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Abstract 

Coal seams worldwide contain biogenic methane that in some coal basins forms 

easily accessible and large amounts of coalbed methane (CBM). Economically important 

biogenic CBM occurs not only in coals of low rank but also in higher rank coals where 

uplift and brine dilution initiated microbial methanogenesis. Distributions and 

compositions of gases in biogenic systems are governed by numerous factors including 

salinity, microbe-accessible porosity, and coal permeability. In contrast, thermogenic gas 

systems are primarily controlled by coal rank and depth. Determination of gas origin is, 

therefore, critical for a successful exploration strategy. 

 This study employs geochemical, stable isotopic, and microbiological techniques 

to investigate the distribution and the origin of coalbed gases in the southeastern Illinois 

Basin. Our results suggest that high permeability and shallow (100-250 m) depths of 

Indiana coals allowed their inoculation with a methanogenic microbial consortia, thus 

leading to widespread and abundant microbial methane generation along the eastern 

marginal part of the Illinois Basin. Consequently,  high volatile bituminous C Indiana 

coals  with a vitrinite reflectance Ro ~ 0.6% contain significant amounts of coal gas (~3 

cm3/g, 96 scf/t) with ≥ 97 vol.% of microbial methane. In contrast, deeper (>300 m) and 

more mature (high volatile bituminous A) coals in a tectonically active zone in the 

western Kentucky part of the basin contain gases of distinctly thermogenic origin. 

Enrichment experiments and phylogeny of the microbial community responsible 

for generation of coalbed methane in the Indiana part of the Illinois Basin imply that coal 

organic matter was biodegraded by a complex microbial consortium to form simple 

molecules, such as H2 and CO2, that fuel methanogenesis. 16S rRNA analyses of both in-
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situ microbial communities and methanogen enrichments indicate that 

Methanocorpusculum is the dominant genus responsible for biogenic CBM formation.  
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1.1.  Objectives of the study 

The main objectives of this study were the assessment of the origin and extent of 

the occurrence of coal gas in the Indiana part of the Illinois Basin. The basin expresses a 

gradient of thermal coal maturity causing the generation of biogenic and/or thermogenic 

coalbed gases depending on coal properties and geologic setting. Relatively shallow 

eastern Illinois Basin coals in Indiana with low maturity (vitrinite reflectance Ro ~0.6%) 

contain significant resources of coalbed methane (CBM) (Drobniak et al., 2004; 

Mastalerz et al., 2004). Important questions about these relatively immature coals center 

on (i) the amount of biogenic CBM that contributes to bulk coalbed gas, and (ii) 

biogeochemical controls of modern CBM generation. With regard to higher maturity 

coals in the southern part of the Illinois Basin, we hypothesize that past tectonic and 

hydrothermal activities (Hower and Gayer, 2002; Rowan et al., 2002) triggered 

thermogenic gas generation in western Kentucky where Ro ranges from 0.7 to 0.8%. 

This study documents variations in gas composition and isotopic signatures in two 

Pennsylvanian coal beds in Indiana, the Springfield Coal Member of the Petersburg 

Formation and the Seelyville Coal Member of the Dugger Formation. The use of stable 

isotope ratios in CBM exploration requires a practical and reasonably fast method for 

desorbing and sampling of gas. Coal from freshly drilled cores is typically placed in 

desorption canisters (Gas Research Institute, 1995) from which desorbed gas is 

subsequently sampled for isotopic analysis. Desorption from coal proceeds over weeks 

and months, with gas yields decreasing exponentially over time and desorbed gases 

expressing isotope fractionation. In this study, we quantify gas speciation and isotopic 

fractionation along sequential desorption of methane and CO2 from high-volatile, 
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bituminous coal expressing a narrow range of maturity from Ro 0.54 to 0.64% vitrinite 

reflectance. 

We sampled coals and gases from these two coal beds from multiple locations at 

various subsurface coal depths. In each case, the entire thickness of a coal seam was 

sampled using multiple desorption canisters and resulting in exhaustive data coverage.  

The resulting overall data set allows us to contrast the regional range of variations in gas 

characteristics against the variability that can occur among multiple samples across a coal 

seam in a single location. Furthermore, our CBM production time-series data provide 

insight into the compositional and isotopic variability during ongoing gas production.  

Additional goals of this study were to document presence and speciation of 

methanogenic Archaea in the Illinois Basin coals, and to explore the complexity of the 

entire microbial consortia in terms of metabolic functions in biodegradation. Several lines 

of evidence point to a biogenic origin of coalbed gas along the eastern margin of the 

Illinois Basin (Strąpoć et al., 2007; Ch. 4). In this study we take a phylogenetic, 

geochemical, and culturing approach to the understanding of microbial processes of 

subsurface biodegradation of organic matter leading to the formation of subsurface 

methane accumulations of economic importance, with special emphasis on the terminal 

process of methanogenesis. 

 

1.2.  Study area 

The depocenter of the asymmetric, spoon-shaped Illinois Basin is located in the 

southeast (see Ch. 4, Fig. 1a). The basin is an intracratonic structural depression that 

accumulated sediments of shallow marine origin (up to 3500 m, 530 to 280 Ma; see Ch. 
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4, Fig. 1b) during Cambrian to Pennsylvanian time. The post-Paleozoic history of the 

basin was dominated by erosion, and more recently included northern glacial loading. 

Only the very southeastern part of the basin in western Kentucky was subjected to intense 

tectonic activity along the Rough Creek and Pennyrile Fault systems. Tectonic activity 

began in the early Paleozoic as an east-west extension of the abandoned Reelfoot Rift 

zone (see Ch. 4, Fig. 1c) (Macke, 1995) and continued throughout basin-filling. Vertical 

translocations at the Rough Creek Graben and an increased geothermal gradient locally 

caused a relatively greater present-day coal depth of ~400 m and higher coal maturity (Ro 

~0.7 to 0.8%; see Ch. 4, Fig. 1a, c). 

Pennsylvanian coal-bearing sediments in the Illinois Basin reach 750 m in 

thickness. Pennsylvanian lithostratigraphy is characterized by relatively thin and laterally 

extensive units relating to deposition during multiple transgressions and regressions. The 

depositional environment has been recently described as mainly nearshore to marginal 

marine characterized by tidal coastal plains (Kvale et al., 2004), although it was formerly 

thought to have been coal swamps developing on deltaic platforms (Roseman Wright, 

1977). Our study focuses on the Springfield and Seelyville Coal Members in the 

southeastern Illinois Basin that are commercial CBM targets (Solano-Acosta et al., 2005) 

(see Ch. 4, Fig. 2) ranging in thickness from 0.7 to 1.6 m and from 0.4 to 1.6 m, 

respectively. Average coalbed gas contents, on a raw basis (moisture and mineral matter 

included), range from 2.0 to 3.0 cm3g-1 in the Springfield Coal Member and from 2.2 to 

4.6 cm3g-1 in the Seelyville Coal Member (Mastalerz et al., 2004). The Springfield and 

Seelyville coals in Indiana are located at typical depths of between 60 and 200 m 

(Mastalerz et al., 2004), and have high-volatile bituminous C and B rank throughout the 
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state, with an average Ro ~0.56% for the Springfield Coal (Hower et al., 2005) and 0.60% 

for the Seelyville Coal (Drobniak et al., 2004). The stratigraphically equivalent coal beds 

in western Kentucky feature increased Ro from 0.7 to 0.8% and rank as high-volatile 

bituminous A coals. 

 

1.3.  Methodology 

The determination of the origin of coalbed methane in the Indiana part of the 

Illinois Basin coals was carried out using variety of approaches. Coal gases were 

classified in terms of molecular and stable carbon and hydrogen isotopic compositions 

using gas chromatography oxidation/pyrolysis compound-specific isotope ratio mass 

spectrometry (GC-ox/pyr-IRMS) utilizing a custom made inlet system GASIS (Henning 

et al., 2007) for accomodating variable gas sample sizes. Our versatile GASIS inlet 

system can be applied to a variety of gas samples, including mixtures of gases containing 

hydrogen and/or carbon with individual component concentrations higher than 10 ppm 

(e.g. natural gases including coalbed (Strąpoć et al., 2007) and shale gases, pyrolysis 

gases, atmospheric gases, head space gases from microbial incubations). The GASIS inlet 

system conveniently allows the user to obtain relative gas concentrations and isotopic 

data for multiple gas species over a wide range of concentrations in a single GC-ox/red-

IRMS run. The user can target individual parameters for specific sample types by varying 

(i) sampling loop sizes, (ii) the timing of injections and back-flushes within the run, and 

(iii) the GC program over a wide temperature range. Precise measurements of H2 

concentration in coal gas were performed using a Peak Performer 1 (PP1) Gas Analyzer 
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(Peak Laboratories, LLC, California) equipped with a Reducing Compound Photometer 

(RCP) at the University of Bremen in Dr. Hinrichs’ laboratory. 

Coalbed water that was co-produced with CBM at commercial gas wells in 

Indiana was analyzed in terms of its chemistry using inductively coupled plasma-atomic 

emission spectroscopy (ICP-AES) with a Perkin Elmer Optima 3000 ICP spectrometer at 

the National Energy Technology Laboratory (NETL), Pittsburgh, PA by Dr. Hedges. 

Physicochemical properties of co-produced coalbed waters were analyzed at the coalbed 

gas production wells with a multi-functional probe YSI 600XL (Yellow Springs 

Instruments, Inc., Yellow Springs, Ohio). Hydrogen and oxygen stable isotopic 

compositions of coalbed waters were analyzed using a Delta Plus XP stable isotope mass 

spectrometer with on-line peripherals (H-Device  for δDH2O and Gas Bench for δ18OH2O, 

manufactured by ThermoFinnigan, Bremen, Germany). Intact polar lipid (IPL) 

biomarkers from coalbed waters were analyzed using high-performance liquid 

chromatography mass spectrometry (HPLC-MS) with a ThermoFinnigan LCQ Deca XP 

Plus ion-trap mass spectrometer (ThermoFinnigan, Bremen, Germany) with an 

electrospray ionization (ESI) interface (Dr. Hinrichs’ laboratory, University of Bremen, 

Germany). Acetate concentrations were analyzed by IRM-LC/MS using a 

ThermoFinnigan Surveyor HPLC coupled to a ThermoFinnigan Delta Plus XP irMS via 

the Finnigan LC IsoLink interface (Dr. Hinrichs’ laboratory, University of Bremen, 

Germany). The microbiological studies, including methanogenic enrichments were 

performed in Dr. Flynn Picardal’s microbiological laboratory in the School of Public and 

Environmental Affairs, Indiana University, Bloomington. The DNA extraction and 

phylogenetic study was conducted in cooperation with Penn State University in Dr. 
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Macalady’s laboratory. Detailed descriptions of methodologies and materials are 

provided in the following chapters. 

 

1.4.  Importance of molecular and stable isotopic compositions for studying the 

origin of gas  

Empirical compositional and isotopic classifications for discerning different 

origins of natural gases (e.g., Schoell, 1983; Chung et al., 1988; Whiticar, 1999) have 

been applied to coalbed gases in various basins (e.g., Scott et al., 1994; Smith and 

Pallasser, 1996; Ahmed and Smith, 2001; Hoşgörmez et al., 2002; Katz et al., 2002; 

Aravena et al., 2003; Faiz et al., 2003; Thielemann et al., 2004). Frequently used 

diagnostic parameters are (i) the ratio of methane to the sum of ethane and propane 

C1/(C2+C3) (i.e., gas wetness; Bernard et al., 1978), (ii) carbon δ13CCH4 and hydrogen 

δDCH4 isotopic compositions of methane (Schoell, 1980; Whiticar et al., 1986), and (iii) 

the carbon isotopic difference between CO2 and methane Δ13CCO2-CH4 (Smith and 

Pallasser, 1996; Strąpoć, 2007). Typical diagnostic values for thermogenic versus 

microbial gases are, respectively: (i) C1/(C2+C3) ratios of <15 versus >1000, (ii) δ13CCH4 

values of >-50‰ versus <-55‰ (i.e., more 13C-enriched versus more 13C-depleted), and 

(iii) Δ13CCO2-CH4 values of <40‰ versus >55‰. In addition, plotting of compound-

specific δ13C values of methane C1 to butane C4 hydrocarbon gas components against the 

reciprocal carbon number (Chung, 1988) is useful for discriminating thermogenic from 

biogenic gases, whereby only thermogenic C1 to C4 plot along a straight line. The δ13CCH4 

value of mixtures of microbial and thermogenic methanes shifts towards more negative 
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values with the addition of microbial methane. Selective biodegradation of hydrocarbon 

gas components can cause enrichment in 13C in residual C3 and n-C4 (Katz et al., 2002). 

 

1.5.  Significance of subsurface microbiology in organic matter degradation 

Worldwide occurrences of methane accumulations with microbial isotopic 

signatures in coals (Scott et al., 1994; Thielemann et al., 2004), shales (McIntosh et al., 

2002), biodegraded oils (Bekins et al., 2005; Milkov and Dzou, 2007), ocean floor 

sediments (Newberry et al., 2004), and municipal landfills (Huang et al., 2002) imply that 

widespread subsurface microbial communities are capable of biodegrading complex 

organic matter (OM). A common terminal step of organic matter degradation in anoxic 

subsurface environments is methanogenesis (Zengler et al., 1999; Salminen et al., 2006; 

Waldron et al., 2007), a metabolism unique to methanogenic Archaea.  

Coal is an extremely OM-rich rock (> 50%) and could be considered very 

attractive for microbial biodegradation. However, coal is a solid rock, often dominated by 

recalcitrant, partially aromatic and largely lignin-derived macromolecules which tend to 

be chemically stable. The rate-limiting step of coal biodegradation is the initial 

fragmentation of the partially aromatic, geomacromolecular, polycyclic, lignin-derived 

network of coal. It has been found that lignin degradation can be achieved by 

extracellular enzymes used by fungi and some microbes (Crawford et al., 1983; Fakoussa 

and Hofricher, 1999). It has been also shown that up to 40 wt. % of coal can be 

enzymatically dissolved using extracted microbial hydrogenases (Scott et al., 1994). 

Furthermore, there are known microbial species capable of anaerobic degradation of 

methylated and ethylated aromatic compounds (Coates et al., 2001; Jothimani et al., 
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2003; Townsend et al., 2004; Chakraborty et al., 2005) or even polycyclic aromatic 

hydrocarbons (PAHs, Coates et al., 1997; Chang et al., 2002; Christensen et al., 2004; 

Meckenstock et al., 2004).  

Methane generation from coal by microbial consortia has been documented 

earlier. It has been shown that microflora present in water leached from coal mines can 

generate methane (Thielemann et al., 2004). Furthermore, a methane-generating 

consortium extracted from coal was observed to grow on low volatile bituminous coal as 

a sole carbon source (Shumkov et al., 1999). Microbial communities may also target the 

dissipated bitumen/oil droplets generated from coal. Long-chain n-alkanes, the main 

constituents of non-biodegraded oil, can be anaerobically utilized by microbes (Zengler et 

al., 1999; Sei et al., 2003; Hostettler, 2004).  Even small quantities of n-alkanes in the 

form of dispersed oil in coal may possibly serve as a preferred target for microbial 

biodegradation. 

This study implies that widespread subsurface biodegradation and 

methanogenesis in OM-containing geologic formations can provide significant amounts 

of energy supply – methane. We will show that the crucial factors for microbial gas 

generation are habitable temperature, salinity, permeability, and contact with ground 

waters to dilute brines and provide the microbes (both methanogens and a consortia of 

coal OM degraders) to inoculate the coal beds.  Observations from this research can pave 

the way to extended exploration for subsurface microbial methane reserves within 

shallow crustal rocks (i.e. coals and shales) of many sedimentary basins.  
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Abstract 

Compound-specific δD and δ13C analyses of gas mixtures are useful indicators of 

geochemical and environmental factors. However, the relative concentrations of 

individual components in gas mixtures (e.g., H2, CO2, methane, ethane, propane, i-

butane, n-butane) may vary over several orders of magnitude. The determination of 

hydrogen and carbon compound-specific stable isotope ratios requires that the hydrogen 

and carbon dioxide produced from each separated component has a concentration 

adjusted to match the dynamic range of the stable isotope mass-spectrometer. We present 

a custom-built gas sampling and injection system (GASIS) linked with a Delta Plus XP 

mass-spectrometer that provides flexibility, ease of operation, and economical use of 

small gas samples with wide ranges of analyte concentrations. The overall on-line GC-

ox/red-IRMS (Gas Chromatography – oxidation/reduction – Isotope Ratio Mass 

Spectrometry) system consists of (i) a customized GASIS inlet system and (ii) two 

alternative reactors, namely an oxidative Cu-Ni-Pt reactor at 950 ºC for production of 

CO2 and a reductive graphitized Al2O3 reactor at 1420 ºC for production of H2. In 

addition, the system is equipped with (iii) a liquid nitrogen spray-cooling unit for cryo-

GC-focusing at -20 ºC, and (iv) a Nafion® dryer for removal of water vapor from product 

CO2. The GASIS inlet system’s three injection loops allow flexibility in the volume of 

injected analyte gas (e.g., from 0.06 μL to 500 μL) in order to measure reproducible δD 

and δ13C values for gases at concentrations ranging from 100% down to 10 ppm. We 

calibrate our GC-ox/red-IRMS system with two isotopically distinct methane references 

gases that are combusted off-line and characterized using isotope ratio dual-inlet IRMS.  
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2.1. Introduction 

 Stable carbon and hydrogen isotopic compositions of hydrocarbon gases (C1 

through C5) vary widely due to strong isotopic effects associated with biological and 

abiotic physicochemical processes. Patterns of isotopic variability have shed light on 

classification of natural gas mixtures (Schoell, 1983), sources and sinks of atmospheric 

methane (Quay et al., 1999; Miller et al., 2002), environmental contaminants (Ward et al., 

2000), and bacterial metabolism (Morasch et al., 2001; Valentine et al., 2004). Early 

work on the isotopic composition of hydrocarbon gases (Schoell, 1983; Quay et al., 1991) 

was labor intensive, requiring oxidation or reduction in sealed tubes, vacuum-line 

purification of large samples, followed by dual-inlet IRMS. Significant improvement in 

sample size requirements and automation were achieved with the development of gas 

chromatography isotope ratio mass spectrometry (GC-IRMS) in which GC effluents are 

either combusted (oxidized) to CO2 for 13C/12C analysis (GC-ox-IRMS; Hayes et al., 

1990) or thermally converted (reduced) to H2 for D/H analysis (GC-red-IRMS; Tobias 

and Brenna, 1997, Burgoyne and Hayes, 1998; Hilkert et al., 1999).   

Two basic designs of gas handling inlets have been developed for analysis by GC-

ox-IRMS and GC-red-IRMS. Commercially available GC injection loops (typically 0.06 

to 1.0 µL, Valco Instruments Co., Inc., Houston, TX, USA) conveniently inject samples 

in which the sample is dominated by a single gas component. For more dilute 

components such as atmospheric methane (1.7 ppm) or CO2 (~380 ppm), analytes are 

extracted from larger samples (20 - 200 mL) and preconcentrated and cryofocussed prior 

to injection onto the GC column (Miller et al., 2002; Merritt et al., 1995; Rice et al., 

2001). Each type of inlet has been optimized for relatively narrow mixing ratios and 
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delivers appropriate amounts of analyte to the IRMS source. These inlets are not suitable 

for analysis of complex mixtures, such as natural gas, with widely varying concentrations 

of components. In natural gas, for example, methane is often >95%, while C2, C3, C4, and 

C5 hydrocarbons are present in much lower concentrations, often <0.1 volume % of the 

gas sample. In this paper we describe a new inlet termed GASIS which allows the 

isotopic analysis of multiple components of a gas mixture with widely ranging mixing 

ratios (Henning, 2002). A GASIS sample is loaded into three loops of varying size (0.06 

µL to 500 µL). Sequential injection from each sampling loop allows the analyst to 

determine stable isotopic composition of all components, major and minor, with minimal 

effort. This inlet can also be used for mixtures of any gases containing carbon and/or 

hydrogen, e.g. CO2, CO, H2, and H2S. 

 

2.2. Methods 

2.2.1. Inlet system design  

The GASIS inlet consists of three two-position sampling valves (Valco). A 

schematic of the GASIS inlet is shown in Figure 1. Two of the valves are four-port, 

internal-sample injecting valves with fixed sampling volumes of 0.06 μL and 0.5 μL.  

The third is a six-port, external-sampling-loop valve with interchangeable loops of 5, 10, 

50, 100, and 500 μL.  The external loop can be switched to different size within 5 

minutes if needed. Four 1/16-inch crosses (Valco) are arranged so that the sampling 

volumes of the three valves are connected in parallel. Two stainless-steel (SS) toggle 

valves with 1/8-inch Swagelok fittings (Whitey Co., Highland Heights, OH, USA) 

control the vacuum from an oilless diaphragm pump (Gast Manufacturing, Inc., Benton  
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Fig. 1. Schematic of the GASIS inlet.  Valve 1 corresponds to the 0.06 µL internal 

sampling loop, Valve 2 corresponds to the 0.5 µL internal sampling loop, and Valve 3 

corresponds to the variable-volume external sampling loop (5 - 500 μL). 
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Harbor, MI, USA) and the flow of zero-grade helium for rinsing and purging the GASIS 

inlet. All connections are made via 1/16-inch outside diameter (OD) by 1/50-inch inside 

diameter (ID) 316-series SS tubing (Valco). The total volume of the GASIS inlet (with 

the 500 μL external loop attached and with the syringe push-button valves closed) is 1.2 

mL.  

2.2.2. Introduction of samples to the GASIS inlet  

Samples are loaded/introduced to the GASIS inlet via Luer-lock, glass-body 

syringes. One of the two syringes always remains fixed to the GASIS inlet and is referred 

to as the mixing syringe.  The other syringe is removed for gas sampling and is referred 

to as the sampling syringe. Two 10 or 5 mL) gas-tight syringes (SGE, Inc., Austin, TX, 

USA) with removable Luer-lock push-button dispenser valves (SGE) are fitted to 1/16- 

inch SS Luer-lock needles (Popper and Sons, New Hyde Park, NY, USA).  The Luer-lock 

needles are, in turn, each fitted to a cross on the inlet.  The unique arrangement of the two 

syringes enables them to work together in a tandem push-pull/hydraulic manner, passing 

a gas sample out of one syringe, through the entire GASIS inlet, including the three 

Valco sample valves, and into the other syringe.  The entire GASIS inlet system is purged 

with helium and evacuated several times in between samples to avoid contamination by 

air and cross contamination of samples. Once the sample is loaded, each sample volume 

can be injected sequentially and/or repeatedly, enabling analysis of major and trace 

components with a minimum of operator effort.   

For gas samples storage we used either 60 mL glass bottles with blue butyl 

stoppers (Bellco Glass, Inc., Vineland, NJ, USA) or 10 mL sterile blood collection 
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vacuum tubes (BD Vacutainer™, Franklin Lakes, NJ, USA). Gases were transferred into 

the storage containers either by water displacement (in case of bottles, water was 

sterilized using benzalkonium chloride 2 g/L) or with a needle (Vacutainers™). We 

tested both of these storage methods for gas molecular and isotopic variability and no 

changes has been observed over the time period of six months.  

2.2.3. GC-MS analytical procedures 

Gas samples were injected via the GASIS inlet onto a PoraBOND Q gas 

chromatographic column (30m, Varian, Inc, Palo Alto, CA, USA) for compound 

separation utilizing zero-grade helium carrier gas with a flow rate of 1.5 mL/minute. The 

GC oven and column are cooled to  

-20 ºC by a spray of liquid nitrogen at the initial stage of the GC temperature program in 

order to enhance peak separation. The GC program can be easily adjusted for a particular 

sample type. For example, the GC program for coalbed gases with typically very low C2+ 

concentrations was: 7 minutes at -20 ºC, 4 minutes at 30 ºC, 4 minutes at 80 ºC, 6 

minutes at 130 ºC, and 4 minutes at 250 ºC, with ramps of 50 ºC/minute.  

To obtain peaks in the measurable size range for coalbed gas samples, runs 

consisted of two injections separated by 3 minutes: (i) 0.5 μL to obtain a C1 peak and (ii) 

50 or 500 μL to obtain CO2 and C2+ peaks (Fig. 2b). To avoid overloading the high 

temperature reactor and the mass spectrometer, methane from the second injection was 

back-flushed. For typical natural-thermogenic or laboratory-pyrolysis gas samples 

containing more than 1% of each C1-4 hydrocarbons, runs with one 5 or 50 μL injection 

were sufficient (Fig. 2a). For such a run, the GC program was modified to be held at -20 

ºC for 5 minutes. Gas species separated on the GC column are subjected to either on-line 
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oxidation to CO2 in a 1Pt-1Ni-1Cu (wires) reactor at 950 ºC or on-line reduction to H2 in 

an Al2O3 ceramic reactor at 1420ºC. The Al2O3 ceramic tubes for both reactors were 320 

mm long with 0.5 mm inner diameter. Pre-run conditioning of reactors was required. 

Initial graphitization of the reducing reactor’s ceramic tube was achieved via 5 injections 

of methane using a 500 μL external loop. This process assured (i) complete reactions (by 

monitoring m/z = 16 on the mass spectrometer) and (ii) a minimization of the memory 

effect of the reactor. Oxidation of the combustion reactor was achieved overnight prior to 

analysis by holding the reactor at 550 ºC with a constant O2 flow at a pressure of 0.5 atm. 

Water removal was accomplished using a 60 cm long Nafion® tube sealed in 1/8-inch OD 

copper tubing.  To improve efficiency and isotopic accuracy, the dryer assembly of our 

design was kept at 0ºC in an ice-water bath and flushed with a counter-flow of dry helium 

(Leckrone and Hayes, 1997). 

On-line CO2 and H2-reference gas tanks and two distinct methane reference gas 

lecture bottles were calibrated off-line versus VPDB (Vienna Peedee Belemnite), L-

SVEC (lithium carbonate), VSMOW (Vienna Standard Mean Ocean Water), and SLAP 

(Standard Light Antarctic Precipitation). For carbon isotopic analyses one methane 

reference gas (δ13C = -38.25 ± 0.03‰) was used as an internal on-line reference. For 

hydrogen isotopic analyses, two methane reference gases (δD = -41.3 ± 1.3 and -160.8 ± 

2.1‰) were used. The isotopically distinct methanes were obtained by mixing deuterium-

labeled methane with non-labeled methane in lecture bottles.  For both carbon and 

hydrogen analyses, methane reference gas(es) were injected in two sets of four injections 

at the beginning and end of the each day and at 6-hour intervals throughout the day. Our 

technique for monitoring of two H-isotopically distinct methane reference gases allowed 
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Fig. 2. Chromatograms obtained with GASIS-GC-ox/red-IRMS system: a) hydrogen 

chromatogram of pyrolysis gas having 0.5, 47.0, 22.1, 14.2, 5.2, and 11.0% of H2, 

methane, ethane, propane, i-butane and n-butane, respectively ; b) carbon chromatogram 

of coal gas having 99.210, 0.740, 0.022, 0.004, 0.012, and 0.006% of methane, CO2, 

ethane, propane, i-butane, and n-butane, respectively (note the two injections, first 0.5 μL 

from which the methane peak came from, second 500 μL for the rest of the gases at very 

low concentrations; methane from the second injection was back-flushed). 
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us to (i) monitor and compensate for daily drifts of the H3-factor (cross-checked by 

injections of variable reference gas volumes), (ii) achieve off-line to on-line calibration of 

the mass spectrometer (single point calibration for carbon and regression line calibration 

for hydrogen), and (iii) quantify the daily variability of the machine  slope, defined as the 

slope of the regression plot of accepted versus measured δD values of our two 

isotopically distinct reference methanes. This slope ranged from 1.030 to 1.200, with an 

average of 1.089 (n=14).  

Relative gas concentrations were obtained by integrating peak areas. 

Concentrations of gases, compensated for number of C and/or H atoms per molecule, for 

which isotopic values were measurable and reliable were on the order of 10 ppm for 

carbon and 100 ppm for hydrogen. Typical analytical errors (standard deviation, n≥8) for 

δ13C were 0.2, 0.9, 0.7, 1.0, and 1.6‰ for C1, CO2, C2, C3, and C4 (iso and n), 

respectively. For δD, standard deviations were 2.0, 3.5, 4.8, and 10.0‰ for C1, C2, C3, 

and C4 (iso and n), respectively (Fig. 3a). Nonetheless, the uncertainties of isotopic values 

increase exponentially with decreasing gas concentrations, especially for hydrogen (Fig. 

3b). Additional comparisons of off-line and on-line values of seven different methanes 

generated differences in δ13C ranging from 0.02 to 0.29‰, with an average of 0.15‰ 

(n=7; Henning, 2002). 
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Fig. 3. Repeatability of δ13C and δD values of GASIS-GC-ox/red-IRMS system as a 

function of peak areas (a) and concentrations (b); a) Multiple injections of the same gas 

mixture using varying sample sizes; b) Standard deviations of multiple runs of gas  
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 2.3. Applications and significance 

 Our versatile GASIS inlet system can be applied to a variety of gas samples, 

including mixtures of gases containing hydrogen and/or carbon with individual 

component concentrations mixtures containing C1-C4 hydrocarbons of varying 

concentrations, with each point representing the standard deviation of one gas species 

that was analyzed at least four times. higher than 10 ppm (e.g. natural gases including 

coalbed (Strąpoć et al., 2007) and shale gases, pyrolysis gases, atmospheric gases, head 

space gases from microbial incubations). The GASIS inlet system conveniently allows 

the user to obtain relative gas concentrations and isotopic data for multiple gas species 

over a wide range of concentrations in a single GC-ox/red-IRMS run.  The user can 

design individualized parameters for specific sample types by varying (i) sampling loop 

sizes, (ii) the timing of injections and back-flushes within the run, and (iii) the GC 

program over a wide temperature range.  
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Abstract 

Canister desorption of coal gas from freshly sampled coal is commonly used for 

exploratory assessment of the coalbed methane (CBM) potential of a basin or prospect, as 

well as for the sampling of gas for isotopic determination of the gas origin. 

Compositional and δ13C isotopic time-series of desorbing CBM and carbon dioxide 

(CO2) over 3 to 4 months demonstrate considerable compositional and isotopic shifts 

over time. Non-stationary chemical and isotopic characteristics are due to differences in 

diffusivity and adsorbance behavior of gas molecules and must be taken into account 

when attempting to reproducibly sample coal gases.  

Off-line gas processing on a vacuum line and on-line GC/MS analyses were 

performed on coal gas samples from the Springfield and Seelyville coal members of 

Pennsylvanian age that were cored in the SE Illinois Basin in SW Indiana, USA. The 

coals cover a narrow range of maturity from 0.54 to 0.64% vitrinite reflectance. Methane 

initially desorbed faster than CO2, resulting in 50% increase of the CO2 content in bulk 

desorbing gas on the fiftieth day relative to the first day of desorption. After 50 days of 

desorption, about 90% of all coal gas was desorbed. Over the same time period, δ13C 

values of incrementally sampled coal gas increased by 2‰ and 9‰, for CH4 and CO2, 

respectively, testifying to the greater retention of 13CH4 and 13CO2 relative to 12CH4 and 

12CO2. An isotopic mass balance of the individual, sequentially desorbed and sampled gas 

amounts yielded weighted mean δ13CCH4 and δ13CCO2 values for characterizing the 

cumulatively desorbed gas. The overall mean δ13C values were equivalent to δ13C values 

of gases that desorbed at a time when half of the potentially available gas had been 

desorbed from coal, corresponding in this study to a time between day 5 and day 12 of 
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canister desorption at 15 to 18 ºC. The total expected gas volume and the ~50% midpoint 

can thus be approximated for a desorbing coal gas sample, based on a dynamic prediction 

after the first five days of canister desorption.   
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3.1. Introduction 

The use of stable isotope ratios in coalbed methane (CBM) exploration requires a 

practical and reasonably fast method for desorbing and sampling of gas. Coal from 

freshly drilled cores is typically placed in desorption canisters (Gas Research Institute, 

1995) from which desorbed gas is subsequently sampled for isotopic analysis. Desorption 

from coal proceeds over weeks and months, with gas yields decreasing exponentially 

over time and desorbed gases expressing isotope fractionation. In this study, we quantify 

gas speciation and isotopic fractionation along sequential desorption of methane and CO2 

from high-volatile, bituminous coal expressing a narrow range of maturity from 0.54 to 

0.64% vitrinite reflectance (Ro). Our method for rapid partial canister desorption and gas 

sampling arrives at 13C/12C ratios (expressed as δ13C values) that are representative of the 

total gas desorbed from the coal.  

Stable isotope ratios of natural gases are routinely used to distinguish between 

geochemical sources of coal gases, for example, to discriminate between thermogenic 

and biogenic (i.e., microbially generated) gases (Schoell, 1983; Scott et al., 1994; Smith 

and Pallasser, 1996; Katz et al., 2002; Martini et al., 2003). Typical δ13CCH4 values of 

thermogenic methanes range from -20 to -50‰, whereas biogenic methane from 

microbial acetate fermentation ranges ~ -45 to -65‰, and methane from microbial CO2-

reduction is even more depleted at ~ -60 to -110‰ (Scott, 1994; Jedrysek, 1995; 

Whiticar, 1996). Methane generated microbially via CO2-reduction is typically 

accompanied by residual 13C-enriched CO2 with δ13CCO2 ~ zero to 20‰, whereas 

thermogenic methane is typically associated with CO2 ranging between -10 and -30‰ 

(Scott et al., 1994). Because thermogenic and biogenic gas mixtures express distinct 
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carbon isotopic characteristics in their methane and CO2 components, the differences 

Δδ13C(CH4-CO2) range from 60 to 80‰ for biogenic, and from 20 to 40‰ for thermogenic 

gases (Smith et al., 1992). The diagnostic value of isotopic parameters of desorbed gases 

from coal can be compromised by isotope fractionation during partial gas desorption. 

Earlier observations noted increases in δ13C of gases desorbing from Sydney Basin coal 

(Gould et al., 1987); (i) methane and CO2 emanating from 20-liter drums filled with 2- to 

10-cm-diameter coal lumps increased their δ13C values over five months by 5.0 to 10.0‰ 

and by 2.5‰, respectively; (ii) methane from a pillar borehole became enriched in 13C by 

4.0‰, and from a virgin coal borehole by 1‰. It was suggested that carbon isotopic 

shifts of individual gas species (Δδ13C) are diffusion-controlled and decrease with 

increasing size of the desorbing body of coal. A canister-desorption study of Sydney 

Basin CBM found 1 to 2‰ 13C-enrichment in CH4 over two weeks for coals ranging in 

vitrinite reflectance Ro from 0.7 to 1.5% (Faiz et al., 2002). CBM desorbing over one 

month from higher-rank (Ro 2.6 – 3.7%), vitrinite-rich coal from the Qinshui Basin 

expressed an even larger Δδ13CCH4 of 3 to 15‰ (Hu et al., personal communication). A 

recent study by Niemann et al. (2005) reports 13C-enrichment of CBM desorbing form 

coals across a wide range of maturities. 

   

3.2. Materials and methods 

Whole cores were obtained from Springfield and Seelyville coal members in 

Sullivan and Gibson counties, Indiana, in the southeastern part of the Illinois Basin, from 

depths between 114 and 170 m (374 – 560 ft) (Table 1). These high-volatile bituminous 

coals of Pennsylvanian age with Ro from 0.54 to 0.64% are potential CBM targets in  
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Tab. 1. Coal samples analyzed for coal gas desorption in this study. Gases from coal 

sample V-3/1 were analyzed both off-line and on-line for comparison. Desorbed gases 

from all coals were sampled and excess gases were vented on a daily basis, except for 

coal sample II-3/5 where desorbed gas volumes were sampled in six steps without any 

venting between measuring and sampling, each step representing 5 to 30% of the total 

gas volume. V-3/1, IV-3/4, etc. represent sample designations given in the field. 

Coal 
seam  County  Depth 

(m) 
Ro 
(%) 

No. of gas samples  
for δ13C analyses 
during desorption 

Coal core 
name  

Seelyville Sullivan 128 0.62 11 V-3/1 
Seelyville Sullivan 170 0.64 3 IV-3/4 
Springfield Sullivan 114 0.59 3 III-5 
Seelyville Gibson 137 0.64 3 II-3/2 
Seelyville Gibson 138 0.54 6 II-3/5 
Seelyville Gibson 139 0.57 4 II-3/7 
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Indiana (Drobniak et al., 2004; Mastalerz et al., 2004). Immediately after recovery of a 

whole core in the field, one or more coal core segments with a diameter of ~7.6 cm (3 

inch) and a length of ~30 cm (1 ft) were quickly sealed in a nitrogen-purged desorption 

canister with a 2.7-liter internal volume. Desorption took place at ambient pressure and 

temperature of ~15 to 18 ºC first in the field and subsequently in the laboratory, similar to 

reservoir temperatures for Indiana coals.  

Desorbed gas was measured using a volume displacement apparatus (Fig. 1), 

following the standard canister desorption protocol (Gas Research Institute, 1995) until 

desorption completely ceased and the total desorbed gas volume and coal gas content 

were obtained. At selected time intervals, mostly on daily basis, the desorbed gas 

volumes were volumetrically measured and either vented or selected samples were taken 

for compositional and isotopic analyses. The frequency of volumetric measurement of 

desorbing gas and venting was highest in the first 24 hours, followed by increasingly 

longer intervals between measurements to ensure that sufficient gas was available for 

individual analyses. Most data are thus time-series with unequal spacing. The rapid series 

of initial gas desorption measurements within minutes to hours after coring allows to 

back-extrapolate the rate of desorption to the ”time zero” of coal coring, and thus, to 

estimate the volume of gas lost during the time (usually about thirty minutes) between 

coring and sealing of the fresh coal in desorption cylinders in the field (Diamond and 

Levine, 1981).  

Desorbed gas volumes from coal sample II-3/5 were sampled and vented in only 

six steps without venting in between steps. Five of the six gas samples represented 5 to  
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Fig. 1. Apparatus for volumetric measurements and sampling of desorbed coal gas. A - 

desorption canister, B -volume displacement apparatus, C - pressurized N2 container, D – 

deionized water with bezalkonium chloride, E – inverted sample bottle, F – flexible 

tubing, 1,2,3,4 - valves. Procedure: purging of tubing (2, 4 – closed; 1, 3 opened; tip of F 

outside of E; then 4 opened to release overpressure of N2), volume measurement (1, 3, 4 

closed, 2 opened), sampling (1 opened), venting (4 opened). 
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37% of the total gas volume. This approach permitted a complete isotopic mass-balance 

calculation for sample II-3/5, thus characterizing the entire gas volume compositionally 

and isotopically. This sample represents the same coal bed (Seelyville) as most of the 

samples analyzed in this paper. 

 Gas from desorption canisters flowed through flexible tubing and was bubbled 

into inverted, water-filled 50 ml glass bottles held under deionized water (Fig. 1). Prior to 

sampling, a microbicide (benzalkonium chloride, 2 g/l) had been added to the water to 

prevent microbial loss or generation of gas components during storage, and all dead 

volumes, including the gas sampling tubing, had been purged with nitrogen. Each 

partially gas-filled glass sample bottle was closed with a rubber septum, crimp-sealed, 

and stored in inverted position with an internal water level ~1 cm above the rubber 

septum, thus limiting the diffusion and loss of hydrophobic hydrocarbon gases during 

storage. The volume of water in bottles was limited (1-2 ml) to minimize any isotopic 

fractionation owing to partial dissolution of gases in water. For example, a ~3% vol:vol 

solubility of methane in water at atmospheric pressure and room temperature could 

fractionate the gaseous methane relative to the dissolved methane by about -0.3‰ (Fuex, 

1980) to -0.6‰ (Bacsik et al., 2002) for carbon. At the same time, an isotope 

fractionation factor α13C(bicarbonate-CO2) of 1.008 in the CO2 – HCO3
- system (Szaran, 1997) 

can lead to ~1.3‰ 13C-depletion of gaseous CO2 relative to DIC, assuming a CO2 partial 

pressure of 2 kPa (0.02 bar)  and 16% CO2-solubility in water, based on Henry’s Law. 

For off-line isotopic analyses, methane aliquots were collected on a vacuum line 

with a Toepler pump and sealed in 9 mm o.d. quartz ampoules together with copper (II) 
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oxide. Following combustion of methane in the sealed quartz ampoules at 800°C, the 

oxidation products H2O and CO2 were cryogenically separated on a vacuum line and CO2 

samples were sealed in 6 mm o.d. Pyrex® tubes. Values of δ13CCO2 were determined in 

manual dual-inlet mode using a Finnigan MAT 252 stable isotope mass-spectrometer.  

Some coal gases that were analyzed off-line were also analyzed on-line for gas 

composition and compound-specific δ13C values using a Finnigan 252 irm-GC/MS 

system. A customized GASIS injection system (Henning, 2002) with injection loops of 

0.06μL for methane and 0.5 μL for CO2 was used to inject gas aliquots onto a PoraBOND 

Q gas chromatographic column for compound separation. Following on-line combustion, 

integrated CO2 peak areas were used to quantify relative abundances of gas components. 

All δ13C values presented in this paper are calibrated against NBS-19 having a δ13C value 

of exactly +1.95‰ on the VPDB scale. Analytical errors for δ13C are: for methane 

determined off-line ±0.18‰ (standard deviation for five replicate determinations), for 

methane on-line ±0.22‰ (two sets of three replicates), and for CO2 on-line ±0.89‰ (two 

sets of duplicates and one set of three replicates). 

 

3.3. Results 

3.3.1. Methane.  

The data in δ13CCH4 time-series show similar patterns for off-line and on-line data 

reflecting 10 desorbing CBM gas samples from coal sample V-3/1 (Fig. 2). The ~2‰ 

increase in δ13CCH4 over 3 months of desorption appears to be linearly related to the 

desorbed methane as a fraction of total coal gas desorbed (Fig. 2A). A systematic ~0.3‰ 

offset between on-line and off-line data is likely due to different preparations and inlet 
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Fig. 2. Carbon isotopic changes of methane during coalbed gas desorption from coal 

sample V-3/1: a - scaled to percentage of methane desorbed; b - scaled to the duration of 

desorption. 
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modes of calibration gases, but is not relevant for the purpose of this study. A logarithmic 

relationship between δ13CCH4 and the duration of desorption (Fig. 2B) is similar to the 

relationship between cumulative desorbed gas volume and time (Fig. 3).  

Weighted mean values of δ13CCH4 for cumulative CBM from each coal sample 

were calculated via mass balances derived from volumetric measurements of desorbing 

gas over time (Tab. 2, Figs. 3 and 4). At a late stage of desorption, when ~95% of gas 

was already desorbed, sampling of gases was not possible on a daily basis because 

incremental daily volumes were insufficient. Figure 3 shows Δδ13CCH4 deviations of 

individual gas samples from the weighted δ13CCH4 mean as they relate to the fraction of 

desorbed CH4 from six canisters (Tab. 1). The Δδ13CCH4 pattern over the fraction of 

desorbed CBM from five canisters matches the pattern observed for coal sample V-3/1 

(Fig. 2A). The overall weighted mean δ13CCH4 ‘midpoint’ value is best approximated by 

CBM samples that were taken when 33 to 66% of total CBM had been desorbed (Fig. 4).  

CBM desorbing from coal sample II-3/5 was vented only six times coincident with six 

sampling steps that were at least 7 days apart from each other. Interestingly, the six 

individual δ13CCH4 values for sample II-3/5 did not increase over the duration of 

desorption and stayed within the confidence interval of the weighted mean δ13CCH4 (Fig. 

5). 

3.3.2. Carbon dioxide.  

Our limited matrix of four δ13C values for desorbing CO2 from coal core V-3/1 

suggests that the carbon isotope fractionation is about 5 times larger for CO2 (Fig. 6) than 

for CBM during desorption (Fig. 2). There is a 9‰ difference between the first sample of 

desorbed CO2 (first day of desorption with 10% of CO2 desorbed) and the last sample 



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 2. Carbon isotopic data collected for desorbed coal gas fractions. Weighted average 

values are calculated via mass balances derived from volumetric measurements of gas 

desorbed over time.  
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Fig. 3. Cumulative desorption curve of gas from coal sample V-3/1. 
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Fig. 4. Carbon isotopic differences between individual methane measurements and the 

weighted mean value for each canister (based on off-line data from six desorption 

canisters from which gas was vented on daily basis). The weighted mean is represented 

by the horizontal zero line. Thick horizontal lines represent average values for three 

desorption intervals. The average δ13C value for the 33 to 66% desorption interval (grey 

rectangle) most closely approximates the overall weighted mean value (zero line). 
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Fig. 5.  δ13CCH4 values for coal sample II-3/5. Desorbed gas volumes were measured, 

sampled, and vented only six times, allowing at least seven days of equilibration between 

consecutive measurements. Dotted line represents weighted mean δ13C value of the entire 

methane volume. 
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Fig. 6. Changes of δ13CCO2 versus changes in CO2 content (A) and versus δ13CCH4 (B) 

during coal gas desorption from coal sample V-3/1. Numbers in brackets indicate the 

percent of total CO2 desorbed at the time of sampling. Dashed lines guide the eye along 

paths of desorption. 
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(fiftieth day, 95% of CO2 desorbed). This isotopic shift is accompanied by a gradual 

increase in the CO2 content of the desorbing gas mixture (Fig. 6A). The percentage of 

desorbed CO2 for a particular day was calculated by extrapolating gas chromatographic 

data (peak areas) onto the volumetric measurements of desorbing total coal gas. 

 

3.4. Discussion 

3.4.1. Carbon isotopic changes and representative sampling of coal gas. 

Canister desorption is primarily used for coal gas content estimation by 

volumetric measurements of desorbing coal gases on a daily basis. The daily sampling of 

gas for geochemical analyses is typically followed by venting of excess gas. 

Alternatively, accumulation of gas can proceed over many days without intermittent 

measurements and venting (e.g., coal sample II-3/5 in this study). Although the latter 

approach seems to offer isotopically representative coal gas samples (see below), it also 

has disadvantages. First, it does not allow back-extrapolation for estimating the gas that is 

lost between coal core retrieval and the sealing of coal in desorption canisters. Also, less 

frequent venting of excess gas causes larger intermittent pressure buildup in the 

headspace of the canister and distorts the pattern of desorption that would otherwise be 

observed at consistently low ambient pressures. Given the fact that dynamic canister 

desorption with daily volume measurement and subsequent venting of gas is the generally 

preferred technique, a feasible method for collecting isotopically representative gas 

samples is needed. 

Representative and reproducible sampling of desorbing coal gas mandates that the 

sampling strategy accounts or compensates for carbon isotopic changes of methane and 
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CO2 during desorption. The timing of sampling is especially important when a gas 

sample needs to be representative of the theoretical entire gas volume. In Figure 4, the 

horizontal ”zero-line” (representing the mass balance-based average δ13CCH4 value for 

each of the canisters) is close to the average δ13CCH4 value for CBM samples taken when 

33 to 66% of the entire gas volumes had already been desorbed. For coal sample V-3/1, 

mass-balance calculations based on daily desorption measurements indicate that 

isotopically representative ”average gas” desorbs when 48% (according to off-line data) 

or 52% (on-line data) of the total gas has already been desorbed and removed. Thus, a 

~50% desorption midpoint is suggested for taking representative gas samples for carbon 

isotopic CBM analysis. This opportune time window for gas sampling occurred in our 

coals between the fifth and the twelfth day of desorption (Fig. 7A). 

The absence of a large isotopic variance over time in coal gas desorbed from coal 

sample II-3/5 (Fig. 5) may be due to the considerable length of time (>7 days) allowed 

between each of the six sampling events. Longer re-equilibration between desorbed and 

sorbed gas may have reduced any kinetic isotope fractionation associated with initial 

rapid desorption following the venting of earlier desorbed CBM. A slightly lower vapor 

pressure (or slightly higher boiling point) of isotopically heavier molecules can probably 

influence the isotopic separation between sorbed and desorbed phases if equilibrium was 

reached after >7 days, but our data suggest this fractionation effect to be minor. In 

contrast, the dynamically desorbing samples with daily volumetric measurement and 

venting of freshly desorbed CBM from other coal samples (i.e., non-equilibrium 

conditions) fostered the expression of a kinetic isotope effect (Figs. 2, 4, 6), whereby 

13CH4 and 13CO2 molecules diffused slower out of coal than 12CH4 (Gould et al., 1987;  
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Fig. 7. A - Histogram depicting the timing of midpoint gas desorption from 31 canisters 

using Illinois Basin Pennsylvanian coals;  B – Dependence of timing of desorption mid-

point on the total desorbed gas (final volume, obtained when desorption ceases, usually 

after three months) for 19 canisters using Seelyville coal. The solid line is a 2nd order 

polynomial regression. 
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Faiz et al., 2002; Hu et al., personal communication) and 12CO2 (Gould et al., 1987) (Fig. 

6B).  

The timing of the ~50% desorption midpoint can be predicted from closely-

spaced early desorption measurements. We compared the timing of midpoints with the 

total desorbed gas volumes, in order to better constrain the midpoints within their 

estimated 5- to 12-day window of occurrence. Theoretical total gas volumes could be 

predicted by extrapolating volumetric data from the first five days of desorption (Fig. 8). 

An example of the correspondence between total desorbed gas and the timing of midpoint 

desorption is shown in Fig. 7B for Seelyville coals. The scatter of data may result from 

the coals’ variability in maceral composition, moisture and ash content, and pore-size 

distribution influencing gas desorption. 

3.4.2. Diffusion-controlled carbon isotopic variability of desorbing coal gases 

The initial release of molecules from an adsorption site could fractionate gas 

isotopically according to Langmuir desorption, but the small differences between 

physical properties (i.e. boiling point) of isotopically lighter and heavier molecular 

species suggest limited associated fractionation. This is corroborated by our observation 

that 13CO2/12CO2 is about four times more fractionated than 13CH4/12CH4, although the 

relative molecular mass difference for 13CH4 and 12CH4 (1/16) is much larger than for 

13CO2 and 12CO2 (1/44).  Furthermore, no isotopic fractionation of CH4 was observed in 

sample II-3/5, where much time was allowed for equilibration between adsorbed and free 

gas.  

Although negligible fractionation seems to occur during the initial release of gas 

molecules from adsorption sites, much stronger isotopic fractionation results from the   
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Fig. 8. Relationships between measured cumulative gas volumes after 5 or 10 days of 

desorption and total desorbed gas. These relationships can be used to predict total gas 

volume via extrapolation of shorter-term initial desorption measurements. The data are 

based on over 30 canister samples from Illinois Basin Pennsylvanian coals. 
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subsequent diffusional transport of gas through microporous coal. Isotopic fractionation 

via diffusion through micropores intensifies with increasing coal maturity (Fig. 9), 

because the relative abundance of micropores increases (Clarkson et al., 1993). We 

hypothesize that under non-equilibrium conditions of frequent venting of gas and 

dynamic desorption of new gas the differences in diffusivity between 13C- and 12C-

containing methane and CO2 molecules are likely controlling kinetic isotope effects 

during coal gas desorption. Kinetic isotope effects imply that 12C-containing molecules 

diffuse faster in microporous coal than 13C-containing molecules of the same chemical 

species (Fig. 6B). Similar diffusion-related carbon isotopic fractionation of methane 

migrating through shale cores was observed in laboratory experiments by Zhang and 

Krooss (2001). Fractionation of gaseous hydrocarbons via diffusive transport into gas 

reservoirs was proposed by Prinzhofer and Permaton (1997) for some natural gas 

accumulations. 

Gas transport in coal occurs in different modes depending on pore size. In 

micropores (∅ <2nm; according to Harpalani and Chen, 1997), desorption and diffusion 

of gases are strongly affected by (i) gas adsorption affinities in slit-shaped pores typical 

for coals, (ii) by diffusion via molecule-pore wall collisions (Knudsen diffusion), and (iii) 

by surface diffusion (hopping of adsorbed gas molecules from one adsorption site to 

another) (Cui et al., 2004; Gudmundsson, 2003). Transport of gases in macropores (∅ 

>50nm) is dominated by viscous flow or continuum diffusion (molecule-molecule 

collisions) (Cui et al., 2004; Faiz, 2004). In the latter mode of transport, the flow of gas is 

only slightly restricted and the isotopic effect during diffusion out of macropores and 

cleats may be limited. In contrast, isotopic fractionation can be expected from the more  
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Fig. 9. Changes in δ13C of CH4 over the first two weeks of coal gas desorption from coals 

of various maturities. Rectangular fields represent ranges of data (Ro and Δδ13C) provided 

in the literature.  
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restricted flow of gas out of a three-dimensional network of micropores (Radovic et al., 

1997) when gas molecules are strongly interacting with micropore walls.  

Gas flow constriction is enhanced in more mature coals with Ro>1.5% because (i) 

micropores constitute a larger portion of the overall porosity (Clarkson et al., 1993; 

Bustin, 2000) and (ii) additional micropore-dominated secondary porosity is generated 

via cracking of higher hydrocarbons and the loss of volatiles (Rodrigues and Sousa, 

2002). Limited data (Fig. 9) support the hypothesis that more mature coal with 

increasingly important microporosity leads to more efficient ”molecular sieving” and 

larger isotope effects during coal gas desorption. Late desorbed methane can differ 

isotopically from early desorbed methane by 2 to 16‰.  

Additional factors influencing the isotopic fractionation of desorbing coal gases 

may include maceral composition, the presence of competing fluids such as moisture and 

higher molecular-weight hydrocarbons, in-situ stress, overpressure, and coal shrinkage or 

swelling. All these factors contribute to the diffusion coefficient. Large isotopic 

fractionation during diffusion suggests a small diffusion coefficient, which implies 

possible high coal gas content (e.g., in the greater Green River Basin; Scott and Ambrose, 

1992). 

3.4.3. Gas compositional variability 

Coal gases are mainly adsorbed on the microporous structure of the organic coal 

matrix (Bustin and Clarkson, 1996; Faiz et al., 2002) due to physical (not chemical) 

attraction including van der Waals and electrostatic forces (Yee et al., 1993).   

Spontaneous desorption of adsorbed gases is initiated by changes in pressure and 

temperature from reservoir to canister conditions (canister temperatures approximated 
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reservoir temperatures in our experiments). Some gas species are more strongly kept 

adsorbed on coal than other gases (i.e., CH4 will desorb preferentially and faster than 

CO2), depending on adsorption affinities and geometries of gas molecules and pores in 

coal. The linear structure, small molecular size, and electric properties of the CO2 

molecule (O=C=O) translate into a high adsorption affinity for most pore sizes in coal 

(Cui et al., 2004), whereas the tetrahedral and more voluminous molecular structure of 

CH4 limits its adsorption affinity.  

Sorption capacity increases with increasing molecular weight of a sorbed gas 

species following Langmuir’s theory. The theory compares adsorption/desorption to 

evaporation/condensation processes, in which heavier gas tends to have a higher boiling 

point and therefore is more strongly sorbed to a solid phase. The ratio of sorption 

capacities of CO2 and methane in coal is typically 2:1 or higher. Their sorption ratio in 

Indiana coals averages ~ 4:1 (Mastalerz et al., 2004), including coals used in this study.  

As a consequence, we observe a relatively small CO2 concentration in bulk gas at the 

beginning of desorption, followed by increasing CO2 concentrations with ongoing 

depletion of adsorbed gases in coal.  

This compositional fractionation of desorbing coal gas could be alternatively 

explained by decreasing pressure (e.g., during prolonged gas production) causing an 

increase in relative sorption capacities for CO2 over CH4 on coal (Arri et al., 1992). 

However, all our desorption experiments, except one, took place at ambient pressure with 

daily venting of desorbed gas. Therefore, we can exclude pressure decrease as a major 

factor controlling gas compositional variability during our canister desorption 

experiments.   
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3.4.4. Implications 

3.4.4.1. Coal gas origins 

The observed ~2‰ isotopic fractionation in δ13CCH4 during desorption of CBM 

from low-rank (high-volatile bituminous) coal far exceeds the experimental uncertainty 

of δ13C determination. If improper partial sampling of coal gas fails to account for 

fractionation, an error in δ13CCH4 of up to ~2‰ (or more in higher rank coals), together 

with a respective error in δ13CCO2 of up to ~9‰, can lead to improper classification of 

coal gases, or at least to ambiguity much larger than typical analytical error. For example, 

the distinction between thermogenic, mixed and microbial gas origins can be blurred 

(Fig. 10), especially for detailed studies where biogenic and thermogenic end-members 

can be more precisely constrained than the general fields suggest in Fig. 10. End-member 

gases can be obtained by pyrolysis and culturing experiments for a particular coal.  

Imprecise δ13CCH4 results may also lead to improper estimation of biogenic gas 

participation in bulk coal gas (Chung et al., 1988) where ± 2‰ error can lead to about ± 

10% difference.  This is important for basins with mixed origin of gases where admixing 

of secondary biogenic gases might be significant. For example, in regions with low 

maturity coals (i.e. basin margins), the biogenic contribution can be the deciding factor 

for the CBM potential, for example in the eastern Illinois Basin, where low maturity coals 

with low thermogenic gas potential feature 50% or more secondary biogenic methane 

contribution (Strąpoć et al., 2005). Some basins with high coal rank may be expected to 

contain purely thermogenic gases, but post-coalification microbial gas may have been 

added following uplift and introduction of meteoric water and bacteria into permeable 

coal (e.g., Zongdulak Basin; Hoşgörmez et al., 2002).  
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Fig. 10. Genetic classification of coalbed gases with three distinguishable fields, 

according to Smith and Pallasser (1996). The filled diamond (♦) indicates the average for 

Seelyville coal gas. Symbol size relates to the typical analytical error. The rectangle 

around the symbol relates to the expected desorption-related isotopic variance in δ13C of 

CH4 and CO2.  
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3.4.4.2. CBM production 

 In addition to an isotopic bias caused by inappropriate gas sampling from 

canisters affecting the assessment of coal gas origin, any bias in the molecular 

composition (e.g., the CH4/CO2 ratio, important when CO2 content >5%) of desorbing 

coal gases will propagate an error in the evaluation of the methane abundance in a coal 

sample, a field, or on a basin scale. The overall trend of increasing CO2 concentrations in 

bulk desorbing gas over time from canisters may be mirrored on a reservoir scale by the  

observation of increasing CO2 concentrations from older CBM production wells as coal 

gases become depleted (Arri et al., 1992).  

On the other hand, decreasing reservoir gas pressure and increasing relative CO2 

content during gas production may cause shrinkage of the coal matrix (Mavor and 

Vaughn, 1998). If shrinkage modifies pore-size distribution (e.g., increasing relative 

micropore volume), it might as well, modify the isotopic fractionation of diffusion. 

Nevertheless, if isotopic fractionation patterns of methane produced in the field and from 

desorption canisters (Fig. 2B) are similar, then δ13C values could be used to monitor 

production of CBM and depletion of a reservoir. Our ongoing research comparing 

laboratory and production trends will test this hypothesis 

 

3.5. Conclusions 

Kinetic isotope effects cause 13C-depletion of free methane and CO2 relative to 

adsorbed gas species during desorption of coal gases in canisters. Observed fractionations 

are likely caused by faster diffusion of 12C-containing gas species relative to 13CH4 and 

13CO2. Amplitudes of δ13C shifts over the duration of desorption are probably linked to 
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the pore structure of coal, which is controlled by maceral composition, maturity, in-situ 

stress, etc.  

A linear relationship exists between δ13CCH4 and the volume of desorbed CH4 as a 

fraction of total CBM. Thus, isotopically representative sampling of desorbed CBM for 

carbon-isotopic analysis should be performed for a gas sample that is collected after 

about half of all gas has been desorbed and vented/removed (i.e., gas from the ~50 vol. % 

mid-point of gas desorption). Our coals’ desorption midpoints occurred between the fifth 

and twelfth days of desorption. The timing of a midpoint can be predicted by 

extrapolating narrowly spaced measurements from the first few days of desorption. 

  The chemical composition of desorbing coal gas changes over the duration of 

desorption because different coal gas species express different adsorption affinities in 

microporous coal. CO2 has a higher adsorption affinity than methane, causing early 

desorbed gas to be relatively enriched in methane, whereas late desorbed gas is relatively 

enriched in CO2. 

Awareness and avoidance of pitfalls of compositional and isotopic analyses of 

coal gases from canister desorption can minimize the analytical bias of geochemical 

assessment, for example in the evaluation of gas origins.  
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Abstract 

  Coalbed gases and waters from exploratory and production gas wells in the 

southeastern Illinois Basin were sampled to geochemically assess the origin of coalbed 

gases, with an emphasis on the Springfield and Seelyville Coal Members that are 

commercially targeted for coalbed methane production in Indiana. On-line analyses of 

hydrocarbon gases methane to butanes (C1, C2, C3, n-C4, i-C4) and CO2 yielded 

concentrations, δD, and δ13C values. The low thermal maturity of Indiana coals with 

vitrinite reflectance Ro ~ 0.6% is in agreement with an overwhelmingly biogenic isotopic 

signature of coalbed gases containing ≥ 96% methane generated via bacterial CO2-

reduction. In contrast, thermogenic gas was generated in the stratigraphically equivalent 

coal beds in western Kentucky’s Rough Creek Graben zone where higher maturities of up 

to Ro ~ 0.8% were reached due to tectonic and hydrothermal activity. No secondary 

biogenic methane was observed in more mature western Kentucky coal beds where 

greater burial depth limits the recharge of meteoric water. Biogenic and thermogenic 

coalbed gases represent two end-members that are compositionally and isotopically 

distinct. Microbial biodegradation of thermogenic C2+ hydrocarbon gases in Indiana coal 

beds preferentially targets C3 and introduces isotope fractionation whereby remaining C3 

is enriched in deuterium and 13C. 
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4.1. Introduction 

Empirical compositional and isotopic classifications for discerning different 

origins of natural gases (e.g., Schoell, 1983; Chung et al., 1988; Whiticar, 1999) have 

been applied to coalbed gases in various basins (e.g., Scott et al., 1994; Smith and 

Pallasser, 1996; Ahmed and Smith, 2001; Hoşgörmez et al., 2002; Katz et al., 2002; 

Aravena et al., 2003; Faiz et al., 2003; Thielemann et al., 2004). This study focuses on 

coalbed gases from the Illinois Basin where a gradient of thermal maturity gives rise to 

biogenic and/or thermogenic coalbed gases depending on coal properties and geologic 

setting. Relatively shallow eastern Illinois Basin coals in Indiana with low maturity 

(vitrinite reflectance Ro ~ 0.6%) contain significant resources of coalbed methane (CBM) 

(Drobniak et al., 2004; Mastalerz et al., 2004). Important questions about these relatively 

immature coals center on (i) the amount of secondary biogenic CBM that can be 

continuously contributed to bulk coalbed gas, and (ii) biogeochemical controls of modern 

CBM generation. With regard to higher maturity coals in the southern part of the Illinois 

Basin, we hypothesize that past tectonic and volcanic activities associated with Rough 

Creek Graben zone (Hower and Gayer, 2002; Rowan et al., 2002) triggered thermogenic 

gas generation in western Kentucky (where Ro ranges from 0.7 to 0.8%). Our analytical 

approach towards resolving the diverse origins of coalbed gases in the southeastern 

Illinois Basin utilizes the molecular and isotopic compositions of coalbed gases, 

associated reservoir waters, and gases that were generated during artificial maturation of 

coal via hydrous pyrolysis.  
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Fig. 1. Study area: (a) map of Springfield Coal Member depth; (b) East-West 

stratigraphic profile across Illinois Basin (along line indicated in Fig. 1a) with 52x 

vertical exaggeration; (c) map of vitrinite reflectance Ro of Springfield Coal Member 

overlain by major tectonic structures in southeastern Illinois Basin (after Greb et al., 

1992; Hower et al., 2005). Dashed lines distinguish counties: S – Sullivan, K – Knox, G – 

Gibson, U – Union, W – Webster. 
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4.2. Study area 

The depocenter of the asymmetric, spoon-shaped Illinois Basin is located in the 

southeast (Fig. 1a). The basin is an intracratonic structural depression that successively 

accumulated sediments of shallow marine origin (up to 3500 m, 530 to 280 Ma; Fig. 1b) 

during the Cambrian to Pennsylvanian. The post-Paleozoic history of the basin was 

dominated by erosion, and more recently included northern glacial loading. Only the very 

southeastern part of the basin in western Kentucky was subjected to intense tectonic 

activity along the Rough Creek and Pennyrile Fault systems. Tectonic activity began in 

the early Paleozoic as an east-west extension of the abandoned Reelfoot Rift zone (Fig. 

1c; Macke, 1995) and continued throughout basin-filling. Vertical translocations at the 

Rough Creek Graben and an increased geothermal gradient locally induced ~ 400 m 

greater present-day depths and higher coal maturity (Ro ~ 0.7 to 0.8%; Fig. 1a, c).  

Pennsylvanian coal-bearing sediments in the Illinois Basin reach 750 m in 

thickness. Pennsylvanian lithostratigraphy is characterized by relatively thin and laterally 

extensive units deposited due to multiple transgressions and regressions. The depositional 

environment has been recently described as mainly nearshore to marginal marine 

characterized by tidal coastal plains (Kvale et al., 2004), although it was formerly thought 

to have been coal swamps developing on deltaic platforms (Roseman Wright, 1977).  Our 

study focuses on the Springfield and Seelyville Coal Members in the southeastern Illinois 

Basin that are commercial CBM targets (Solano-Acosta et al., 2005) (Fig. 2) ranging in 

thickness from 0.7 to 1.6 m and from 0.4 to 1.6 m, respectively. Average coalbed gas 

contents, on a raw basis (moisture and mineral matter included), range from 2.0 to 3.0 

cm3g-1 in the Springfield Coal Member and from 2.2 to 4.6 cm3g-1 in the Seelyville 
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Fig. 2. Litostratigraphic column of Pennsylvanian in the Indiana part of Illinois Basin, 

with positions of sampled coal beds indicated (modified from Mastalerz and Harper, 

1998).   
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Coal Member (Mastalerz et al., 2004). The Springfield and Seelyville coals in Indiana are 

located at typical depths of between 60 and 200 m (Mastalerz et al., 2004), and have high 

volatile bituminous C and B rank throughout the state, with an average Ro ~ 0.56% for 

the Springfield Coal (Hower et al., 2005) and 0.60% for the Seelyville Coal (Drobniak et 

al., 2004). The stratigraphically equivalent coal beds in western Kentucky feature 

increased Ro from 0.7 to 0.8% and rank as high volatile bituminous A coals. 

 

4.3. Materials and methods 

Coal cores were obtained at eleven drill sites in Sullivan, Knox, and Gibson 

counties of southwestern Indiana (Fig. 1b), and coalbed gases were collected during 

canister desorption (Gas Research Institute, 1995). Additionally, 10 CBM production 

wells in Sullivan County were sampled. Most data from Indiana represent Seelyville 

(n=27) and Springfield (n=13) coal beds. Another set of coalbed gas samples was 

received from four exploratory wells located in Webster and Union counties in western 

Kentucky (Fig. 1b). All twelve analyzed coal members are depicted on the 

lithostratigraphic diagram in Figure 2. Production well INS-3 was sampled during its 

exploratory coring and production phase. This facilitated a direct comparison between 

coalbed gas from canister desorption of fresh coal and commercially-produced coalbed 

gas.  

Immediately after recovery of a sediment core in the field, one or more coal core 

segments with a diameter of ~7.6 cm and a length of ~30 cm were quickly sealed in a 

nitrogen-purged desorption canister with a 2.7 liter internal volume. Desorbed gas 

volumes were measured daily following standard canister desorption protocol (Gas 
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Research Institute, 1995) using a volume displacement apparatus until desorption 

essentially ceased after ~90 days. Gas sampling from canisters for compositional and 

isotopic analyses was performed at the midpoint of coalbed gas desorption, when newly 

desorbed gas is representative of the bulk coalbed gas (Strąpoć et al., 2006). Additionally, 

residual coalbed gas was obtained by crushing previously desorbed coal core segments 

and quickly refilling the crushed coal into canisters for continued desorption.  

Two Springfield and Seelyville coal samples were selected for hydrous pyrolysis 

experiments in order to obtain isotopic signatures of artificially generated thermogenic 

end-member gases. Hydrous pyrolysis of coal chips at 320 ºC for 72 hours was performed 

in waters with initial δDH2O values of -137 and +1196‰ in sealed quartz ampoules that 

were housed in partially water-filled and sealed stainless steel pipe reactors 

(Schimmelmann et al., 1999).  

 Coalbed gas samples were analyzed on-line for gas composition and compound-

specific δ13C and δD values using a Delta Plus XP isotope-ratio mass spectrometer with a 

specialized GASIS inlet system (Henning, 2002), a gas chromatograph (GC), as well as 

oxidative and glassy carbon reductive interfaces to generate CO2 and H2 analytes. The 

GASIS inlet system utilized various injection loop sizes (0.5, 50, and 500 μL) to admit 

gas volumes that were adequate for measuring gas species at diverse concentrations. At 

the beginning of the GC program, the PoraBOND Q column was cooled to -20 ºC for 

seven minutes by liquid nitrogen-spraying for improved peak separation. This was 

followed by successive 50 ºC/min warming to a series of isothermal plateaus of 4 min at 

30 ºC, 4 min at 80 ºC, 6 min at 130 ºC, and 4 min at 250 ºC. To obtain resolved peaks of 

suitable sizes for various gas components, each gas analysis consisted of an initial gas 
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injection from the 0.5 μL loop for methane (C1), followed three minutes later by a second 

injection from the 50 or 500 μL loops targeting carbon dioxide (CO2) and ethane to 

butanes (C2+). Excessive amounts of methane from the second injection were GC-

separated and eliminated from the analyte flow by back-flushing. On-line combustion of 

hydrocarbons yielded CO2 at 950 ºC in a reactor containing partially oxidized Pt/Ni/Cu 

wires. Alternatively, the pyrolytic decomposition of hydrocarbons at 1420 ºC in an Al2O3 

reactor lined with glassy carbon formed H2. The integrated H2 and CO2 peak areas of the 

ions with 2 and 44 amu (atomic mass units) were used to quantify relative abundances of 

gas components, which are reported as volume %. Analytical errors for relative gas 

abundances are expressed as [standard deviation/average concentration·100] in volume % 

and depend on concentration. Highly concentrated gas components such as methane bear 

an uncertainty of ±1 vol. %. Gas components with concentrations of 0.5 to 10 vol. % 

were typically quantified within ±10 to ±20 vol. %. Gas components with low 

concentrations below 0.5 vol. % could be quantified within errors of typically ±20 to ±40 

vol. %. The detection limit was 1 vol. ppm. 

Isotopic on-line measurements utilized CO2 and H2 reference gases from cylinders 

and methane reference gases from lecture bottles that had been calibrated off-line against 

VPDB for δ13C and against VSMOW with normalization to SLAP for δD. Our two 

methane reference gases with distinct δ13C and δD values were injected daily between 

coalbed gases as an internal on-line laboratory reference material and to monitor the H3 

factor. Analytical δ13C errors (as standard deviations of 8 repeat measurements) for C1, 

CO2, C2, C3, i-C4, n-C4 were ±0.4, 0.9, 0.7, 1.1, 1.0, and 1.6‰, respectively. Equivalent 

analytical δD errors for C1, C2, C3, i-C4, n-C4 were ±4, 7, 10, 13, and 11‰.  



69 
 

 The concentrations of seven major anions in water samples from production wells 

were determined using a DIONEX ICS-2000 ion chromatograph with a precision of 

±10%. The isotopic compositions of waters δDH2O and δ18OH2O were measured with a 

Delta Plus XP isotope-ratio mass spectrometer using two attached interfaces. δDH2O 

values were determined on-line using an HDevice by Thermo Finnigan, in which water is 

reduced to H2 in contact with chromium at 850 ºC. δ18OH2O values were measured after 

equilibrating standard CO2 gas with waters in a gas bench. Analytical precisions of 

isotopic analyses of waters were ±0.9‰ (n=5) for δDH2O and ±0.4‰ (n=6) for δ18OH2O. 

 

4.4. Results 

Compositional and isotopic characteristics of coalbed gases are presented in Table 

1 and represent 9 coal beds from 11 exploratory holes in southwestern Indiana, and 7 coal 

beds from 4 exploratory wells in western Kentucky. In addition, data from coalbed gases 

and waters from 10 Indiana production wells are listed in Table 2. Table 3 presents 

average values of chemical and isotopic characteristics of coalbed gases for all 

investigated coal members in Indiana and Kentucky. In this paper we compare gases from 

stratigraphically equivalent coal beds that differ in maturity. Results from desorption of 

crushed coals and from two artificial maturation experiments via hydrous pyrolysis are 

presented in Table 4. 
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4.4.1. Chemical composition of coalbed gases  

Methane is the predominant component of all Indiana coalbed gases accounting 

for >99.9% of all hydrocarbons and >97% of bulk coalbed gas. Another main component 

is CO2, with typical concentrations of 1 to 3 vol. % (1.3 vol. % in Springfield coalbed gas 

and 1.5 vol. % in Seelyville coalbed gas) (Fig. 3a). Nitrogen N2 concentrations were not 

quantified in this study because we used N2-purging of desorption canisters. Indiana 

coalbed gases are ‘dry’ with an average of only 0.03 vol. % C2+ hydrocarbons that 

translate into an average gas wetness ratio C1/(C2+C3) of 5200 (10600 in Springfield 

coalbed gas, 2500 in Seelyville coalbed gas). In contrast, coalbed gases from the 

stratigraphically equivalent but thermally more mature coal beds in western Kentucky 

have much higher average thermogenic C2+ concentrations of ~9.5 vol. % with a typical 

gas wetness ratio of ~10 (Fig. 3b). CO2 concentrations in coalbed gases are fairly uniform 

across the study area with an average of 1.3 vol. %. The chemical compositions of gases 

derived from primary desorption of coal cores are essentially equivalent to the 

compositions of secondary, residual desorbed gases from coals after crushing (Table 4). 

Gases from artificial maturation of coals via hydrous pyrolysis experiments contain ~36 

vol. % C2+ hydrocarbons (Table 4).  

4.4.2. Carbon stable isotope ratios in gases 

Compound-specific δ13C values of individual gas species from Indiana coal beds 

vary distinctly. CO2 with an average δ13CCO2 value of 4.3‰ (n=20) is 13C-enriched by 

several tens of permil relative to organic carbon in hydrocarbons (Table 1). Methane 

δ13CCH4 values range from -66.6 to -56.8‰ and average -60.7‰ ± 1.7‰, n=31 (Tables 1, 

2). Average δ13C values of C2,3,i-4,n-4 hydrocarbons are -38.1, -23.9, -31.1 and -28.4‰,  
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Fig. 3. Major gas components of coalbed gases in SE Illinois Basin; coals are listed in 

stratigraphic sequence according to Fig. 2. 
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Fig. 4. Compound specific isotopic data for Indiana and Kentucky coalbed gases. (a) and 

(b) show δ13C values, and (c) and (d) show δD values of hydrocarbons plotted against the 

reciprocal carbon numbers of methane to butane according to Chung et al. (1988). The 

same δ13C and  δD data are cross-plotted for Indiana (e) and western Kentucky (f). The 

inserted legend in (f) is valid for symbols in all parts of Fig. 4. Section (b) also plots data 

from hydrous pyrolysis artificial maturation experiments that generated thermogenic end-

member gases from Indiana coals. Therefore we compare artificial and natural 

thermogenic gases generated from the same coals. δDi-C4 values were plotted for coals 

where δDn-C4 values were unavailable due to microbial degradation of n-butane (see 

Table 3). 
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respectively, with few outliers and standard deviations of 1.5 to 3‰ (Table 3). Propane 

C3 is significantly 13C-enriched relative to all other hydrocarbons (Tables 3, 4; Fig. 4a, c, 

e). In contrast to Indiana, the western Kentucky coalbed gases from the Springfield and 

Seelyville Coal Members are characterized by less negative δ13CCH4 values of ~ -49.0‰ 

±1.3‰ (n=31) and more negative δ13CCO2 values of -24.3‰ ± 3.4‰, n=31 (Table 3). 

Consequently, the isotopic offset Δ13CCO2-CH4 between δ13CCO2 and δ13CCH4 in Indiana 

coalbed gases is typically 65‰, and the much smaller Δ13CCO2-CH4 of only ~ 25‰ in 

western Kentucky coalbed gases strongly suggests that Indiana and western Kentucky 

gases are of different origins (Table 1). When plotting δ13C values over the reciprocal 

carbon number 1/Cn according to Chung et al. (1988) (Fig. 4b), the western Kentucky 

coal hydrocarbon gases show a pattern similar to thermogenic gases obtained from 

artificial maturation via hydrous pyrolysis. Residual CH4 and CO2 gases from pre-

desorbed and subsequently crushed coals show a consistent 13C-enrichment when 

compared to gases that had been desorbed prior to coal-crushing. This observation agrees 

with the larger diffusion coefficients of 12CH4 and 12CO2 facilitating the preferential loss 

of isotopically light moieties during primary desorption from coal cores (Strąpoć et al., 

2006) (Table 4, Fig. 5).  

4.4.3. Hydrogen stable isotope ratios in gases 

Coalbed methane δDCH4 values from SW Indiana range from -195 to -208‰ and 

average -202 ± 5‰, n=33 (Table 3). The low abundances of C2+ hydrocarbons in Indiana 

coalbed gases increased the uncertainty of δDC2+ values relative to those from western 

Kentucky C2+ hydrocarbons. Nonetheless, the sequences of δDC2+ from Indiana and 

western Kentucky coalbed gases show distinct patterns (Fig. 4). There is a clear trend for  
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Fig. 5. Carbon isotopic shifts of residual methane and CO2 from crushed coals in 

comparison with gases that were desorbed from coal core segments. Residual gases tend 

to be enriched in 13C.  
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D-enrichment in Indiana propane relative to ethane and butanes (Fig. 4c), which parallels 

the 13C-enrichment in C3 mentioned above. Interestingly, western Kentucky ethane δDC2 

values of ~ -219 ± 12‰ (n=13) are far more negative than Indiana δDC2 values (~ -92 ± 

20‰, n=15) but are similar to those of western Kentucky methanes (δDCH4 ~ -217 ± 

6‰,n=13) (Table 3, Fig. 4c, d). Two hydrous pyrolysis experiments of coals in contact 

with isotopically heavy (δDH2O = 1196‰) or light waters (δDH2O = -137‰) generated 

two series of hydrocarbon δDC1-C4 values featuring uniformly increasing D-enrichment by 

several hundred permil in the sequence C1, C2, C3, n-C4, i-C4 (Table 4), testifying to the 

important isotopic influence of water hydrogen during the generation of thermogenic 

hydrocarbons via cracking (Table 4). We caution that the magnitude of isotopic 

fractionation and the kinetics of cracking reactions are likely different between natural 

maturation and artificial maturation via hydrous pyrolysis.  

4.4.4. Chemical and isotopic compositions of waters 

Waters associated with the Springfield and Seelyville coals were sampled from 

coalbed gas production wells in Sullivan County, Indiana. Chloride Cl- concentrations 

indicate moderate chlorinities averaging 4.5 gL-1 in the Springfield Coal and 2.2 gL-1 in 

the Seelyville Coal (Table 2) that are 10 to 20 times lower than reported chlorinities in 

undiluted deep Illinois Basin brines (McIntosh et al., 2002). Other anions in waters 

associated with Indiana coals are usually at least two orders of magnitude less abundant 

than Cl-. δDH2O values of waters from coal beds average -41.3‰ ± 0.3‰ (n=5) for the 

Springfield Coal and -44.0 ± 2.5‰ (n=5) for the Seelyville Coal (Table 2). The 

corresponding values for δ18OH2O are -6.1 ± 0.5‰ (n=5) for the Springfield Coal and -6.3 

± 0.6‰ (n=5) for Seelyville Coal (Table 2). These values closely resemble the average 
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isotopic composition of modern regional meteoric water δDH2O ~ -40‰ and δ18OH2O ~ -

6.3‰ (Stueber and Walter, 1994).  

 

4.5. Discussion 

  Illinois Basin coals in Indiana have a CBM potential of up to ~2 cm3g-1 on 

average (Mastalerz et al., 2004), although they are of relatively low maturity with average 

vitrinite reflectance Ro ~ 0.6%. The fact that Indiana coal beds contain more gas than can 

be expected according to the theoretical maximum thermogenic gas potential of a low-

maturity coal (Meissner, 1984) (Fig. 6) suggests an alternative, non-thermogenic source 

of the gas. The ‘dry’ nature of Illinois coalbed gases with high ratios C1/(C2+C3) is 

indicative of large contributions of biogenic methane. The following sections will utilize 

compositional and isotopic information from gas components and waters to identify gas 

origins and to evaluate the importance of contrasting gas generation pathways in Illinois 

Basin coals at lower maturity in Indiana and at higher maturity in western Kentucky. Our 

data also constrain the extent and timing of secondary microbial methanogenesis in coals, 

as well as selective microbial alteration of C2+ hydrocarbons in coal beds.  

4.5.1. Coalbed gas origin in Indiana 

Disproportionately large quantities of methane in the presence of small amounts 

of C2+ in shallow, high volatile, bituminous C/B, Indiana coal beds (Figs. 3a, 6) argue for 

mixing of a substantial amount of microbially generated C1 with minor thermogenic C2+ 

contributions. Indiana’s average δ13CCH4 value for coalbed methane of -60.7‰ is just 

below the threshold of -60‰ that classifies methanes of microbial origin (Schoell, 1980; 

Whiticar, 1996). 
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Fig. 6. The solid line demarcates the maximum expected thermogenic gas potential in 

relation to coal maturity (after Meissner, 1984). The dashed line suggests additional early 

thermogenic gas generation (Schimmelmann et al., 2006). The ellipse with hachure 

indicates the observed thermogenic gas content in coals from the studied area of western 

Kentucky. The upper oval outlines the observed coalbed gas content of less mature 

Indiana coals. 
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A model of Berner and Faber (1988) builds on the empirical relationship between 

thermal maturity in terms of vitrinite reflectance Ro and the expected relative abundances 

of thermogenic gas components methane, ethane, and propane.    

C1 (vol. %) = 9.1 ln Ro + 93.1 

C2 (vol. %) = -6.3 ln Ro + 4.8     (1) 

C3 (vol. %) = -2.9 ln Ro + 1.9   

Based on these equations, our measured C1 and C2 concentrations in Indiana coalbed 

gases provide estimates of thermogenic methane contributions of 0.1 vol. % and 0.4 vol. 

% in bulk coalbed methanes from the Springfield and Seelyville coals, respectively. The 

overwhelming remainder of methane must be of biogenic origin. The calculations assume 

the absence of significant oxidation/alteration of both C1 and C2 (isotopic evidence 

presented below).  

Our isotopic results provide three arguments for microbial methanogenesis via 

CO2-reduction in Indiana coal beds. (i) A cross-plot of δDCH4 over δ13CCH4 (Fig. 7b) 

characterizes Indiana CBM mostly as a result of methanogenesis via microbial CO2-

reduction, possibly with minor additions of thermogenic methane (Schoell, 1980; 

Whiticar, 1996). (ii) The observed 65‰ mean carbon isotopic difference Δ13CCO2-CH4 

between CO2 and CH4 falls into the typical Δ13CCO2-CH4 range of 60 to 80‰ for microbial 

CO2-reduction to methane (Smith and Pallasser, 1996; Fig. 7a). This carbon isotopic 

difference arises from preferential microbial utilization of 12CO2. As a result, residual 

CO2 becomes 13C-enriched (average δ13CCO2 ~ 4.3‰) and thus contrasts sharply against 

CO2 in thermogenic gases with δ13C values of ~ -20‰ (Smith and Pallasser, 1996). The 

observed Δ13CCO2-CH4 values in Indiana coalbed gases translate into fractionation factors  
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Fig. 7. Graphic stable isotopic gas classifications of Indiana and Kentucky coalbed gases 

and gases from hydrous pyrolysis experiments: (a) natural gases from this study; (b) 

natural gases from this study cross-plotted isotopically according to Whiticar (1996); (c) 

Indiana coalbed gases from this study cross-plotted isotopically according to Whiticar et 

al. (1986) where ellipses enclose typical ranges of values for microbially generated gases. 

Additionally one data point from hydrous pyrolysis is plotted to highlight significant 

difference between αCO2-CH4 values of microbial (via CO2-reduction) and thermogenic 

generation of methane.  
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αCO2-CH4 of 1.066 for the Springfield Coal and 1.070 for the Seelyville Coal (Fig. 7c), 

which are typical α values for CO2-reducing methanogens (Whiticar et al., 1986) where 

αCO2-CH4 = (δ13CCO2 + 103)/(δ13CCH4 + 103). (iii) The measured mean hydrogen isotopic 

differences between waters and methanes ΔDH2O-CH4 of 170‰ for the Springfield Coal 

and 164‰ for the Seelyville coal correspond to hydrogen isotopic fractionations αH2O-CH4 

of 1.216 and 1.207, respectively. These values are in agreement with typical fractionation 

during methanogenesis via CO2-reduction, within the specified uncertainty of Schoell’s 

(1980) equation: 

δDCH4  =  δDH2O – 160 ± 10‰       (2) 

This semi-quantitative empirical relationship has been confirmed for the Elk Valley 

coalfield in Canada (Aravena et al., 2003) and describes the overall hydrogen isotopic 

fractionation along the transfer of water-derived hydrogen through intermediary reactions 

into biogenic methane that is produced by methanogenic Archaea.  

A plausible scenario for decomposition of coal organic matter by microbial 

consortia leading to methanogenesis via CO2-reduction can be expressed as follows. 

Methanogens require elemental hydrogen H2 and CO2 that may be produced by other 

microbes. H2 and CO2 are probably provided by cooperating species that decompose 

organic matter, such as CO2-generating fermentative anaerobes, H2-producing acetogens 

(Scott, 1999), proton reducers, and others. In shallow coals with enhanced connectivity to 

meteoric water the successive oxidation and decarboxylation of organic molecules cannot 

be excluded (Ahmed and Smith, 2001). However, the relevance of oxidative reactions 

must be limited by the low oxygen tolerance of methanogens (redox potential below -330 

mV, or partial pressure of oxygen below 2 ppm vol.; Kiener and Leisinger, 1983).  
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About 74 vol. % of the analyzed Indiana coals consists of vitrinite (Mastalerz et 

al., 2005a) (Table 1), a maceral that is chemically characterized by abundant aromatic 

moieties with aliphatic side chains. Vitrinite, as compared to other macerals in Indiana 

coals, is rich in oxygen (~ 15 wt. %) (Walker and Mastalerz, 2004). Most vitrinite oxygen 

resides in C=O groups such as ketones and carboxylic groups of aliphatic side chains 

(Robin et al., 1975). Another 6 vol. % of Indiana coals is contributed by liptinite, a 

predominantly aliphatic maceral that is rich in organic hydrogen. Scott et al. (1994) and 

Zengler et al. (1999) demonstrated that long-chain aliphatic molecules, which are typical 

for liptinite, are readily biodegraded by anaerobes that are presumably similar to coal 

microbial consortia proposed above. The remaining 20 vol. % are equally split between 

the maceral inertinite and mineral matter (Mastalerz et al., 2005a). The carbon in 

inertinite is almost exclusively aromatic and thus not readily accessible for microbial 

decomposition. Nonetheless, both vitrinite and liptinite contain sufficient O-H and C=O 

groups for acetogenic and fermentative microbes for the production of CO2 and H2. 

Lower bond energies may favor utilization of vitrinite because Cα-Cβ bonds in aliphatic 

side chains of aromatic moieties are easier to cleave than C-C bonds of longer aliphatic 

carbon chains (Hartgers et al., 1994). Therefore, it follows that both predominant 

macerals of Indiana coals, and especially vitrinite, are suitable substrates to support 

microbial generation of H2 and CO2 by fermenters and acetogens, thus providing the raw 

materials for methanogenesis as a terminal step of organic matter decomposition in coal.   

CO2 can also be generated abiotically at the early coalification stage due to 

maturation of kerogen type III, for example in western Kentucky coalbed gases 

containing ~1 vol. % thermogenic CO2 (Fig. 3). This process does not provide H2 gas, 
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therefore the onset of biogenic methanogenesis is inhibited until coal becomes colonized 

by complex microbial consortia that decompose organic matter. Therefore, the presence 

of H2 can be considered one of the growth-limiting factors for subsurface 

methanogenesis, in addition to the presence of relatively abundant CO2. On the other 

hand, alternative supplies of H2 could result from thermal maturation of underlying 

marine organic matter-rich shales, or may be generated by deep metamorphic processes 

(e.g., in aquifers within igneous rocks of the Fennoscandian Shield; Pedersen, 2001). If 

that is the case, then methanogenic Archaea could generate methane in the subsurface 

independently from bacterial consortia decomposing organic molecules to CO2 and H2.   

4.5.2. Origin of western Kentucky coalbed gas 

Several lines of evidence argue for a thermogenic origin of coalbed gases in 

western Kentucky. (i) The amount of gas in western Kentucky coals corresponds to the 

expected amount of generated thermogenic gas in relation to these coals’ higher thermal 

maturity (Fig. 6), as a likely response to regional tectonic activity with burial along 

vertical displacements and migration of hot hydrothermal fluids (Greb et al., 1992). (ii) 

The relative abundances of C1, C2 and C3 and the average gas wetness ratio C1/(C2+C3) ~ 

10 are typical for thermogenic gas (Fig. 7a). The average contents of C2 = 7.5 vol. % and 

of C3 = 2.7 vol. % for the Springfield Coal (n=7) is similar to the respective data for the 

Seelyville Coal (C2 = 7.2 vol. %; C3 = 2.6 vol. %; n=6; Table 3). These C2 and C3 

abundances are similar to those predicted by equations (1), namely C2 = 6.6 vol. % and 

C3 = 2.7 vol. %. (iii) The graphic classification of methanes in terms of plotting 

δDCH4 versus δ13CCH4 (Fig. 7b) unambiguously characterizes western Kentucky CBM as 

thermogenic, with average values δDCH4 ~ -217‰ and δ13CCH4 ~ -49‰. (iv) The 
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observed carbon isotopic fractionation between CO2 and methane averages αCO2-CH4 ~ 

1.026 with corresponding isotopic offsets Δ13CCO2-CH4 ~ 20 to 33‰ (Fig. 7a). These 

values are consistent with carbon isotopic fractionation during thermal cracking of 

organic matter (Smith and Pallasser, 1996). Values of αCO2-CH4 from natural coalbed 

gases in western Kentucky are similar to αCO2-CH4 ~ 1.020‰ obtained from artificial 

maturation via hydrous pyrolysis experiments of coals that produced thermogenic gas 

during heating. (v) Plotting δ13C values of the C1, 2, 3, n-4 hydrocarbons over their 

reciprocal carbon numbers yields quasi-linear trends for Springfield and Seelyville 

coalbed gases (Fig. 4b). Linearity is expected for essentially pure thermogenic gases 

(Chung et al., 1988) and at the same time confirms the absence of secondary diagenetic 

effects, e.g. via microbial alteration. Artificially generated thermogenic gases from 

hydrous pyrolysis experiments of the Seelyville and Springfield coals also express quasi-

linearity but are systematically 13C-enriched relative to their naturally generated 

counterparts (Fig. 4b). We interpret this difference in terms of the time/temperature (72 

hours at 320 ºC) conditions of hydrous pyrolysis. In particular the higher temperature of 

artificial gas generation reduces carbon isotopic fractionation during cracking reactions 

and yields hydrocarbon gases that are isotopically more similar to their parent organic 

matter.  

Although all of the western Kentucky samples (all from Rough Creek Graben) 

analyzed in this study show thermogenic signatures, a biogenic or mixed origin of 

coalbed gases can be expected in Kentucky in less mature coals at more shallow depths 

and in areas with a less tectonically influenced history. Thermogenic coal gases in 
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tectonically fractured Rough Creek Graben zone can be partially migrated from 

underlying shale formations, e.g. New Albany Shale (comment by Joe Hatch, USGS). 

4.5.3. Constraints on the timing of microbial methane generation in Indiana 

Our geochemical data suggest a plausible scenario to constrain the age of 

microbially-derived coalbed methane. Dynamic hydrologic connectivity between coals 

and meteoric water is suggested by the low chlorinity of Indiana coalbed waters 

indicating a 10 to 20-fold dilution of basinal brines (McIntosh et al., 2002) (Table 2). 

Regional meteoric waters during glacial periods were undoubtedly depleted in D and 18O, 

below -78 and 11‰, respectively, relative to modern meteoric water (McIntosh and 

Walter, 2005). The close isotopic similarity of Indiana coalbed waters and modern 

regional meteoric precipitation (Fig. 8) proves that penetration of Holocene surface 

waters deep into coal beds has been fast enough to flush out D and 18O-depleted waters of 

glacial age since the beginning of the Holocene ~10 ka ago. Nonetheless, the deeper 

Seelyville coalbed water is slightly depleted in heavy isotopes  

relative to the more shallow Springfield coalbed waters, owing to incomplete flushing of 

Pleistocene waters from the deeper coal bed. This suggests a mean residence time of 

coalbed waters on the order of several thousand years. The low hydrocarbon solubilities 

in water (27, 36, 26, 15 and 19ppm mol for C1, C2, C3, i-C4, and n-C4, respectively; Yaws 

et al., 1990) and the high adsorption affinity of hydrocarbons in the microporous coal 

matrix (Clarkson and Bustin, 2000) would have limited the loss of hydrocarbon gases 

from coal beds during water washing, whereas the loss of readily soluble carbon dioxide 

is less constrained. 
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Fig. 8. Indiana coal bed-associated waters are isotopically similar to modern regional 

meteoric water but are distinctly different from Mississippian and Pleistocene 

environmental waters. Data sources: 1 Craig (1961), Rozanski et al. (2003); 2 Stueber and 

Walter (1994); 3 McIntosh and Walter (2005); 4 McIntosh et al. (2002). 
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The δDCH4 value of biogenic methane from CO2-reduction is related to the δDH2O 

of water in coal beds according to equation (2) (Schoell, 1980). Thus δDCH4 could serve 

as an isotopic proxy for constraining δDH2O of paleowaters and the time of bacterial 

methane generation in Indiana coal beds across glacial and interglacial time periods with 

their isotopically diverse meteoric waters. However, equation (2) bears significant 

uncertainty that currently limits its usefulness for relative dating of methanogenesis. 

Studies of various environments and methanogen culturing experiments revealed that 

enzymatic isotopic fractionation in acetate fermentation (CH4-H2O) and CO2-reduction 

(CH4-CO2) systems is dependent on temperature (Games et al., 1978; Botz et al., 1996; 

Valentine et al., 2004). For example, according to Gutsalo (2003), equation (2) for αCH4-

H2O is valid at ~ 40 °C, whereas current Indiana coalbed temperatures are ~16 to 18 °C. 

Gutsalo’s (2003) relationship in combination with our δDCH4 field data predicts an 

unreasonable δDH2O of -25‰. Similarly, experimental data gathered for αCH4-CO2 are 

dependent on temperature (Conrad, 2005) and also possibly on microbial species, nutrient 

availability, and environmental stress limiting microbial productivity.    

Some microbial communities in coal beds might have colonized the organic 

substrate during shallow burial at the peat stage and survived/evolved through time since 

the Pennsylvanian (Parkes et al., 2000; Head et al., 2003). If coalbed gas loss over time 

was negligible, biogenic methane in coal beds would have been generated at an extremely 

low rate (the average time for cell division in subsurface environments can reach 105 

years; Parkes et al., 2000). The isotopic composition of CBM would represent an 

integrated response to subsurface conditions over the entire history of methanogenesis. 

Such a scenario is unlikely, however, due to (i) a maximum coalification temperature of ~ 
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80 °C, which was probably lethal for most non-extremophilic microbes and essentially 

destabilized or annihilated the initial microbial consortia of peat/coal; and (ii) turnover of 

formation water by infiltrating meteoric waters that may have entailed the loss of some 

dissolved gases. Also, erosional and postglacial uplift may have caused fracturing, 

opening of gas migration pathways, and gas loss via upward seepage. On the other hand, 

infiltration of freshwater may have enhanced microbial methane generation by 

introducing microbes into coal beds and by diluting basinal brines (as observed in New 

Albany Shale, Devonian-Mississippian strata in the Illinois Basin; McIntosh et al., 2002). 

Our hypothesis of active and ongoing microbial coalbed methane generation in Indiana 

coals cannot be proven with simple geochemical data, but can be addressed in the future 

by noble gas abundances, radiocarbon measurements in dissolved inorganic carbon in the 

hydrological cycle, other radioisotope dating (i.e. 4He; Zhou and Ballentine, 2006), 

microbial culturing, and DNA-sequencing of microbial communities in coals. Our 

preliminary experiments proved the presence of viable methanogens in coalbed waters by 

anaerobically trapping microbes on 0.22 µm filters, growing them in methanogen-

specific media with CO2/H2 headspace, and detecting newly generated methane. 

4.5.4. Microbial alteration of hydrocarbon gases in Indiana coal beds 

Thermogenic C2+ hydrocarbon gases are generated in predictable proportions (Fig. 

3b) and with distinct isotopic patterns relating to carbon chain length (Berner and Faber, 

1988; Chung et al., 1988; Fig. 4b, d). Higher temperature coalification conditions of 

western Kentucky coals might have caused their sterilization. We find no geochemical 

evidence for microbial alteration of western Kentucky thermogenic hydrocarbon gases 

and therefore conclude that deep western Kentucky coal beds remained hydrologically 
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isolated and were not re-inoculated with hydrocarbon-biodegrading microbes. Less 

mature Indiana coals from stratigraphically equivalent coal beds also contain some C2+ 

gases of thermogenic origin, albeit in much smaller concentrations (Fig. 3a). However, in 

Indiana coalbed gases the C3 abundance is selectively lowered (Fig. 3a) and C3 is 

disproportionately enriched in D and 13C relative to ethane and butanes (Fig. 4a, c). Other 

than maturity, the main difference between Indiana and western Kentucky coal beds is 

the presence of a thriving and presumably diverse microbial community in Indiana coals. 

We need to consider two separate chemical and isotopic biases affecting C3 

during microbial degradation of C2+ hydrocarbons. First, the susceptibility of 

hydrocarbons toward biodegradation depends on the carbon molecular skeleton. C3 is a 

preferred substrate for biodegradation relative to C2 (Larter and di Primio, 2005), n-C4, 

and i-C4, although the microbiological reasons are not understood. We hypothesize that a 

methyl group is more readily cleaved enzymatically from C3 than from C2. Alternatively, 

microbes may be equipped to metabolyze entire propane molecules, because molecular 

units with three carbon atoms are common in metabolic pathways within cells (e.g., 

pyruvate) and in the cell structure (e.g., glycerol backbone of membrane phospholipids). 

Molecular size and carbon chain configuration are important, as witnessed by the fact that 

straight-chain n-C4 is more readily biodegraded than i-C4 (Katz et al., 2002; Larter and di 

Primio, 2005), which is evident from butane concentrations in Indiana coalbed gases 

(Table 3, Fig. 3a). 

Second, microbial degradation preferentially targets 12C3
1H8 relative to C3 

molecules containing 13C and D atoms. The resulting 13C and D-enrichment relative to 

other C2+ hydrocarbons in Indiana coalbed gases (Figs. 4a, c), which we informally call  
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Fig. 9. Gas alteration diagrams. (a) Ratio of vol. % of C2 over C3 versus isotopic 

difference between C2 and C3 depicting the biodegradation of C3 and the increase in 

Δ13CC3-C2. We assume that C2 is not subject to significant alteration. The asterisks * 

identify values for thermogenic gases that were calculated according to Berner and Faber 

(1988). (b) Increasing δ13CC3 values with decreasing remaining fraction of C3 suggest 

preferential microbial alteration of 12C3. Samples with the highest C2 and C3 

concentrations presumably reflect the initial concentrations prior to alteration; α values 

represent preference for biodegradation, for example 12C3H8 over 13C12C2H8. (c) A 

comparison of average data for Springfield and Seelyville coalbed gases from Indiana 

and western Kentucky suggests preferential microbial C3-alteration in Indiana.  
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the “propane hiccup”, suggests a kinetic carbon isotopic fractionation factor of microbial 

alteration of C3 with α ~ 0.9982 (Fig. 9b). This translates to a relatively insignificant α ~ 

1.002 preference for biodegradation of 12C3
1H8 over 13C12C2

1H8, as compared, for 

example, with a typical αCO2-CH4 ~ 1.068. Yet, extensive biodegradation can lead to 

significant 13C-enrichment in residual fractions of C3 as small as 10-2 volume percent. 

Moreover, the potential cleavage of terminal methyl groups preferentially eliminates 12C-

methyl carbon from C3 and as a byproduct forms relatively 13C-enriched C2. This newly 

produced C2 isotopically shifts the entire C2 pool toward less negative δ13CC2 values (Fig. 

9b). Accordingly, partially biodegraded Indiana propane is also 13C-enriched relative to 

non-biodegraded western Kentucky propane (Fig. 9a, c). Furthermore, C2/C3 abundance 

ratios and carbon isotopic differences Δ13CC3-C2 between propanes and ethanes in 

thermogenic western Kentucky coalbed gases cluster tightly and compare favorably with 

theoretical values for thermogenic gases (Berner and Faber, 1988) whereas microbially 

altered C2+ hydrocarbons from Indiana coal beds plot diversely and are distinct from 

unaltered thermogenic gases (Fig. 9a). In general, increasing C3 biodegradation 

exacerbates 13C-enrichment of residual C3 (Fig. 9a, b). As the size of the carbon 

molecular skeleton increases the isotope fractionation during partial biodegradation 

decreases, making it impossible to discern significant isotopic trends between Indiana and 

western Kentucky n-C4 and i-C4 (Figs. 4, 9c). 

4.5.5. Comparison between coal core-desorbed and well-produced coalbed gases 

Desorbed gases were available from freshly cored Indiana exploratory well INS-

3. Soon after drilling and coring, the well started producing gas from Seelyville Coal. 

Coalbed gas from the producing INS-3 well was sampled 9 months after drilling. Isotopic 
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differences between canister-desorbed and commercially produced gases were 

insignificant, whereas the C1/(C2+C3) ratio increased five-fold in commercially-produced 

gas (Tables 1, 2). This suggests that CH4 is transported faster than C2+ hydrocarbons from 

surrounding coal towards the production well. The observed chemical compositional shift 

from initial gas in coal to produced coalbed gas does not significantly affect the 

geochemical classification of gases because C2+ hydrocarbon abundances are low. 

4.5.6. Implications for CBM exploration and production in the Illinois Basin 

The largest coalbed gas potential in Indiana is related to biogenic methane in the 

shallow zone of the Illinois Basin between depths of 100 m and 300 m. At even shallower 

depths, we may expect hydrocarbon loss and oxidation (Kotelnikova, 2002; Riedinger et 

al., 2005). The depth of 50 m has been assigned as a cutoff for coalbed gas preservation 

in Indiana (Mastalerz and Kvale, 1998). The gas content in coals does not systematically 

correlate with depth (Mastalerz and Kvale, 2000), but instead depends on many other 

complex factors such as moisture and ash contents, maceral composition, and the 

micropore structure of coal (Clarkson, 1994; Mastalerz et al., 2006). Thus, the loading of 

Indiana coal beds with biogenic methane varies laterally and vertically from 

undersaturated to saturated (Mastalerz et al., 2005b). Coal chemical composition and pore 

connectivity (permability) are important factors limiting the populations of methanogenic 

microbes. Typical apertures of densely spaced (average spacing ~100 μm) microfractures 

in Indiana coals of 0.5-4 μm (Solano-Acosta, pers. comm.) are similar in size with 

microbes (typically around 1 μm). The moisture-coated interconnected microfracture 

network of coals is thus a plausible niche habitat for microbes.  
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In the Rough Creek Graben zone of western Kentucky, where coalbed gases are 

exclusively of thermogenic origin (generated in-situ from coal OM or potentially 

migrated from underlying fractured shale formations, e.g. New Albany Shale; comment 

by Joe Hatch, USGS), the amount of coalbed gases in general is similar or smaller than in 

the stratigraphically equivalent but less mature coal beds in Indiana. Optimal gas plays in 

Kentucky are local zones of high maturity and accelerated thermogenic gas generation, 

for example fault and breccia zones or regions of high hydrothermal mineralization 

(Hower and Gayer, 2002; Rowan et al., 2002). 

 

4.6. Conclusions 

Stratigraphically equivalent and geographically widespread coal beds (e.g., 

Springfield and Seelyville Coal Members) in Indiana and western Kentucky can 

regionally generate and store coalbed gases of contrasting and distinct origins. Biogenic 

methane from CO2-reduction is prevalent in less mature Indiana coals, whereas more 

mature coals in the Rough Creek Graben of western Kentucky produced predominantly 

thermogenic hydrocarbons via cracking of coal organic matter. The two differently 

sourced biogenic and thermogenic types of coalbed gases are compositionally and 

isotopically distinct. 

Due to differences in the origin of coalbed gases in the Illinois Basin, gas 

generation pathways are controlled by many factors. (i) Geologic regional history (e.g., 

tectonic and hydrothermal activity, burial depth, geothermal gradient, intensity of 

maturation/coalification, erosional or post-glacial uplift and fracture opening); (ii) 

hydrogeology (e.g., infiltration of meteoric water, residence time of formation water); 
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(iii) microbiology (e.g., presence of microbial communities that are able to thrive on 

decomposing coal, probably primarily utilizing vitrinite; habitability of coals in terms of 

temperature, pore structure, moisture content, salinity of pore waters).  

The rate of microbial methane generation in Indiana coals is difficult to discern 

based on hydrocarbon-based evidence alone. However, the modern (Holocene) isotopic 

characteristics of waters associated with Indiana coal beds suggest that the residence time 

of water is less than 10,000 years. Such fast fluid exchange with oxygenated surface 

waters makes it unlikely that hydrocarbon gases have been accumulating since the 

deposition of Pennsylvanian coal swamps. Instead, fast fluid turnover in the presence of 

abundant coalbed methane and the presence of viable methanogens in coal waters suggest 

that biogenic methane in Indiana coal beds are continuously forming today as a quasi-

renewable  form of fossil energy, although the rate of in-situ methane generation remains 

unknown.  

Microbial biodegradation of thermogenic C2+ hydrocarbon gases in coal beds 

preferentially targets propane and introduces isotope fractionation whereby remaining 

propane is enriched in heavy isotopes D and 13C. 
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Abstract 

 This study outlines gas characteristics along the southeastern margins of the 

Illinois Basin and scrutinizes regional versus local gas variations in Seelyville and 

Springfield coal beds. Our findings suggest that high permeability and shallow (100-250 

m) depths of these Indiana coals allowed inoculation with methanogenic microbial 

consortia, thus leading to abundant microbial methane generation along eastern marginal 

part of the Illinois Basin. These relatively low maturity coals with a vitrinite reflectance 

Ro ~ 0.6% contain significant amounts of coal gas (~3 cm3/g, 96 scf/t) with ≥ 97 volume 

% microbial methane. Amounts of coal gas can vary significantly vertically within a coal 

seam and laterally from location to location. Therefore sampling of entire core section is 

required to make accurate estimates of coal gas reserves. Some gas and co-produced 

water parameters drift over the time of production, e.g. C1/(C2+C3) increases, δ13CCH4 and 

TDS decrease. 
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5.1. Introduction 

 Coals worldwide contain biogenic methane representing easily accessible, and 

often large, microbial coalbed gas deposits. Economically important reservoirs occur in 

coals of low rank (e.g., in the Powder River Basin; Ayers, 2002) and also higher rank 

coals where brine dilution initiated methanogenesis, for example in the Black Warrior 

Basin (Pitman et al., 2003), San Juan Basin (Scott et al., 1994), Alberta Basin (Bachu and 

Michael, 2003), and Sydney Basin (Faiz and Hendry, 2006). Distributions and 

compositions of gases in biogenic systems are governed by numerous factors including 

salinity (McIntosh et al., 2002), microbe-accessible porosity, and coal permeability. In 

contrast, thermogenic gas systems are primarily controlled by coal rank and depth (Scott 

et al., 1994; Scott, 1998; Schimmelmann et al., 2006). Determination of gas origin is 

therefore critical for a successful exploration strategy. 

Compositional and isotopic gas characteristics discriminate between gases of 

biogenic and thermogenic origins (Lillis, 2007; Vandré et al., 2007; Faiz and Hendry, 

2006; Gurgey et al., 2005; Smith and Pallasser, 1996). Frequently used diagnostic 

parameters are (i) the ratio of methane to the sum of ethane and propane C1/(C2+C3) (i.e., 

gas wetness; Bernard et al., 1978), (ii) carbon δ13CCH4 and hydrogen δDCH4 isotopic 

compositions of methane (Schoell, 1980; Whiticar et al., 1986), and (iii) the carbon 

isotopic difference between CO2 and methane Δ13CCO2-CH4 (Smith and Pallasser, 1996; 

Strąpoć et al., 2007a). Typical diagnostic values for thermogenic versus microbial gases 

are, respectively, (i) <15 versus >1000 for C1/(C2+C3), (ii) >-50‰ versus <55‰ for 

δ13CCH4 (i.e., more 13C-enriched versus more 13C-depleted), and (iii) <40‰ versus >55‰ 

for Δ13CCO2-CH4. In addition, plotting of compound-specific δ13C values of methane C1 to 
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butane C4 hydrocarbon gas components against the reciprocal carbon number (Chung et 

al., 1988) is useful for discriminating thermogenic from biogenic gases, whereby only 

thermogenic C1 to C4 plot along a straight line. Addition of microbial methane and 

microbial alteration of particular gas species can alter the straight line signature of 

exclusively thermogenic gases on the Chung diagram.  The δ13CCH4 value of mixtures of 

microbial and thermogenic methanes shifts towards more negative values with the 

addition of microbial methane. Selective biodegradation of hydrocarbon gas components 

can cause enrichment in 13C in residual C3 and n-C4 (Katz et al., 2002). 

The Illinois Basin contains relatively low-rank coals that host biogenic methane in 

amounts of 2 to 3 cm3/g. In Indiana, these coals dominantly are of high volatile C and B 

bituminous rank (vitrinite reflectance Ro 0.5 - 0.65%; Mastalerz et al., 2004) which imply 

that they have not yet reached the window of significant thermogenic gas generation. 

More than 99% of the hydrocarbon component of coalbed gases from the eastern part of 

the Illinois Basin is microbially generated methane (Strąpoć et al., 2007a). In the Indiana 

portion of the Seelyville Coal Member alone, the estimates of microbial methane reserves 

are about 30 x 109 m3 (1.06 Tcf; Drobniak et al., 2004). Inoculation of coal beds with 

methane-generating microbial consortia and initiation of coal biodegradation and 

methanogenesis probably occurred by recharge with post-glacial melt waters that diluted 

basinal brines and made coal environments microbially habitable (McIntosh et al., 2002; 

Strąpoć et al., 2007a). Since the glacial time, shallow and highly permeable coals likely 

have served as a densely populated habitat for methanogenic microbial community across 

the entire coal-bearing marginal area of the Illinois Basin. 
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Fig. 1. Study area and gas properties: (a) eastern margin of the Illinois Basin showing the 

depth of the Seelyville Coal and the locations studied; (b) variation in gas content in the 

Seelyville Coal; (c) slight decrease towards basin’s depocenter of C1/(C2+C3) ratio; (d) 

low variability of δ13CCH4.   
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This study documents variations in gas composition and isotopic signatures in two 

Pennsylvanian coal beds in Indiana, the Springfield Coal Member of the Petersburg 

Formation and the Seelyville Coal Member of the Dugger Formation.  We sampled coals 

and gases from these two coal beds from multiple locations at various coal depths. In 

each case, the entire thickness of a coal seam was sampled using multiple desorption 

canisters. This resulted in extensive data coverage.  The resulting overall data set allows 

us to contrast the regional range of variations in gas characteristics against the variability 

that can occur among multiple samples through a coal seam in a single location. 

Furthermore, our coalbed methane (CBM) production time-series data provide insights 

into the compositional and isotopic variability during ongoing gas production.  

 

5.2. Methods 

Exploration boreholes (Fig. 1) drilled in four counties of southeastern Indiana 

provided ten access locations for the Seelyville Coal and four access locations for the 

Springfield Coal.  Freshly retrieved coal cores through entire seams were sequentially 

split into ~30 cm long segments, immediately sealed in desorption canisters, and 

subsequently analyzed for total gas content (i.e., lost gas + gas from canister desorption + 

residual gas from crushed coal; Gas Research Institute, 1995), moisture, ash, heating 

value, maceral composition, and vitrinite reflectance. Desorbed gases from coal segments 

in canisters were volumetrically quantified and analyzed compositionally and isotopically 

(Strąpoć et al., 2006, Henning et al., 2007). Analyses were also performed on gases and 

co-produced waters from 14 coalbed methane production wells (Fig. 2). 
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Fig. 2. Coalbed methane production 

field within the study area and gas (a, 

b) and water (c) properties. All 

parameters show shifts depending on 

the age of the production well. Travel 

distance of diffusing/migrating coal 

gas from adsorption sites increases 

with ongoing production, and longer 

distances exacerbate gas fractionation. 

Prolonged production of gas and co-

produced water increases the influx of 

fresh water (c); the production start 

dates are presented in brackets in the 

month/year format. 
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Gas desorption and GC/MS analytical procedures are described in detail in 

Strąpoć et al. (2006, 2007a) and Henning et al. (2007). In brief, gas samples were 

analyzed using gas chromatography-oxidation/reduction-mass spectrometry (GC-ox/red-

MS) using a Thermo GC connected on-line to oxidative and reductive reactors and a 

DeltaPLUS XP stable isotope mass spectrometer. Gases were injected by a glass syringe 

into a customized GASIS injection system consisting of three alternative loops of 

variable sample volume sizes (0.06 to 500µL). This loop system allowed measuring 

compound-specific concentrations and isotopic compositions in gas mixtures at highly 

variable compound concentrations of 10ppm to 100 vol. % in a single run (Henning et al., 

2007). A PoraBOND Q capillary column in the GC separated the gas components. 

Concentrations were calculated from integrated peak areas. Relative concentrations of 

gas species did not take into account nitrogen because N2 was used to flush the headspace 

of desorption canisters before the sealing of coal core segments.  

Temperature, specific conductivity, pH, Eh, and alkalinity of co-produced waters 

from gas production wells were analyzed on-site using a multi-functional probe YSI 

600XL (Yellow Springs Instruments, Inc., Yellow Springs, Ohio). Metal cation 

concentrations were determined using inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES) on a Perkin Elmer Optima 3000 ICP spectrometer at the 

National Energy Technology Laboratory (NETL), Pittsburgh, PA. Water samples were 

analyzed as received except for sodium-rich waters that required 15-fold dilution with 

distilled water prior to analysis. Sodium analyses were performed separately with 1400-

fold dilution. The reproducibility of metal cation analytical ICP data was approximately 

±3%. Anion analyses were performed using a Dionex DX-600 ion chromatograph 
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equipped with an IonPac AG11-HC guard column, a Dionex 4 mm IonPac AS11-HC 

analytical column, and an electrochemical detector. Multi-step gradient analyses of 

anions were performed at 30ºC using an eluent flow rate of 1.5 mL/min.  Sample 

dilutions necessary to determine chloride varied from 1/100 to 1/1000, and were 1/2.5 for 

fluoride, bromide, phosphate, and sulfate. Lower quantitation limits ranged from 0.07 

ppm to 0.3 ppm in undiluted samples and were raised according to the necessary 

dilutions. 

 

5.3. Results 

 Results from 11 exploratory boreholes and 8 production wells are presented in 

Tables 1 through 4. Table 1 lists moisture content, ash yield, sulfur content, heating 

value, petrographic composition, vitrinite reflectance and total gas content for ~30 cm 

long coal core sections from ten locations of the Seelyville Coal and four locations of the 

Springfield Coal. Seelyville coal samples derived from 96 to 240 m (316 to 786 feet) 

depth, represent high volatile C and B bituminous rank, and express vitrinite reflectance 

Ro values of 0.54 to 0.58%. Average moisture content ranges from 11.2 wt. % in the 

shallowest location INS-5 to 5.4 wt. % in location INS-2. Ash yield ranges from 8.3 wt. 

% in location INS-5 to 43.6 wt. % in location ING-3.  Large variations in ash content 

occur vertically across coal seams within a location. Intra-seam variations in moisture 

content are small. Petrographically determined maceral contents on a mineral matter free 

basis are for vitrinite 68.5 to 84.6 vol. %, for liptinite 4.7 to 10.0 vol. %, and for inertinite 

10.0 to 21.5 vol. %. Gas contents range from 0.6 to 3.6 cm3/g (20 to 115 scf/t, Table 1,  
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Table 1. Properties of Seelyville and Springfield coal core sections from boreholes in 

eastern Indiana; V – vitrinite, L – liptinite, I – inertinite, mmf – mineral matter free, as 

rec. – as received, scf/t – standard cubic feet per ton, st. dev. – standard deviation, n.d. – 

not determined. 
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Table 2 (to be continued). 
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Table 2 (continued). Concentration and 

isotopic parameters of coal gases desorbed 

from fresh cores, eastern Indiana. N2 not 

determined; C1 – methane, C2 – ethane, C3 – 

propane, i-C4 – iso-butane, n-C4 – n-butane, 

n.d. – not determined.  
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Table 3. Concentration and isotopic parameters of produced coal gases, eastern Indiana; 

III – production from the Seelyville Coal, V – from the Springfield Coal, III+V – single 

well penetrates and produces gas from both coal seams. N2 not determined, start of 

production given in month/year format, n.d. – not determined. 
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Table 4. Physicochemical and isotopic parameters of co-produced coalbed waters, eastern 

Indiana; b.d.l. – below detection limit, III – production from the Seelyville Coal, V – 

from the Springfield Coal, III+V – single well penetrates and produces gas from both 

coal seams. 
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Fig. 1b) and express much variability across individual coal seams, as determined by data 

from consecutively desorbed ~30cm long coal core intervals.  

The Springfield Coal samples represent high volatile C-A bituminous rank with 

Ro values of 0.58 to 0.72% and derive from depths between 97 and 149 m (317 to 487 

feet) (Table 1). Moisture content ranges from 5.7 to 12.2 wt. %. Ash contents span from 

4.9 wt. % in location ING-3 to 20.4 wt. % in location ING-2. Petrographically 

determined maceral contents on a mineral matter free basis are for vitrinite 74.1 to 84.7 

vol. %, for liptinite 5.5 to 10.7 vol. %, and for inertinite 9.8 to 15.2 vol. %. Gas contents 

range from of 1.0 to 3.4 cm3/g (32 to 107 scf/t) in a similar fashion as for the Seelyville 

Coal.   

Table 2 displays gas compositional (C1, C2, C3, i-C4, n-C4, CO2) and compound-

specific δ13C and δD values from exploratory boreholes. Table 3 displays similar data in 

a time-series from coalbed methane production wells. Methane often accounts for > 97 

vol. % of the total gas volume from exploratory boreholes (not including N2) and for > 99 

vol. % in gas from production wells. The second major component of investigated coal 

gases was CO2, averaging 1.7 vol. % in exploratory boreholes and 0.15 vol. % in 

production wells. The sum of C2+ hydrocarbons (i.e., ethane, propane, and butanes) 

amounted to < 0.25 vol. % in exploratory boreholes and < 0.1 vol. % in gas from 

production wells. Low concentrations of C2+ hydrocarbons result in dry gas with very 

high C1/(C2+C3) ratios on the order of 103 to 105. The C1/(C2+C3) ratio tends to decrease 

westward in the direction towards the depocenter of the Illinois Basin (Fig. 1c). 

Stable hydrogen and carbon isotopic data for C1 to C4 hydrocarbons and CO2 

express small variations across the study area (Tables 2 and 3, Figs. 1d and 2b). Ranges 
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are for δDCH4 from -216 to -187‰, for δ13CCH4 within -66.6 to -56.3‰ (average -60.7‰, 

n=64), for δ13CC2 within -44.3 to -33.5‰ (average -37.4‰, n=64), and for δ13CCO2 within 

-14.1 to 14.3‰ (average +3.2‰, n=58). Exceptions are noted in the oldest production 

wells INS-P8 and INS-P9  where (i) δ13CCO2  is very negative down to -35.1, and (ii) 

δ13CC3 values are usually higher than -30‰, which is typically expected for thermogenic 

propane (Berner and Faber, 1988).  The above cited averages of δ13CCH4 and δ13CCO2 do 

not include the exceptional data from wells INS-P8 and INS-P9. The resulting average 

Δ13CCO2-CH4 of more than 60‰ is strongly indicative of a microbial origin of methanes 

generated via CO2-reduction (Fig. 3).  

Data from consecutive coal core sections from the bottom towards the top of 

entire coal seams express slight trends of increasing 13C-depletion in methane and higher 

Δ13CCO2-CH4 isotopic offsets (Table 2). However, this small isotopic variance within each 

location remains well within the range that is characteristic of microbial methane 

generated via CO2 reduction (Fig. 3). Throughout the coal beds the gases are 

compositionally quite uniform, as reflected by very high C1/(C2+C3) ratios (Table 2). Top 

and bottom sections of coal beds usually contain more gas than middle sections (Table 1). 

Time-series of gas compositional and isotopic data from production wells do not 

show any significant changes or obvious trends over 27 months of monitoring (i.e., the 

cumulative time between three sampling events). However, with increasing ages of 

production wells from one to 11 years, we observe (i) decreasing relative abundances of 

C2+ hydrocarbons (i.e., increasing C1/(C2+C3) ratios), (ii) decreasing δ13CCH4 values, and  
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Fig. 3. Geochemical classification of  Indiana’s coal gas origin (Strąpoć et al., 2007a). 

This graph plots all samples from the entire study area. Plotted data from production 

wells are limited to the most recent March 2007 measurements. Gases are dominated by 

methane of microbial origin via CO2-reduction. Gases from wells INS-P8 and INS-P9 are 

characterized by exceptionally low δ13CCO2 values, probably due to microbial methane 

oxidation.  
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(iii) increasing total dissolved solids in co-produced waters (TDS; see below) (Fig. 2). 

For example, the oldest production wells INS-P8 and INS-P9 wells with ages of 11 and 9 

years, respectively, show the lowest values for C1/(C2+C3) and δ13CCH4, and the highest 

values for TDS (Table 4). A wide range of analytical characteristics of co-produced 

waters from production wells, such as pH, Eh, temperature, alkalinity, concentrations of 

major ions, and isotopic compositions are listed in Table 4. The wells are characterized 

by pH ~8, Eh ~ -400mV, temperature ~17ºC, and relatively high alkalinity (~1200 mg/L 

as CaCO3). TDS values range from 0.6 to 12g/L, with Cl- and SO4
2- representing the 

major anions (wells INS-P9 and INS-P10) and Na+ being the dominant cation. 

 

5.4. Discussion 

5.4.1. Regional distribution and properties of coalbed gas  

The three geochemical indicators of coal gas origin C1/(C2+C3), δ13CCH4, and 

δDCH4 display fairly uniform signals across the study area (Fig. 1c, d) and identify 

microbial CO2-reduction as the main source of coalbed methane (Fig. 3). Interestingly, 

C1/(C2+C3) ratios slightly decrease towards the depocenter of the Illinois Basin (Fig. 1a, 

c), suggesting that some early thermogenic C2+ hydrocarbons have been generated from 

these coals during coalification. Nonetheless, the total gas content in Seelyville and 

Springfield coals is mainly controlled by microbial methanogenesis because methane is 

more abundant than the sum of ethane and propane by at least three orders of magnitude. 

Widespread methanogenesis in eastern Illinois Basin coal beds can be attributed to the 

access of interglacial Pleistocene, early Holocene melt water and modern meteoric water 
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to highly fractured and shallow coals which outcrop 20 to 60 km east of the study area 

(Fig. 1). Relatively recent inoculation of formerly sterilized coals by microbial 

methanogenic consortia has also been suggested by carbon isotopic signatures of coal 

cleat-filling calcites with an average δ13Ccalcite -4.3‰ indicative of the absence of 

microbial CO2 utilization (Solano-Acosta et al., in press). These calcites show no isotopic 

influence from expected carbon isotope fractionation via microbial CO2-reduction and, 

thus, seem to have crystallized in sterile coal during the Mesozoic. Interglacial dilution of 

brines and initiation of methanogenesis were previously suggested for the Antrim Shale 

in the Michigan Basin and for the New Albany Shale in the Illinois Basin by McIntosh et 

al. (2002).  

Permeability of coal is important for fluid transport processes and for access of 

microbial consortia into the coal matrix. A high permeability of ~ 40 md was estimated 

from the aperture distribution of fractures (Solano-Acosta et al., 2007a) and is supported 

by direct permeability measurements downhole (confidential data). Repeated interglacial 

uplifts presumably enhanced the permeability of Indiana coals along their cleat and 

fracture systems and facilitated the recharge of meteoric water. Dilution of the brine and 

inoculation with a coal-biodegrading and methanogenic microbial communities along the 

eastern, and probably also northern and western margins of the Illinois Basin triggered 

the generation of biogenic methane. Interglacial inoculation of coals is supported by (i) 

low salinity of formation waters (average TDS 5.4 g/L; Table 4), (ii) modern meteoric 

isotopic signatures of co-produced coal waters (average δDwater -42.9‰ and δ18Owater -

6.1‰ VSMOW; Table 4), and (iii) the presence of viable methanogens in co-produced 

coalbed waters (Strąpoć et al., 2007b). 
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Fig. 4. Coalbed gas properties and coal depth: data points from the entire study area. (a) 

Carbon stable isotopic signatures pointing to microbial methanogenesis. (b) The ratios of 

methane over the sum of ethane and propane indicate that propane biodegradation occurs 

over the entire depth range of coal occurrence. (c) The concentration of total gas in coal 

does not depend on depth.  
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Although CBM in Indiana is uniformly of microbial origin, regardless of coal 

depth (Fig. 4a), we observe significant geographic and depth-variations in the 

concentration of CBM (Fig. 1b, 4c). This suggests that the amount of locally produced 

and stored methane is dependent on the accessibility of coal by the microbial community 

and on the extent of methanogenesis. The accessibility of coal varies spatially because 

transport routes for microbes through coal are primarily provided by anisotropic, paleo-

stress-related cleat/microfracture networks coated with moisture. The average cleat 

intensity in Indiana coals is 340 cleats per meter. Apart from less common, but easily 

microbe-accessible larger cleats, microcleats with apertures < 4μm are most abundant 

(250 per meter; average aperture 0.8μm; Solano-Acosta et al., 2007a). These data 

combined with the typical diameter of a microbial cell of 1 μm (Prescott et al., 2002) and 

even smaller 0.4 μm cells of our identified dominant methanogenic genus 

Methanocorpusculum (Strąpoć et al., 2007b) confirm that Indiana coals can be an 

accessible niche for microbial life. However, there are likely some factors that limit 

methanogenesis and CBM content in this post-Pleistocene microbial gas play, for 

example nutrient limitations and/or the lack of certain microbes that are necessary within 

proper methanogenic microbial consortia. Methanogens require CO2 and H2, which are 

end-products of coal biodegradation performed by various groups of microorganisms. For 

example, H2 is required for methanogenesis via CO2 reduction and is usually available at 

very low concentrations. 

5.4.2. Vertical variations of coal gas properties  

It has been our practice in Indiana to sample and desorb the whole coal thickness 

for gas volumes determinations. However, some of the desorption canisters leaked, and  
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Fig. 5. Total gas contents across three coal cores from which consecutive 30 cm core 

sections generated contiguous gas desorption data. Y-axis numbers represent successive 

30 cm core sections counting from the top of each coal bed. Top and bottom sections of 

cores tend to contain more gas than middle sections. 
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therefore we selected three locations where all 30 cm sections generated reliable 

desorption data across entire coal beds (Fig. 5). In addition, total gas data for 30cm core 

sections from all locations, including partial data sets, are plotted according to their 

positions within coal beds in Figure 6. We observed significant variations in gas content 

across individual coal beds. In general, the total gas content is larger in top and bottom 

sections of coal cores compared with their middle sections (Figs. 5, 6). This puzzling 

pattern of variability requires further study. We hypothesize that higher gas contents in 

top and bottom parts of a coal seam are related to higher permeability and increased 

nutrient availability causing higher intensity of microbial activity in coal/bed rock and 

coal/roof rock contact zones. Variability in gas contents among different 30 cm core 

sections across a coal bed can also be caused by inhomogeneous distributions of 

microfracture apertures (important for microbial access), pore sizes, and adsorption 

surface areas limiting adsorption sites for CBM. Additionally, higher accumulations of 

buoyant gas in the presence of denser water can be expected beneath poorly permeable, 

usually shaly, roof rock.  

The pattern of predominantly higher gas contents in top and bottom sections of 

coal seams is accompanied by decreased δ13CCH4 and increased values of C1/(C2+C3) and 

Δ13CCO2-CH4 relative to the middle sections of coal seams in two (INS-1 and INS-3) out of 

three cores with complete coverage of data (Fig. 7). These slightly more biogenic 

geochemical signatures of gases and increased total gas contents (Fig. 5) in top and 

bottom sections of cores support our hypothesis of higher microbial gas-generation 

potential. The third core (ING-2) is characterized by low variances of the three  
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Fig. 6. Total gas contents in all 30 cm coal core sections plotted according to their 

relative positions within coal beds counting from the top in each location. Middle 

sections of coal cores tend to contain less gas than top and bottom sections. 
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Fig. 7. Gas geochemical parameters of continuously sampled and desorbed coal cores of 

Seelyville Coal (INS-1 and INS-3) and Springfield Coal (ING-2). Y-axis numbers 

represent successive 30 cm core sections counting from the top of each coal bed. 

Desorbed gases from cores INS-1 and INS-3 express more distinctly microbial isotopic 

signatures in their top and bottom sections (in direction of the arrows). Top and bottom 

sections also contained larger gas concentrations (see Figure 5) suggesting slightly higher 

microbial methanogenic activity in top and bottom coal sections. 
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parameters mentioned above. In general, variations of the geochemical signatures of 

gases from 30 cm coal sections in all analyzed cores are not significantly impacting the 

>99% microbial classification of these coalbed gases (Fig. 3). 

Local variations in gas content across coal seams have important implications for 

CBM exploration. Representative measurements of adsorbed gas in coal cores across coal 

seams are necessary to arrive at reliable estimates of gas reserves. Limited desorption 

data from selected portions of a coal bed may result in overestimates or underestimates of 

gas resources. The entire coalbed thickness needs to be sampled (usually in several 

canisters) and desorbed, followed by weighted averaging of the data.  

Figure 8 compares the maximum methane adsorption capacity (obtained using a 

volumetric adsorption apparatus, as described by Mavor et al., 1990) to the total gas 

content (determined by canister desorption of consecutive 30 cm core sections and 

averaging of data for each core) of the Seelyville Coal in four locations, where the coal 

occurred at different depths from 97 to 187 m and, consequently, at different in situ 

pressures. In these locations, the measured gas content (MGC) oscillates near maximum 

adsorption capacities (AC) and therefore suggests coal saturation with coal gas (Fig. 8).   

Maceral composition is one of the factors influencing methane sorption capacity 

(e.g, Mastalerz et al., 2004; Chalmers and Bustin, 2007).  However, although Indiana 

coals expressed high variation in maceral composition in this study, maceral composition 

appears to have little influence on the amount of the gas present in the coals studied (Fig. 

9). The lack of correlation between maceral composition and gas content may imply that 

the methanogenic microbial community as a whole has no significant maceral preference 

for biodegradation in coal. In addition to coal macerals, microbial biodegradation may  
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Fig. 8. Methane adsorption isotherms of the Seelyville Coal in Indiana from four 

locations determined via volumetric adsorption. Star symbols represent maximum values 

of gas adsorption capacity (AC) of a particular coal at its reservoir pressure. Matching 

values of AC and measured total gas contents (MGC, obtained using desorption 

canisters) for each location suggest coal saturation with coal gases. 
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Fig. 9. Maceral composition (volume %, mmf – mineral matter free basis) of coals from 

all core sections versus total gas content desorbed from coals. No correlation is evident 

between maceral composition and total gas content.  
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also target disseminated micrometer-size droplets of liquid bitumen (‘oil’) that have been 

generated during coalification. The calculated oil yield from our coals using typical 

values of the atomic ratios of hydrogen to carbon (H/C ~0.7) and oxygen to carbon (O/C 

~0.1) is ~8 weight %, using equation by Saxby (1980): 

oil yield wt. %= 66.7 H/C - 57.0 O/C - 33.3 

Our microbiological phylogenetic study of Indiana coals indicates the presence of 

a complex microbial community capable of biodegrading aliphatic and aromatic moieties 

in organic macromolecules (Strąpoć et al., 2007b). For example, in our studies of gaseous 

n-alkanes in Indiana coal beds, we observed microbial consumption of propane and n-

butane. Microbial alteration of propane in Indiana coal gases leads to (i) C2/C3 ratios of 

20 to 100 that are far higher than the theoretical value of 2.4 expected for early 

thermogenic gas generated at Ro 0.6% (Berner and Faber, 1988), and (ii) 13C-enrichment 

of residual propane due to preferential microbial utilization of 12C3H7 relative to 

13C12C2H7 (Strąpoć et al., 2007a). Similarly, preferential microbial depletion of n-butane 

relative to i-butane generates n-C4/i-C4 ratios < 1. The absence of n-butane in some 

coalbed gases containing i-butane suggests efficient removal of n-butane (Tables 2 and 

3). Extensive microbial consumption of C3+ n-alkanes, observed also for n-alkanes in 

biodegraded oils (e.g., Holba et al., 2004), might suggest a microbial preference for 

biodegradation of aliphatic moieties in coal, e.g. disseminated oil or liptinite with 

abundant aliphatic side chains, as opposed to largely aromatic inertinite. However, our 

data set does not confirm any pronounced maceral preference for microbial 

biodegradation (Fig. 9).  
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5.4.3. Changes in coalbed gas properties from gas wells during prolonged production 

The observed small variations in C1/(C2+C3) ratios and δ13CCH4 values in gases 

from monitored CBM production wells in Indiana could not influence the geochemical 

assessment of coal gas origin (Fig. 3). However, gradual changes are evident with 

ongoing gas production in characteristics of gas and co-produced water, e.g. δ13CCH4, 

C1/(C2+C3), and TDS. Specifically, gases produced in 2007 from the oldest wells (INS-

P8 and INS-P9) with continuous gas production since 1996 and 1998, respectively, were 

characterized by very high C1/(C2+C3) ratios and very low δ13CCH4 values (Fig. 2a, b). 

This ‘aging’ trend in gases from CBM production wells may derive from molecular and 

isotopic fractionation of gases during transport through the network of microfractures and 

cleats in coal. Methane and especially 12CH4 diffuses/flows relatively faster than heavier 

gas molecules from increasingly distant coal desorption sites to the well, as suggested in 

models of CO2/CH4 coalbed gas production by Cui and Bustin (2006).  The transport 

distance from adsorption sites in coal to the well becomes longer with increasing duration 

of gas production. Furthermore, older CBM wells develop depression cones in the 

overlying water table and thus promote increased recharge of freshwater into coal seams 

and dilution of TDS in co-produced waters. Enhanced influx of oxygenated freshwater 

and contact with surficial aerobic microbial communities can lead to microbial methane 

oxidation in later stages of CBM production, and can negatively affect methanogenesis 

because methanogenic Archaea are strict anaerobes. Microbial methane oxidation is 

plausibly occurring in the two oldest wells, which are characterized by very negative 

δ13CCO2 values of about -34‰ (Table 3).  
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Fig. 10. Geochemical coalbed gas 

data from seven Indiana CBM 

production wells that have been 

sampled every nine months. Well 

INS-3 was also sampled during 

the original drilling. Most wells 

exhibit slight increases in 

C1/(C2+C3) and CH4/CO2 over 

time (dashed arrows). Decreasing 

values of CH4/CO2 in the oldest 

wells INS-P8 and INS-P9 (dotted 

arrow) suggest production-

induced microbial oxidation of 

methane. 



134 
 

We observed a trend of gradually increasing C1/(C2+C3) ratios over 27-month of 

monitoring the same production field at 9-month intervals (Table 3; Fig. 10b). CH4/CO2 

ratios express a slow increase over time except in gases from the oldest wells INS-P8 and 

INS-P9 (Fig. 10c), supporting our hypothesis of production-induced long-term 

accelerated influx of fresh waters promoting methane oxidation.  No systematic shift in 

δ13CCH4 values was observed, possibly because 27 months of monitoring of CBM 

production was insufficient time to reveal in significant carbon isotopic fractionation of 

produced methanes (Fig. 10a). 

 

5.5. Conclusions 

Geographic lateral and vertical variations of coal gas parameters such as δ13CCH4, 

C1/(C2+C3), and  Δ13CCO2-CH4 in Springfield and Seelyville coals in Indiana are typically 

small. All data are consistent with a predominantly biogenic gas system where methane is 

produced microbially via CO2-reduction pathway. High permeability of shallow coals 

likely allowed inoculation of coals with a methanogenic microbial community. The 

resulting widespread methanogenesis caused similar geochemical fingerprints of coalbed 

gases along the entire marginal zone of the Illinois Basin in Indiana.  

Assuming regionally uniform pre-CBM-production coalbed gas compositions, 

prolonged CBM production from monitored wells caused molecular and isotopic trends 

in production gases of (i) increasing C1/(C2+C3) ratios,  (ii) decreasing δ13CCH4 values, 

and (iii) decreasing  TDS values. Furthermore, prolonged CBM production may enhance 

access of fresh oxygenated meteoric waters into relatively shallow coal seams resulting in 

microbial methane oxidation.  
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 The total coalbed gas content is controlled by the amount of generated, adsorbed 

and preserved microbial methane, and therefore can be locally variable depending on (i) 

microbial accessibility (via cleats and microfractures of proper size), (ii) adsorption 

potential for methane molecules (micropore distribution) of a particular coal section, and 

(iii) availability of target organic moieties for potential biodegradation and 

methanogenesis. 

To accurately assess the CBM potential and gas saturation level of a coal bed 

requires investigation across the entire thickness of a coal seam, because total gas 

contents can vary significantly vertically across seams.  

 

Acknowledgments 

This work was supported by the U.S. Department of Energy, Basic Energy 

Research Grant DEFG02-00ER15032 awarded to Arndt Schimmelmann and Maria 

Mastalerz, and by the Donors of the Petroleum Research Fund, administered by the 

American Chemical Society, grant 44815-AC2 awarded to Arndt Schimmelmann. Access 

to freshly drilled cores, produced coalbed gas, and co-produced waters was generously 

granted by Tom Hite and Indiana coal mining and exploration companies. Grzegorz Lis, 

Wilfrido Solano-Acosta, Zuoping Zheng, and Jaofa Jiang assisted in the field. Invaluable 

help with DNA-extraction and sequencing was provided by Irene Schaperdoth and 

Courtney Turich at Jennifer Macalady’s laboratory at Penn State University, 

Pennsylvania. 

 
 

 
 



136 
 

References 
 

Ayers, W.B. Jr, 2002. Coalbed gas systems, resources, and production and a review of contrasting 
cases from the San Juan and Powder River basins. American Association of Petroleum Geologists 
Bulletin 86, 1853-1890. 
 
Bachu, S., Michael, K., 2003. Possible controls of hydrogeological and stress regimes on the 
producibility of coalbed methane in Upper Cretaceous-Tertiary strata of the Alberta basin, 
Canada. American Association of Petroleum Geologists Bulletin 87, 1729-1754. 
 
Bernard, B.B., Brooks, J.M., Sackett, W.M., 1978. Light hydrocarbons in recent Texas 
continental shelf and slope sediments. Journal of Geophysical Research 83, 4053–4061.  
 
Berner, U., Faber, E., 1988. Maturity related mixing model for methane, ethane and propane, 
based on carbon isotopes. Organic Geochemistry 13, 67–72.  
 
Chalmers, G.R.L., Bustin, R.M., 2007. On the effects of petrographic composition on coalbed 
methane sorption. International Journal of Coal Geology 69, 288-304. 
 
Chung, H.M., Gormly, J.R., Squires, R.M., 1988. Origin of gaseous hydrocarbons in subsurface 
environments: Theoretical considerations of carbon isotope distribution. Chemical Geology 71, 
97–104. 
 
Cui, X., Bustin, M., 2006. Controls of coal fabric on coalbed gas production and compositional 
shift in both field production and canister desorption tests. Society of Petroleum Engineers 
Journal 11, 111-119. 
 
Drobniak, A., Mastalerz, M., Rupp, J., Eaton, N., 2004. Evaluation of coalbed gas potential of the 
Seelyville Coal Member, Indiana, USA. International Journal of Coal Geology 57, 265–282. 
 
Faiz, M., Hendry, P., 2006. Significance of microbial activity in Australian coal bed methane 
reservoirs – a review. Bulletin of Canadian Petroleum Geology 54, 261-272.  
 
Gas Research Institute, 1995. A Guide to Determining Coalbed Gas Content. Gas Research 
Institute, GRI-94/0396. 
 
Gurgey, K., Philp, R.P., Clayton, C., Emiroglu, H., Siyako, M., 2005. Geochemical and isotopic 
approach to maturity/source/mixing estimations for natural gas and associated condensates in the 
Thrace Basin, NW Turkey. Applied Geochemistry 20, 2017-2037. 
 
Henning, M.J., Strąpoć, D., Lis, G.,Sauer, P., Fong, J., Schimmelmann, A., Pratt, L.D., 2007. 
Versatile inlet system for on-line compound-specific δD and δ13C GC-c/pyr-IRMS analysis of 
gaseous mixtures. Rapid Communications in Mass Spectrometry, in press. 
 
Holba, A.G., Wright, L., Levinson, R., Huizinga, B., Scheihing, M. 2004. Effects and impact of 
early-stage anaerobic biodegradation on Kuparuk River Field, Alaska. In: Cubitt, J.M., England, 
W.A., Larter, S. (eds), 2004. Understanding Petroleum Reservoirs: towards an Integrated 
Reservoir Engineering and Geochemical Approach. Geochemical Society, London, Special 
Publicationsn 237, 53-88. 
 



137 
 

Katz, B.J., Narimanov, A., Huseinzadeh, R., 2002. Significance of microbial processes in gases of 
the South Caspian basin. Marine and Petroleum Geology 19, 783–796. 
 
Lillis, P.G., 2007. Upper Cretaceous microbial petroleum systems in Nort-Central Montana. The 
Mountain Geologist 44, 11-35. 
 
Mastalerz, M., Drobniak, A., Rupp, J., Shaffer, N., 2004. Characterization of Indiana’s coal 
resource: availability of the reserves, physical and chemical properties of the coal, and present 
potential uses. Indiana Geological Survey Open-File Study 04-02, July 2004. 
 
Mavor, M.J., Owem, L.B., Pratt, T.J., 1990. Measurement and evaluation of coal sorption 
isotherm data. 65th Annual Technical Conference and Exhibition of the Society of Petroleum 
Engineers, New Orleans, LA, September 23-26, 1990, 157-170. 
 
McIntosh, J.C., Walter, L.M., Martini, A.M., 2002. Pleistocene recharge to midcontinent basins: 
effects on salinity structure and microbial gas generation. Geochimica et Cosmochimica Acta 66, 
1681–1700. 
 
Pitman, J.K., Pashin, J.C., Hatch, J.R., Goldhaber, M.B., 2003. Origin of minerals in joint and 
cleat systems of the Pottsville Formation, Black Warrior basin, Alabama: Implications for 
coalbed methane generation and production. AAPG Bulletin 87, 713-731. 
 
Prescott, L.M., Harley, J.P., Klein, D.A., 2002. Microbiology, fifth edition, McGraw-Hill, New 
York. 
 
Saxby, J.D., 1980. Atomic H/C ratios and the generation of oil from coals and kerogens. Fuel 59, 
305-307. 
 
Schimmelmann, A., Sessions, A.L., Mastalerz, M., 2006. Hydrogen isotopic (D/H) composition 
of organic matter during diagenesis and thermal maturation. Annual Review of Earth and 
Planetary Sciences 34, 501–533. 
 
Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases 
of various origins. Geochimica et Cosmochimica Acta 44, 649–661. 
 
Scott, A.R., Kaiser, W.R., Ayers Jr., W.B., 1994. Thermogenic and secondary biogenic gases, 
San Juan Basin, Colorado and New Mexico - Implications for coalbed gas producibility. AAPG 
Bulletin 78, 1186–1209. 
 
Scott, A.R., 1998. Application of burial history to coalbed methane producibility. In: Geologic 
and Hydrologic and Hydrologic Controls Critical to Coalbed Methane Production and Resource 
Assessment. Coalbed methane short course presented by Scott, A.R. and Tyler, R. at the 
International Conference on Coal-Seam Gas and Oil, Brisbane, Australia, March 22-23, 1998. 
 
Smith, J.W., Pallasser, R.J., 1996. Microbial origin of Australian coalbed methane. American 
Association of Petroleum Geologists Bulletin 80, 891–897. 
 
Solano-Acosta, W., Mastalerz, M., Schimmelmann, A., 2007a. Cleats and their relation to 
geologic lineaments and coalbed methane potential in Pennsylvanian coals in Indiana. 
International Journal of Coal Geology, in press. 
 



138 
 

Solano-Acosta, W., Schimmelmann, A., Mastalerz, M., Arango, I., 2007b. Diagenetic 
mineralization in Pennsylvanian coals from Indiana, USA: 13C/12C and 18O/16O implications for 
cleat origin and coalbed methane generation. International Journal of Coal Geology, in press. 
 
Strąpoć, D., Schimmelmann, A., Mastalerz, M., 2006. Carbon isotopic fractionation of CH4 and 
CO2 during canister desorption of coal. Organic Geochemistry 37, 152–164. 
 
Strąpoć, D., Mastalerz, M., Eble, C., Schimmelmann, A., 2007a. Characterization of the origin of 
coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable 
isotope ratios. Organic Geochemistry 38, 267-287.  
 
Strąpoć, D., Picardal, F., Schaperdoth, I., Macalady, J., Turich, C., Mastalerz. M., 
Schimmelmann, A., 2007b. Coalbed methane-producing microbial community in the Illinois 
Basin. The annual ASM (American Society for Microbiology) Conference, Toronto, Canada, 
May 2007, Poster Abstract N-251. 
 
Vandré, C., Cramer, B., Gerling, P., Winsemann, J., 2007. Natural gas formation in the western 
Nile delta (Eastern Mediterranean): Thermogenic versus microbial. Organic Geochemistry 38, 
523-539. 
 
Whiticar, M.J., Faber, E., Schoell, M., 1986. Biogenic methane formation in marine and 
freshwater environments: CO2 reduction vs. acetate fermentation – isotope evidence. Geochimica 
et Cosmochimica Acta 50, 693–709. 
 
 
 
 
 
 
 
 

 



139 
 

 
 

CHAPTER 6 
 
 
 
 
 
 
 
 
 
 

An analysis of the methane-producing microbial community 
 in a coal bed of the Illinois Basin * 

 
 
 
 
 

Dariusz Strąpoć1*, Flynn Picardal2, Courtney Turich3†, Irene Schaperdoth3, Jennifer 
Macalady3, Julius Lipp4, Yu-Shih Lin4, Tobias Ertefai4, Florence Schubotz4, Kai-Uwe 

Hinrichs4, Maria Mastalerz5, Arndt Schimmelmann1 

 
 
 

1 Indiana University, Dept. of Geological Sciences, Bloomington, IN 47405, USA 
2 Indiana University, School of Public and Environmental Affairs, Bloomington, IN 

47405, USA 
3 Penn State University, Dept. of Geosciences, University Park, PA 16802, USA 

4 Research Center Ocean Margins, Dept. of Geosciences, University of Bremen, 28334 
Bremen, Germany 

5 Indiana University, Indiana Geological Survey, Bloomington, IN 47405, USA 
† currently at Skidaway Institute of Oceanography, Savannah, GA 31411 

 
 
 
 
 
 
 

*Paper submitted for publication to Applied and Environmental Microbiology, Oct. 2007. 



140 
 

Abstract 

The phylogeny of the microbial community responsible for generation of large 

coalbed methane (CBM) reserves in the Indiana portion of the Illinois Basin was 

analyzed. The molecular and geochemical studies implied that coal organic matter is 

biodegraded to simple molecules, such as H2 and CO2, which fuel methanogenesis. Small 

subunit rRNA analysis of both the in-situ microbial community and methanogenic 

enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we 

characterized this methanogenic microorganism using scanning electron microscopy 

(SEM) and distribution of intact polar cell membrane lipids (IPLs). A clone library was 

developed from nucleic acid extracts of the coal water sample; some clones were 

phylogenetically related to species capable of anaerobic degradation of a variety of 

molecules, including polyaromatic, aromatic, and aliphatic hydrocarbons. Based on 

enrichment results, phylogenetic analyses, and calculated free energies at in-situ 

subsurface conditions for important metabolisms (CO2-reduction and acetoclastic 

methanogenesis, homoacetogenesis, and syntrophic acetate oxidation), CO2-reduction 

methanogenesis appears to be the dominant terminal process of biodegradation of coal 

organic matter at this location.  
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6.1. Introduction 

Isotopic signatures of methane accumulations in coals (Thielemann et al., 2004), 

shales (McIntosh et al., 2002), biodegraded oils (Bekins et al., 2005; Milkov and Dzou, 

2007), and ocean floor sediments (Newberry et al., 2004) demonstrate that much of the 

subsurface methane results from microbial activity.  Coal is extremely rich in complex 

organic matter (OM), and therefore could be considered very attractive carbon source for 

microbial biodegradation. However, coal is a solid rock, often dominated by recalcitrant, 

partially aromatic and largely lignin-derived macromolecules which tend to be relatively 

resistant to degradation. The rate-limiting step of coal biodegradation is the initial 

fragmentation of geomacromolecular polycyclic lignin-derived aromatic network of coal. 

Lignin degradation can be achieved by extracellular enzymes used by fungi and some 

microbes (Deobald and Crawford, 1987; Fakoussa and Hofrichter, 1999) and it has been 

also shown that up to 40 wt.% of some coals can be dissolved using extracted microbial 

enzymes (Scott et al., 1994). Furthermore, there are known microbial species capable of 

anaerobic degradation of methylated and ethylated aromatic compounds (Chakraborty et 

al., 2005; Coates et al., 2001; Jothimani et al., 2003; Townsend et al., 2004) or even 

polycyclic aromatic hydrocarbons (PAHs; Chang et al., 2002; Christensen et al., 2004; 

Coates et al., 1997; Meckenstock et al., 2004).  

Methane generation from coal by microbial consortia has been documented 

previously. For example, microflora present in water leached from coal mines can 

generate methane (Thielemann et al., 2004). Furthermore, a methane-generating 

consortium extracted from coal was observed to grow on low volatile bituminous coal as 

a sole carbon source (Shumkov et al., 1999). A microbial community may also target the 
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dissipated oil droplets that can be generated from coal by anaerobically degrading long-

chain n-alkanes, the main constituents of non-biodegraded oil (Anderson and Lovley, 

2000; Hostettler, 2004; Sei et al., 2003; Zengler et al., 1999).   

Several lines of evidence point to a biogenic rather than thermogenic origin of 

coalbed methane (CBM) along the eastern margin of the Illinois Basin (Strąpoć et al., 

2007).  The goals of the current study were to confirm the presence of methanogens in 

Illinois Basin coals, and using culture-dependent and culture-independent methods, to 

explore the complexity of the microbial communities required for methanogenic, 

complex OM biodegradation.  

 

6.2. Materials and methods 

6.2.1. Sampling site 

Coal water samples were collected from CBM-producing wells of a small 

production field in western Indiana, along the eastern margin of the Illinois Basin (Fig. 

1). Our sampling target was the Seelyville Coal Member at a depth of 95 to 110 m. This 

coal contains significant reserves of biogenic methane, approximately 3 cm3/g which 

corresponds to a total of 30 x 109 m3 in the Indiana part of the Illinois Basin (Mastalerz et 

al., 2004; Strąpoć et al., 2007). The CBM wells co-produce significant quantities of 

water. Average in-situ conditions at the depth studied are as follows: moisture content 

from 4 to 12 wt. %,  pH from 7.5 to 8.8, Eh -330 to -410 mV, temperature 16.0 to 17.5° 

C, salinity 1 to 12 g/L, and oxygen content below detection limit (1 mg/L). The sampled 

coal is highly fractured and therefore has a high permeability of ~ 40 millidarcy (mD), 

and an average fracture density (including cleats) of 340 fractures/m (Solano-Acosta et  
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Fig. 1. Map showing the extent of the Seelyville Coal in the Illinois Basin. The sampling 

site is located in the eastern marginal zone of the basin. It is a coal gas producing well 

from a depth of 105 m. The dotted and dashed lines represent the southernmost extents of 

the most recent Pleistocene glaciations. The arrows indicate the inferred direction of melt 

water influxes during inter- and post-glacial periods. 
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al., 2007). In addition to large scale fractures and cleats (apertures 4 to 250 μm) present in 

the coal, the main population (74%) are microfractures with apertures <4 μm (0.8 μm on 

average).    

6.2.2. Sample collection for enrichment experiments  

Water for enrichment experiments was sampled from the CBM producing well 

INS-P11 in Sullivan County, western Indiana. The INS-P11 produces coal gas from the 

Seelyville Coal from approximately 105 m depth. Water for microbial enrichments (2 L) 

was collected during measurements of physicochemical properties of coal waters using 

multi-functional probe YSI 600XL (Yellow 102 Springs Instruments, Inc., Yellow 

Springs, Ohio) equipped with a flow through chamber. Prior to water sampling, bottles 

were autoclaved and 1 mL of 1% resazurin, a redox indicator, was added. Subsequently, 

40 mL of 1.25% cysteine/1.25% Na2S, a reducing agent, was added inside an anaerobic 

chamber. Finally, the bottles were purged with argon to remove oxygen. Each bottle had 

two inlets consisting of short (~10 cm x 6 mm) Pyrex tubes connected with hose clamps 

to the longer Tygon tubing. After ~10 min of purging and stabilization of physico-

chemical parameters of water (i.e. specific conductivity, pH, Eh) and after reaching 

oxygen levels below the detection limit, the outlet of the flow-through chamber was 

attached to one of the two inlets of the 1 L glass bottles equipped with double port rubber 

stoppers. At the same time, argon pressure from a 50 L tank was applied via Tygon 

tubing with an attached cotton-filled syringe to prevent microbial contamination. After 

several seconds, the outlet of the sampling bottle was opened by loosening the hose 

clamp to release overpressure created by inflowing water and argon. Net gas outflow 

controlled by the 1 atm overpressure of argon prevented access of oxygen. Additionally, 
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sulfide added prior to sampling quickly removed any oxygen contamination. Resazurin 

additions indicated successful anoxic sampling.  

6.2.3. Enrichments 

Aliquots of sample water (2 L) were passed through sterile 0.22 µm filters in the 

anaerobic chamber. For enrichment of H2-utilizing methanogens, the filters were placed 

in 120-mL serum bottles containing 50 mL of pre-reduced anaerobic medium and crimp-

sealed with butyl rubber stoppers (Bellco Glass, Inc., Vineland NJ, USA). One L of 

medium consisted of 230 mL of DI water, 500 mL of general salts solution, 10 mL of 

trace metals and vitamin solutions, 200 mL of 50 mmol HEPES buffer, 1 mL of 1% 

resazurin, 1 mL of 0.2% Fe(NH4)2(SO4)2, 40 mL of 1.25% cysteine/1.25% Na2S, and 10 

mL of 100 g/L yeast extract solution. The general salts solution contained (g/L): 0.67 

KCl, 5.5 MgCl2·2H2O, 6.9 MgSO4·7H2O, 0.5 NH4Cl, 0.28 CaCl2·2H2O, 0.28 K2HPO4, 

and 22.0 NaCl. The targeted salinity of the media was half that of the sea water (35 g/L). 

The trace minerals solution contained (mg/L): 1500 FeCl2·4H2O, 70 ZnCl2, 100 

MnCl2·4H2O, 2 CuCl2, 190 CoCl2·6H2O, 10 AlK(SO4)2, 24 NiCl2·6H2O, 36 NaMoO4, 6 

H3BO3, and 10 mL of 25% HCl. The vitamin solution contained (mg/L): 2 biotin, 2 folic 

acid, 10 pyroxidine HCl, 5 thiamine HCl, 5 riboflavin, 5 nicotinic acid, 5 lipoic acid, 5 

lipobenzoic acid, and 0.1 vitamin B12. The pH of the media was 7.5.  The headspaces of 

the enrichment bottles contained oxygen-free, H2:CO2 (4:1 v/v) at 1 bar overpressure. 

Headspace gases were replaced weekly and 10 vol. % of the enrichments were transferred 

to fresh media every 2-3 weeks.  Beginning with the third transfer, the medium was 

amended with alternating pairs of antibiotics (either penicillin G and kanamycin or 

streptomycin and vancomycin) to inhibit growth of Eubacteria.  Concentrations of 
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penicillin G, kanamycin, streptomycin and vancomycin were 80, 80, 60, and 100 µg/mL, 

respectively.  After 8 transfers, we reduced the volume of enrichments to 5 mL and used 

Balch tubes instead of serum bottles.   

6.2.4. Testing of methanogenic enrichments 

Enrichments were tested for methane generation biweekly using gas 

chromatography with flame ionization detector (GC/FID). Periodically, methanogenic 

enrichments were additionally tested for presence of the F420 cofactor (unique for 

methanogens) of hydrogenase enzyme using epifluorescence microscopy (van Bruggen et 

al., 1983). The most fluorescent and most methane generating test tube (2nd transfer in a 

test tube) was selected for the SEM imaging. The sample was prepared by vacuum-

filtering of 0.5 mL of media on a 0.22 μm glass fiber membrane in a phosphate filtration 

buffer used to distribute cells evenly on the membrane. Subsequently the membrane was 

transferred onto slide stored inside covered petri dish and transported immediately to the 

SEM lab and analyzed within 30 minutes. Selected enrichments were tested for the rate 

of substrate consumption using gas chromatography/mass spectrometry (GC/MS) to 

observe changes in the CH4/CO2 ratio in the headspace over time of enrichment’s growth. 

6.2.5. DNA Extraction  

Twenty mL of methanogen enrichment culture (from the 5th transfer of the 

enrichment bottles from the T30 well) was centrifuged for 10 min spinning at 7 krpm at 

7˚C using a Beckman-Coulter centrifuge. For in-situ microbial community of the coals, 8 

L of coal water was filtered using autoclaved and acid-washed stainless steel filtering 

stand and two stacked 0.7 μm glass fiber filter (Whatman). The filters were kept at -20˚ C 

until extraction. The DNA extraction procedure was the same for both the cell pellet and 



147 
 

filter. For the filter extraction, ¼ of the filter was used. Re-suspension of the cells in 2 

mL vials was achieved by adding solution of buffer P1 (50 mM Tris·Cl, 10mM EDTA, 

100 μg/mL RNase A; QIAGEN) and chloroform (1:1, v/v) and was followed by 

centrifuging at 12 krpm, 4˚C for 8 min. Cell lysis was achieved with addition of 20 μL of 

10% pyrophosphate and 3 μL of lysozyme and incubation for 40 min at 37˚ C. 

Afterwards, 60 μL of Proteinase K and 10 μL of 20% sodium dodecyl sulfate SDS were 

added.  The vials were stored at 50˚C for 30 min. To wash and concentrate DNA, phenol-

chloroform-isoamyl alcohol (P-C-I) and 0.3 g of acid-washed silica beads were added. 

The mixture was vortexed at 6 krpm for 2 min for the complete cell lysis and getting 

DNA into solution, then centrifuged for 3 min at 12 krpm. The top aqueous phase, 

containing dissolved DNA was extracted once more with P-C-I and centrifuged for 2 

min. The extracted aqueous phase was then subjected to DNA overnight precipitation at -

20˚C with 1:1 vol. isopropanol and 0.1 vol. Na-acetate. Samples were then centrifuged 

for 20 min at 12 krpm and 4˚C. Supernatant was removed and 1 mL of ethanol was added 

to the precipitated DNA and centrifuged for 5 min. The DNA was purified after gel 

electrophoresis (20 μL per well) using the QIAEX Agarose Gel Extraction Protocol 

(QIAEX II Handbok, QIAGEN) which (i) solubilizes the agarose gel at 50 ˚C, (ii) sorbs 

DNA to QIAEX II particles, then (iii) removes supernatant, (iv) washes the pellet with 

QX1 and PE buffers, and (v) elutes the DNA from the particles with 20 μL of 10 mM 

Tris·Cl.  

6.2.6. 16S rRNA analysis 

Purified DNA was amplified by Polymerase Chain Reaction (PCR) using 

universal primers. Each 50 μL solution for PCR reaction contained 2, 3, 4, 6, or 9 μL of 
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DNA template (3 μL were the most successful), 5 μL of 10x buffer, 1 μL of 10 mM of 

dNTPs, 1 μL of 10 μM 1492r universal primer (5’-GGTTACCTTGTTACGACTT-3’), 1 

μL of 10 μM 533f universal primer (5’-GTGCCAGCCGCCGCGGTAA-3’), and 0.25 μL 

of 5 U/μL ExTaq polymerase (TaKaRa Bio Inc., Shiga, Japan). The PCR reaction began 

with initial melting 94˚C for 5 min, followed by 30 cycles of melting at 94˚C for 45 sec, 

annealing of primers at 50˚C for 45 sec, and elongation of products at 72˚C for 2 min. 

The final elongation was carried out at 72˚C for 20 min followed by cooling to 4˚C. The 

resultant PCR products were checked for DNA fragment sizes of about 1 kbp (1000 base 

pairs) using gel electrophoresis and standard 1 kb ladder. 

Subsequently, the PCR products were cloned into the pCR4-TOPO plasmids, 

which were transferred into competent OneShot Mach1 Eserichia coli cells as specified 

by the manufacturer (TOPO TA cloning kit; Invitrogen): (i) the 6 μL TOPO mixtures 

contained of 1 μL of PCR product, 1 μL of kit-provided salt solution, and 1 μL of TOPO 

vector and were incubated at room temperature for 30 min, (ii) 2 μL of the TOPO 

mixtures were added to E. coli thawed and on ice, and the mixture stirred gently was kept 

on ice for 30 min, (iii) heat-shock the E. coli cells at 40 ˚C for 30 sec (one plasmid is 

inserted into one cell) and put back on ice for 2 min, and finally (iv) 250 μL of SOC 

Medium was added. The 10, 30, 60, and 100 μL of medium was plated on LB agar with 

50 μg/mL of Kanamycin and stored at 37 ˚C overnight. Isolated colonies from the plates 

were picked and (i) enriched in LB plus Kanamycin liquid media for 3 hours at 37 ˚C for 

deep freezing mixed with 1:1 vol. of 50% glycerol; and (ii) were added to PCR vials 

containing master mix A for colony PCR. Number of colonies picked from plates for 

colony PCR was: 48 colonies containing plasmids with the DNA representing the 
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methanogenic enrichments, and 96 colonies containing plasmids with the DNA extracted 

from the coal water. 

The 25 μL of master mix A in the PCR vials contained 5 μL of 10x buffer. Initial 

cells lysis began at 99˚C for 15 min with a 5 min cool down to 80˚C. Nucleotides and 

enzymes (25 μL of master mix B contained 1 μL of 10 mM of dNTPs, 10 μM 1492r, and 

10 μM 533f, and also 0.25 μL of 5 U/μL ExTaq) were then added. The procedural 

sequence for colony PCR was as follows: initial heating to 80˚C for 2 min, melting at 

95˚C for 7 min, followed by series of annealing steps at different temperatures (2 steps at 

60˚C, 2 at 58˚C, 2 at 56˚C, 2 at 54˚C, 2 at 52˚C, and 25 at 50˚C). All annealing steps were 

preceded by a melting step at 95˚C for 30 sec and followed by an elongation step at 72˚C 

for 1.5 min. The final elongation was at 72˚C for 20 min, followed by cooling down to 

4˚C. Colony PCR amplified DNA products were purified using QIAquick PCR 

purification Kit 250 (QIAGEN) following manufacturer’s manual.  

6.2.7. Sequencing and phylogenetic analysis  

Plasmids were sequenced at the Penn State University Biotechnology Center, 

using T3 and T7 primers. Partial sequences were assembled and bases manually checked 

using CAP application of the BioEdit software (Hall, 1999). The chimera check was 

performed using the Bellephoron software (Huber et al. 2004). Sequences were then 

submitted to the NCBI BLAST internet library to compare similarity levels to known 

phylotypes. All sequences were aligned using ClustalW application in the BioEdit 

software (Hall, 1999).  Additionally, Methanosarcina sp., and species related to clones, 

i.e. species from Methanocorpusculaceae family, and several bacterial species were 

selected for tree anchoring. Phylogenetic trees were constructed in the MEGA 3.1 
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software (Kumar et al. 2004) using neighbor-joining method (substitution method: p-

distance, bootstrap: 3000 replicate trees). The 16S rRNA gene sequences determined in 

this study have been assigned to GenBank accession numbers from EU168192 to 

EU168199 for the representative clones from the methanogenic enrichment and from 

EU168200 to EU168262 for all 63 clones from the filtered coal water sample.  

6.2.8. Intact Polar Lipids (IPLs) 

Intact polar lipids of the microbial cell membranes were extracted using a modified 

Bligh-Dyer extraction protocol (White and Ringelberg, 1998). The cell pellets obtained 

from 20 mL of the methanogenic enrichment were sonication-extracted three times with 

1:2:0.8 dichloromethane (DCM):methanol:phosphate buffer (8.7 g/L KH2PO4, pH = 7.4) 

and three times with 1:2:0.8 DCM:methanol:trichloroacetic acid buffer (50 mM). 

Supernatants were combined to a separatory funnel where separation of organic and 

aqueous phases was achieved with addition of DCM and 5% NaCl in hexane pre-

extracted water. The organic phase was collected and the aqueous phase was washed 

three times with DCM which was added to organic fraction. The pooled organic phase 

was dried over Na2SO4, and the solvent lipid extract was dried under a stream of nitrogen 

gas, stored at -80 ˚C and shipped frozen to Bremen, Germany for analysis.  

The lipid components in the total lipid extract were separated according to head 

group polarity using high-performance liquid chromatography (HPLC) techniques 

described previously (Biddle et al., 2006; Sturt et al., 2004). Briefly, lipid material was 

dissolved in dichloromethane/methanol (1:1, v/v) and injected to a LiChrospher Diol-100 

column (150 x 2.1 mm, 5 µm; Alltech GmbH, Germany) equipped with a guard column 

of the same packing material using a ThermoFinnigan Surveyor HPLC system 
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(ThermoFinnigan, Bremen, Germany).  HPLC-MS experiments were performed using a 

ThermoFinnigan LCQ Deca XP Plus ion-trap mass spectrometer (ThermoFinnigan, 

Bremen, Germany) with an electrospray ionization (ESI) interface in data-dependent ion-

tree mode with automatic fragmentation up to MS3.  Compound classes were identified 

based on characteristic molecular ions and daughter ion fragments identified previously 

(Koga et al., 1993; Koga et al., 1998; Sturt et al., 2004).    

6.2.9. Analysis of H2 and acetate concentrations 

H2 concentration was analyzed using a Peak Performer 1 (PP1) Gas Analyzer 

(Peak Laboratories, LLC, California) equipped with a Reducing Compound Photometer 

(RCP). Gas samples were taken from serum bottles using a gas tight syringe and diluted 

to a concentration less than 10 ppm for injection. Measurements on replicate samples 

generally have a precision of about ± 1 ppm. Measured gas-phase partial pressure values 

were converted to porewater concentration using solubility constants corrected for 

temperature and salinity (Crozier and Yamamoto, 1974). 

Coal water samples for acetate concentration analysis were stored frozen until 

measurement.  Acetate concentrations were obtained during isotopic analysis of acetate 

(values not reported due to very low acetate concentrations) according to published 

protocol (Heuer et al., 2006) using a ThermoFinnigan Surveyor HPLC coupled to a 

ThermoFinnigan Delta Plus XP isotope ratio mass spectrometer (irMS) via the Finnigan 

LC IsoLink interface. Separation of acetate was achieved on a Nucleogel Sugar 810 H 

column (Macherey-Nagel, Germany, 200 x 1.8 mm) equipped with a guard column 

CC30/4 Nucleogel Sugar 810 H (Macherey-Nagel, Germany, 30 x 4 mm). Degassed 

aqueous phosphate buffer (5 mM) was used as a mobile phase with a flow rate of 300 
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μL/min. The oxidation reagent, converting acetate to CO2, was a solution of sodium 

peroxidisulfate in phosphoric acid (3 g Na2S2O8, 10 mL H3PO4, 300 mL MilliQ) pumped 

at a flow rate of 60 to 80 μL/min. Absolute values of acetate concentration were 

determined relative to external calibration using peak areas of acetate-derived CO2 signal 

recorded by irMS. Enrichment cultures were not tested for acetate concentrations. 

6.2.10. Free energy calculations for coal bed conditions 

The standard free energies ΔG˚P,T of four microbial reactions potentially occurring in 

coals were calculated using SUPCRT92 (Johnson et al., 1992), which uses published 

thermodynamic data (Shock and Helgeson, 1990), for the average in-situ non-standard 

state conditions in the studied area (pressure 10.5 atm, temperature 17 ˚C; Table 1). The 

free energies available for microbial reactions for in-situ concentrations of substrates and 

products were calculated based on 

QRTGG o
TP ln, −Δ=Δ  (1),  

where R - universal gas constant 8.31 J·K-1·mol-1, T - temperature in K, Q – reaction 

quotient. For the ΔG calculations, average in-situ conditions were used, i.e. salinity 3.11 

g/L, pH = 8, acetate 4.3*10-6 M. Ionic strength was 0.054 M, and resulting activity 

coefficient γ of single charged species (Davies equation) was 0.773. The activity 

coefficients of gaseous species were assumed to be 1, thus their activities were equivalent 

to their molalities. In order to generate free energies plot presenting -15 kJ isolines, 

formula (1) was used, e.g. for reaction #1 (Table 1) the calculation was as follows: 

4
,23

,4ln23015
aq

aq

aHaHaHCO

aCH
RTkJkJ

⋅⋅
−−=−

+−    (2) 

Subsequently, above equation (2) was recast for aHCO3
- as a function of aH2,aq: 
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Table 1. Microbial reactions taken into consideration as potentially occurring in Indiana 

coal beds; chemical formulas, standard free energies, and in-situ free energies; & - 

calculated for average concentrations obtained for the area: H+ 10-8 M, H2,aq 3.76·10-8 M, 

CH3COO- 4.3·10-6 M, CH4,aq 1.5·10-2 M, and HCO3
- 1.7·10-2 M; the ΔG˚P,T  and ΔG 

represent the values for the reactions as written.  
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The same procedure was used for calculations for reactions #2 and #4 from Table 2. The 

ΔG value was assigned to be -15 kJ as the minimum amount of energy that a microbial 

cell requires to generate ATP (Schink and Stams, 2006). For calculation of the isoline ΔG 

= -15 kJ for reaction #3, acetate concentration, similarly to the example above, was 

expressed as a function of HCO3
- activity. The molalities of H2,aq and CH4,aq were 

calculated using measured pH2 and pCH4 in coal gas and the Bunsen solubility 

coefficient, dependent on temperature and salinity (Crozier and Yamamoto, 1974). The 

HCO3
- activities were calculated based on water physico-chemical properties measured in 

the wells, and CO2 concentration data from fresh coal core-desorption, as representative 

of in-situ values, using PHREEQC software (Parkhurst and Appelo, 1999). For 

calculations of the free energies for the three sampled CBM wells, the in-situ measured 

pH2, pCO2, pH, temperature, and salinity were used.   

 

6.3. Results 

6.3.1. Enrichments 

Biweekly testing of methanogenic enrichments using GC/FID showed the 

presence of methane. Typically, within 24 to 72 h after inoculation of fresh media with 

10 vol.% of transferred enriched culture, we observed a significant drop in pressure and 

increase of the CH4 to CO2 ratio in the headspace caused by consumption of the initial 

headspace gases H2:CO2 (4:1 v/v) by methanogens. CO2-reduction methanogenesis 

consumes 5 moles of substrate gases (4 H2 and 1 CO2) to generate 1 mol of product 
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methane (reaction #1, Table 1). Under the microscope, ~80% cells from fourth and 

subsequent transfers had F420 coenzyme-fluorescence. Furthermore, morphologic 

homogeneity of cells observed under SEM confirmed that the culture was highly enriched 

and primarily one morphotype, i.e., spherical cells with a diameter of approximately 0.4 

μm (Fig. 2).  

6.3.2. Phylogeny of microbial community from coal and methanogenic enrichments 

In the methanogenic enrichment, all clones were exclusively members of the 

genus Methanocorpusculum, with 99 to 100% similarity to Methanocorpusculum 

parvum, and slightly lower similarity to Methanocorpusculum lubreanum (Fig. 3). SEM 

imaging confirmed submicron size of cells characteristic of the Methanocorpusculum 

genus (Fig. 2). There was no clone similar to any known acetoclastic methanogens, e.g. 

Methanosarcina, suggesting the dominance of the CO2/H2-utilizing methanogens in these 

coals.  

Of the 62 clones analyzed from the coal water sample, 13% were related to 

various bacterial groups: α-Proteobacteria, Firmicutes, Bacterioidetes, and Spirochetes 

(Fig. 3).  The rest of the clones were Archaea, represented exclusively by close relatives 

(98 to 100% similarity) of Methanocorpusculum genus (Fig. 3). The relative abundance 

of archaeal and bacterial clones in our clone library does not necessarily represent the 

distributions of species in the environmental populations, due to well known bias of the 

PCR-based phylogenetic studies. 

6.3.3. Distribution of intact polar lipids of the methanogenic enrichment 

The IPL distribution in the methanogenic enrichment culture consist of 74% 

dialkyl glycerol diethers (DGDs) and 36% glycerol dialkyl glycerol tetraethers (GDGTs).  
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Fig. 2. SEM pictures of methanogenic enrichment filtered on a 0.22 μm membrane; a) 

predominantly spherical cells with diameters of ≤0.5 μm; b) close up of three typical 0.4 

μm  spherical cells, most likely Methanocorpusculum parvum. 
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Fig. 3. Microbial diversity in the coalbed waters from coal gas-producing well INS-P11, 

the Seelyville Coal, depth 105 m. The tree was created using neighbor joining method, 

substitution method: p-distance, bootstrap 3000 replicates generated using MEGA 3.1 

software (32); * - among the archaeal clones, 54 coalbed water clones and all enrichment 

clones were almost identical, therefore each group is represented by one clone. 
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The main compounds forming the cell membrane of our enriched methanogen 

were (i) glycerol dialkyl glycerol tetraethers (GDGTs): diglycosyl-GDGT-

phosphatidylglycerol* (2G-GDGT-PG*, two glycosyl head groups are attached on one 

side of GDGT moiety and phosphate group on the other; * - explained in the caption of 

Figure 4), and (ii) dialkyl glycerol diethers (DGDs): diglycosyl-hydroxyarchaeol (2G-

OH-A), phosphatidylglycerol-archaeol (PG-A), and (iii) (N,N,N-trimethyl)-

aminopentanetetrol (TMAPT-A*, Fig. 4). The bacterial lipids contributed to less than 1% 

of total intact lipids, which confirms a high purity of the enrichment. 

 

6.4. Discussion 

6.4.1. Methanogens of the Illinois Basin 

The presence of methane generated by microbial CO2-reduction in Indiana coals 

was implied by stable isotopic composition of CH4 and CO2 (Strąpoć et al., 2007).  In this 

study, enrichments from coal waters showed high rates of methane generation and F420 

epifluorescence confirmed the presence of abundant methanogens. The sub-micron (0.4 

μm) cell size of methanogens, typical for Methanocorpusculum, was documented by 

SEM imaging of the enrichment culture (Fig. 2b). Clone libraries of the enrichments and 

environmental sample of coal water (Fig. 3) indicated dominance of one archaeal species 

– Methanocorpusculum parvum. The genetic indication of Methanocorpusculum parvum 

as the dominant methanogen is supported by the lipid composition of the cell membranes. 

The IPLs from the enrichment culture include all the main phospho- and glycol-lipid 

characteristic of Methanocorpusculum parvum (Koga et al., 1998), except for 2G-OH-A 

(Fig. 4). This combination of geochemical and biological evidence unambiguously  
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Fig. 4. Distribution of archaeal intact polar membrane lipids (IPLs) in the methanogenic 

enrichment sample dominated by close relatives of Methanocorpusculum parvum. GDGT 

– glycerol dialkyl glycerol tetraether; PG – phosphatidylglycerol; DMAPT - (N,N-

dimethyl)-aminopentanetetrol; TMAPT – (N,N,N-trimethyl)-aminopentanetetrol; 1G, 2G, 

3G – glycosyl (mono, di, tri); A – archaeol; * - tentatively identified derivative of the 

original compound (e.g. TMAPT-A) with similar fragmentation pattern and 14 da higher 

mass. 1 PG-GDGT, 2 1G-GDGT-PG, 3 2G-GDGT-PG, 4 3G-GDGT-PG, 5 2G-GDGT-

DMAPT*, 6 2G-GDGT-DMAPT, 7 PG-GDGT-DMAPT.  
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implicates the presence and activity of close relatives of Methanocorpusculum parvum in 

the Illinois Basin coals. 

The presence of viable methanogens in coal beds has previously been indirectly 

observed in incubation experiments from several basins, including low volatile 

bituminous coal from Russia (Shumkov et al., 1999), the Rhein River brown coal from 

Germany (Catcheside and Ralph, 1999), and the Ruhr Basin coals in Germany 

(Thielemann et al., 2004). Phylogenetic studies of one sample in the latter location 

confirmed the presence of relatives of Methanocalculus pumilus (Thielemann, 2006) 

belonging to the Methanomicrobiaceae family which is closely related to the 

Methanocorpusculaceae family.  

 Historically, Methanocorpusculum was first reported as M. aggregans in 1985 

(Ollivier et al., 1985). In 1987 Methanocorpusculum parvum was isolated (Zellner et al., 

1987). The Methanocorpusculuceae Family containing five species (including parvum), 

was introduced in 1989 (Zellner et al., 1989). Subsequently, the 16S rRNA sequence of 

Methanocorpusculum parvum was submitted to the NCBI (National Center for 

Biotechnology Information) genomic database in 1992 (Rouviere et al., 1992), NCBI 

record M59147.1. Recently the complete genome of the very closely related 

Methanocorpusculum lubreanum has been sequenced and submitted to NCBI (Copeland 

et al., 2007). According to the current phylogenetic classification of methanogenic 

Archaea (Garcia et al., 2000) Methanocorpusculum parvum is classified as follows: 

Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; 

Methanocorpusculaceae; Methanocorpusculum. Since the initial discovery in 1987 

(Zellner et al., 1987), Methanocorpusculum parvum has been found in an large variety of 



161 
 

anoxic environments, including shales in the Michigan Basin (Waldron et al., 2007), 

hydrothermally active sediments in the Guaymas Basin (Dhillon et al., 2005), river 

estuary sediments in the United Kingdom (Purdy et al., 2002), a cold polluted pond in 

Russia (Simankova et al., 2003), waste waters and landfills (Huang et al., 2002), animal 

waste storage pits (Whitehead and Cotta, 1999), and as endosymbionts of ciliates 

(Embley and Finlay, 1993). 

 Anoxia, low salinity, and temperature are common characteristics of all 

described Methanocorpusculum niches. The major limiting factors are: O2 >2 ppm 

(Kiener and Leisinger, 1983), salinity expressed as chlorinity >2M (71 g/L), and SO4
2- 

>1.0 mM (~100 mg/L). For example, in organic matter-rich shales in the Michigan Basin 

where there is a gradual shift towards more halophilic methanogens along a salinity 

gradient, Methanocorpusculaceae were found in large quantities only in formation waters 

and enrichments with lower than marine (~19 g/L) chlorinities of 0.7 to 8.1 g/L, and in 

smaller quantities in enrichments with chlorinities of 17.8 and 26.6 (Waldron et al., 

2007). Similarly, in the estuary of the Colne River, UK, Methanocorpusculum was 

observed in fresh water and brackish sediments (<1 g/L salinity), where intense 

methanogenesis was also observed (Purdy et al., 2002). However, in transitions from 

estuarine to marine conditions, methanogenesis decreased dramatically, limited by 

increasing sulfate concentration and the dominance of the sulfate reduction driven 

oxidation of OM. Therefore, presence of methanogenesis in marine environment is 

typically limited to sediments below the sulfate reduction zone (SRZ) (Froelich et al., 

1979).  In contrast, the fresh, anoxic waters percolating in OM-rich sedimentary rocks 

usually lack sulfate, or any other electron acceptors, except CO2 (Waldron et al., 2007). 
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Therefore methanogenesis is not inhibited in these formations, despite chlorinities 

reaching up to marine concentrations. In terms of temperature, Methanocorpusculum 

parvum has been described in environments as cold as 1 to 5˚ C in a pond in the Polar 

Ural area, suggesting psychrotolerance although reported optimal temperature is between 

25 to 35 ˚C (Simankova et al., 2003).  

 High temperatures (~90 ˚C) of coalification stage in ~310 million years ago 

most likely sterilized the Illinois Basin coals and removed the pre-burial microbial 

community associated with the peat bog-stage. The erosional uplift of coal beds followed 

by post- and interglacial dilution of the original basinal brines, typically ~70 g/L 

(McIntosh et al., 2002), to present day chlorinities 0.1 to 6.8 g/L and low SO4
2- 

concentrations (typically < 20 mg/L) allowed shallow coals to be inoculated with 

methanogenic consortia (Fig. 1). The chemical conditions of coal water combined with 

in-situ temperatures of ~17 ˚C created a habitable niche for Methanocorpusculum.   

6.4.2. Biodegradation of coal organic matter and production of methanogenic substrates 

by complex microbial consortia 

If methanogenesis is the terminal step of organic matter degradation in the coal 

bed habitat, the penultimate step must be the production of methanogenic substrates: H2, 

CO2 and/or acetate. The diversity in the clone library suggests many possible pathways 

for on-going biodegradation of coal and/or oil generated from coal (Table 2), which can 

produce both precursor molecules (e.g. simple organic acids) as well as the actual 

substrates of methanogenesis (Chin and Conrad, 1995).  

The main challenge in coal solubilization is first the fragmentation of the 

macromolecular coal structure (Fig. 5, Table 2). In the coals waters, there are clones  
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Fig. 5. Proposed mechanisms of stepwise biodegradation of organic matter in coal, 

annotated with microbes found in clone library and capable of performing indicated 

processes: (i) defragmentation of coal geomacromolecular structure predominately by 

fermentation targeted at oxygen-linked moieties and oxygen containing functional 

groups; this process detaches some of the oxygen-linked aromatic rings, generates some 

short organic acids; (ii) anaerobic oxidation of available aromatic and aliphatic moieties, 

derived from coal defragmentation or from dispersed oil present in coal in small 

quantities; major product of this process is CO2; (iii) fermentation of products available 

from of step 1 to H2, CO2, and acetate; (iv) methanogenesis utilizing H2 and CO2 wins the 

competition with homoacetogenesis and generates the terminal product of OM 

degradation – CH4; additionally excess of acetate may get recycled to H2 and CO2 by 

syntrophic oxidation and further fuel up methanogenesis. The brown area represents a 

droplet of oil. The molecular model of coal after (47). For more detailed environmental 

functions of listed microbes see Table 2. 
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Table 2. Species related to clones from clone library of the coal water-environmental 

sample, their environmentally known biodegradation targets, and potential in-situ 

functions of related clones in the coal bed environment. 
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related to species which produce extracellular enzymes and are capable of degrading 

PAHs, suggesting these organisms may perform the initial steps of coal biodegradation. 

For example, Bacterioidetes including Cytophaga (Fig. 3) are capable of anaerobic 

degradation of polyaromatic and petroleum-related compounds (Haack and Breznak, 

1993). Another group of microbes that could potentially thrive on solid organic matter are 

clones related to Rhodobacter (α-Proteobacteria) capable of degrading benzyl alcohol 

and benzoate (Shoreit and Shabeb, 1994), compounds which can be part of the oxygen-

interlinked geomacromolecular structure of coal (Fig. 5). Potential fragmentation of 

geomacromolecules of coal could also be performed by the clones associated with 

Sphaerochaeta. Its relatives from the Spirochetes phylum are known as plant-polymer 

fermenters in bovine rumen fluids (Paster and Canale-Parola, 1982), and can also degrade 

higher plant-derived polymers such as xylan, pectin, and arabinogalactan. Additionally, 

one homoacetogen, Sporomusa which belongs to Firmicutes (found also in termites), can 

demethylate aromatic compounds, which is the key reaction preceding cleavage of a ring 

structure (Mechichi et al., 1999).  

The aromatic structures of coal derived from cellulose and lignin are often 

interlinked by oxygen bridges and contain numerous oxygen-containing moieties (e.g. 

carboxyl, hydroxyl, or ketone functional groups, Fig. 5). Although Indiana high-volatile 

bituminous B and C coals are considered moderately mature (vitrinite reflectance Ro = 

0.6%), they still contain ~8 wt. % of oxygen in the coal OM. These oxygen linkages and 

functional groups can be targeted by fermentation, providing essential by-products, such 

as succinate, propionate, acetate, CO2, and H2. Many clones documented in this study are 

closely related to known fermenters (Fig. 5, Table 2).  For example, the clones related to 
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Cytophaga and Flavobacterium are known for anaerobic degradation of cellulose, 

proteins, and polysaccharides in methanogenic enrichments of fresh water sediments 

(Haack and Breznak, 1993). The relatives of Rhodobacter and Sphaerochaeta are also 

known for their fermentative abilities. Clones related to Acidoaminococcus (Fig. 3) 

ferment simple amino acids as a sole energy source (Rogosa, 1969). This organism can 

participate in the recycling of microbial biomass in the coal ecosystem. 

Another target for the primary steps of biodegradation can be oil dispersed in the 

coal (Fig. 5, Table 2).  The oil yield of Indiana coals during coalification estimated at 8 

wt. %, using the relationship of Saxby, 1980 (Saxby, 1980), can be a substantial 

biodegradation target. Micrometer-sized oil globules have been observed in the coal 

under the microscope and could be accessed by microbes by well developed network of 

microfractures present in Indiana coals (Solano-Acosta et al., 2007). We found clones 

related to bacteria capable of biodegrading oil compounds, especially hydrocarbons (Fig. 

3, Table 2). Additionally some of the aliphatic side chains of the aromatic coal matrix can 

be potentially targeted by the n-alkane degraders by anaerobic oxidation. The main 

product of anaerobic oxidation of hydrocarbons is CO2 which may contribute to the pool 

of substrates for CO2-reduction methanogenesis.  

Well known participants in oil biodegradation are microbes from the Cytophaga 

and Flavobacterium group (Rahman et al., 2002) found to grow on n-hexane (Fig. 5, 

Table 2; 1). A detailed molecular model of anaerobic n-alkane and ethyl-benzene 

degradation has been published (Harayama et al., 2004). Another group of species found 

to get enriched when exposed to oil and hydrocarbons are α-Proteobacteria such as 

Rhodobacter (Shoreit and Shabeb, 1994). 
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6.4.3. Free energy balance of the terminal biodegradation processes 

From the degraded coal organic matter and oil, additional fermentation reactions 

producing CO2 and acetate, also deliver H2. In the subsurface, H2 is typically found in 

concentrations so low (H2,aq ~10-8 mol/L) that it can be  considered the limiting nutrient. 

Fermentation is therefore an important link in the sequential biodegradation of coal. 

Syntrophic relationships between fermenting microorganisms and H2-utilizing CO2-

reducing methanogens have been previously documented; the low pH2 maintained by 

methanogenesis creates exergonic fermentation conditions (Schink, 1997). Syntrophic 

acetate oxidation to CO2 and H2 has also been documented in some methanogenic 

environments (Nüsslein et al., 2001; Schnürer et al., 1999), although our clone library 

contains no known acetate oxidizers.  

In order to test the possible scenarios leading to terminal coal-OM biodegradation, 

we examined the free energy balance of several possible microbial reactions. In addition 

to CO2-reduction methanogenesis, we also explored the potential role of 

homoacetogenesis in tandem with acetoclastic methanogenesis as the terminal OM 

degradation process. Since homoacetogenesis utilizes the same substrates as CO2/H2-

utilizing methanogenesis, these two microbial reactions may compete, and the 

environment should promote the more energy-profitable reaction. The free energies ΔG 

of microbial reactions in the terminal stage of organic matter biodegradation were 

calculated for in-situ conditions of the sampled coal bed waters. The free energy 

calculations (Fig. 6) indicate that acetoclastic methanogenesis is energetically restricted 

in our coal beds. Supporting arguments are: (i) fresh water-preference of acetoclastic 

methanogens (Whiticar et al., 1986), and (ii) saturation of coals with methane having  
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Fig. 6. Free energy dependence on the substrate and product availability of microbial 

reactions in average measured Indiana coals in-situ conditions (salinity 3.11 g/L, 

temperature 17˚C, pressure 10.5 atm, H+ 10-8 M, H2,aq 3.8·10-8 M, CH3COO- 4.3·10-6 M, 

CH4,aq 1.5·10-2 M, and HCO3
- 1.7·10-2 M). The data points represent in-situ conditions in 

three coal gas-producing wells within 5 km from each other. Lines represent -15 kJ of 

available free energy, a minimum required to generate 1 mol of ATP (50), for each 

microbial reaction. The arrows indicate conditions, under which given reaction will be 

more exergonic than the required minimum. * - based on the reactions as written (see 

Table 1). 
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isotopic fingerprints of CO2-reduction pathway (Strąpoć et al., 2007). Conversely, the 

reactions of CO2-reduction methanogenesis and homoacetogenesis are more exergonic 

under in situ conditions with energy yields more negative than -15 kJ/mol. Therefore, 

these two pathways may compete for the common substrates. However, free energy 

conditions in the coal beds promote CO2-reducing methanogens according to the better 

energetic sustainability at lower CO2 and H2 concentrations (Fig. 6).  

Processes which provide substrates for methanogenesis, H2 and CO2, are 

fermentation and anaerobic oxidation of larger organic molecules (Fig. 5). Fermentation 

also provides acetate (Chin and Conrad, 1995) which can be potentially microbially 

converted to H2 and CO2 via anaerobic syntrophic acetate oxidation (Table 1, reaction 

#4), a process found to coexist with CO2-reduction methanogenesis in various 

environments, e.g. biogas reactor (Schnürer et al., 1999) and sediments of a subtropical 

lake in Israel (Nüsslein et al., 2001). In order for syntrophic acetate oxidation to provide 

the minimum of -15 kJ energy, the concentrations of H2 and CO2 would have to be ~ one 

order of magnitude lower (Fig. 6) than in situ conditions. Depletion of H2 and CO2 during 

intense methanogenesis and in microniches, accompanied by buildup of acetate from OM 

fermentation could potentially enable acetate oxidation to recycle acetate into 

methanogenic substrates (Figs. 5 and 6). 

 

6.5. Summary 

The Illinois Basin coals are inhabited by a complex microbial community 

including species capable of anaerobic degradation of a wide variety of organic 

molecules that can occur in coal, coal-generated oil, or coal waters, such as polymers 
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(PAHs, humic substances, plant-derived polymers), alkylated aromatic compounds, 

alkanes, and organic acids. The fermentative fragmentation/degradation of oxygen-

containing geomacromolecules of coal, followed by fermentation and anaerobic oxidation 

of smaller molecules ultimately generates H2, CO2, and acetate. Among hypothetical 

acetate sinks, there is potential syntrophic acetate oxidation, providing additional H2 and 

CO2 for methanogens. Based on the microbiological enrichments, 16S rRNA clone 

libraries of coal water and methanogenic enrichments, and free energy calculations for in-

situ coal conditions, the CO2-reduction methanogenesis appears to be the dominant 

terminal step of organic matter degradation. The main methanogen in coal waters of 

Indiana coals, phylogenetically documented and confirmed by the intact polar lipid study, 

is Methanocorpusculum parvum. Typical characteristics of Methanocorpusculum were 

rapid growth in the H2 and CO2 environment, small 0.4 μm spherical cells, and 2:1 

diethers to tetraethers ratio in the cell membrane. Past and ongoing biodegradation of coal 

and coal-derived oil followed by methanogenesis contribute to significant coalbed 

methane reserves along the north and eastern margins of the Illinois Basin.  
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7.1. Variability of total gas and its geochemical properties 

Accurate assessment of the coalbed methane (CBM) potential and gas saturation 

level of a coal bed requires investigation across the entire thickness of a coal seam, 

because total gas content can vary significantly vertically through seams. The total 

coalbed gas content in the Indiana part of the Illinois Basin is controlled by the amount of 

generated, adsorbed and preserved microbial methane, and therefore can be locally 

variable depending on (i) microbial accessibility (via cleats and microfractures), (ii) 

adsorption potential for methane molecules (micropore distribution) of a particular coal 

section, and (iii) availability of target organic moieties for potential biodegradation and 

methanogenesis. 

The chemical composition of desorbing coal gas changes over the duration of 

desorption because different coal gas species express different adsorption affinities in the 

micropores of coal. CO2 has a higher adsorption affinity than methane, causing early 

desorbed gas to be relatively enriched in methane, whereas late desorbed gas is relatively 

enriched in CO2. 

Kinetic isotope effects cause 13C-depletion of free methane and CO2 relative to 

adsorbed gas species during desorption of coal gases in canisters. Observed fractionations 

are likely caused by faster diffusion of 12C-containing gas species relative to 13CH4 and 

13CO2. Amplitudes of δ13C shifts over the duration of desorption are probably linked to 

the pore structure of coal, which is controlled by maceral composition, maturity, in-situ 

stress, etc.  A linear relationship exists between δ13CCH4 and the volume of desorbed CH4 

as a fraction of total CBM. Thus, isotopically representative sampling of desorbed CBM 

for carbon-isotopic analysis should be performed for a gas sample that is collected after 
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about half of all gas has been desorbed and vented/removed (i.e., gas from the ~50 vol. % 

midpoint of gas desorption).  

Assuming regionally uniform pre-CBM-production coalbed gas compositions, 

prolonged CBM production from monitored wells caused molecular and isotopic trends 

in production gases of (i) increasing C1/(C2+C3) ratios,  (ii) decreasing δ13CCH4 values, 

and (iii) decreasing total dissolved solids (TDS) values. Furthermore, prolonged CBM 

production may enhance access of fresh oxygenated meteoric waters into relatively 

shallow coal seams resulting in microbial methane oxidation. Changes in mentioned 

above parameters (i, ii, and iii) during production from a CBM well should not affect the 

production of coal gas significantly. From a scientific point of view, increasing oxidative 

conditions of the well in a depression cone of the ground water table may inhibit further 

anaerobic biodegradation of coal and methanogenesis.  

 

7.2. Coal gas origin 

Stratigraphically equivalent and geographically widespread coal beds (e.g., the 

Springfield and Seelyville Coal Members) in Indiana and western Kentucky can 

regionally generate and store coalbed gases of contrasting and distinct origins. Biogenic 

methane from CO2-reduction is prevalent in less mature Indiana coals, whereas more 

mature coals in the Rough Creek Graben of western Kentucky produced predominantly 

thermogenic hydrocarbons via cracking of coal organic matter. The two differently 

sourced biogenic and thermogenic types of coalbed gases are compositionally and 

isotopically distinct. 
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The two sources of coalbed gases in the Illinois Basin, thermogenic and biogenic, 

are controlled by a variety of factors: (i) the geologic regional history (e.g., tectonic and 

hydrothermal activity, burial depth, geothermal gradient, intensity of 

maturation/coalification, erosional or post-glacial uplift and fracture opening); (ii) 

hydrogeology (e.g., infiltration of meteoric water, residence time of formation water); 

(iii) microbiology (e.g., presence of a microbial community able to thrive on 

decomposing coal, probably primarily vitrinite; habitability of coals in terms of 

temperature, pore structure, moisture content, salinity of pore waters). 

 

7.3. Microbial biodegradation of organic matter in coal 

Significant influxes of fresh water during inter- and post-glacial periods caused 

decreasing salinity of the original basinal brines and allowed inoculation of coal with a 

complex microbial community. Microbial biodegradation of coal organic matter and 

associated methanogenesis resulted in the accumulation of significant coalbed methane 

reserves along the margin of the Illinois Basin. The microbial community was transported 

by ice sheet melt waters most likely from shallow anoxic subsurface sediments, e.g. 

swamps, pond and lake sediments. 

The Illinois Basin coals are inhabited by a complex microbial community 

including species capable of anaerobic degradation of a wide variety of organic 

molecules that can occur in coal, coal-generated oil, or coal waters, such as biopolymers 

(e.g., plant-derived cellulose and lignin), geomacromolecules (e.g., humic substances), 

polyaromatic hydrocarbons (PAHs), alkylated aromatic compounds, alkanes, and organic 

acids. The fermentative fragmentation/degradation of oxygen-containing macromolecules 
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of coal, followed by fermentation and anaerobic oxidation of smaller molecules 

ultimately generates H2, CO2, and acetate. Among hypothetical acetate sinks, there is 

potential of syntrophic acetate oxidation, providing additional H2 and CO2 for 

methanogens. Based on the microbiological enrichments, 16S rRNA clone libraries of 

coal water and methanogenic enrichments, and free energy calculations for in-situ coal 

conditions, the CO2-reduction methanogenesis appears to be the dominant terminal step 

of organic matter degradation. Microbial biodegradation also affects thermogenic C2+ 

hydrocarbon gases in coal beds, preferentially targets C3, and introduces isotope 

fractionation whereby remaining C3 is enriched in heavy isotopes D and 13C. 

The main methanogen phylogenetically documented in coal waters and 

enrichments was Methanocorpusculum parvum utilizing H2 and CO2. Typical 

characteristics of Methanocorpusculum were rapid growth in the H2 and CO2 

environment, small 0.4 μm spherical cells, and 2:1 diethers to tetraethers ratio in the cell 

membrane. 

 The inhibiting parameters for microbial biodegradation of coal and 

methanogenesis includes (i) excess of other than CO2 electron acceptors (i.e. sulfate, 

nitrate) which may turn on the microbial anaerobic OM oxidation and inhibit 

methanogenesis, (ii) dissolved oxygen, (iii) lack of basic nutrients required to sustain any 

microbial life (i.e. phosphorus and nitrogen). 

 

7.4. Timing of microbial methane generation 

 Two main alternative scenarios of microbial methane generation in the Illinois 

Basin coals can be considered. First, that swamp peat-derived coal and microbiota  
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Fig. 1. Model of the geological history of coal beds in the Indiana part of the Illinois 

Basin in terms of environmental parameters that are important for subsurface micro biota. 

Initial sterilization of coal occurred at 90 ˚C when small amounts of thermogenic gas 

were generated (red line); at the same time, about 8 wt.% oil were generated that 

remained dispersed in coal. A – a temperature below 60 ˚C was a necessary but 

insufficient requirement for microbial life. B – a relatively shallow depth of 0.3 km 

allowed slow access of meteoric water. C – inter/post glacial fresh water influx diluted 

coalbed brines to chlorinities that were tolerable for microbes. D – onset of 

biodegradation of early thermogenic C2+ hydrocarbons, coal-derived oil, and coal organic 

matter; biodegradation was associated with microbial methanogenesis. 
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coexisted since Pennsylvanian time in the subsurface allowing extremely slow rates of 

methanogenesis by microbes and long-term gas accumulation. The second scenario 

suggests post-glacial uplift and inoculation of coals via meteoric waters that infiltrated 

coal beds and diluted brines during inter- and post-glacial intervals. Coalification 

temperatures of southeastern Illinois Basin coals reached about 90 ˚C and were too high 

for the preservation of the original peat-swamp microbiota. Furthermore, highly saline 

waters (~2M Cl-) in Pennsylvanian coal formations probably exceeded the halotolerance  

of many of the representatives of the complex organic matter-degrading methanogenic 

consortium, e.g. Methanocorpusculum does not tolerate chlorinities higher than 1M. The 

modern (Holocene) isotopic characteristics of waters associated with Indiana coal beds 

also suggest that the residence time of water is less than 10,000 years (Fig. 1).  

 The following is the more plausible and preferred scenario: the dilution of 

original basinal brines with meteoric waters during post-uplift and inter/post-glacial 

Pleistocene time (1.8 million years ago until present) caused inoculation of coals with 

methanogenic consortia and triggered the generation of significant amounts of coalbed 

methane. In can be concluded that shallow and highly permeable formations, like coals or 

fractured shales with diluted brines, can host complex microbial consortia capable of 

efficient biodegradation and gas generation, whereas deeper strata are more likely to 

exclude microbes. Even if access to microbes was granted for deeper environments, they 

often express inhospitable conditions for microbiota in terms of salinity and temperature. 
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7.5. Significance and applications of this study 

 This study provides data and discusses concepts important for exploration and 

production of CBM, with special relevance for basins with contributions of microbial 

methane. In exploration for thermogenic CBM, the main factor is adequate maturity of 

coal (Ro > 0.8%). For microbial biodegradation and methanogenesis, maturity of coal is 

not a limiting factor. However, immature coals can be more biodegradable because of 

higher functional groups and oxygen content.  Yet, regardless of the maturity, coals that 

are uplifted enough to lower the temperature and to receive fresh water influxes can 

become a habitable niche for complex microbial community which would most likely 

generate methane as a terminal product. From an exploration point of view, an optimal 

CBM basin would most likely contain coals which: (i) reached the thermal maturity 

within the gas window (0.7 to 1.4%) so that it generated significant amount of 

thermogenic gas and still are relatively highly biodegradable; and (ii) subsequently were 

subjected to contact with fresh waters (e.g. by erosional or tectonic uplift, or topography 

and/or stratigraphy-driven flow regime) which diluted brine and delivered microbial 

consortia, inducing the additional generation of microbial methane. An example of such 

coal is the Fruitland Formation in the San Juan Basin (maturity range Ro 0.6 to 1.3%), 

where topography-driven hydrodynamic pressure diluted brines and inoculated coals at 

depths of up to 1 km, and charged an already thermogenic coal gas-rich formation with 

microbial methane. A similar scenario is likely in some Alberta Basin coals. 

 In the eastern part of the Illinois Basin, current subsurface conditions, 

temperature <  60˚C, salinity < 35 g/L, contact with ground waters, which can dilute the 

original formation brines and transport the microbial consortia into coals, etc., are 
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suitable for biodegradation of coal by complex microbial community accompanied by 

methanogenesis. Present day methanogenic microbial activity in studied coal beds can 

classify microbial CBM as a renewable energy supply. Simple calculation shows that 

only 0.2 wt.% of studied coal has been converted into methane so far. Despite unknown 

in-situ rates of coal biodegradation steps and of the methanogenesis itself, potential 

enhancement of microbial CBM generation could increase the in-situ rate of conversion 

of coal into methane and allow prolonged CBM production over long periods of time. 

 

7.6. Future paths of inquiry 

 Future research on coal gases in the Illinois Basin should focus on deciphering 

sequential biodegradation of coal and coal-derived oil by complex microbial 

communities. For example, one could target a series of incubations and enrichments with 

various substrates, followed by isolations of specific strains of microbes. Incorporation of 

fluorescent in-situ hybridization techniques should clarify the functionality of specific 

groups of microorganisms. In terms of better understanding of geological framework and 

timing of initiation of microbial gas generation, radioisotope techniques could be applied 

for dating of the age of coal waters, e.g. by iridium dating. Further studies of the 

distribution of thermogenic and microbial gas in Illinois Basin coals on a basinwide scale 

should target different areas: (i) locations closer to the depocenter in Illinois where it is 

likely that the thermogenic gas component is more prominent and microbes may have 

had limited opportunity to access coal and generate biogenic CBM; (ii) areas in southern 

Indiana and northern Kentucky, where relatively shallow depths and proximity to the 

Rough Creek Graben zone could have resulted in significant generation of both microbial 
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methane and thermogenic gas, thus making this area a strong candidate for CBM 

exploration. Continued monitoring of the studied CBM-production field in Indiana 

should yield insightful data for understanding the isotopic fingerprints of reservoir 

depletion and continuing production. In addition, further studies on isotopic and 

molecular effects of gas diffusion, migration, and substitution (e.g. CO2 replacement by 

CH4 at adsorption sites in coal) should yield important constraints for CO2 sequestration 

projects (e.g. monitoring wells). 
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