundness of the two inference systems under consid-

eration relative to a class of real-valued functions, we introduce the zero-density property

for such classes.

Definition 3.12 (Zero density). Let ℓ, u ∈ N with 1 ≤ ℓ ≤ u be bounds on the order

of the disjunctive statements, and let F be a class of real-valued functions. We say that F

has the [ℓ, u]-zero-density property if, for each finite set S, for each real-valued function F

over S in FS , and for each disjunctive statement c over S of order at least ℓ and at most u,

we have that F satisfies c implies ∆F (U) = 0, for all U ∈ L(c).

We can now characterize bounded soundness of the inference system K.

Theorem 3.13. Let ℓ, u ∈ N with 1 ≤ ℓ ≤ u be bounds on the order of the disjunctive

statements, and let F be a class of real-valued functions. Then the following statements are

equivalent:

(1) Augmentation and decomposition are [ℓ, u]-sound relative to F ;

(2) F has the [ℓ, u]-zero-density property; and

(3) K is [ℓ, u]-sound relative to F .
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Proof: We first prove that (1) implies (2). Assume that augmentation and decompo-

sition are [ℓ, u]-sound relative to F . Let S be a finite set, let F be in FS , let X → Y be a

disjunctive statement over S of order at least ℓ and at most u, and assume that F satisfies

X → Y, i.e., ∆YF (X) = 0. We need to show that ∆F (V ) = 0 for each V ∈ L(X,Y). The

proof goes by downward induction on the structure of the semi-lattice decomposition.

First, we observe that, by Proposition 3.5, L(X,Y) =
⋃

W∈W(Y)[X,W ]. Hence, for the

base case, we must prove that ∆F (W ) = 0 for all W in W(Y). Since decomposition is

[ℓ, u]-sound relative to F , it follows that F also satisfies X → A(W ). Furthermore, since

augmentation is [ℓ, u]-sound relative to F , and X ⊆ W , it follows that F also satisfies

W → A(W ), i.e., ∆A(W )F (W ) = 0. Now, by Proposition 2.9, ∆A(W )F (W ) = ∆F (W ) = 0.

We now turn to the induction step. Let V ∈ L(X,Y). The induction hypothesis

states that ∆F (U) = 0 for all U in L(X,Y) that are strict supersets of V . By Propo-

sition 3.5, there exists W in W(Y) with V ⊆ W . As in the base case, we can ap-

ply decomposition and augmentation to derive that F satisfies V → A(W ). Hence,

∆A(W )F (V ) =
∑

U∈L(V,A(W )) ∆F (U) = ∆F (V ) = 0, since all other densities in the sum are

zero by the induction hypothesis.

We next prove that (2) implies (3). Let S be a finite set, let C be a set of disjunctive

statements over S, and let c be a single disjunctive statement over S, all of order at least ℓ

and at most u. Assume that C ⊢K c, which, by Theorem 3.10, is equivalent to L(c) ⊆ L(C).

Now, let F be any function in FS that satisfies all disjunctive statements in C. Let U be in

L(c). Then there is a disjunctive statement c′ in C such that U is in L(c′). Since F satisfies

c′, and F has the [ℓ, u]-zero-density property, it follows that ∆F (U) = 0. Let c = X → Y.

Since ∆YF (X) =
∑

U∈L(c) ∆F (U) = 0, we have that F satisfies c = X → Y. We may thus

conclude that C |=F c.

Finally, (3) trivially implies (1) since augmentation and decomposition are inference

rules of K.

By Lemma 3.11, conditions (1) and (2) of Theorem 3.13 each imply that also G is

[ℓ, u]-sound relative to S.
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When only saturated statements are considered, a result analogous to Theorem 3.13

holds.

Theorem 3.14. Let ℓ, u ∈ N with 1 ≤ ℓ ≤ u be bounds on the order of the disjunctive

statements, and let F be a class of real-valued functions. Then the following statements are

equivalent:

(1) Weak augmentation is [ℓ, u]-sound relative to F for saturated disjunctive state-

ments;

(2) F has the [ℓ, u]-zero-density property for saturated disjunctive statements;

(3) K is [ℓ, u]-sound relative to F for saturated disjunctive statements; and

(4) G is [ℓ, u]-sound relative to F for saturated disjunctive statements.

Proof: We first prove that (1) implies (2). Assume that weak augmentation is [ℓ, u]-

sound relative to F for saturated disjunctive statements. Let S be a finite set, let F be

in FS , let X → Y be a saturated disjunctive statement over S of order at least ℓ and at

most u, and assume that F satisfies X → Y, i.e., ∆YF (X) = 0. We need to show that

∆F (V ) = 0 for each V ∈ L(X,Y). The proof goes by downward induction on the structure

of the semi-lattice decomposition.

First, we observe that, by Proposition 3.5, L(X,Y) =
⋃

W∈W(Y)[X,W ]. Hence, for the

base case, we must prove that ∆F (W ) = 0 for all W in W(Y). Since weak augmentation

is [ℓ, u]-sound relative to F for saturated disjunctive statements, it follows that F also

satisfies W → A(W ), that is, ∆A(W )F (W ) = 0 . Now, by Proposition 2.9, ∆A(W )F (W ) =

∆F (W ) = 0.

We now turn to the induction step. Let V ∈ L(X,Y). The induction hypothesis states

that ∆F (U) = 0 for all U in L(X,Y) that are strict supersets of V . By Proposition 3.5, there

exists W in W(Y) with V ⊆ W . As in the base case, we can apply weak augmentation

to derive that F satisfies V → A(W ). Hence, ∆A(W )F (V ) =
∑

U∈L(V,A(W )) ∆F (U) =

∆F (V ) = 0, since all other densities in the sum are zero by the induction hypothesis (all

elements U ∈ L(V,A(W )) are elements in L(X,Y) and U ⊃ V ).
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We next prove that (2) implies (3). Let S be a finite set, let C be a set of saturated

disjunctive statements over S, and let c be a single saturated disjunctive statement over

S, all of order at least ℓ and at most u. Assume that C ⊢K c, which, by Theorem 3.10, is

equivalent to L(c) ⊆ L(C). Now, let F be any function in FS that satisfies all saturated

disjunctive statements in C. Let U be in L(c). Then there exists a saturated disjunctive

statement c′ in C such that U is in L(c′). Since F satisfies c′, and F has the [ℓ, u]-zero-

density property, it follows that ∆F (U) = 0. Let c = X → Y be a saturated disjunctive

statement. Since ∆YF (X) =
∑

U∈L(c) ∆F (U) = 0, we have that F satisfies c = X → Y.

We may thus conclude that C |=F c.

Of course, (3) implies (4) by Lemma 3.11.

Finally, (4) trivially implies (1) since weak augmentation is an inference rules of G.

The importance of this results stems from the fact that it is often not difficult to test

whether the inference rules augmentation and decomposition are sound. In fact, there

are many important cases where this is already established (see the following example).

In addition, the zero-density property holds for many classes of measures. We refer the

reader to Sayrafi’s dissertation [36] for an in-depth discussion of these classes of real-valued

functions.

Example 3.15. By Theorem 3.13 we have that K and G are [1, 1]-sound for the impli-

cation problem of functional dependencies, because augmentation and decomposition are

sound for functional dependencies. In addition, K and G are [1, u]-sound for generalized

disjunctive rules in frequent pattern mining and for implication formulae in propositional

logic, for any upper bound u, because augmentation and decomposition are [1, u]-sound in

both cases.

By Theorem 3.14, G is [2, 2]-sound for both the implication problem for multivalued de-

pendencies and the implication problem for saturated conditional independence statements,

because weak augmentation is [2, 2]-sound in both cases. Hence, by the same theorem, we

have that the respective classes of real-valued functions have the [2, 2]-zero-density property,

and we can conclude that K is also [2, 2]-sound in both cases by invoking Theorem 3.13.



3. INFERENCE SYSTEMS 43

Figure 3.6. Hasse diagram of the lattice [∅, {a, b, c}]. The elements below

the topmost dashed line constitute the set S1(S) = {∅, a, b, c, ab, ac, bc} and

the elements below the second dashed line constitute the set S2(S) =

{∅, a, b, c}.

3.2. Completeness. First, we formally define the notion of bounded completeness of

inference rules and inference systems in our framework. Let I be an inference system for

disjunctive statements and let ℓ, u ∈ N with ℓ ≤ u. We say that I is [ℓ, u]-sound relative

to F if, for each finite set S, for each set C of disjunctive statements over S, and for each

single disjunctive statement of S, all of order at least ℓ and at most u, we have that C ⊢FS
c

implies C |=I c. The counterpart to Lemma 3.11 for bounded completeness is as follows.

Lemma 3.16. If G is [ℓ, u]-complete relative to F , then K is [ℓ, u]-complete relative to

F .

We now turn to inference system K and derive properties that imply its completeness.

Definition 3.17 (Kronecker density). Let S be a finite set and let V ⊆ S. The

Kronecker density of V , denoted δV , is the function from 2S into the reals for which δV (V ) =

1 and δV (X) = 0 if X 6= V . The Kronecker-induced function of V , denoted FV , is the
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function whose density is the Kronecker density of V , i.e., FV (X) =
∑

X⊆U⊆S δV (U), for

X ⊆ S.

We now define a property on classes of real-valued functions that guarantees complete-

ness of the inference system K.

Definition 3.18 (Kronecker property). Let S be a finite set, FS a set of real-valued

functions over S, and V a set of subsets of S. We say that FS has the Kronecker property

on V if, for each U in V, there exists a nonzero real number cU and a set DU = {dU,V ∈ R |

V /∈ V}1 such that

FV ,U,cU ,DU
= cUFU +

∑

V ⊆S , V /∈V

dU,V FV

is in F .

Note that, for all X in V, ∆FV ,U,cU ,DU
(X) = cU if X = U , and ∆FV ,U,cU ,DU

(X) = 0 if

X 6= U .

For some number i, let Si(S) denote the set of all subsets of S of size at most |S| − i.

Figure 3.6 depicts the sets Si(S) for S = {a, b, c} and i = 0, ..., 2. We now show how the

Kronecker property on Si relates to the bounded completeness of K. The following example

is intended to illustrate the zero-density and Kronecker properties on two different classes

of functions.

Example 3.19. Let S = {a, b, c}, let F1 = {F∅, Fa, Fb, Fc}, and let F2 = {Fx}, where

the densities for each real-valued function are given by the table in Figure 3.7. The densities

of the remaining subsets of S are assumed to be 0 for each function. Now, S2(S) = {∅, a, b, c}

and, therefore, F1 has the Kronecker property on S2(S) since FS2(S),U,cU ,DU
= FU for all

U ∈ S2(S), and the zero-density property. F2 does not have the Kronecker property. It

also does not have the zero-density property as there exists a real-valued function in F2

(namely Fx) that satisfies ∅ → {{b}, {c}} while ∆Fx(∅) 6= 0.

1The real numbers dU,V can be zero.



3. INFERENCE SYSTEMS 45

∅ {a} {b} {c}

∆F∅ +0.1 0 0 0

∆Fa 0 −0.3 0 0

∆Fb 0 0 −0.6 0

∆Fc 0 0 0 +0.9

∆Fx −0.2 +0.2 +0.6 +0.3

Figure 3.7. Densities of several real-valued functions.

Theorem 3.20. Let ℓ, u ∈ N with 1 ≤ ℓ ≤ u be bounds on the order of the disjunctive

statements, and let F be a class of real-valued functions. If, for every finite set S, FS has

the Kronecker property on Sℓ(S), then K is [ℓ, u]-complete relative to F .

Proof: Assume to the contrary that K is not [ℓ, u]-complete relative to F . Then, there

exists a finite set S, a set C of disjunctive statements over S, and a single disjunctive

statement c over S, all of order at least ℓ and at most u, such that C |=FS
c but C 6⊢K

X → Y, or, equivalently, by Theorem 3.10, L(c) * L(C). Choose U in L(c) − L(C). By

Definition 3.3 and Proposition 3.5, U ∈ Sℓ(S). Since FS has the Kronecker property on

Sℓ(S), there exists a nonzero real number cU , and a set DU = {dU,V ∈ R | V /∈ Sℓ(S)}

such that FSℓ(S),U,cU ,DU
∈ FS . By Definition 3.18, ∆FSℓ(S),U,cU ,DU

(U) = cU 6= 0 and

∆FSℓ(S),U,cU ,DU
(W ) = 0 for all other W in Sℓ(S). From Proposition 2.9, it now follows that

FSℓ(S),U,cU ,DU
satisfies all disjunctive statements in C, but does not satisfy c, contradicting

C |=F c.

Example 3.21. By Theorem 3.20, we have that K is [1, 1]-complete for the implication

problem for functional dependencies because the class of Shannon entropy functions over a

relation schema S has the Kronecker property on S1(S). Inference system K is also [1, u]-

complete for generalized disjunctive rules in frequent pattern mining, for any upper bound

u, because the class of all support functions over a set of items S has the Kronecker property

on S1(S). In addition, inference system K is [1, 1]-complete for the implication problem on
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association rules and disjunctive rules in data mining, because the class of support functions

over a set of items S has the Kronecker property on S1(S) and, therefore, also on S2(S).

Example 3.22. Combining the results from Examples 3.15 and 3.21 we have that in-

ference system K1 in Figure 3.3 is sound and complete for the implication problem for

functional dependencies and association rules. Furthermore, inference system K2 in Fig-

ure 3.2 is sound and complete for the implication problem for disjunctive rules in data

mining.

Notice that, whenever a set of real-valued function over some finite set S has the Kro-

necker property on Sℓ(S) for some lower bound ℓ ≥ 0, then it also has the Kronecker

property on Si(S), for all i with ℓ ≤ i. Hence, for a sequence of bounds 0 ≤ ℓ ≤ ℓ′ ≤ u′ ≤ u,

we have that the [ℓ, u]-completeness relative to some class of functions of K implies also its

[ℓ′, u′]-completeness.

Theorems 3.20 only works in one direction, unfortunately. In the context of bounded

soundness, however, we can also state the converse.

proposition 3.23. Let ℓ, u ∈ N with 1 ≤ ℓ ≤ u be bounds on the order of the disjunctive

statements, and let F be a class of real-valued functions.

(1) If ℓ ≥ 1 and K is [ℓ, u]-sound and [ℓ, u]-complete relative to F , then, for each finite

set S, FS has the Kronecker property on Sℓ(S).

(2) If ℓ ≥ 2 and K is [ℓ, u]-sound and [ℓ, u]-complete relative to F for saturated dis-

junctive statements, then F has the Kronecker property on Sℓ(S).

Proof: We start with (2). Thus, let ℓ ≥ 2, and assume that K is [ℓ, u]-sound and

[ℓ, u]-complete relative to F for saturated disjunctive statements. Now suppose that, for

some finite set S, FS does not have the Kronecker property on Sℓ(S). Hence, there does

not exist a nonzero real number cU and a set DU = {dU,V ∈ R | V /∈ Si(S)} such that

FSℓ(S),U,cU ,DU
∈ F . For each V in Sℓ(S) − {U}, we know that U 6= V and, hence, V * U
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or U * V or both. We now construct a set of saturated disjunctive statements C such that

L(C) = Sℓ(S) − {U}. We distinguish two cases.

Case 1 : V * U . Then, for every V ∈ Sℓ(S)−{U}, add a saturated disjunctive statement

to C of the form V → Y with
⋃

Y = V and |Y| = ℓ. This disjunctive statement exists, has

order ℓ, and is non-trivial. Since V * U , V ∈ L(V,Y), but U /∈ L(V,Y).

Case 2 : U * V . Then, for every V ∈ Sℓ(S) − {U}, add a saturated disjunctive

statement to C of the form V → {U −V }∪Y with (U −V )∪
⋃

Y = V and |Y| = ℓ−1. This

disjunctive statement exists, has order ℓ, and is non-trivial. Since U * V , V ∈ L(V,Y ′),

but U /∈ L(V,Y ′).

Hence, L(C) = Sℓ(S)−{U}. Now, consider the saturated disjunctive statement U → Z

with
⋃

Z = U and |Z| = ℓ. This disjunctive statement exists, has order ℓ, and is non-trivial.

Since U ∈ L(U,Z ′), L(U,Z) * L(C). By Theorem 3.10, C 0K U → Z.

We now show that C |=F U → Z to obtain the desired contradiction. Thus, let F

be in FS , and assume that F satisfies all disjunctive statements in C. Since K is [ℓ, u]-

sound relative to F for saturated disjunctive statements, we know, by Theorem 3.13, that

F has the [ℓ, u]-zero-density property for saturated statements. Thus, ∆F (X) = 0 for each

X ∈ Sℓ(S) with X 6= U . But, then, ∆F (U) = 0, since, otherwise, there would exist a

nonzero real number cU = ∆F (U) 6= 0 and a set DU = {dU,V ∈ R | V /∈ Sℓ(S)} such that

FSℓ(S),U,cU ,DU
= F ∈ F , a contradiction. Hence, F must be a function whose density is zero

on every set in Sℓ(S). Thus, F satisfies U → Z, whence C |=F U → Z.

Statement (1) is a special case of statement (2), except when i = 1. In this case, however,

the construction of the set C in the proof of (2) also works for disjunctive statements that

do not have to be saturated.

From Proposition 3.23, the following is easily shown.

Theorem 3.24. Let ℓ, u ∈ N with 2 ≤ ℓ ≤ u be bounds on the order of the disjunctive

statements, and let F be a class of real-valued functions. If K is [ℓ, u]-sound and [ℓ, u]-

complete relative to F for saturated disjunctive statements, then K is [ℓ, u]-complete relative

to F .
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Example 3.25. Inference system G is [2, 2]-complete for both the implication problem

for multivalued dependencies and the implication problem for saturated conditional inde-

pendence statements [15]. By Lemma 3.16, K is also [2, 2]-complete for these implication

problems for saturated statements. By Example 3.15, K is also [2, 2]-sound for these implica-

tion problems for saturated statements. Using Theorem 3.24, we may thus conclude that K

is [2, 2]-complete for both the implication problem for embedded multivalued dependencies

and unrestricted conditional independence statements.



CHAPTER 4

Non-Existence of Finite Axiomatizations

We have presented properties of classes of real-valued functions that imply the soundness

and completeness of inference systems for the implication problems for disjunctive state-

ments. However, in some cases these properties will either not hold or be difficult to verify.

There are classes of real-valued functions, for example, the class of multi-information func-

tions, for which inference system K is complete but not sound. Before one tries to develop

inference systems that are both sound and complete, one needs to consider the possibility

that such a finite inference system may not exist. While this would be a “negative” result,

much like proving the undecidability of a computational problem, it provides insights into

the theoretical characteristics of implication problems and saves the researcher from a futile

search for a non-existing solution.

There are several open problems concerning the existence of a finite complete axioma-

tization. On the one hand, the implication problem for measure-based constraints on the

class of supermodular (submodular) functions (Sayrafi et al. [40]) and the implication prob-

lem for interaction statements relative to the class of all supermodular (submodular) worth

functions were both not known to have a finite complete axiomatization. On the other hand,

non-existence results are known for the implication problem for conditional independence

statements (Studený [44]) and embedded multivalued dependencies (Sagiv [35]). We wish

to develop a theory that captures these cases and solves some open problems in a general

framework.

In this chapter, we will therefore specify properties of real-valued functions that imply

the non-existence of a finite axiomatization for the implication problem for disjunctive

statements interpreted as additive constraints on specific classes of real-valued functions.

These properties hold for many classes of real-valued functions and will allow us to solve

49
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some open problems. It builds on and generalizes previous ideas of non-existence proofs in

the areas of embedded multivalued dependencies [35] and conditional independence in the

area of reasoning under uncertainty [44]. Again, the developed framework is applicable to

implication problems that can be reduced to the implication problem on additive constraints.

1. Properties for Non-Axiomatizability of Implication Problems

In this section, we will specify properties that together imply the non-existence of a

finite, complete axiomatization. We will also derive various propositions that will allow us

to imply the non-existence of a finite axiomatization from properties introduced in previous

chapters.

Let us first consider the following inference rule, Λn (n ≥ 3), which will play a central

role in the development of our theory:

A1 → {A2} ∪ Y

A2 → {A3} ∪ Y
...

An−1 → {An} ∪ Y

An → {A1} ∪ Y

A1 → {An} ∪ Y

Definition 4.1 (Dual Kronecker). Let S be a finite set and let FS be a set of real-

valued functions over S. We say that FS has the dual Kronecker property if, for every

U ⊆ S with |U | ≥ 2, there exists a function FU ∈ FS and a real number c 6= FU (U) such

that, for all V with U * V ⊆ S, FU (V ) = c.

The following theorem establishes properties that imply the non-existence of a finite

axiomatization of the implication problem for disjunctive statements interpreted as additive

constraints on specific classes of real-valued functions. In the remainder of the paper, we

will show how these properties can be used in meaningful ways to derive new insights into

open problems.
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Theorem 4.2. Let ℓ, u ∈ N with 1 ≤ ℓ ≤ u be bounds on the order of the disjunctive

statements, and let F be a class of real-valued functions. If all of the following statements

hold, then there does not exist a finite, complete axiomatization for the implication problem

for disjunctive statements of order at least ℓ and at most u relative to F :

(1) Inference rule Λn is [ℓ, u]-sound relative to F for every n ≥ 3;

(2) K is [ℓ, u]-complete relative to F ; and

(3) for each finite set S, FS has the dual Kronecker property.

Proof: Assume to the contrary that there does exist a finite, complete axiomatization

X . Then, there must be n ≥ 3 such that, for all m > n, there is no inference rule in X

with m antecedents. Hence, for m > n, Λm /∈ X . Fix such m arbitrarily. Now, let S be

a finite set with |S| > m and |S| ≥ u, and let C = {{a1} → {{a2}} ∪ Y, . . . , {am−1} →

{{am}} ∪ Y, {am} → {{a1}} ∪ Y}, where Y ⊆ 2S contains only singletons, ai ∈ S for all

i = 1, . . . ,m, and |Y| = u − 1. Since, by assumption, Λm is [ℓ, u]-sound, we know that

C |=F {a1} → {{am}} ∪ Y.

We will now show that every proper subset of C does not imply any non-trivial disjunc-

tive statement relative to F of order at least ℓ and at most u, using properties (2) and (3).

Of course, this then implies that C 0X a1 → {am} ∪ Y, because X contains only inference

rules with at most m − 1 antecedents, contradicting the completeness of X .

It is sufficient to show that every proper subset of C of size m − 1 does not imply any

non-trivial disjunctive statement of order at least ℓ and at most u. Hence, without loss of

generality, let C′ = {{a1} → {{a2}}∪Y, . . . , {am−1} → {{am}}∪Y} be one of these proper

subsets. Assume that C′ implies the novel disjunctive statements A → {B} ∪ Z.

If |Z| < u−1, there exists an element U in L(A, {B}∪Z) with |U | = |S|−|Z|−1 > |S|−u,

by Definition 2.6. Since, also by Definition 2.6, the cardinality of the elements in L(C′)

is at most |S| − u, we have, by Theorem 3.10 and by the [ℓ, u]-completeness of K, that

A → {B} ∪ Z is not logically implied by C′. Hence, |Z| = u − 1. We distinguish two cases.

Case 1 : At least one of the sets in {A,B} ∪ Z has cardinality at least 2. Then,

|A ∪ B ∪
⋃

Z| > |{ai} ∪ {ai+1} ∪
⋃

Y|, for all i = 1, . . . ,m − 1 and, thus, A ∪ B ∪
⋃

Z *



4. NON-EXISTENCE OF FINITE AXIOMATIZATIONS 52

{ai} ∪ {ai+1} ∪
⋃

Y, for all i = 1, . . . ,m − 1. Now, one can verify that the dual Kronecker

function FA∪B∪
S

Z satisfies all the elements in C′, but does not satisfy A → {B}∪Z. Hence,

A → {B} ∪ Z is not implied by C′, contradicting the assumption.

Case 2 : A, B, and all elements of Z have cardinality 1. Since K is [ℓ, u]-complete, we

know that A = {ai} for some i, 1 ≤ i ≤ n− 1. Similarly, {B} ∪Z = {{aj}} ∪ Y for some j,

2 ≤ j ≤ n, since, otherwise, S−(A∪
⋃

Y) ∈ L(A, {B}∪Z), but S−(A∪
⋃

Y) /∈ L(C′) which,

by Definition 2.6, would contradict the [ℓ, u]-completeness of K. Furthermore, B 6= {ai+1},

since A → {B}∪Z would then be an element of C′. Hence, A∪B∪
⋃

Z * {ai}∪{ai+1}∪
⋃

Y,

for all i = 1, . . . ,m − 1. Now, one can verify that the dual Kronecker function FA∪B∪
S

Z

satisfies all the elements in C′, but does not satisfy A → {B} ∪ Z. Hence, A → {B} ∪ Z is

not implied by C′, contradicting the assumption.

So, no proper subset of C implies a non-trivial disjunctive statement relative to F of

order at least ℓ and at most u, which completes the proof.

We will now show that inference rule Λn, n ≥ 3, is sound for an important class of

real-valued functions, namely Choquet capacities, which we have introduced in Chapter 2.

Since many classes of real-valued functions consist of Choquet capacities, the proposition

will allow us to infer the soundness of inference rule Λn for these classes of real-valued

functions.

proposition 4.3. Let k be a number, k ≥ 1, and let F be a class of real-valued functions.

If, for each finite set S, and for each real-valued function F in FS, F is a positive (negative)

k-alternating capacity, then Λn is [k, k]-sound relative to F , for each n ≥ 3.

Proof: Let S be a finite set. We begin by proving that if for each real-valued function F

in FS , F is a positive k-alternating capacity, then Λn is [k, k]-sound relative to F , for each

n ≥ 3.
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Let F be a positive k-alternating capacity that satisfies all the antecedents of the infer-

ence rule Λn. By Definition 2.2 and Definition 2.14 we have that

∆YF (A1) − ∆YF (A1 ∪ A2) = 0;

∆YF (A2) − ∆YF (A2 ∪ A3) = 0;
...

∆YF (An−1) − ∆YF (An−1 ∪ An) = 0; and

∆YF (An) − ∆YF (An ∪ A1) = 0.

Since each of the equations is equal to zero, the sum of all equations is also equal to

zero. Consequently, by a simple rearrangement of the summands we also have that

∆YF (A1) − ∆YF (A1 ∪ A2)+

∆YF (A2) − ∆YF (A2 ∪ A3)+
...

∆YF (An−1) − ∆YF (An−1 ∪ An)+

∆YF (An) − ∆YF (An ∪ A1)

=

∆YF (A1) − ∆YF (A1 ∪ An)+

∆YF (A2) − ∆YF (A2 ∪ A1)+
...

∆YF (An−1) − ∆YF (An−1 ∪ An−2)+

∆YF (An) − ∆YF (An ∪ An−1)

=

0.
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By assumption F is a k-alternating positive capacity, and we have that ∆{Y }∪YF (X) ≥ 0

for all X,Y ⊆ S. Hence, it follows that

∆YF (A1) − ∆YF (A1 ∪ An) = 0;

∆YF (A2) − ∆YF (A2 ∪ A1) = 0;
...

∆YF (An−1) − ∆YF (An−1 ∪ An−2) = 0; and

∆YF (An) − ∆YF (An ∪ An−1) = 0.

Therefore, F also satisfies the disjunctive statement A1 → {An} ∪ Y. This concludes

the proof. The proof for negative Choquet capacities is analogous and omitted.

Based on results in the previous chapter, we can state several propositions that allow

us to derive non-existence proofs for the finite axiomatizability of implication problems

on disjunctive statements. These results are based on Theorem 4.2, Theorem 3.24, and

Proposition 4.3.

proposition 4.4. Let ℓ, u ∈ N with 1 ≤ ℓ ≤ u be bounds on the order of the disjunctive

statements, and let F be a class of real-valued functions. If all of the following statements

hold, then there does not exist a finite, complete axiomatization for the implication problem

for additive constraints on F for disjunctive statements of order at least ℓ and at most u:

(1) Every F ∈ F is a (negative) positive k-alternating capacity, for ℓ ≤ k ≤ u;

(2) For each finite set S, FS has the Kronecker property on Sℓ(S); and

(3) For each finite set S, FS has the dual Kronecker property.

Proof: Since, by assumption, each F ∈ F is a (negative) positive k-alternating capacity,

for ℓ ≤ k ≤ u, we have that Λn is [k, k]-sound relative to F , for each n ≥ 3, by Proposi-

tion 4.3. Since, by assumption, FS has the Kronecker property on Sℓ(S), we have that K

is [k, k]-complete relative to F , by Theorem 3.20. Now, by Theorem 4.2, the statement of

the proposition follows.
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proposition 4.5. Let ℓ, u ∈ N with 2 ≤ ℓ ≤ u be bounds on the order of the disjunctive

statements, and let F be a class of real-valued functions. If all of the following statements

hold, then there does not exist a finite, complete axiomatization for the implication problem

for additive constraints on F for disjunctive statements of order at least ℓ and at most u:

(1) Every F ∈ F is a (negative) positive k-alternating capacity, for ℓ ≤ k ≤ u;

(2) K is [ℓ, u]-sound and [ℓ, u]-complete relative to F for saturated disjunctive state-

ments; and

(3) For each finite set S, FS has the dual Kronecker property.

Proof: Since, by assumption, each F ∈ F is a (negative) positive k-alternating capac-

ity, for ℓ ≤ k ≤ u, we have that Λn is [k, k]-sound relative to F , for each n ≥ 3, by

Proposition 4.3. Since, by assumption, K is [ℓ, u]-sound and [ℓ, u]-complete relative to F

for saturated disjunctive statements, we have that K is [k, k]-complete relative to F by

Theorem 3.24. Now, by Theorem 4.2, the statement of the proposition follows.

2. Application of the Non-Axiomatizability Results

We conclude this chapter with some examples of bounded implication problems for

which no finite, complete axiomatization exists.

The first one relates to conditional independence. Let M be the class of multi-

information functions induced by the class of discrete probability measures. We know that

K is [2, 2]-complete relative to M [30]. We also know that, for each finite set S, MS

has the dual Kronecker property [46]. Finally, since every M ∈ M is supermodular (i.e., a

positive 2-alternating capacity), we know that inference rule Λn is [2, 2]-sound relative to M.

Hence, as was previously shown [44], there exists no finite, complete axiomatization for the

implication problem for additive constraints on M of order exactly 2. All these conditions

do also hold for the class of multi-information functions induced by the class of binary

discrete probability measures. Hence, there exists no finite, complete axiomatization for the

implication problem for CI statements relative to the class of binary discrete probability

measures, which solves an open problem [15].
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We next turn to Choquet capacities. Let k ≥ 1 be a natural number, and let F be the

class of all positive (negative) k-alternating capacities. We know that, for each finite set S,

FS has the Kronecker property on Sk(S). We know that FS has the dual Kronecker prop-

erty. From Proposition 4.3, it finally follows that Λn is [k, k]-sound relative to F , for each

n ≥ 3. Hence, there exists no finite, complete axiomatization for the implication problem for

additive constraints on F of order exactly k. In particular, there exists no finite, complete

axiomatization of the implication problem for additive constraints of order exactly 1 for

the class of increasing functions, and of order 2 for the class of all supermodular functions,

respectively. This answers the open question [40] whether there exists a finite, complete

axiomatization for measure-based constraints on the class of supermodular (submodular)

functions in the negative.

Finally, we revisit cooperative game theory. It follows from the previous example

that the implication problem for interaction statements relative to the class of all super-

modular (submodular) worth functions has no finite complete axiomatization.



CHAPTER 5

Conditional Independence and Reasoning under Uncertainty

Conditional independence is an important concept in many calculi for dealing with

knowledge and uncertainty in artificial intelligence. The notion plays a fundamental role for

learning and reasoning in probabilistic systems which are successfully employed in areas such

as computer vision, computational biology, and robotics. Hence, new theoretical findings

and algorithmic improvements have the potential to impact many fields of research. A

central issue for reasoning about conditional independence is the probabilistic conditional

independence implication problem, that is, to decide whether a CI statement is entailed by

a set of other CI statements relative to the class of discrete probability measures. While it

remains open whether this problem is decidable, it is known that there exists no finite, sound

and complete inference system (Studený [44]). However, there exist finite sound inference

systems that have attracted special interest. The most prominent is the semi-graphoid

axiom system (see Figure 5.1), which was introduced as a set of sound inference rules relative

to the class of discrete probability measures (Pearl [31]). One of the main contributions of

this work is to extend the semi-graphoids to a finite inference system, denoted by A, which

we will show to be (1) sound and complete for saturated CI statements, (2) complete for

general CI statements, and (3) sound and complete for stable CI statements, a notion that

has been intruduced by de Waal and van der Gaag [9].

The techniques we use to obtain these results are based on the theoretical framework

we have introduced in earlier chapters. By interpreting conditional independence state-

ments as disjunctive statements and associating semi-lattices with these statements, A is

shown to be sound and complete relative to certain inclusion relationships on these semi-

lattices. To make the connection between the theoretical framework for disjunctive state-

ments and the conditional independence implication problem, we introduce the concept of
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I(A, ∅|C) Triviality

I(A,B|C) → I(B,A|C) Symmetry

I(A,B ∪ D|C) → I(A,D|C) Decomposition

I(A,B|C ∪ D) & I(A,D|C) → I(A,B ∪ D|C) Contraction

I(A,B ∪ D|C) → I(A,B|C ∪ D) Weak union

Figure 5.1. The semi-graphoid axiom system, is sound, but not complete,

for the implication problem for unrestricted CI statements.

multi-information functions induced by probability measures (Studený [46]). This class

of real-valued functions allows us to link the implication problem for additive constraints

on real-valued functions to the probabilistic CI implication problem. The combination of

the lattice-inclusion techniques and the completeness result for conditional independence

statements allows us to derive criteria that can be used to falsify instances of the implica-

tion problem. Furthermore, we introduce a novel validation algorithm that leverages the

falsification algorithm and represents implication problems as instances of linear program-

ming problems. We show experimentally that the falsification and validation criteria, some

of which can be tested in polynomial time, work very effectively, and, where possible, we

relate the experimental results to those obtained from a racing algorithm introduced by

Bouckaert and Studený [3].

1. Conditional Independence Statements: Inference System A

We define CI statements and introduce the finite inference system A for reasoning about

the conditional independence implication problem. Note that inference system A is based

on inference system K, where the order of the disjunctive statements is restricted to be

exactly 2. We will often write AB for the union A ∪ B, ab for the set {a, b}, and a for

the singleton set {a} whenever the interpretation is clear from the context. Throughout
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I(A, ∅|C) Triviality

I(A,B|C) → I(B,A|C) Symmetry

I(A,BD|C) → I(A,D|C) Decomposition

I(A,B|CD) ∧ I(A,D|C) → I(A,BD|C) Contraction

I(A,B|C) → I(A,B|CD) Strong union

I(A,B|C) ∧ I(A,D|C) → I(A,BD|C) Composition

I(A,B|C) ∧ I(D,E|AC) ∧ I(D,E|BC) → I(D,E|C) Strong contraction

Figure 5.2. The inference rules of system A.

the chapter, S will denote a finite implicit set of statistical variables. Let us first recall the

definition of a conditional independence statement.

Definition 5.1. The expression I(A,B|C), with A, B, and C pairwise disjoint subsets

of S, is called a conditional independence (CI) statement. If ABC = S, we say that

I(A,B|C) is saturated. If either A = ∅ and/or B = ∅, we say that I(A,B|C) is trivial.

Once again, note that (saturated) conditional independence statements can be seen as

(saturated) disjunctive statements.

The set of inference rules in Figure 5.2 will be denoted by A. Again, note that it is

the set of inference rules of inference system K specialized to the [2, 2]-bounded implication

problem (see Figure 3.2), with the additional inference rule symmetry which is implicitly

sound for disjunctive statements. Furthermore, note that we adopt terminology that is most

commonly used in the artificial intelligence community. More specifically, the names of some

of the inference rules differ. For instance, what was referred to as augmentation in previous

chapters is now called strong union. The triviality, symmetry, decomposition, and

contraction rules are part of the semi-graphoid axioms (Pearl [31]). Note that strong

union is not a sound inference rule relative to the class of discrete probability measures.

The derivability of a CI statement c from a set of CI statements C under the inference
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rules of system A is denoted by C ⊢A c. The closure of C under A, denoted C+, is the set

{c | C ⊢A c}.

2. The Conditional Independence Implication Problem

While the theoretical framework presented so far has been concerned with the implica-

tion problem for additive constraints, it also captures the implication problem for conditional

independence statements. The link between these two problems is made possible with the

concept of multi-information functions (Studený [46]) induced by probability measures. In

this chapter, we will restrict our discussion to the class of discrete probability measures.

Let us begin by introducing the notion of a probability model.

Definition 5.2. A probability model over S = {s1, . . . , sn} is a pair (dom,P ), where

dom is a domain mapping that maps each si to a finite domain dom(si), and P is a probabil-

ity measure having dom(s1)×· · · × dom(sn) as its sample space. For A = {a1, . . . , ak} ⊆ S,

we will say that a is a domain vector of A if a ∈ dom(a1) × · · · × dom(ak).

In what follows, we will only refer to probability measures, keeping their probability

models implicit.

Definition 5.3. Let I(A,B|C) be a CI statement, and let P be a probability measure.

We say that P satisfies I(A,B|C), and write |=P I(A,B|C), if for every domain vector a,

b, and c of A, B, and C, respectively, P (c)P (a,b, c) = P (a, c)P (b, c).

Relative to the notion of satisfaction we can now define the probabilistic conditional

independence implication problem.

Definition 5.4 (Probabilistic conditional independence implication problem). Let C

be a set of CI statements and let c be a CI statement. We say that C implies c relative

to the class of discrete probability measures, and write C |= c, if every discrete probability

measure that satisfies the CI statements in C also satisfies the CI statement c.
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Definition 5.5. The conditional independence (CI) implication problem is the problem

of deciding the language

{(S, C, c) | C a set of CI statements over S, c a CI statement over S, C |= c}.

Next, we define the multi-information function induced by a probability measure (Stu-

dený [46]), which is based on the Kullback-Leibler divergence (Kullback and Leibler [20]).

Definition 5.6. Let P and Q be two probability measures over a discrete sample

space, and let P be absolutely continuous with respect to Q. Then, the relative entropy

(Kullback-Leibler divergence) H is defined as

H(P |Q) :=
∑

x

{P (x) log
P (x)

Q(x)
, P (x) > 0},

with x ranging over all elements of the discrete sample space.

Definition 5.7. Let P be a probability measure, and let H be the relative entropy.

The multi-information function MP : 2S → [0,∞] induced by P is defined as

MP (A) := H(PA|
∏

a∈A

P {a}),

for each non-empty subset A of S and MP (∅) = 0.1

The class of multi-information functions induced by the class of discrete probability

measures will be denoted by M. We can now state the a result of Studený that couples the

probabilistic CI implication problem with the implication problem for additive constraints

relative to M.

Theorem 5.8 (Studený [46]). Let C be a set of CI statements and let c be a CI state-

ment. Then, C |=M c if and only if C |= c.

1Here, P A and P {a} denote the marginal probability measures of P over A and {a}, respectively.
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3. Saturated Conditional Independence Statements: Soundness and

Completeness of inference system A

In the previous section, we established the link between the theoretical framework for

disjunctive statements and the probabilistic conditional independence implication problem.

In this section, we will use this connection to show that inference system A is sound and

complete for the probabilistic CI implication problem for saturated CI statements. We recall

that a CI statement I(A,B|C) is saturated if ABC = S. We begin by showing the following

technical lemma.

Lemma 5.9. The class of multi-information functions M induced by the class of discrete

probability measures has the zero-density property with respect to saturated CI statements.

Proof: We have to show that, for each saturated CI statements c, for each M ∈ M, and

for each U ∈ L(c), if M satisfies c, then ∆M(U) = 0. The semi-graphoid inference rules are

sound relative to the class of probability measures. Hence, in particular, by Theorem 5.8,

weak union is sound relative to M, i.e., {I(AD,B|C)} |=M I(A,B|CD). Let M ∈ M, let

∆M be the corresponding density function, and let M satisfy the saturated CI statement

I(A,B|C) with ABC = S. In addition, let I(A,B|C) be non-trivial since the proposition

is obviously true for trivial CI statements. We will prove by downward induction on the

semi-lattice L(A,B|C) that ∆M(U) = 0 for each U ∈ L(A,B|C). Note that this proof is

similar to the proof of Theorem 3.14.

For the base case, we show for each W ∈ W(A,B|C), that ∆M(W ) = 0. Let W = {a, b}.

By repeatedly applying weak union we can derive |=M I(a, b|W ) because ABC = S. Now,

since L(a, b|W ) = {W}, we can conclude that ∆M(W ) = 0.

For the induction step, let V ∈ L(A,B|C). The induction hypothesis states that

∆M(U) = 0 for each U ∈ L(A,B|C) with U a strict superset of V . From the given CI state-

ment I(A,B|C), we can derive, again by weak union, I(A′, B′|V ) with V A′B′ = S, A ⊆ A′,

and B ⊆ B′ since V − C ⊆ AB. Since L(A′, B′|V ) contains only V and strict supersets V ′
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of V , with V ′ ∈ L(A,B|C), we can conclude that
∑

U∈L(A′,B′)V ∆F (U) = ∆F (V ) = 0, by

the induction hypothesis.

We are now in the position to prove that inference system A is sound and complete for

the probabilistic implication problem for saturated conditional independence statements.

Theorem 5.10. Inference system A is sound and complete for the probabilistic condi-

tional independence implication problem for saturated CI statements.

Proof: The soundness follows directly from Lemma 5.9, Theorem 3.13, and Theorem 5.8.

To show completeness, notice that the semi-graphoid axioms are derivable under inference

system A. Furthermore, Geiger and Pearl proved that the semi-graphoid axioms are com-

plete for the probabilistic conditional independence implication problem for saturated CI

statements (Geiger and Pearl [15]). This concludes the proof.

We will now show that inference system A is complete for the probabilistic conditional

independence implication problem. We first prove that, for any finite set S, the class

of multi-information functions M induced by discrete probability measures over S has the

Kronecker property on Si(S). The completeness of inference system A for the CI implication

problem can now be proved based on Theorem 3.24 because we have shown that A is sound

and complete with respect to saturated conditional independence statements.

Theorem 5.11. Inference system A is complete for the probabilistic conditional inde-

pendence implication problem.

Proof: We know from Theorem 5.10 that inference system A is sound and complete for the

probabilistic CI implication problem for saturated CI statements. Now, by Theorem 3.24,

the statement follows.

Example 5.12. (Studený [46]) described the following sound inference rule relative

to discrete probability measures which refuted the conjecture (Pearl [31]) that the semi-

graphoid axioms are complete for the probabilistic CI implication problem:
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I(A,B|CD) ∧ I(C,D|A) ∧ I(C,D|B) ∧ I(A,B|∅)

→

I(C,D|AB) ∧ I(A,B|C) ∧ I(A,B|D) ∧ I(C,D|∅).

By applying strong contraction to the statements I(A,B|∅), I(C,D|A), and I(C,D|B), we

can derive the statement I(C,D|∅). All the other statements can be derived using strong

union.

Remark 5.13. The inference system A without strong contraction is not complete.

The consequence I(C,D|∅) of the clause from Example 5.12 cannot be derived from the

antecedents without strong contraction.

4. Complete Axiomatization of Stable Independence

When new information is available to a probabilistic system, the set of associated rele-

vant CI statements changes dynamically. However, some of the CI statements will continue

to hold. These CI statements were termed stable by de Waal and van der Gaag [9]. A first

investigation of their structural properties was undertaken by Matúš who used the term

ascending conditional independence (Matúš [27]). Every set of CI statements can be parti-

tioned into its stable and unstable part. We will show that inference system A is sound and

complete for the probabilistic CI implication problem for stable conditional independence

statements.

Definition 5.14. Let C be a set of CI statements, and let CSG+ be the semi-graphoid

closure of C. Then I(A,B|C) is said to be stable in C, if I(A,B|C ′) ∈ CSG+ for all sets C ′

with C ⊆ C ′ ⊆ S.

Theorem 5.15. Let CS be a set of stable CI statements. Then, A is sound and complete

for the probabilistic conditional independence implication problem for CS.

Proof: The soundness follows from Theorem 3.13 and from strong union and decomposi-

tion being sound inference rules relative to M for stable CI statements. The completeness

follows from Theorem 5.11.
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The previous result is also interesting with respect to the problem of finding a minimal,

non-redundant representation of stable independence relations. Here, lattice-inclusion can

aid the lossless compaction of representations of stable CI statements: L(CS −{c}) = L(CS)

if and only if c is redundant in CS . In Chapter 6 we will return to the concept of stable

independence and show how the completeness of inference system A and the semi-lattice

characterization can be leveraged to create more concise representations of stable conditional

independence structures, and to gain a deeper understanding of the concept.

5. Falsification Algorithm

Theorem 3.10 and Theorem 5.11 lend themselves to a falsification algorithm, that is,

an algorithm which can falsify instances of the probabilistic conditional independence im-

plication problem. For instance, the falsification algorithm can be used as a pre-processing

step for a racing algorithm as proposed by Bouckaert and Studený [3]. We first consider

the following corollary, which directly follows from these two results.

Corollary 5.16. Let S be a finite set, let C be a set of CI statements over S, and let

c be single CI statement over S. If L(C) + L(c), then C 6|= c.

However, if the the number of instances of the implication problem that can be falsified

with the algorithm were, on average, only a small fraction of all those that are possibly

falsifiable, the result would be disappointing from a practical point of view. Fortunately,

we will not only be able to show that a large number of implications can be falsified by

the “lattice-exclusion” criterion identified in Corollary 5.16, but also that polynomial time

heuristics exist that provide good approximations of said criterion.

Falsification Criterion. Input: A set of CI statements C and a CI statement c. Test: if

L(C) + L(c), return “false”, else return “unknown.”
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Figure 5.3. Hasse diagram of the lattice [∅, {a, b, c}]. The circled elements

are the meet (greatest lower bound) ∅ and the join (least upper bound)

{a, b, c} of the lattice. Semi-lattices of conditional independence statements

always have a unique meet and one or more joins.

Heuristic 1. Input: A set of CI statements C and a CI statement I(A,B|C). Test: if, for

each I(A′, B′|C ′) ∈ C, we have that C + C ′, return “false”, else return “unknown.”

Heuristic 2. Input: A set of CI statements C, and a CI statement I(A,B|C). Test:

if there exists one W ∈ W(A,B|C) such that, for all I(A′, B′|C ′) ∈ C, we have that

W /∈ W(A′, B′|C ′), return “false”, else return “unknown.”

It follows from Proposition 3.5 that if one of the two heuristics returns “false,” then

L(C) + L(c), and therefore C 6|= c by Corollary 5.16.

Example 5.17. Let S be a finite set, and A,B,C, and D be pairwise disjoint subsets

of S. The inference rule intersection,

I(A,B|DC) ∧ I(A,D|BC) → I(A,BD|C),
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is not sound relative to the class of discrete probability measures. Heuristic 1 can reject

this instance of the implication problem in polynomial time in the size of S.

Remark 5.18. The falsification criterion leads in fact to a family of polynomial time

heuristics. While Heuristic 1 checks if the unique meet (greatest lower bound) of the semi-

lattice L(c) is not in L(C) and Heuristic 2 if the (potentially multiple) joins (least upper

bounds) of the semi-lattice L(c) are not in L(C) (see Figure 5.3), we may select additional

elements in the semi-lattice L(c) that are located between these two extrema to derive more

falsification heuristics.

6. Validation Algorithm

In general, a validation algorithm takes as input an instance of the implication problem,

consisting of a set of CI statements C and a single CI statement c over a finite set S, and

accepts only if C |= c. Of course, the algorithm not accepting an instance of the implication

problem does not imply that the instance is invalid. Please note that one of the most

prominent validation algorithms is the algorithm that computes the closure of the semi-

graphoid axioms (Dawid [8], Pearl [31]). The semi-graphoid axioms are listed in Figure 5.1.

However, the closure of the semi-graphoid axioms can only validate a small fraction of the

set of verifiable instances. For instance, consider Example 5.12. The antecedents in this

example cannot be derived by the semi-graphoid axioms even though they are implied.

Before we derive our validation algorithm, we need some definitions of important technical

concepts. We start by recalling the definition of the Möbius inversion of a real-valued

function.

Definition 5.19. Let S be a finite set, and let F be a real-valued function over S. The

Möbius inversion of F is the real-valued function ∆F defined by

∆F (X) =
∑

X⊆U⊆S

(−1)|U |−|X|F (U),

for each X ⊆ S.
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Now, we have the following crucial relationship between a multi-information function,

its Möbius inversion, and the semi-lattice of a CI statement.

Lemma 5.20. Let S be a finite set of random variables, let P be a discrete probability

measure over S, let MP be the multi-information function induced by P , let ∆MP be the

Möbius inversion of MP , and let I(A,B|C) be a CI statement over S. Then, the following

statements are equivalent

(1) P satisfies I(A,B|C);

(2) MP (ABC) + MP (C) − MP (AC) − MP (BC) = 0; and

(3)
∑

U∈L(C,{A,B})

∆MP (U) = 0.

Proof: Studený showed that (1) if and only if (2) [46]. In addition, we have that (2) if

and only if (3), because F (ABC) + F (C) − F (AC) − F (BC) =
∑

U∈L(C,{A,B}) ∆F (U) for

any real-valued function F . We refer the reader to Sayrafi and Van Gucht [38] for a proof

of the latter statement.

We will now be able to harness the equivalences stated in the previous lemma to rep-

resent each set of CI statements C as a minimal sparse 0-1 matrix A. Each instance of

the implication problem with C as the set of antecedents will then correspond to a linear

program with equality constraints specified by A. Before we explain the construction of the

constraint matrix A, however, we have to define some additional technical concepts. For

some of the following results, we need the concept of elementary CI statements, which are

simply CI statements I(a, b|K) with a, b ∈ S and K ⊆ S \ {a, b}. We will write B(S) to

denote the set of elementary CI statements over a finite set S.

Definition 5.21. Let S be a finite set and let C be a set of CI statements over S. The

set of relevant elementary CI statements R(C) is defined as follows:

R(C) = {I(a, b|K) ∈ B(S) | L(K, {{a}, {b}}) ⊆ L(C)}.

We will use the elementary CI statements in R(C) to construct the constraint matrix A.

Please note that R(C) is the set of elementary CI statements over S that remain (i.e., could
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not be falsified) after the application of the falsification algorithm that we introduced in

this chapter. Hence, it follows that polynomial-time heuristics and SAT solvers can be used

to compute the set R(C) efficiently for up to several hundreds of variables (Niepert and Van

Gucht [29]). By Proposition 5.16, only CI statements I(A,B|C) with L(C, {A,B}) ⊆ L(C)

can possibly be implied by C. Now, using the concept of a semi-lattice, each of these

candidate CI statements c = I(A,B|C) can be written as a vector vc relative to the space

{0, 1}L(C) as follows: for every U ∈ L(C) we have vc(U) = 1 if U ∈ L(C, {A,B}) and

vc(U) = 0 otherwise. The vector representation of a set of CI statements C can then be

defined as the sum of the vectors corresponding to individual elements in C: vC =
∑

c∈C vc.

This is equivalent to the definition of an imset (Studený [46]), except that we use the

Möbius inversion to avoid negative elements in the vector representation and that the vector

representation is constructed relative to the union of semi-lattices L(C) of the CI statements

in C. Given these definitions of vector representations for individual CI statements and for

sets of CI statements, we can state the following crucial result.

proposition 5.22. Let S be a finite set, let C be a set of CI statements, let c be a single

CI statement over S, and let Q+ be the non-negative rational numbers. Then, C |= c if

vC = vc +
∑

r∈R(C) kr · vr for some kr ∈ Q+.(1)

Proof: Let P be a probability measure that satisfies all CI statements in C and let

∆MP be the Möbius inversion of the multi-information function MP induced by P . Since

MP is a supermodular function [46], we have
∑

r∈R(C)(kr ·
∑

U∈L(r) ∆MP (U)) ≥ 0, and

also
∑

U∈L(c) ∆MP (U) ≥ 0. Now, since P satisfies all CI statements in C we have that
∑

c′∈C

∑

U∈L(c′) ∆MP (U) = 0 by Lemma 5.20. Since equality (1) holds by assumption, we

have that

∑

c′∈C

∑

U∈L(c′)

∆MP (U) =
∑

U∈L(c)

∆MP (U) +
∑

r∈R(C)

(kr ·
∑

U∈L(r)

∆MP (U)) = 0.

Hence,
∑

U∈L(c) ∆MP (U) = 0 and, by Lemma 5.20, it follows that P satisfies c.
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In light of these results, we can now rewrite equation (1) in the previous proposition as

a linear program (Schrijver [42]). A linear program has the form

minimize cT x(2)

subject to Ax eq b,x ≥ 0(3)

where eq is one of {≤,≥,=}. For our purposes, eq is the equality sign, the columns of matrix

A are the vectors vr for each of the relevant elementary CI statements, that is, for the CI

statements in R(C), and b = vC − vc. Clearly, our objective function is the zero-function

0T because we are only interested in the existence of a solution for the equality constraints.

This is often referred to as the feasibility problem of finding a solution for the system of

linear constraints.

Example 5.23. Let S = {a, b, c, d} and let C = {I(a, b|∅), I(c, d|a), I(c, d|b), I(a, b|cd)}.

Then, R(C) = {I(a, b|∅), I(a, b|c), I(a, b|d), I(a, b|cd), I(c, d|∅), I(c, d|a), I(c, d|b), I(c, d|ab)}

and L(C) = {∅, a, b, c, d, ab, cd}. The columns e1, ..., e8 of the minimal 0-1 matrix A be-

low correspond to the eight relevant elementary CI statements and the number of rows is

determined by L(C).

A =

e1 e2 e3 e4 e5 e6 e7 e8

cd 1 1 1 1 0 0 0 0

ab 0 0 0 0 1 1 1 1

a 0 0 0 0 1 1 0 0

b 0 0 0 0 1 0 1 0

c 1 1 0 0 0 0 0 0

d 1 0 1 0 0 0 0 0

∅ 1 0 0 0 1 0 0 0

We have that vT
C = (2, 2, 1, 1, 1, 1, 1). Now, let I(c, d|∅) be a CI statement. Then we have

that bT = vT
C − vT

I(c,d|∅) = (2, 2, 1, 1, 1, 1, 1) − (0, 1, 1, 1, 0, 0, 1) = (2, 1, 0, 0, 1, 1, 0). Finally,

it follows that C |= I(c, d|∅), since b = e2 + e3 + e8.
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It is well-known that linear programs (LPs) are solvable in polynomial time in the num-

ber of variables. However, in the worst case the reduction leads to an LP with an exponential

number of variables (
(

|S|
2

)

2|S|−2; the maximum number of elementary CI statements over

S) and constraints (2|S| − |S| − 1; the maximum cardinality of the set L(C)). As a rule of

thumb, the more columns matrix A has the more difficult is the corresponding LP problem.

An advantage of our method over a näıve approach is that A only consists of the vectors

representing the relevant elementary CI statements R(C). This means that the number of

columns (that is, the number of variables of the LP) can be very small compared to the

worst case. In rare cases, the solutions to the LPs might be inaccurate due to round-off

and truncation errors. Therefore, when we obtain a solution, we expand the elements of

the solution vector into fractions of integers, which results in a vector xf , and only accept

if Axf = b. We also would like to underscore that matrix A is always a 0-1 matrix, leading

to better numerical stability and the possibility to take advantage of existing sparse matrix

data structures. We will come back to algorithmic issues when we discuss the results of our

experiments.

6.1. Combinatorial and Structural Imsets. There is a close link to Studený’s the-

ory of imsets [46], on which we will briefly elaborate in this section. Let C be a set of CI

statements and let c be a CI statement over a set S. Then, under the assumption that we

can ignore numerical inaccuracies, one can test whether imset uC−uc is structural using the

previously introduced reduction to a linear program. Furthermore, one can test whether

the imset is combinatorial by reducing it to the identical integer program. Again, we want

to stress that numerical rounding and truncation errors might lead to inaccurate results,

and, therefore, the method should be used with caution when mathematical properties

about combinatorial and structural imsets are to be proved. However, one of the results of

our experiments is that the solver of the LP instances delivered integer and small rational

solutions in all but some cases which allowed us to verify their correctness. We refer the

reader to Hemmecke et al. [18] who used, among other tools, integer programming to find

a structural imset which is not combinatorial.
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(a) Tested implications; overall

(b) Racing algorithm; rejected

(c) Lattice exclusion; rejected

(d) Racing algorithm; accepted

Figure 5.4. Rejection and acceptance curves of the racing and falsification

algorithms, respectively, for five attributes.

7. Experiments

7.1. Falsification Algorithm and Heuristics. With our experiments we want to

show that (1) the lattice-exclusion criterion can falsify a large fraction of all falsifiable

implications, and (2) that the two provided heuristics are good approximations of the full-

blown lattice-exclusion criterion. To make our outcomes comparable to existing results, we

adopted the experimental setup for the racing algorithm from Bouckaert and Studený [3]

(also using 5 attributes). We first randomly selected 1,000 times 3 up to 10 elementary CI

statements, resulting in a total of 8,000 sets of antecedents.2 The falsification algorithm and

the heuristics were run on these sets with each of the remaining elementary CI statements as

a consequence, one at a time. Since there are 80 elementary CI statements for 5 attributes,

this resulted in 77,000 implication problems for sets with 3 antecedents, 76,000 for sets with

4 antecedents, down to 70,000 for sets with 10 antecedents.

2An elementary CI statement is of the form I(a, b|C), where a, b ∈ S and C ⊆ S − {a, b}.
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Figure 5.5. Falsifications based on the lattice-exclusion criterion and the

heuristics, for five attributes. The combination of the heuristics yields 95% of

the falsifications of the full-blown lattice exclusion criterion for 3 antecedents

down to 77% for 10 antecedents.

The rejection procedure of the racing algorithm is rooted in the theory of imsets: an

instance is rejected if one of the supermodular functions constructed by the algorithm

is a counter-model for this instance. It has exponential running time and might reject

implications that actually do hold (false negatives). This is a consequence of the fact that

M is a strict subset of the class of all supermodular functions. (See Examples 4.1 and 6.2

in Studený’s monograph [46].) The falsification algorithm based on Corollary 5.16, on the

other hand, ensures that if an instance of the implication problem is rejected, then it is

guaranteed not to be valid.

Figure 5.4 shows the rejection curves of the racing algorithm (b) and the falsification

algorithm (c), respectively, and the acceptance curve of the racing algorithm (d). The area

between the two rejection curves can be interpreted as the “decision gap”, i.e., the amount

of instances of the implication problem for which the validity is unknown. The curve marked
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Figure 5.6. Falsification and validation curves of the approximate deci-

sion algorithm for five variables. The curve marked with circles depicts the

number of instances which we could either falsify or validate.

with circles (a) depicts the total number of tested instances. Figure 5.5 depicts the rejection

curves for the falsification algorithm (a), for the combination of Heuristic 1 and Heuristic

2 (b), and for Heuristic 2 (c) and Heuristic 1 (d) run separately. The combination of the

heuristics compares favorably to the full-blown falsification criterion. The experiments also

show that Heuristic 2 is more effective than Heuristic 1.

7.2. Validation Algorithm. We will mainly address the following empirical questions

with our experiments:

(1) Effectiveness: What fraction of the instances of the implication problem can we

either falsify or validate?
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(2) Efficiency: How fast does the algorithm run and to how many variables does it

scale? How much more efficient is the algorithm compared to the näıve approach

both in terms of time and space complexity?

(3) Structural and numerical properties: How large is the constraint matrix A

for different instances? What are the numerical properties of the solutions?

To judge the effectiveness and efficiency of the algorithm, we must apply it to instances

of the implication problem over different number of variables. Since the distribution of

implication problems in real-world applications is unknown, our experiments need to be run

on randomly generated instances. Using the method of randomly generating test instances

from (Bouckaert and Studený [3]) allows us to compare the experimental outcomes with

existing results. Hence, for each experiment, we first generated instances of the implication

problem (S, C, c) by randomly selecting n different sets of elementary CI statements over S

as antecedents C, and for each of these, k different elementary CI statements c over S as

consequence, one at a time. We first applied the falsification algorithm to these instances

and used the remaining CI statements to create the constraint matrix A and vector b from

C and c as described in the previous section. For the resulting linear programs we used

lp solve3 an open-source linear programming system that can solve both linear and integer

programs. It is based on the revised simplex method and the branch-and-bound method

for integer programs. We did not change the standard optimization settings of the solver.

Furthermore, we only accepted a solution if its rational expansion solved the respective

constraints. For our purposes this is unproblematic because the objective is to validate

as many instances of the implication problem as possible while entirely ruling out false

positives. All experiments were run on a dual-core 3.2GHz Linux PC with 2GB RAM.

Figure 5.6 shows the number of instances that could either be validated or falsified by

the algorithms for five variables. For each ℓ = 2, . . . , 58 (the number of antecedents) we

randomly created 4,500 different sets of ℓ elementary CI statements, and for each of these

3Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lp solve, an open source (Mixed-

Integer) Linear Programming system originally developed at Eindhoven University of Technology;

http://lpsolve.sourceforge.net/
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Figure 5.7. Dimensions of matrix A that encodes a set of x antecedents

over five variables; and time in milliseconds needed to solve the corresponding

linear and integer programs.

randomly selected 20 different elementary CI statements as consequences, one at a time,

resulting in 90,000 instances of the implication problems for each ℓ. The results show that

only a small fraction of the instances could not be decided and that for larger values of ℓ

(for five variables: ℓ > 40) all of the instances could either be falsified or validated. This

behavior of the algorithm was consistent over all tested number of variables (4, . . . , 15).

Figure 5.7 depicts the average size (that is, the number of columns and rows) of the

constraint matrix A, and the average time in milliseconds to solve one linear program and

the corresponding integer program, respectively. After solving the linear programs, that is,

determining whether or not there exists a solution, we also solved the equivalent integer pro-

grams. Interestingly, for each and every of the 2,700,000 instances for five variables, if there

existed a solution to the linear program, then there also existed one for the corresponding

integer program.



5. CONDITIONAL INDEPENDENCE AND REASONING UNDER UNCERTAINTY 77

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

120

number of antecedents

tim
e 

in
 m

ill
is

ec
on

ds
 fo

r 
lin

ea
r 

pr
og

ra
m

full vs. minimal constraint matrix for 6 and 7 variables

 

 

full constraint matrix; 7 variables

minimal constraint matrix; 7 variables

full constraint matrix; 6 variables

minimal constraint matrix; 6 variables

Figure 5.8. Average time needed (in ms; 30,000 trials) to solve a linear

program with and without optimizing the constraint matrix A; average of

30,000 trails for six and seven variables, respectively.

Figure 5.8 illustrates the computational advantage one gains when using the minimal

constraint matrix A consisting only of the relevant elementary CI statements, over using

the matrix consisting of all elementary CI statements. The times in milliseconds provided

are for 6 and 7 variables, averaged over 30,000 trials, for 1000 sets of ℓ = 10, 20, . . . , 100

antecedents, and 30 different consequences, one at a time. Figure 5.9 depicts the average

time in seconds to solve instances of the linear programs and the average dimensions of

constraint matrix A for different number of variables, averaged over 1000 trails.

Finally, we want to compare our algorithm to the racing algorithm introduced in (Bouck-

aert and Studený [3]). The falsification procedure of the racing algorithm is rooted in the

theory of imsets: an instance of the implication problem is falsified if one of the super-

modular functions constructed by the algorithm is a counter-model for the instance of the

implication problem [3]. It is heavily randomized, has super-exponential running time, and
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variables time [s] rows(A) columns(A)

6 0.024 57 (57) 239 (240)

7 0.073 117 (120) 592 (672)

8 0.642 230 (247) 1193 (1792)

9 1.580 423 (502) 1852 (4608)

10 2.647 687 (1013) 2422 (11520)

11 7.316 1221 (2036) 3699 (28160)

12 9.038 2039 (4083) 4786 (67582)

13 20.267 3331 (8178) 6863 (159744)

14 35.969 4986 (16369) 8298 (372736)

15 91.237 6713 (32752) 11024 (860160)

Figure 5.9. The values are the average time (in seconds) needed to solve

the linear program, and the average number of rows and columns of the

constraint matrix A; out of 1000 trials with 50 antecedents. The values in

parentheses are the maximal possible values.

could therefore only be tested for up to 6 variables. Furthermore, the racing algorithm

might falsify implications that actually do hold. This is a consequence of the fact that

the class of multi-information functions induced by discrete probability measures is a strict

subset of the class of all supermodular functions. (See Examples 4.1 and 6.2 in Studený’s

monograph [46].) The falsification algorithm based on Proposition 5.16 ensures that fal-

sified instance of the implication problem are guaranteed not to be valid. The validation

procedure of the racing algorithm tests whether an imset that encodes an instance of the

implication problem is combinatorial. It makes use of some ad-hoc heuristics to speed-up

the computations. The validation algorithm presented here introduces two novel ideas: (1)

the representation of instances of the implication problem as linear programs; and (2) the

notion and construction of minimal constraint matrices that increase the efficiency of the

algorithm.



CHAPTER 6

Logical and Algorithmic Properties of Stable

Conditional Independence

We have seen that conditional independence plays a fundamental role for learning and

reasoning in intelligent systems. A conditional independence (CI) statement speaks to the

independence of two sets of random variables relative to a third: given three mutually

disjoint sets A, B, and C of random variables, A and B are conditionally independent

relative to C if any instantiation of the variables in C renders the variables in A and B

independent. In other words, if we have knowledge about the state of C, then knowledge

about the state of A does not provide additional evidence for the state of B and vice versa.

We use the notation I(A,B|C) to specify this independence condition.

When novel information becomes available in a probabilistic system, the set of asso-

ciated, relevant CI statements changes dynamically. However, some of the CI statements

will continue to hold, i.e., they remain stable under change in the system. Technically, the

notion of stability of a CI statement I(A,B|C), in the context of a set of random variables

S and a set of CI statements C, is defined by requiring that, for every superset C ′ ⊇ C

which is disjoint from A and B, the CI statement I(A,B|C ′) also holds. In other words,

the independence of A and B relative to C is unaffected by adding random variables to

C. Clearly, this property does not hold in general. Adding variables to the set C may

affect the (in-)dependence of A and B. A special case for which the stability of the CI

statement I(A,B|C) is guaranteed is the situation where A ∪ B ∪ C = S. (Recall that,

when A ∪ B ∪ C = S, the CI statement I(A,B|C) is said to be saturated.)

Among the most frequently used models for representing conditional independence in-

formation are graphs, wherein the nodes correspond to random variables and the edges

encode the (in-)dependence information among the variables. There are three main types

79



6. LOGICAL AND ALGORITHMIC PROPERTIES OF STABLE CONDITIONAL INDEPENDENCE 80

c

b

d

a

Figure 6.1. An undirected graphical model over 4 variables representing

the stable CI structure {I(a, b|cd), I(c, d|ab)}. Please note that we always

omit symmetric and trivial CI statements.

of graphical models: undirected graphs, directed graphs, and chain graphs. We focus specif-

ically on undirected graphical models (also called Markov networks), since we will show that

the class of stable CI structures is a strict generalization of the class of CI structures repre-

sented by Markov networks. Let S = {a, b, c, d} be a set of random variables, and let G be

the Markov network shown in Figure 6.1. Then, G represents the CI statements I(a, b|cd)

and I(c, d|ab). (We will write a1 · · · an to denote the set {a1, . . . , an}.)

One of the useful properties of the existence of a stable CI statement I(A,B|C) in a set

of CI statements C is that, in a representation of C, it is not necessary to further represent

CI statements of the form I(A,B|C ′), where C ′ is a strict superset of C. This can lead to

a substantial decrease in the number of CI statements that need to be maintained in the

system. The importance of stable conditional independence for reducing the complexity of

representation of conditional independence structures has recently been established [9].

We approach the paradigm of stable CI as a strict generalization of Markov networks

to represent and reason about conditional independence. We believe that a good under-

standing of its logical and algorithmic properties will lead to new theoretical insights and

applications in the field of uncertain reasoning. While several results regarding these prop-

erties exist [9, 27, 10], no study has investigated these as comprehensively as it was done for
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unrestricted CI and graphical models relative to the class of discrete probability measures

[15]. We extend this study to stable conditional independence by utilizing recent results

concerning a finite sound and complete axiomatization of the implication problem for stable

CI statements, relative to discrete probability measures [30]. In particular, we show that

(1) every stable CI structure has a perfect model, i.e., a discrete probability measure that

satisfies precisely the CI statements in C, (2) the number of distinct stable CI structures

grows at least double-exponentially with the number of random variables, and (3) every

set of CI statements represented by a Markov network is a set of stable CI statements.

We establish a direct connection between sets of stable CI statements and propositional

formulas in conjunctive normal form and use this connection to show that the conditional

independence implication problem for stable conditional independence is coNP-complete.

In light of these results, we present experimental results that show how existing SAT solvers

can be used to (1) decide instances of the stable CI implication problem and (2) compute

concise, non-redundant representations of stable CI structures, even for instances involving

hundreds of random variables.

1. Conditional Independence and Markov Models

Throughout this chapter, S will be a non-empty finite set of random variables.

Definition 6.1. A Markov network over a finite set S is an undirected graph G with

nodes corresponding to random variables in S. The conditional independence statement

I(A,B|C) is represented by G if every path in G between a node in A and a node in B

contains a node in C, or, equivalently, if C separates A and B.

Each Markov network G over S represents a set of conditional independence statements

through this separation criterion. The set of CI statements represented by G will be denoted

by C(G). Every set of CI statements C(G) represented by a Markov network G will be called

a Markov model.
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Markov models can be completely axiomatized using the inference system in Figure 6.3

[32]. The Markov network in Example 6.1 represents the set of CI statements

{I(a, b|cd), I(c, d|ab)}.

Please note that we always omit symmetric and trivial CI statements.

In this section, we recall the notion of a probability measure satisfying a CI statement

and apply it in the context of Markov networks.

Definition 6.2. Let S be a finite set of random variables. A probability measure P is

Markovian with respect to a Markov network G over S, if I(A,B|C) is represented by G

implies that P satisfies I(A,B|C). A probability measure P is perfectly Markovian with

respect to G if the converse implication holds as well.

We can now define the notion of perfect models for sets of CI statements and the notion

of a CI structure.

Definition 6.3. Let C be a set of CI statements over S. C is a CI structure if and only

if C = C∗. Furthermore, we say that a probability measure P is a perfect model for C if P

satisfies precisely the CI statements in C∗.

2. Inference Systems for the Probabilistic Conditional

Independence Implication Problem

Given the notion of a CI implication problem, it is common place to consider inference

rules and inference systems that are sound for these problems. An inference rule (an

inference system) is sound relative to the class of discrete probability measures if it infers,

given a set of CI statements C, only CI statements in C∗. If an inference system can infer

all CI statements in C∗, it is said to be complete.

The best know sound inference system for the CI implication problem relative to the

class of discrete probability measures is the semi-graphoid axiom system [8, 31]. We denote

it by G and its inference rules are depicted in Figure 5.1. Note, however, that system G is not

complete. In fact, it is known that there does not exist a finite set of sound inference rules
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I(A, ∅|C) Triviality

I(A,B|C) → I(B,A|C) Symmetry

I(A ∪ D,B|C) & I(A,D|B ∪ C) → I(A,B ∪ D|C) Contraction

I(A,B ∪ D|C) → I(A,B|C ∪ D) Weak union

Figure 6.2. System S is sound and complete for the CI implication prob-

lem for saturated statements. Note that the inference rule contraction has

a slightly different form to accommodate saturated CI statements [15].

that is sound and complete for the implication problem on unrestricted CI statements [46].

It is also unknown whether this implication problem is decidable.

For the implication problem for saturated CI statements, the situation is different. In

Figure 6.2, system S is shown, which is a finite set of inference rules that is sound and com-

plete for this implication problem relative to the class of discrete probability measures [32].

For sets of CI statements represented by Markov networks, the situation is yet different.

Figure 6.3 depicts system M, which is a finite set of inference rules that is sound and

complete for the implication problem for sets of CI statements represented by Markov

networks, relative to the class of discrete probability measures [32].

Let I be an inference system for CI statements. As before, the derivability of a condi-

tional independence statement c from a set of conditional independence statements C under

the inference rules of system I is denoted by C ⊢I c. The closure of C under I, denoted

CI+
, is the set {c | C ⊢I c}.

3. Stable Conditional Independence

When novel information becomes available to a probabilistic system, the set of associ-

ated, relevant CI statements changes dynamically. However, some of these CI statements

will continue to be satisfied, i.e., they remain stable. The paradigm of stable conditional

independence, and some of its the properties, were first investigated by Matúš [27], who
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I(A, ∅|C) Triviality

I(A,B|C) → I(B,A|C) Symmetry

I(A,B ∪ D|C) → I(A,D|C) Decomposition

I(A,B|C) → I(A,B|C ∪ D) Strong union

I(A,B|C ∪ D) & I(A,D|B ∪ C) → I(A,B ∪ D|C) Intersection

I(A,B|C) → I(A, {d}|C) ∨ I({d}, B|C) Transitivity

Figure 6.3. System M is sound and complete for the CI implication

problem for CI statements represented by Markov networks.

named it ascending conditional independence, and later by de Waal and van der Gaag [9],

who coined the term stable conditional independence. Every set of CI statements can be

partitioned into its stable and unstable part. In this section, we will recall two different char-

acterizations of stable CI structures, one using a finite set of inference rules, and the other

using the lattice-inclusion property of CI statements [30]. We will harness these results to

prove several important properties about stable CI. The set of inference rules in Figure 5.2

will be denoted by A. The symmetry, decomposition, and contraction rules are part of the

semi-graphoid axioms [8, 31] (see Figure 5.1). Strong union and strong contraction are

additional inference rules.

Stable independence can be defined relative to a set of CI statements [9, 10]. However,

we approach the paradigm of stable CI as a mechanism for the succinct representation of

conditional independence information, much like graphical models are used for this purpose.

Instead of assuming that every CI statement is satisfied by a probability measure which is

perfectly Markovian with respect to a graphical model, we assume that every CI statement

is satisfied by a probability measure which is perfectly Markovian with respect to a set of

stable CI statements. Therefore, a set of stable conditional independence statements will be

any set of CI statements that are implicitly known (i.e., assumed) to be stable. Whenever

we say that a set of CI statements is stable, we implicitly assume that C∗ satisfies the
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required condition. Hence, in general, a set of stable CI statements C can be different

from the set C∗. The motivation for this approach is to achieve a structural representation

of conditional independence information which is broader than Markov networks but still

allows for efficient implication testing and storage. The next definition formalizes this

approach.

Definition 6.4. Let C be a set of CI statements. We say that C is a set of stable CI

statements if, for all I(A,B|C) ∈ C and for all C ′ ⊇ C, we have that I(A,B|C ′) ∈ C∗.

Equivalently, a set of stable CI statements is a set of CI statements for which the inference

rule strong union (see Figure 6.3) is sound. A stable CI structure is a set of stable CI

statements C such that C = C∗.

The following result follows immediately from this definition.

proposition 6.5. Let C be a set of saturated CI statements over S. Then C is a set of

stable CI statements over S.

In analogy to the definition of a (perfectly) Markovian probability measure with respect

to graphical models (Definition 6.2), we can define the concept of a (perfectly) Markovian

probability measure with respect to stable CI structures.

Definition 6.6. Let C be a stable CI structure. A probability measure P is Markovian

with respect to C if I(A,B|C) ∈ C implies that P satisfies I(A,B|C). A probability measure

P is perfectly Markovian with respect to C if the converse implications holds as well. We say

that a probability measure is a perfect model for C if and only if it is perfectly Markovian

with respect to C.

3.1. The Implication Problem for Stable Conditional Independence. Here, we

recall two characterizations of the implication problem for stable CI statements (the stable

CI implication problem), one in terms of a finite system of inference rules, and another

using the lattice-inclusion property [30]. We will use these results to show that each stable

CI structure has a perfect model with respect to discrete probability measures, but not with

respect to binary discrete probability measures.
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A powerful tool in deriving results about the CI implication problem is the association

of semi-lattices with CI statements [30]. Given subsets A and B of S, we write [A,B] for

the lattice {U | A ⊆ U ⊆ B}.

We can now state the two characterizations for the conditional independence implication

problem for stable CI statements relative to the class of discrete probability measures (see

also [30]).

Theorem 6.7. Let C be a set of stable CI statements over S and let c be a CI statement

over S. Then, the following statements are equivalent:

(a) C |= c;

(b) C ⊢A c; and

(c) L(C) ⊇ L(c).

Proof: We know that M has the zero-density property with respect to stable CI state-

ments since strong union is a sound inference rule for the stable CI implication problem,

by the definition of stable conditional independence, and decomposition is a sound infer-

ence rule for unrestricted CI statements (Geiger and Pearl [15]). Hence, by Theorem 3.13,

A is a sound inference system for the stable CI implication problem, and we have shown

that (b) implies (a). Since M has the Kronecker property on S2(S), we know that inference

system A has to be complete for the stable CI implication problem, and it follows that (a)

implies (b). Finally, we have that (b) if and only if (c) by Theorem 3.10.

Example 6.8. Let S = {a, b, d, e}, let C = {I(a, b|∅), I(d, e|a), I(d, e|b)} be a set of

stable CI statements, and let c = I(d, e|∅). We know, by strong contraction, that C ⊢A c

and, therefore, C |= c by Theorem 6.7. Now, L(C) = {∅, d, e, de} ∪ {a, ab} ∪ {b, ab} =

{∅, a, b, d, e, ab, de} ⊇ {∅, a, b, ab} = L(c).

One might expect that, based on the definition of stable CI, it would be sufficient to

have the inference rule strong union in system A but not strong contraction. However, as

the following example demonstrates, system A without strong contraction is not complete

for the stable CI implication problem.
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Example 6.9. Let S = {a, b, c, d} and consider the set of stable CI statements C =

{I(a, b|∅), I(a, b|c), I(a, b|d), I(a, b|cd), I(c, d|a), I(c, d|b), I(c, d|ab)}. We know that I(c, d|∅)

is implied by C [43]. However, one can verify that I(c, d|∅) cannot be derived from C under

A without the rule strong contraction.

The next result follows from the existence of discrete perfect models with respect to CI

statements [15], a result which was later strengthened by [34].

proposition 6.10. For every stable CI structure C, there exists a discrete probability

measure P such that P is a perfect model for C.

However, the previous result does not hold for the class of binary discrete probability

measures.

proposition 6.11. There exists a stable CI structure for which no binary discrete prob-

ability measure is a perfect model.

Proof: Let S = {a, b, c} and let C = {I(a, b|∅), I(a, b|c)}. We have that L(∅, {{a}, {b}}) =

{∅, c} and L(c, {{a}, {b}}) = {c}. Now, since L(∅, {{a}, {c}}) = {∅, b} and L(∅, {{b}, {c}})

= {∅, a}, we have, by Theorem 6.7 (c), that neither I(a, c|∅) nor I(b, c|∅) are implied by C.

Hence, C is a stable CI structure. However, we know that every binary probability measure

that satisfies the CI statements in C also satisfies either I(a, c|∅) or I(b, c|∅) [15]. Thus, no

binary probability measure is a perfect model for C.

The combination of these result shows that the paradigm of stable CI has the same

perfect model properties as unrestricted CI.

3.2. Markov Networks and Stable Conditional Independence. The primary

goal of this section is to relate stable conditional independence to Markov networks. In

particular, we will show that every set of CI statements represented by a Markov network

is a stable CI structure. Consequently, Markov networks are a specialization of the more

general notion of stable conditional independence.
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Theorem 6.12. Let G be a Markov network over S. Then, the set of CI statements

represented by G, that is, C(G), is a stable CI structure.

Proof: It is well-known that strong union is a sound inference rule for separation in

undirected graphs [31] (see Figure 6.3). In addition, it can be verified that the inference

rule strong contraction is sound for separation in undirected graph. Thus, inference system

A is sound for separation in Markov networks and the statement of the theorem follows.

Corollary 6.13. For every Markov network G there exists a stable CI structure C,

and every discrete probability measure that is (perfectly) Markovian w.r.t. G satisfies the

elements in C (and none other).

Theorem 6.12 implies that the notion of stable conditional independence is a general-

ization of Markov networks. In what follows, we will investigate how much broader this

notion is compared to such networks. First, we show that there exists a stable CI structure

that cannot be represented by a Markov network.

proposition 6.14. There exists a stable CI structure C over a set S such that for each

Markov network G over S, C 6= C(G).

Proof: Let S = {a, b, c, d} and let C = {I(a, b|cd), I(a, d|bc)} be a set of stable CI

statements. We have that L(cd, {{a}, {b}}) = {cd} and L(bc, {)}{a}, {d} = {bc}. Hence, by

Theorem 6.7 (c), no other CI statement is implied by C. Thus, C is a stable CI structure.

However, every Markov network that represents these two CI statements also represents the

CI statement I(a, bd|c) by the inference rule intersection (see Figure 6.3) which is sound

for separation in undirected graphs [31]. Thus, the class of all CI structures represented by

the class of Markov networks is a strict subclass of the class of stable CI structures.

Figure 6.4 depicts some relationships between different structural representations of

conditional independence information. Please note that each saturated CI structure is

trivially a stable CI structure.
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general CI structures 

stable CI structures 

Markov models 

saturated CI structures 

Figure 6.4. Inclusion relationships between different representations of

conditional independence. Every Markov model is a stable CI structure

(Theorem 6.12). Every saturated CI structure is trivially a stable CI struc-

ture.

3.3. Some Combinatorics about Stable Conditional Independence.

In this section, we will show, given a set of random variables S, that the number

of distinct stable conditional independence structures grows at least double-exponentially.

This shows analytically that stable conditional independence can represent a much broader

class of CI structures compared to undirected models, since there can only be 2(|S|(|S|−1))/2

different undirected graphical models over a set of random variables S.

Lemma 6.15. Let S be a finite set of discrete random variables. Then, the number of

distinct stable CI structures dS over S is at least

dS ≥

|S|−2
∑

i=0

(2(
|S|
2 )(|S|−2

i ) − 1).

Proof: Let S be a finite set, let V ⊆ S with |V | = |S|−2, and let U ⊆ V . For every lattice

[U, V ], there exists a stable CI structure C (for instance, C = {I(u, v|U ′) | U ′ ⊇ U, {u, v} =
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S − V }) such that L(C) = [U, V ]. Consider the set DS
i = {[U, V ] | |V | = |S| − 2, |U | =

|S| − 2 − i, U ⊆ V ⊆ S}. There are
(

|S|
2

)

different subsets of S of size |S| − 2. Each of

these subsets V has
( |S|−2
|S|−2−i

)

=
(

|S|−2
i

)

different subsets of size |S| − 2 − i. Hence, we have

that |DS
i | =

(|S|
2

)(|S|−2
i

)

. Now, for every i = 0...(|S| − 2), each non-empty subset of the

set DS
i corresponds to a set of stable CI statements whose union of semi-lattices is distinct

from the union of semi-lattices of all other subsets of DS
i , and, in addition, whose union

of semi-lattices is also distinct from the union of semi-lattices of all non-empty subsets of

every DS
j with i 6= j. Thus, by Theorem 6.7, each of the non-empty subsets of DS

i gives rise

to a new stable CI structure. Hence, from each DS
i , we get 2(

|S|
2 )(|S|−2

i ) − 1 distinct stable

CI structures. Since i ranges from 0 to |S| − 2, the statement of the lemma follows.

Example 6.16. For |S| = 3 there are 8 Markov networks, 22 unrestricted [46], and

14 stable CI structures. For |S| = 4 there are 64 Markov networks [46], 18,478 unre-

stricted [47], and at least 4,221 distinct stable CI structures. For |S| = 5 there are at least

2,147,485,692 distinct stable CI structures.

Using Lemma 6.15, we can show that the number of stable CI structures grows double-

exponentially with the size of S.

Theorem 6.17. The number of stable CI structures over a finite set S grows at least

double-exponentially with the size of S.

Proof: Let S be a finite set and assume without loss of generality that |S| − 2 is even. It

is known that
(n
k

)

≥ (n/k)k and, therefore,

|S|−2
∑

i=0

2(
|S|
2 )(|S|−2

i ) ≥ 2(
|S|
2 )( |S|−2

(|S|−2)/2) ≥ 2(
|S|
2 )2(|S|−2)/2

.

Now, by Lemma 6.15, we have that the number of stable CI structures is greater than

or equal to 2(
|S|
2 )2(|S|−2)/2

− 1. The proof is analogous when |S| − 2 is odd, where we use

⌊(|S| − 2)/2⌋ instead of (|S| − 2)/2.
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4. Computational Complexity of the Stable CI Implication Problem

Recall that the stable conditional independence implication problem, denoted here as

STABLE-IMPLICATION, is the problem of deciding, given a set of random variables S, a set

of stable CI statements C, and a CI statement c, whether C implies c relative to the class

of discrete probability measures. In this section, we will show that STABLE-IMPLICATION

is coNP-complete. Furthermore, in Section 5, we will be able to prove that a linear-time

reduction exists from STABLE-IMPLICATION to the unsatisfiability problem, here denoted as

UNSAT, for propositional logic formulas over variables that correspond to the random vari-

ables in S. This permits the use of SAT solvers to decide instances of STABLE-IMPLICATION.

In Section 6, we present experimental results that show how such instances, even with

hundreds of variables, can be decided efficiently.

First, we need to introduce the notion of minterms. Minterms are certain propositional

formulas associated with subsets of a set of variables.

Definition 6.18. Let T be a set of propositional variables. Then, for each X ⊆ T , the

minterm associated with X, denoted X, is the propositional formula
∧

a∈X a∧
∧

b∈T−X ¬b.

Let Φ be a propositional formula over T . The minset of Φ, denoted minset(Φ), is the

set {X | X |=prop Φ}, where |=prop denotes the logical implication relation for propositional

logic. The negative minset of Φ, denoted negminset(Φ), is the set minset(¬Φ).

We will now isolate a special class of propositional formulas.

Definition 6.19. Let T be a set of propositional variables. Then 3-CNFV(T ) denotes

the set of all CNF propositional formulas over the variables in T in which the clauses are

restricted to be of the form x∨ y, ¬x∨ y ∨ z, ¬x∨¬y ∨ z, or ¬x∨¬y ∨¬z, where x, y, and

z are variables in T .

proposition 6.20. Let 3SAT-CNFV denote the satisfiability problem for 3-CNFV(T ) over

sets T of propositional variables. Then, 3SAT-CNFV is an NP-complete problem.

Proof: Clearly, 3SAT-CNFV is in NP. The hardness of 3SAT-CNFV can be established via a

reduction from the standard 3SAT problem. Every clause in 3SAT of the form x ∨ y ∨ z is
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mapped to the formula (x∨y∨¬w)∧(z∨w), where w is a new variable. All other clauses in

3SAT are retained. This reduction is possible in polynomial time and preserves satisfiability.

Next, we defined a polynomial-time computable reduction from formulas in 3-CNFV to

sets of non-trivial CI statements.

Definition 6.21. Let T be a set of propositional variables and let S = T ∪ {r, s}, with

r /∈ T and s /∈ T . Let T (S) denote the set of all CI statements over S. For a formula Φ in

3-CNFV(T ), let clauses(Φ) denote the set of clauses in Φ. Then, f : 3-CNFV(T ) → 2T (S) is

defined as follows. For formula Φ,

f(Φ) =
⋃

c∈clauses(Φ)

f(c),

with1

f(x) = {I(x, v|∅) | v ∈ S − {x}};

f(¬x) = {I(u,w|x) | u,w ∈ S − {x}, u 6= w};

f(x ∨ y) = {I(x, y|∅)};

f(¬x ∨ y) = {I(y, v|x) | v ∈ S − {x, y}};

f(¬x ∨ ¬y) = {I(v,w|xy) | v,w ∈ S − {x, y}, v 6= w}

f(¬x ∨ y ∨ z) = {I(y, z|x)};

f(¬x ∨ ¬y ∨ z) = {I(z, v|xy) | v ∈ S − {x, y, z}};

f(¬x ∨ ¬y ∨ ¬z) = {I(v,w|xyz) | v,w ∈ S − {x, y, z}, v 6= w}.

Notice that the mapping f can be computed in polynomial time, and that, for each

formula Φ, for each clause c ∈ clauses(Φ), and for each X ⊆ T , we have that X ∈ L(f(c))

if and only if X |=prop ¬c.

1To simplify the mapping, we assume that every formula in 3-CNFV(T ) is preprocessed to transform

clauses with duplicate literals (e.g., ℓ ∨ ℓ or ¬ℓ ∨ ¬ℓ ∨ ¬ℓ) into their simplified forms (here: ℓ and ¬ℓ). Of

course, this preprocessing step is computable in polynomial time.
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Example 6.22. Let T = {a, b, c}, let S = T ∪{d, e}, and let Φ = (a∨ c)∧ (¬a∨¬b∨ c).

Then

f(Φ) = f(a ∨ c) ∪ f(¬a ∨ ¬b ∨ c)

= {I(a, c|∅)} ∪ {I(c, d|ab), I(c, e|ab)}

= {I(a, c|∅), I(c, d|ab), I(c, e|ab)}.

Furthermore,

L(f(Φ)) = {∅, b, d, e, bd, be, de, bde, ab, abe, abd}, and

negminset(Φ) = {X | X = ∅ ∨ X = {b} ∨ X = ab} = {∅, b, ab}.

We can now state the main result of this section.

Theorem 6.23. STABLE-IMPLICATION is coNP-complete.

Proof: We first show that the co-problem of STABLE-IMPLICATION is in NP. Let C be a set

of stable CI statements over S and let c be a CI statement over S. Since, by Theorem 6.7,

C 6|= c if and only if L(C) + L(c), it is sufficient to guess X ∈ L(c)−L(C) and then verify in

polynomial time that, for all I(A,B|C) ∈ C, one has that (X ⊇ A) ∨ (X ⊇ B) ∨ (X + C).

To show the hardness of STABLE-IMPLICATION we use a reduction from 3SAT-CNFV. Let

T be a set of propositional variables, let S = T ∪ {r, s} with r /∈ T , s /∈ T , let f be the

function from Definition 6.21, and let Φ ∈ 3SAT-CNFV(T ). Then we have the following:

(1) negminset(Φ) ⊆ L(f(Φ)); and

(2) Φ is a contradiction if and only if L(I(r, s|∅)) ⊆ L(f(Φ)).

To show (1), let X ∈ negminset(Φ). Then, there exists a clause c in clauses(Φ) such that

X |=prop ¬c. But then, there exists I(x, y|U) ∈ f(c) such that X ⊇ U , x /∈ X and y /∈ X

because otherwise X |=prop c. It follows that X ∈ L(f(c)) and, therefore, X ∈ L(f(Φ)).

To show (2), let Φ be a contradiction. Notice that Φ is a contradiction if and only if

negminset(Φ) = 2T . Now, L(I(r, s|∅)) = 2T = negminset(Φ) ⊆ L(f(Φ)), where the last

inclusion follows from (1). But then, by Theorem 6.7, Φ is a contradiction if and only if

f(Φ) |= I(r, s|∅). Since f is computable in polynomial time, the result follows.
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Property of CI Un- Stable Saturated Markov

restricted models

Finite, complete No [45] Yes Yes [15] Yes [31]

axiomatization

Implication problem ? coNP-com. P [15] ?

Perfect models Yes [31] Yes Yes [15] Yes [31]

Perfect binary models No [15] No ? ?

Figure 6.5. Summary of properties of conditional independence.

The logical and algorithmic properties of unrestricted CI, stable CI, saturated CI, and

Markov models are summarized in Figure 6.5.

5. Implication Testing Using Satisfiability Solvers

In this section, we show that every set of CI statements can be reduced to a propo-

sitional formula in linear time. This, together with the results from the previous section,

allows us to employ SAT solvers to decide STABLE-IMPLICATION. Furthermore, we will show

experimentally that numerous instances of the stable CI implication problem can be decided

efficiently, even if several hundreds of random variables are involved.

Definition 6.24. Let C be a set of CI statements over S, and let proposition(S)

be the set of propositional formulas over variables in S. Let T (S) denotes the set of all

CI statements over S. The mapping g : 2T (S) → proposition(S) is defined by g(C) =
∧

c∈C g(c), and g(I(A,B|C)) =
∧

a∈A a∨
∧

b∈B b∨
∨

c∈C ¬c, for each CI statement I(A,B|C)

in C.

The mapping g can be computed in linear time in the size of C. Now, using this mapping,

we can state the following theorem.

Theorem 6.25. Let C be a set of stable CI statements over S and let c be a CI statement

over S. Then C |= c if and only if g(C) |=proposition g(c).
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Proof: We will again use the concepts minset and negminset introduced in Definition 6.18.

Let C be a set of CI statements and let c be a CI statement. One can verify that L(C) =

negminset(g(C)) and L(c) = negminset(g(c)). By Theorem 6.7, we have that C |= c if and

only if L(C) ⊇ L(c). Now, the statement of the theorem follows.

Example 6.26. Let S = {a, b, d, e}, let C = {I(a, b|∅), I(d, e|a), I(d, e|b)}, and let c =

I(d, e|∅). We have g(C) = (a ∨ b) ∧ (d ∨ e ∨ ¬a) ∧ (d ∨ e ∨ ¬b) and g(c) = d ∨ e. We also

have g(C) |=proposition g(c) if and only if g(C)∧¬g(c) is not satisfiable. Now, g(C)∧¬g(c) =

(a∨ b)∧ (d∨ e∨¬a)∧ (d∨ e∨¬b)∧¬d∧¬e. This formula is a contradiction. Hence, C |= c

by Theorem 6.25.

5.1. Concise Representation of Stable CI Structures. In this section, we study

the notion of an irredundant equivalent subset of a set of stable CI statements. We will use

this notion to represent a stable CI structure more concisely. For this purpose, we will adopt

terminology which was recently introduced in the context of redundancy of propositional

formulas in conjunctive normal form [22].

Definition 6.27. A set of CI statements C over S is irredundant if C − {c} 2 c, for all

c ∈ C. Otherwise, it is redundant.

A related definition is that of an irredundant equivalent subset. Note that a set of

stable CI statements may have several different irredundant equivalent subsets and that the

cardinality of these sets can differ.

Definition 6.28. Let C be a set of stable CI statements over S. A set of stable CI

statements C′ is an irredundant equivalent subset of C if and only if

(1) C′ ⊆ C;

(2) C′ |= c for all c ∈ C; and

(3) C′ is irredundant.

Example 6.29. Let S = {a, b, c} and let C = {I(a, b|∅), I(a, b|c)}. Then, C′ = {I(a, b|∅)}

is an irredundant equivalent subset of C.



6. LOGICAL AND ALGORITHMIC PROPERTIES OF STABLE CONDITIONAL INDEPENDENCE 96

variables 50 100 200 300 400

time [ms] 740 1523 3362 5627 7076

Figure 6.6. Average time (in milliseconds) needed to decide the implica-

tion problem for different numbers of variables and 100,000 antecedents.

We now have the following property.

proposition 6.30. Let C be a set of CI statements over S. Then C is irredundant if

and only if, for all c in C, we have that g(C − {c}) ∧ ¬g(c) is satisfiable, where g is the

mapping defined in Definition 6.24.

6. Experiments

In a first experiment, we randomly generated instances of the stable CI implication

problem with up to 400 variables. We then used the mapping g from Definition 6.24 to

transform instances of the implication problem for stable CI into instances of the unsatis-

fiability problem of propositional logic (UNSAT), to which we applied a SAT solver. We

used MiniSat2 by Niklas Eén and Niklas Sörensson on a Pentium4 dual-core Linux system

for the experiments. The performance of the SAT solver is quite remarkable. Figure 6.6

shows the average time (out of 10 tests) needed to decide the implication problem C |= c

for |C| = 100, 000 and different numbers of variables.

The goal of the second experiment was to determine the average size of irredundant

equivalent subsets of a randomly generated set of stable CI statements. The algorithm in

Figure 6.7 is based on Corollary 6.30. It takes as input a set of stable CI statements C

and returns an irredundant equivalent subset of C based on several satisfiability tests. For

each number of variables from 5 to 25, we randomly created sets of 500 CI statements and

determined the size of the irredundant equivalent subsets using the algorithm. Figure 6.8

shows the average size of 1000 different runs. As one can expect, the fewer variables there

are, the smaller is the irredundant equivalent subset. For the 500 satisfiability tests made

2http://minisat.se
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irredundant-subset (C : set) C′ : set

C′ := C

for each c ∈ C′

begin

if g(C′ − {c}) ∧ ¬g(c) not satisfiable

then C′ := C′ − {c}

end

return C′

Figure 6.7. A function to compute an irredundant equivalent subset.
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Figure 6.8. Size of irredundant equivalent subset of a set of initially 500

stable CI statements for different numbers of attributes.

to compute an irredundant equivalent subset, the algorithm took at most 1100 ms, where

the majority of the time was spent on unsatisfiable instances of the problem. This amounts

on average to 2ms per satisfiability test for sets of 500 CI statements.



CHAPTER 7

Conclusion

1. Summary

The thesis describes and develops a theoretical framework that unifies several impor-

tant implication problems occurring in areas of computer science such as database systems,

uncertainty in artificial intelligence, and game theory. We demonstrated the syntactic and

semantic commonalities of numerous seemingly different instances of these implication prob-

lems. We first introduced the notion of a disjunctive statement with bounded order to achieve

syntactic uniformity. Secondly, we showed that, in many instances, disjunctive statements

can be interpreted as additive constraint on specific classes of real-valued functions. We

then considered inference systems which are sound and/or complete for several well-known

implication problems: inference system K and a generalization of the semi-graphoid axioms

for statements of arbitrary order that we referred to as system G. These inference systems

serve as templates for specialized inference systems in the context of implication problems

with bounds on the order of the disjunctive statements. We proved these inference systems

to be sound and complete with respect to semi-lattice inclusion, that is, if the semi-lattice

of a disjunctive statement is a subset of the union of semi-lattices of a set of CI statements,

then the single CI statement can be derived from the set of CI statements. We leveraged

this characterization of the inference systems to derive testable properties that imply the

soundness and/or completeness of the two inference systems. Furthermore, we specified

properties of real-valued functions that imply the non-existence of a finite axiomatization

for the implication problem for disjunctive statements interpreted as additive constraints

on specific classes of real-valued functions. These properties hold for many classes of real-

valued functions and allowed us to solve some open problems in several areas of computer

science. The theory builds on, and generalizes previous ideas of, non-existence proofs in

98
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the areas of embedded multivalued dependencies [35] and conditional independence in the

area of reasoning under uncertainty [44]. In doing so, we achieved our goal of developing a

general theoretical framework applicable to a variety of instances of the implication problem

for disjunctive statements.

In Chapter 5, we applied the framework to the area of reasoning under uncertainty.

One of our main contributions here was to extend the semi-graphoids to a finite inference

system, denoted by A, which we showed to be (1) sound and complete for saturated CI

statements, (2) complete for general CI statements, and (3) sound and complete for stable

CI statements (de Waal and van der Gaag [9]), all relative to the class of discrete proba-

bility measures. To make the connection between the theoretical framework for disjunctive

statements and the conditional independence implication problem, we harnessed the con-

cept of multi-information functions induced by probability measures (Studený [46]). This

class of real-valued functions allowed us to link the implication problem for additive con-

straints on multi-information functions to the probabilistic CI implication problem. The

combination of lattice-inclusion techniques and the completeness result for conditional in-

dependence statements made it possible to derive further properties that can be used to

falsify instances of the implication problem. Additionally, we introduced a novel validation

algorithm that leverages the falsification algorithm and represents implication problems as

instances of linear programming problems. We demonstrated experimentally that the falsi-

fication and validation criteria, some of which can be tested in polynomial time, work very

effectively. Where possible, the experimental results were related to those obtained from a

racing algorithm introduced by Bouckaert and Studený [3].

Finally, in Chapter 6, we harnessed the theoretical framework to further investigate the

logical and algorithmic properties of stable conditional independence structures. While the

notion of stable CI existed before, this work studied it from a different angle, namely as an al-

ternative to graphical models in representing and reasoning with conditional independence.

We showed that each stable CI structure has a perfect model, i.e., a discrete probability

measure that satisfies precisely the CI statements in the structure, and that the number

of instances that can be modelled using stable CI grows at least double-exponentially with
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the number of random variables. This proved that stable CI structures are a powerful

generalization of Markov networks, which can model only a small subset of all stable CI

structures. Furthermore, the theory established a direct connection between sets of stable

CI statements and propositional formulae in conjunctive normal form, a connection which

was leveraged to show that the implication problem for stable conditional independence is

coNP-complete. After deriving a linear time reduction to the Boolean satisfiability problem

(SAT), we could verify empirically that existing SAT solvers can be employed to efficiently

decide the implication problem and to compute concise, non-redundant representations of

stable CI structures, even for instances involving hundreds of variables. Hence, stable con-

ditional independence was shown to be a viable alternative for representing and reasoning

with conditional independence information, one that is more general than graphical models

but still computationally feasible.

2. Future Work

We intend to apply the theory of disjunctive statements to different calculi in artificial

intelligence (e.g., possibility theory), alternative notions of conditional independence, and

constraints on more complex structures such as trees. Indeed, several important methods in

machine learning and game theory can be understood as instances of optimization problems

on submodular or supermodular functions. Remember that additive constraint can be ex-

pressed in form of differentials. The first and second-order additive constraints are first and

second-order differentials set to zero, or, equivalently, first and second order critical points

of the function under consideration. The implication problem on disjunctive statements

interpreted as additive constraints can now be understood as the problem of determining

all the critical points that are logically implied by a set of given ones, relative to a specific

class of real-valued functions. We will also carry forward research on alternative paradigms

to represent and model conditional independence information. An interesting question in

this regard is how we can use the concept of stable CI to learn the structure of Markov

networks, and to develop measures for the degree of “faithfulness” of these networks.
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There are several open problems, both theoretical and practical, in the area of reason-

ing under uncertainty which we will continue to work on. For example, the decidability

of the implication problem, the succinct representation of CI statements, logical properties

of specific CI models, and novel approaches to probabilistic inference. The theory of im-

sets (Studený [46]) provides an algebraic characterization of supermodular functions, and

we believe that insightful relationships between the two theories can be established.

In this thesis, we considered implication problems in which the satisfaction of a dis-

junctive statement X → {Y1, . . . , Yn}, relative to a real-valued function F , is determined

by checking whether the additive constraint that corresponds to the disjunctive statement

holds. The notion of the implication problems considered and the concept of satisfaction can

be generalized as follows. Let X → {Y1, . . . , Yn} be a disjunctive statement, and let a and b

be real numbers, and let F be a real-valued function. We say that F satisfies the approximate

disjunctive statement (X → {Y1, . . . , Yn}, a, b) (abbreviated, F |= (X → {Y1, . . . , Yn}, a, b))

if ∆
{Y1,...,Yn}
F (X) ∈ [a, b]. (Observe hat the notion of satisfaction used in this thesis concides

with the special case where a = b = 0.) Based on this notion of satisfaction and the more

general class of approximate disjunctive statement, we can now consider the implication for

such approximate disjunctive statements relative to certain classes of real-valued functions.

It would be interesting to see if the techniques developed in this thesis can be applied

to this more general class of implication problems. In this regard, we conjecture that the

results of Calders [4] will be useful in the context of satisfiability and implication problems

for frequency constraints in the domain of frequent-itemset mining. In addition, there exists

a substantial literature on approximate functional dependencies [19, 12] in the context of

relational databases. In our framework, functional dependencies are just a special case of

disjunctive statement interpreted as additive constraints on the class of Shannon entropy

functions.

Probability measures are just a special class of real-valued functions that are used in

the area of “reasoning under uncertainty.” Other such functions are Dempster-Shafer be-

lief and plausibility functions, possibility measures, ranking functions, fuzzy measures, and

plausibility measures (see Halpern’s book Reasoning about Uncertainty [17] for an excellent
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treatment of these functions.) It would be interesting to investigate how our techniques

apply to these classes of uncertainty measures. In this regard, we wish to point out work by

Sayrafi et al. [40] that undertook work in this direction for disjunctive statement or order

1 and 2. Furthermore, as synthesized in the above-mentioned book by Halpern, other no-

tions of conditional independence have been introduced relative to the classes of uncertainty

measures discussed above. It is natural to consider how our results on the CI implication

problem for the class of probability measures applies, or generalizes, to these other forms

of conditional independence.

This thesis has developed a method to unify a variety of implication problems occurring

in various areas in computer science. This unification now also permits cross-fertilization

between these areas. For example, functional and multivalued dependency implication prob-

lems have led to a sophisticated decomposition theory in relational databases [14, 24]. It is

natural to investigate how this decomposition theory can be carried over to other computer

science areas and applications. As we have seen in Chapters 5 and 6, multivalued dependen-

cies have a close connection to saturated and stable CI statements. Therefore, any technique

and result in relational database decomposition theory which makes exclusive use of the im-

plication problem for multivalued dependencies has a direct analogue for applications where

CI implication can be used. Whether these analogues are natural or useful is not clear, but

it is worth considering if this is the case or not. In this regard, we also think that our

results can be used in the area of frequent itemset data mining because of the close, though

not entirely perfect, correspondence of functional dependencies and association rules, and

multi-valued dependencies and disjunctive rules. Finally, there are many other existing im-

plication problems in the literature. For example, in propositional logic, there is the classic

logical implication problem, where one is given a set of propositional formulas φ1, . . . , φn

and another propositional formula φ and one is asked if (φ1, . . . , φn) logically implies φ. Of

course, this implication problem can be translated into a set of equivalent implication prob-

lems for disjunctive statements since each propositional formula is logically equivalent to a

set of disjunctive propositional statements. We anticipate that there are other implication



7. CONCLUSION 103

problems in computer science which can be translated into equivalent implication problems

for disjunctive statements. Obviously, our theory should therefore be useful.
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