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Abstract

Yun-Su Kim

Linear Algebraic Properties of C0-operators

The theory of Jordan models for contractions is due to B. Sz.-Nagy - C. Foias, B.

Moore - E.A. Nordgren, and H. Bercovici - D. Voiculescu. J.A. Ball introduced the

class of C0-operators relative to a multiply connected domain Ω. A. Zucchi provided

a classification of C0-operators relative to Ω. Since no analogue of the characteristic

function of a contraction is available in that context, that study does not yield some

of the results available for the unit disk. In this thesis we use a substitute for the

characteristic function, suggested by an analogue of Beurling’s theorem provided by

M.A. Abrahamse and R.G. Douglas. This allows us to prove a relationship between

the Jordan models of a C0-operator relative to Ω, of its restriction to an invariant

subspace, and of its compression to the orthocomplement of that subspace.

This thesis is organized as follows. In Chapter 2, by defining a quasi-inner func-

tion, we provide a generalized Beurling’s Theorem. In Chapter 3, we primarily deal

with C0-operators relative to Ω. Finally, in Chapter 4, we study the modular lattice

for C0-Operators relative to the open unit disc.
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CHAPTER 1

Introduction

An operator T in the set of bounded linear operators from a Hilbert space H to H,

denoted by L(H), is said to be completely nonunitary if there is no invariant subspace

M for T such that the restriction T |M of T to the space M is a unitary operator. B.

Sz.-Nagy and C. Foias introduced a weak∗-continuous functional calculus [29]

Φ1 : H∞ → L(H)

where H∞ is the Banach algebra of bounded and analytic functions on D with the

supremum norm. A completely nonunitary contraction T is an operator of class C0

relative to the open unit disk D if the associated functional calculus has a non-trivial

kernel. In fact, the kernel of a C0-operator T relative to D is a principle ideal generated

by an inner function called a minimal function of T . The C0-operators relative to

the open unit disk D was introduced by B. Sz.-Nagy [28]. One of important results

is a classification theorem using Jordan model which is similar to Jordan’s classical

result. The theory of Jordan models of C0-operators relative to the open unit disk D

was studied by Sz.-Nagy and Foias [29], and B. Moore-E.A. Nordgren [22].

The study of C0-operators relative to the open unit disk D was continued by

H. Bercovici-D. Voiculescu [6], [9], [8] who gave other intrinsic characterizations of

C0-operators relative to the open unit disk D, and introduced C0-Fredholm operators.

As a fundamental example of C0-operators relative to the open unit disk D, for a

given inner function θ ∈ H∞, the Jordan block S(θ) is a C0-operator acting on H(θ),

1



1. INTRODUCTION 2

the orthogonal complement of θH2 in the Hardy space H2 defined by :

(0.1) S(θ) = PH(θ)S|H(θ)

where S ∈ L(H2(Ω)) is the shift operator defined by

(Sf)(z) = zf(z).

When we study Hardy space, a useful result is Beurling’s theorem. First of all, it

could be used when we find a minimal function of C0-operators relative to D. The

paper [9] of Beurling is the immediate starting point for invariant subspaces. Beurling

described every closed S-invariant subspaces in [9]. His characterization was obtained

by means of function-theoretic analysis of individual analytic functions.

By giving an analogue (in the scalar case) of Beurling’s theorem on invariant

subspaces of the Hardy spaces of the unit disc, Sarason [26], Voivhick [30], and

Hasumi [18] started operator theory related to function theory on multiply connected

domains. It was continued in the work of Abrahamse−Douglas [1, 2], and of Ball

[4, 5]. J. Agler [3] showed that the existence of normal doundary dilations − an

analogue of Sz.-Nagy dilation theorem − still holds for annuli and it may fail for

domains of connectivity greater than two (Dritschel−McCullough [14]). However it

holds up to similarity (Douglas−Paulsen [13]); this allowed A. Zucchi [31] to provide a

classification of C0-operators relative to Ω. Instead of completely nonunitary operator,

they consider an operator satisfying some requirements, called hypothesis (h). By the

same way as C0-operators relative to D in [29], they provided a weak∗-continuous

functional calculus

Φ2 : H∞(Ω) → L(H)
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where H∞(Ω) is the Banach algebra of bounded and analytic functions on Ω with the

supremum norm. An operator T satisfying hypothesis (h) is said to be of class C0-

operators relative to Ω if the associated functional calculus has a non-trivial kernel.

For each C0-operator T relative to Ω, A. Zucchi found a model function

Θ = {θα ∈ H∞(Ω) : α < γ}

a family of inner functions such that T is quasisimilar to

S(Θ) =
⊕

α<γ′ S(θα)

called Jordan model of T .

In this paper, we study some linear algebraic properties for Jordan models of

C0-operators relative to multiply connected domains Ω in the complex plane, whose

boundary ∂Ω consists of a finite number of disjoint, analytic, simple closed curves

which is the same domain used by Ball [4] and Zucchi [31].

Sz.-Nagy and Foias introduced a functional model S(Θ1) (which is also defined in

the same way as equation 0.1) associated with an operator-valued inner function

Θ1 : D → L(H)

and proved that it is also a C0-operators relative to D. In order to define the similar

function S(ϕ) for an operator-valued function ϕ defined on Ω and to consider whether

it is also a C0-operator relative to Ω or not, in Chapter 2, we start extending Beurling’s

theorem.

In [24], H.L. Royden proved that for every fully invariant subspace M1 of Hp(Ω)(1 ≤
p ≤ ∞), there is an inner function θ in H∞(Ω) such that

M1 = θHp(Ω).

M.A. Abrahamse and R.G. Douglas also provided a generalization of Beurling’s

theorem. In their study of rationally invariant subspaces, they produced a bundle
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shift operator and inner bundle map in [2]. They proved that a closed subspace M2

of H2(Ω, E) is R(Ω)-invariant for the bundle shift operator if and only if

M2 = Θ2H
2(Ω, F ),

where F is a flat unitary vector bundle over Ω and Θ2 is an inner bundle map from F

to E. To use this result, we provide a definition of a quasi-inner function in Definition

2.11. The proper setting here is that of maps of flat unitary vector bundles, i.e., of

multiplicative multivalued operator-valued functions. We will convert these to usual

single valued analytic functions by composing them with some bundle isomorphism.

This has been done quite often in the scalar case where one can be somewhat more

explicit and choose a multiplicative outer function to have constant absolute value

on each boundary component, see, e.g., Royden [24]. Using the quasi-inner function

instead of inner bundle map, we provide another generalization of Beurling’s theorem

in Theorem 2.14 without using vector bundles :

Let K be a Hilbert space. Then a closed subspace M of H2(Ω, K) is R(Ω)-invariant

for the shift operator SK if and only if there is a Hilbert space K ′ and quasi-inner

function ϕ : Ω → L(K ′, K) such that

M = ϕH2(Ω, K ′).

To use this result, we need to study quasi-inner functions. As one of the charac-

terizations of quasi-inner functions, in Corollary 2.17, we prove that for a function

ϕ ∈ H∞(Ω, L(K1, K2)) (Ki is a Hilbert space for i = 1, 2), following statements are

equivalent :

(a) ϕ is quasi-inner.

(b) The multiplication operator Mϕ defined on Hardy space H2(Ω, K1) → H2(Ω, K2)

is one-to-one and has closed range where Mϕ is defined by (Mϕf)(z) = ϕ(z)f(z) for

f ∈ H2(Ω, K1).
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When we compare two subspaces ϕ1H
2(Ω, K1) and ϕ2H

2(Ω, K2) of H2(Ω, K) for

quasi-inner functions ϕ1 : Ω → L(K1, K) and ϕ2 : Ω → L(K2, K), we find some

relationships between ϕ1 : Ω → L(K1, K) and ϕ2 : Ω → L(K2, K) in Corollary 2.16,

that is,

ϕ1H
2(Ω, K1) and ϕ2H

2(Ω, K2) of H2(Ω, K) are equal if and only if there ex-

ist a function ϕ ∈ H∞(Ω, L(K1, K2)) such that ϕ(z) is invertible for any z ∈ Ω,

sup ‖ϕ(z)−1‖ < ∞ and

ϕ1(z) = ϕ2(z)ϕ(z)

for any z ∈ Ω.

From this relationship, we begin discussing the greatest common quasi-inner di-

visor in section 4 in Chapter 2 and we prove some characterizations of a quasi-inner

divisor which are similar to results of an inner divisor in H∞ ([6]) :

For any quasi-inner functions θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω, L(K)), the following

assertions are equivalent:

(a) θ|ϕ.

(b) ϕH∞(Ω, K) ⊂ θH∞(Ω, K).

(c) ϕH2(Ω, K) ⊂ θH2(Ω, K).

(d) There is a λ > 0 such that ϕ(z)ϕ(z)∗ ≤ λ2|θ(z)|2ICn for any z ∈ Ω.

In Chapter 3, we deal primarily with C0-operators relative to Ω. As desired before,

we provide a C0-operator S(ϕ) for a quasi-inner function ϕ defined on Ω. To determine

whether S(ϕ) is a C0-operator or not for a quasi-inner function ϕ defined on Ω, we

use the concept of a ”scalar multiple” the same way as on D and in Theorem 3.16

we describe which functions in H(Ω) belong to the kernel of the associated functional

calculus. It follows that the least scalar multiple of ϕ is the minimal function of S(ϕ).



1. INTRODUCTION 6

For a quasi-inner function ϕ on Ω, S(ϕ) is not always a C0-operator relative to Ω.

However, in Proposition 3.17, we show that for a quasi-inner function ϕ on Ω whose

range is an operator on a finite dimensional Hilbert space, S(ϕ) is a C0-operator

relative to Ω. Thus we primarily study with quasi-inner functions on Ω whose range

is L(Cn). Further results in Proposition 3.17 provide another important property of

a quasi-inner function ϕ on Ω whose range is an operator on a finite dimensional

Hilbert space, that is, ϕ(z) is invertible almost everywhere on ∂Ω.

In section 3 of Chapter 3, we study some relationships between quasi-equivalence

and quasi-similarity. First, Proposition 3.29 shows the following fundamental fact :

Let ϕ1 and ϕ2 be quasi-inner functions in H∞(Ω, L(Cn)). If ϕ1 and ϕ2 be quasi-

equivalent, then S(ϕ1) and S(ϕ2) are quasi-similar.

Naturally we have a question whether the converse of Proposition 3.29 is true or

not and so in Corollary 3.31 we also derive :

Let ϕ1 and ϕ2 be quasi-inner functions in H∞(Ω, L(Cn)). If S(ϕ1) is a quasi-affine

transform of S(ϕ2), then ϕ1 and ϕ2 are quasi-equivalent.

From number theory, we know some useful facts for relatively prime numbers.

When we consider two relatively prime quasi-inner functions on Ω, we obtain an

interesting result which is used when we prove Proposition 3.29 :

Let ϕ1, ϕ2 ∈ H∞(Ω) be such that ϕ1 ∧ ϕ2 ≡ 1. If f ∈ L2(∂Ω,Cn), ϕ1f ∈
H2(∂Ω,Cn) and, ϕ2f ∈ H2(∂Ω,Cn), then f ∈ H2(∂Ω,Cn).

From the characterization of R(Ω)-invariant subspaces for the shift operator in

Theorem 2.14, we characterize a rationally invariant subspace for S(ϕ) in Theorem

3.33 :
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Let F and F ′ be two separable Hilbert spaces and ϕ be a quasi-inner function in

H∞(Ω, L(F, F ′)).

(i) If M ⊂ H(ϕ) is a rationally invariant subspace (i.e. R(Ω)-invariant) for S(ϕ),

then there is a Hilbert space K and quasi-inner functions ϕ1 ∈ H∞(Ω, L(F, K)) and

ϕ2 ∈ H∞(Ω, L(K,F ′)) such that

ϕ(z) = ϕ2(z)ϕ1(z)

for z ∈ Ω and

(0.2) M = ϕ2H
2(Ω, K)ª ϕH2(Ω, F )

(ii) Conversely, if K, ϕ1 and ϕ2 are as above , then (0.2) defines a rationally

invariant subspace of H(ϕ). Moreover, if

S(ϕ) =


T1 X

0 T2




is the triangularization of S(ϕ) with respect to the decomposition H(ϕ) = M ⊕ (H(ϕ)

ªM), then T2 = S(ϕ2) and S(ϕ1) is similar to T1.

In [8], H. Bercovici and D. Voiculescu proved following fact :

Let H be a separable Hilbert space. Assume that T ∈ L(H) is an operator of

class C0 relative to D, H ′ is an invariant subspace for T , and T =


T ′ Y

0 T ′′


 is the

triangularization of T with respect to the decomposition H = H ′ ⊕ (H ªH ′).

If ⊕j<ωS(θj), ⊕j<ωS(θ′j), and ⊕j<ωS(θ′′j ) are the Jordan models of T , T ′, T ′′,

respectively, then

(0.3) θ0 · · · θk−1|θ′0 · · · θ′k−1θ
′′
0 · · · θ′′k−1,

for every k = 1, 2, 3, ....
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To obtain a result similar to 0.3 for a C0-operator T relative to Ω, we define a

R(Ω)-generating set and a multiplicity of T . In Proposition 3.36, we derive a similar

result for a C0-operator relative to Ω with finite multiplicity. Furthermore, we finish

Chapter 3 by proving the same result without the assumption of finite multiplicity in

Theorem 3.38.

We know that the collection of all subspaces of a Hilbert space is a lattice. A

lattice is called modular if

(0.4) L ∩ (M ∨N) = (L ∩M) ∨N

for any element L, M, and N in the lattice such that N ⊂ L. In Chapter 4, we study

the modular lattice for C0-Operators relative to D. An operator T ∈ L(H) is said to

have Property (P) if every injective operator in the commutant of T has dense range.

Thus if T ∈ L(H) has Property (P), then every injective operator in the commutant

of T is a quasiaffinity. Property (P) of an operator was introduced by H. Bercovici in

[9] and he characterized C0-operators relative to D with Property (P).

Whenever X ∈ {A ∈ L(H) : AT1 = T2A} for Ti ∈ L(H)(i = 1, 2), we have a

function

X∗ : Lat(T1) → Lat(T2)

where Lat(Ti) denotes the collection of all closed invariant subspaces for Ti defined

by

(0.5) X∗(M) = (XM)−.

If T1 and T2 are similar, and Lat(T1) is modular, then clearly, Lat(T2) is also

modular. In Section 1.3 of Chapter 4, we consider when T1 and T2 are quasi-similar

instead of similar. When T1 ∈ L(H1) is a quasiaffine transform of T2 ∈ L(H2) and

Y ∈ {B ∈ L(H1, H2) : BT1 = T2B}
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is a quasiaffinity, Lat(T2) might not be modular, even though Lat(T1) is modular.

However in Theorem 4.14, we prove :

If Y∗ : Lat(T1) → Lat(T2) is onto and Lat(T1) is modular, then Lat(T2) is also

modular.

As an example of C0-operator T such that Lat(T ) is modular, we have the Jordan

block, that is, S(θ) for an inner function θ in H∞. For Θ = {θα : α < γ} (γ

is a cardinal number) and the Jordan operator S(Θ) =
⊕

α<γ S(θα), the lattice of

hyperinvariant subspaces for S(Θ) is also modular. However it is not proven yet

whether the lattice of hyperinvariant subspaces for any C0-operator relative to D

is modular or not. For a lattice of all closed invariant subspaces for a C0-operator

relative to D, we obtain the following result in Theorem 4.19 :

Let T ∈ L(H) be an operator of class C0 with property (P ). Then Lat(T ) is a

modular lattice.



CHAPTER 2

Shift Operators

In this chapter,we summarize basic results about Hardy spaces relative to the open

unit disk and also provide fundamental results about Hardy spaces over multiply-

connected domains. References for this material are [15], [25], [2], [19] and [31].

We also present the standard definitions of analytic vector bundle and flat uni-

tary vector bundle. References for this material are Steenrod [27], Husemoller [21],

Abrahamse and Douglas [2]. In section 1, we present a shift operator SK on a vector

valued Hardy space over a multiply-connected domain and in section 3, we provide a

generalized Beurling’s theorem for the operator SK .

1. Hardy spaces

Let Ω be a bounded finitely connected region in the complex plane, whose bound-

ary ∂Ω consists of a finite number of disjoint, analytic, simple closed curves and let

z0 be a point of Ω. For each real-valued continuous function u on ∂Ω, we associate a

real number ŭ(z0), where ŭ is the harmonic extension of u to Ω. The map u → ŭ(z0)

is linear and, because of the maximum principle, it is bounded. Thus, the Riesz

representation theorem implies that there is a unique Borel probability measure m,

called the harmonic measure on ∂Ω for z0, such that

ŭ(z0) =
∫

∂Ω
u dm

for every real-valued continuous function u on ∂Ω.

10
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For 1 ≤ p < ∞, the space Hp(Ω) is defined to be the space of analytic functions

f on Ω such that the subharmonic function |f |p has a harmonic majorant on Ω. For

a fixed z0 ∈ Ω, there is a norm on Hp(Ω) defined as follows :

‖f‖p = inf{u(z0)
1/p : u is a harmonic majorant of |f |p}.

Let m be harmonic measure for the point z0 and let Lp(∂Ω) be the Lp-space of

complex valued functions on the boundary of Ω with respect to m. If f is in Hp(Ω),

then there is a function f ∗ in Lp(∂Ω) such that f(z) approaches f ∗(λ0) as z approaches

λ0 nontangentially for almost every λ0 relative to m.

Proposition 2.1. The map f → f ∗ is an isometry from Hp(Ω) onto a closed

subspace, denoted Hp(∂Ω), of Lp(∂Ω).

In this way, Hp(Ω) can be viewed as a closed subspace of Lp(∂Ω).

A function f defined on Ω is in H∞(Ω) if it is holomorphic and bounded. H∞(Ω) is

a closed subspace of L∞(Ω) and it is a Banach algebra if endowed with the supremum

norm. Finally, the mapping f → f ∗ is an isometry of H∞(Ω) onto a week∗-closed

subalgebra of L∞(∂Ω). If Ω is the open unit disk D, we denote Hp(D) simply by

Hp(1 ≤ p ≤ ∞).

We recall that a sequence {fn}∞n=1 of elements in H∞(Ω) is weak∗-convergent

if and only if it is boundedly pointwise convergent, i.e., it converges pointwise and

supn∈N ‖fn‖∞ is finite.

Proposition 2.2. [16] Let R(Ω) be the algebra of rational functions with poles

off Ω. Then R(Ω) is sequentially boundedly weak∗-dense in H∞(Ω), more precisely,

for any f ∈ H∞(Ω) there exists a sequence {rn}∞n=1 in R(Ω) weak∗-convergent to f ,

and such that max{|rn(z)| : z ∈ Ω} ≤ ‖f‖∞ for all n.
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As is frequently the case in the unit disk, it is necessary to consider vector-valued

Hardy spaces. If K is a Hilbert space, then Hp(Ω, K) is defined to be the space of

analytic functions f : Ω → K such that the subharmonic function ‖f‖p is majorized

by a harmonic function u. The norm on Hp(Ω,K) is defined as in the scalar case :

‖f‖p = inf {u(z0)
1/p : u is a harmonic majorant of ‖f‖p}.

Let m denote harmonic measure on ∂Ω relative to z0 and let Lp(∂Ω,K) be the Lp-

space of K-valued functions on the boundary of Ω defined with respect to m. Let

Hp(∂Ω,K) be the set of functions f in Lp(∂Ω,K) such that
∫

∂Ω
f(z)g(z)dz = 0 for

every function g analytic in a neighborhood of the closure of Ω. As in the scalar case,

one can show that a function f in Hp(Ω, K) has nontangential limits a.e. relative

to m, that the boundary function f ∗ is in Hp(∂Ω, K), and the map f → f ∗ is an

isometry from Hp(Ω, K) onto Hp(∂Ω, K). As in the scalar case, Hp(Ω, K) can be

identified with a closed subspace of the space Lp(∂Ω, K).

Define a shift operator SK : H2(Ω, K) → H2(Ω, K) by

(1.1) (SKf)(z) = zf(z).

Let C and L(K) be the set of complex numbers and the algebra of bounded linear

operators from K to K respectively. Let H∞(Ω, L(K)) denote the algebra of bounded

L(K)-valued analytic functions on Ω, which we also consider as consisting of mul-

tiplication operators on H2(Ω, K), that is, for each g ∈ H∞(Ω, L(K)) we define a

multiplication operator Mg : H2(Ω, K) → H2(Ω, K) by

(1.2) (Mgf)(z) = g(z)f(z).

Evidently, for each g ∈ H∞(Ω, L(K)), Mg is a bounded linear operator with norm

‖Mg‖ = ‖g‖∞. Our work is based on the following result due to M.B. Abrahamse

and R.G. Douglas.([2], Proposition 1.9)
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Proposition 2.3. The commutant (SK)′ = {X ∈ L(H2(Ω, K)) : SKX = XSK}
of SK is H∞(Ω, L(K)).

2. Vector Bundles

2.1. Analytic Vector Bundles. We now present in this section and next sec-

tion, the standard definitions of an analytic vector bundle and a flat unitary vector

bundle. A family of Hilbert spaces over Ω is a topological space E together with:

(1) A continuous map p from E onto Ω.

(2) A complex Hilbert space structure on each fiber Ez = p−1(z), z in Ω, such

that the Hilbert space topology on Ez is the same as the topology inherited from E.

If K is a Hilbert space and if U is an open subset of Ω, then a coordinate mapping

from U × K into E is a homeomorphism ϕ : U × K → p−1(U) such that:

(1) For each (z, k) in U × K, the point ϕ(z, k) is in Ez.

(2) For each z in U , the map ϕz(k) : K → Ez defined by ϕz(k) = ϕ(z, k) is a

continuous linear isomorphism.

If each point z in Ω is contained in an open set U of Ω for which there is a Hilbert

space K and a coordinate mapping from U × K into E, then the family of Hilbert

spaces is said to be locally trivial. A locally trivial family of Hilbert spaces over Ω is

called a vector bundle over Ω. Notice that local triviality implies that the function

z → dim Ez is locally constant and since Ω is connected, this function must be

constant throughout Ω. The dimension of E is defined to be the common dimension

of Ez.

An isomorphism between two bundles E and E ′ over Ω is a homeomorphism ϕ

from E onto E ′ such that for each z in Ω, the restriction of ϕ to Ez is a continuous
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linear isomorphism of Ez onto E ′
z. A vector bundle over Ω is said to be trivial if it

is isomorphic to the product bundle Ω×K.

To define analytic vector bundles, let E be a vector bundle over Ω and let K be

a Hilbert space with dimension equal to that of E. A coordinate covering {Us , ϕs}
with fiber K consists of an open cover {Us} of Ω and coordinate mapping ϕs from

Us × K into E. Let GL(K) be the set of all invertible continuous linear operators

on K. Then an analytic vector bundle is a vector bundle equipped with a coordinate

covering {Us , ϕs} such that:

If Us and Ut are two open sets in {Us} with nonempty intersection , then there is

an analytic coordinate transition function fst : Us∩Ut −→ GL(K) defined by fst(z) =

(ϕz
s)
−1ϕz

t .

To define equivalence of analytic vector bundles, let E1 and E2 be vector bundles

over Ω, let Λ be a bundle isomorphism from E1 onto E2, let {Us, ϕs} be an analytic

coordinate covering for E1 with fiber K1, and let {Ut, ϕt} be an analytic coordinate

covering for E2 with fiber K2. Since E1 and E2 are isomorphic, dim K1 = dim K2 ,

so that there is an isometry V from K2 onto K1. It follows that for each coordinate

mapping ϕs, the function (z, h)→ Λ(ϕs(z, V (h)) defines a coordinate mapping from

US × K2 into E2. We denote this coordinate mapping by Λ ◦ ϕs. If all coordinate

transition functions of the coordinate covering {Ut, ϕt} ∪ {Us, Λ ◦ ϕs} are analytic,

then the bundle isomorphism Λ is said to be an analytic isomorphism.

To define an analytic coordinate covering for the product bundle Ω × K, let {Us}
be the set of all open subsets of Ω and define ϕs: US × K → Ω × K by setting

ϕs(z, k) = (z, k). The transition functions are then identically equal to the identity

on Ω and hence, analytic. An analytic vector bundle over Ω which is analytically
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isomorphic to this bundle is said to be analytically trivial. Bungart [10] proved the

following fundamental fact.

Theorem 2.4. Every analytic vector bundle over Ω is trivial.

2.2. Flat Unitary Vector Bundles. Let E be a vector bundle over Ω.

Definition 2.5. A unitary coordinate covering for E is a coordinate covering

{Us, ϕs} such that for each s and for each z in Us, the fiber map ϕz
s : K → Ez is

unitary. The unitary coordinate cover {Us, ϕs} is said to be flat if the transition

functions fst on Us ∩Ut are constant. A flat unitary vector bundle is a vector bundle

equipped with a flat unitary coordinate covering.

If Λ is a bundle isomorphism from E1 onto E2, let {Us, ϕs} be a flat unitary

coordinate covering for E1 , and let {Ut, ϕt} be a flat unitary coordinate covering for

E2, then Λ is said to be isomorphism of flat unitary vector bundles if {Ut, ϕt} ∪ {Us,

Λ ◦ ϕs} is a flat unitary coordinate covering for E2.

Proposition 2.6. [2] Every flat unitary vector bundle over Ω is equivalent to a

flat unitary vector bundle that can be extended to an open set Ω′ containing the closure

of Ω.

2.3. Bundle Shift. Let E be a vector bundle. A cross section of E over Ω is a

continuous function f from Ω into E such that p(f(z)) = z for all z in Ω. If E is an

analytic vector bundle with fiber K. If E is an analytic vector bundle with fiber K

and if {Us, ϕs} is a coordinate covering for E, then a cross section f of E is said to

be analytic if for each s the function z → (ϕz
s)
−1(f(z)) is an analytic function from

Us into K.

If E is a flat unitary vector bundle over Ω with fiber K and coordinate covering

{Us, ϕs} and if f is a cross section of E, then for z in Us ∩ Ut, the operator (ϕz
t )
−1ϕz

s



2. SHIFT OPERATORS 16

is unitary so that ‖(ϕz
s)
−1(f(z))‖ = ‖(ϕz

t )
−1(f(z))‖. This implies that there is a

function hf on Ω defined by hE
f (z) = ‖(ϕz

s)
−1(f(z))‖, where z is in Us.

Definition 2.7. We define H2(Ω, E) to be the space of analytic cross sections f

of E such that (hE
f )2 is majorized by a harmonic function.

Then we proceed as outlined in Section 1 to show that H2(Ω, E) is a Hilbert

space ([19, 25]) with the following norm:

‖f‖2 = inf {u(z0)
1/2 : u is a harmonic majorant of (hE

f )2}.

We define the bundle shift TE : H2(Ω, E) → H2(Ω, E) by

(2.1) (TEf)(z) = zf(z)

for z ∈ Ω. The operator TE admits a functional calculus defined on the algebra R(Ω)

of rational functions with poles off Ω. More precisely, if u ∈ R(Ω), (u(TE)f)(z) =

u(z)f(z) for z ∈ Ω and f ∈ H2(Ω, E). A closed subspace M of H2(Ω, E) is said to

be R(Ω)-invariant for TE if u(TE)M ⊂ M for u ∈ R(Ω).

Theorem 2.8. [2] If E is a flat unitary vector bundle over Ω with fiber K, then

the operator TE is similar to SK.

2.4. Inner Bundle Map. Let E and F be flat unitary bundles over Ω that

extend to Ω′ which is an open set containing the closure of Ω, and Θ be a bounded

holomorphic bundle map from E to F . Since the restriction of Θ to Ez is a bounded

linear function from Ez into Fz, we consider Θ as an element of H∞(Ω, L(Ez, Fz)).

Then Θ can be shown to have nontangential limits a.e. relative to m on ∂Ω. The

limit at a point z of ∂Ω can be regarded as an operator from the fiber of E at z to

the fiber of F at z.
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Definition 2.9. A bounded holomorphic bundle map Θ is inner if the nontan-

gential limits are isometric operators a.e. relative to m.

Recall that an inner function is a function θ ∈ H∞ for which |θ∗| = 1 a.e. on

∂D. We know that Beurling’s theorem characterizes every invariant subspace for the

unilateral shift operator S on H2 defined by (Sf)(z) = zf(z) for any f in H2, that

is, every closed S-invariant subspace M1 of H2, other than {0}, contains an inner

function θ such that

M1 = θH2.

M.A. Abrahamse and R.G. Douglas [2] proved the following generalization of Beurl-

ing’s theorem.

Theorem 2.10. Let TE be a bundle shift on H2(Ω, E). Then a closed subspace

M2 of H2(Ω, E) is R(Ω)-invariant for TE if and only if

M2 = ΘH2(Ω, F ),

where F is a flat unitary vector bundle over Ω and Θ is an inner bundle map from

F to E.

In the next section, we will use this result to provide another generalization of

Beurling’s theorem.

3. Generalization Of Beurling’s Theorem

In the case of unit disk, B.Sz.- Nagy and C. Foias used the Beurling’s Theorem

illustrating invariant subspaces of the unilateral shift S when they thought about

a minimal function of a C0-operator T . In this section we will think about R(Ω)-

invariant subspace for the shift operator

SK : H2(Ω, K) → H2(Ω, K)
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defined in the section 1. We will provide an extended Beurling’s theorem by using

the result provided by M.A. Abrahamse and R.G. Douglas [2].

To use the result provided by M.A. Abrahamse and R.G. Douglas [1], we need to

extend the notion of (vector-valued) inner function ([6]) to bounded finitely connected

regions.

Definition 2.11. Let K and K ′ be Hilbert spaces and let ϕ ∈ H∞(Ω, L(K, K ′)).

We will say that ϕ is quasi-inner if there exists a constant c > 0 such that for every

k ∈ K and almost every z ∈ ∂Ω we have c ‖k‖ ≤ ‖ϕ(z)k‖.

That is, if ϕ ∈ H∞(Ω, L(K, K ′)) is quasi-inner, then operator ϕ(z) is bounded

below almost every z ∈ ∂Ω. This definition allows us to reformulate Theorem 2.10

without using vector bundles.

By the Riesz representation theorem, we identify L(C) with C. Thus we also

provide a definition of (scalar-valued) quasi-inner function.

Definition 2.12. θ ∈ H∞(Ω) is said to be quasi-inner if there exists a constant

m > 0 such that for almost every z ∈ ∂Ω, m ≤ |θ∗(z)|.

Proposition 2.13. Let ϕ ∈ H∞(Ω, L(K,K ′)). If ϕ is a quasi-inner function,

then ϕH2(Ω, K) is closed subspace of H2(Ω, K ′).

Proof. Clearly ϕH2(Ω, K) ⊂ H2(Ω, K ′). Let {ϕfn} be a Cauchy sequence in

ϕH2(Ω, K). If f ∗n is the nontangential limits of fn, then since ϕ is a quasi-inner

function, there exists a constant c > 0 such that

(3.1) ‖ϕ(z)f ∗n(z)− ϕ(z)f ∗m(z)‖ ≥ c ‖f ∗n(z)− f ∗m(z)‖

for a.e. z ∈ ∂Ω.
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Since ‖ϕf ∗n‖H2(∂Ω,K) = ‖ϕfn‖H2(Ω,K), {ϕf ∗n} is a Cauchy sequence in ϕH2(∂Ω, K),

from the equation (3.1) we conclude that {f ∗n} is also a Cauchy sequence in H2(∂Ω, K).

We know that H2(∂Ω, K) is a Banach space. Thus lim f ∗n exists.

If lim f ∗n = f ∗ ∈ H2(∂Ω, K), then by the Proposition 2.1, there is unique f ∈
H2(Ω, K) such that lim fn = f and so lim ϕfn = ϕf ∈ ϕH2(Ω, K ′) which proves this

Proposition. ¤

Theorem 2.14. Let K be a Hilbert space. Then a closed subspace M of H2(Ω, K)

is R(Ω)-invariant for the shift operator SK if and only if there is a Hilbert space K ′

and quasi-inner function ϕ : Ω → L(K ′, K) such that

M = ϕH2(Ω, K ′).

Proof. (⇐) Let M = ϕH2(Ω, K ′) for some quasi-inner function ϕ : Ω →
L(K ′, K). Then by Proposition 2.13, M is closed in H2(Ω, K) and for any g ∈ M ,

there is f ∈ H2(Ω, K ′) such that g(z) = ϕ(z)f(z). Since for any r ∈ R(Ω),

(r(SK)g)(z) = r(z)g(z) = r(z)ϕ(z)f(z) = ϕ(z)[r(z)f(z)] and rf ∈ H2(Ω, K ′),

rg ∈ M . Thus M is invariant for R(Ω).

(⇒) Consider a closed subspace M ⊂ H2(Ω, K) which is R(Ω)-invariant. Let

M ′ = {G ∈ H2(Ω, Ω×K): ∀z ∈ Ω, G(z) = (z, g(z)) for some g ∈ M}.

Then M ′ is a closed subspace of H2(Ω, Ω×K) which is invariant for R(TΩ×K) and so

by Theorem 2.10, there is a flat unitary bundle F over Ω with fiber K ′ and an inner

bundle map Θ : F → Ω×K such that

M ′ = ΘH2(Ω, F ).

By Proposition 2.6, there is a flat unitary vector bundle F ′ over Ω′, an open set

containing the closure of Ω, with fiber K ′ such that F is unitary equivalent to the

bundle F ′|Ω. By Theorem 2.4, there is an analytic isomorphism
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Λ : Ω′ ×K ′ → F ′.

Define an invertible operator W : H2(Ω, K ′) → H2(Ω′|Ω, F ′|Ω) by

(Wf)(z) = Λ(z, f(z)) = Λz(f(z))

for f ∈ H2(Ω, K ′). Then

M ′ = ΘUWH2(Ω, K ′)

where U : H2(Ω, F ′|Ω) → H2(Ω, F ) is a unitary operator. For each z ∈ Ω, we define

a bounded operator Wz : K ′ → Fz by

Wza = U((Wha))(z)

for a ∈ K ′ where ha ∈ H2(Ω, K ′) defined by ha(z) = a.

By the definition of W , we obtain Wza = UΛz(a) for a ∈ K ′. Since a ∈ K ′ is

arbitrary, for each z ∈ Ω,

(3.2) Wz = UΛz.

For a fixed z ∈ Ω, define Θz : Fz → K by Θz = Θ|Fz, i.e. for fz ∈ Fz, Θ(fz) =

(z, Θz(fz)).

For z ∈ Ω, define

(3.3) ϕ(z) = ΘzWz,

then ϕ(z) : K ′ → K. We will prove ϕ ∈ H∞(Ω, L(K ′, K)).

Since Λ is an analytic isomorphism, if {Ut, ϕt} is a unitary coordinate covering for

F ′ and {Us, ϕs} is a unitary coordinate covering for Ω′ ×K ′ (and so ϕs is identity),

then fts : Ut ∩ Us → GL(K ′) is holomorphic. Since

fts(z) = (ϕz
t )
−1((Λ ◦ ϕs)

z) = (ϕz
t )
−1(Λz)

for z ∈ Ut ∩ Us, k(z) = Λz is holomorphic and so if h : Ω′ → L(K ′, Fz) defined by

h(z) = Wz,
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then h is also holomorphic. From the fact that Θ is holomorphic, we conclude that

ϕ is holomorphic.

Since Θ : F → Ω×K is a bounded holomorphic bundle map, Θz can be shown to

have nontangential limits Θ∗
z for all z ∈ A(⊂ ∂Ω) with m(Ac) = 0. Since ‖Θz‖ = ‖Θ∗

z‖
and Θ is an inner function, for z ∈ Ω,

‖Θz‖∞ = 1.

Since h : Ω′ → L(K ′, Fz) is analytic and the norm function is also continuous, there is

M ′′ > 0 such that ‖h(z)‖ ≤ M ′′ for any z ∈ Ω. It follows that ‖ϕ(z)‖ ≤ ‖Θz‖ ‖Wz‖ ≤
M ′′ and so

‖ϕ‖∞ ≤ M ′′.

To conclude our proof, we must verify that ϕ is quasi-inner.

By the same way as above, since fst : Ut ∩ Us → GL(K ′) is holomorphic defined

by fst(z) = ((Λ ◦ ϕs)
z)−1(ϕz

t ) = (Λz)
−1(ϕz

t ) for z ∈ Ut ∩ Us, and so k1(z) = (Λz)
−1 is

holomorphic on Ω′. Thus h1(z) = W−1
z is also holomorphic on Ω′ and so

∥∥Wz
−1

∥∥ ≤ m0

for some m0 > 0 for any z ∈ Ω.

Since ‖Wz(a)‖ ≥ ‖W−1
z Wza‖
‖W−1

z ‖ = ‖a‖
‖W−1

z ‖ ≥
‖a‖
m0

, by the equation (3.3),

‖ϕ(z)(a)‖ ≥ ‖a‖
m0

for all z ∈ A and so ϕ is an quasi-inner function. By the definition of M ′, we conclude

that M = ϕH2(Ω, K ′). ¤

Let K1 and K2 be separable Hilbert spaces and ψ ∈ H∞(Ω, L(K1, K2)). In

the same way as section 1, we define a multiplication operator Mψ : H2(Ω, K1) →
H2(Ω, K2) by

Mψ(g)(z) = ψ(z)g(z)
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for all g in H2(Ω, K1). We can check easily that ‖Mψ‖ = ‖ψ‖∞.

Lemma 2.15. Let K1 and K2 be separable Hilbert spaces. If T : H2(Ω, K1) →
H2(Ω, K2) is a bounded linear operator such that TSK1 = SK2T , then there is a

function ψ ∈ H∞(Ω, L(K1, K2)) such that T = Mψ.

Proof. Define Y ∈ (SK1
⊕

K2)
′ by Y =


0 0

T 0


. Then by Proposition 2.3,

Y = Mω where ω ∈ H∞(Ω, L(K1 ⊕K2)). Let ω =


ω11 ω12

ω21 ω22


. Take ψ = ω21, then

T = Mψ. ¤

In Theorem 2.14, we see that if M is a R(Ω)-invariant closed subspace for the shift

operator SK on H2(Ω, K) then there are a quasi-inner function ϕ : Ω → L(K ′, K)

and a Hilbert space K ′ such that M = ϕH2(Ω, K ′). The following Corollary indicates

when two R(Ω)-invariant closed subspaces for the shift operator SK on H2(Ω, K) are

equal.

Corollary 2.16. Let ϕ1 : Ω → L(K1, K) and ϕ2 : Ω → L(K2, K) be quasi-

inner functions (K,K1,and K2 are Hilbert spaces). Then two subspaces ϕ1H
2(Ω, K1)

and ϕ2H
2(Ω, K2) of H2(Ω, K) are equal if and only if there exist a function ϕ ∈

H∞(Ω, L(K1, K2)) such that ϕ(z) is invertible for any z ∈ Ω, sup ‖ϕ(z)−1‖ < ∞ and

ϕ1(z) = ϕ2(z)ϕ(z)

for any z ∈ Ω. In particular, K1 and K2 have the same dimension.

Proof. Evidently, if ϕ1(z) = ϕ2(z)ϕ(z) for any z ∈ Ω, ϕ1H
2(Ω, K1) ⊂ ϕ2H

2(Ω, K2).

Since sup ‖ϕ(z)−1‖ < ∞ and ϕ2(z) = ϕ1(z)ϕ(z)−1, ϕ2H
2(Ω, K1) ⊂ ϕ1H

2(Ω, K2).

Conversely, assume that ϕ1H
2(Ω, K1) = ϕ2H

2(Ω, K2). Define an operator T :

H2(Ω, K1) → H2(Ω, K2) as follows. For f ∈ H2(Ω, K1),
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Tf = g

such that

(3.4) ϕ1f = ϕ2g.

Since ϕi(i = 1, 2) is a quasi-inner function, T is well-defined and invertible. Since

SK2T = TSK1 , by the previous Lemma 2.15,

T = Mϕ

for a function ϕ ∈ H∞(Ω, L(K1, K2)). By the invertibility of T , SK1T
−1 = T−1SK2 .

From the previous Lemma 2.15, T−1 = Mψ for some ψ ∈ H∞(Ω, L(K2, K1)). It

follows that M−1
ϕ = Mψ.

Since for any f ∈ H2(Ω, K2), f(z) = (M−1
ϕ Mϕf)(z) = (MψMϕf)(z) = ψ(z)ϕ(z)f(z)

for z ∈ Ω,

(3.5) ψ(z)ϕ(z) = IK1 .

Similarly, we can get

(3.6) ϕ(z)ψ(z) = IK2 .

From equations (3.5) and (3.6), we can conclude that ϕ(z) is invertible for any z ∈ Ω

and ϕ(z)−1 = ψ(z).

Since ψ ∈ H∞(Ω, L(K2, K1)), sup ‖ϕ(z)−1‖ < ∞. By the equation (3.4),

ϕ1f = ϕ2ϕf

for f ∈ H2(Ω, K1). Since f ∈ H2(Ω, K1) is arbitrary, we can conclude that ϕ1 = ϕ2ϕ.

Since ϕ(z) is invertible for any z ∈ Ω, K1 and K2 have the same dimension. ¤

Corollary 2.17. Let ϕ ∈ H∞(Ω, L(K1, K2)). Then the following statements are

equivalent.

(a) ϕ is quasi-inner.
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(b) Mϕ is one-to-one and has closed range.

Proof. ((a) → (b)) By Proposition 2.13, MϕH2(Ω, K1) = ϕH2(Ω, K1) is closed.

Since ϕ is quasi-inner, for some c > 0, ‖ϕ(z)a‖ ≥ c ‖a‖ for a.e. z ∈ ∂Ω and for any

a ∈ K1. Thus condition (a) implies ‖Mϕf‖ ≥ c ‖f‖ for f ∈ H2(Ω, K1). It follows

that Mϕ is one-to-one.

((b) → (a)) Since ϕH2(Ω, K1) is is R(Ω)-invariant for SK2 , by Theorem 2.14,

ϕH2(Ω, K1) = ϕ1H
2(Ω, K0)

where K0 is a Hilbert space and ϕ1 : Ω → L(K0, K2) is a quasi-inner function. As in

the proof of Corollary 2.16, we can get an invertible function ϕ2 ∈ H∞(Ω, L(K1, K0))

such that sup ‖ϕ2(z)−1‖ < ∞ and

ϕ(z) = ϕ1(z)ϕ2(z)

for any z ∈ Ω.

Let c1 = sup ‖ϕ2(z)−1‖ > 0. Since 1 =
∥∥ϕ2(z)ϕ−1

2

∥∥ ≤ ‖ϕ2(z)‖ ‖ϕ2(z)−1‖,

(3.7)
1

c1

≤ 1∥∥ϕ−1
2

∥∥ ≤ ‖ϕ2(z)‖ .

From the fact that ϕ1 is quasi-inner, we can conclude that there is a c2 > 0 such that

for any a ∈ K1,

(3.8) ‖ϕ(z)a‖ = ‖ϕ1(z)ϕ2(z)a‖ ≥ c2 ‖ϕ2(z)a‖ ≥ c2

c1

‖a‖ ,

for a.e.z ∈ ∂Ω. It follows that for any a ∈ K1, there is a c = c2
c1

> 0 such that

‖ϕ(z)a‖ ≥ c ‖a‖

for a.e.z ∈ ∂Ω. ¤
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4. Greatest Common Quasi-Inner Divisor

Let θ and θ′ be two inner functions in H∞. We say that θ divides θ′ (or θ|θ′) if θ′

can be written as θ′ = θ·φ for some φ ∈ H∞. It is clear that φ ∈ H∞ is also inner.

We will use the notation θ ≡ θ′ if θ|θ′ and θ′|θ. Generally, the following definition

shows how to define a divisor of a function in H∞.

Definition 2.18. Let f and f ′ be two functions in H∞. We say f divides f ′

(denoted f |f ′) if f ′ can be written as fg for some g ∈ H∞(Ω).

We will use the notation f ≡ f ′ if f |f ′ and f ′|f .

Proposition 2.19. ([6]) For any inner functions θ and θ′ in H∞, the following

assertions are equivalent:

(a) θ | θ′.
(b) θ′H∞ ⊂ θH∞.

(c) θ∞H2 ⊂ θH2.

(d) |θ′(z)|≤ c |θ(z)| for some c > 0 and for all z ∈ D.

Let K be a Hilbert space. The time has come to consider divisibilities be-

tween a function in H∞(Ω) and a function in H∞(Ω, L(K)) or between functions

in H∞(Ω, L(K)).

Definition 2.20. If θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω, L(K)), then we say that θ

divides ϕ (denoted θ|ϕ) if ϕ can be written as

ϕ = θ · φ′

for some φ′ ∈ H∞(Ω, L(K)).

Definition 2.21. If θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω, L(K)), then we say that ϕ

divides θ (denoted ϕ|θ) if there exists ψ ∈ H∞(Ω, L(K)) satisfying the relations
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ϕ(z)ψ(z) = θ(z)IK

and

ψ(z)ϕ(z) = θ(z)IK

for z ∈ Ω.

Definition 2.22. If ϕ and ϕ′ are functions in H∞(Ω, L(K)), then we say that ϕ

is a left divisor of ϕ′ if

ϕ′(z) = ϕ(z)ϕ′′(z) (denoted ϕ|lϕ′)

for some ϕ′′ ∈ H∞(Ω, L(K)), and we say that ϕ is a right divisor of ϕ′ if

ϕ′(z) = ϕ′′(z)ϕ(z) (denoted ϕ|rϕ′)

for some ϕ′′ ∈ H∞(Ω, L(K)). We will say ϕ divides ϕ′ if ϕ is not only a left divisor

but also a right divisor of ϕ′.

Definition 2.23. (a) Let F be a family of functions in H∞(Ω). A (quasi-inner)

function θ ∈ H∞(Ω) is called the greatest common (quasi-inner) divisor of F if θ

divides every element in F and if θ is a multiple of any other common (quasi-inner)

divisor of F . The greatest common quasi-inner divisor of F is denoted by
∧

F ( or
∧

i∈I fi if F = {fi : i ∈ I}, or f1 ∧ f2 if F = {f1, f2}). If
∧

F = 1, then F is said to

be relatively prime.

(b) Let ϕ be a functions in H∞(Ω, L(K)). A (quasi-inner) function θ ∈ H∞(Ω) is

called the greatest common (quasi-inner) divisor of ϕ if θ divides ϕ and every (quasi-

inner) divisors of ϕ is a divisor of θ. The greatest quasi-inner divisor of ϕ is denoted

by D(ϕ).

Lemma 2.24. Let A and B be subsets of H∞(Ω). Then
∧

AB =
∧{fg : f ∈ A

and g ∈ B} ≡ (
∧

A)(
∧

B).
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Proof. Let
∧

A = φ and
∧

B = ψ. Then for any f ∈ A and g ∈ B, f = φQf

and g = ψQg for some Qf , Qg ∈ H∞(Ω). Thus fg = φψQfQg and so

∧
AB = φψ(

∧{QfQg : f ∈ A and g ∈ B}).

If
∧{Qf : f ∈ A} 6= 1 (

∧{Qg : g ∈ B} 6= 1), then
∧

A 6= φ(
∧

B 6= ψ) and so
∧{Qf : f ∈ A} = 1(

∧{Qg : g ∈ B} = 1). Let

d =
∧{QfQg : f ∈ A and g ∈ B},

then d|QfQg for any f ∈ A and g ∈ B. We can conclude that d|Qg for any g ∈ B,

because
∧{Qf : fA} = 1. Since

∧{Qg : g ∈ B} = 1, d ≡ 1. It follows that
∧

AB ≡ (
∧

A)(
∧

B). ¤

Using this Lemma, we can get the following conclusion.

Corollary 2.25. Let C and D be subsets of H∞(Ω). If C is relatively prime,

then so is Ck(= {hk : h ∈ C}) for every positive integer k. If D is also relatively

prime, then so is CD.

By the definition of divisibility, we can get following results similar to Proposition

2.19.

Theorem 2.26. For any quasi-inner functions θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω, L(K)),

the following assertions are equivalent:

(a) θ|ϕ.

(b) ϕH∞(Ω, K) ⊂ θH∞(Ω, K).

(c) ϕH2(Ω, K) ⊂ θH2(Ω, K).

(d) There is a λ > 0 such that ϕ(z)ϕ(z)∗ ≤ λ2|θ(z)|2ICn for any z ∈ Ω.

Proof. If θ|ϕ, ϕ = θϕ1 for some ϕ1 ∈ H∞(Ω, L(K)). Then
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ϕH∞(Ω, K) = θϕ1H
∞(Ω, K) ⊂ θH∞(Ω, K).

Thus (a) implies (b).

Conversely, suppose that ϕH∞(Ω, K) ⊂ θH∞(Ω, K). Then ϕ∗H∞(∂Ω, K) ⊂
θ∗H∞(∂Ω, K).

Let {bi : i ∈ I} be an orthonormal basis of K and gi ∈ H∞(∂Ω, K) defined by

gi(z) = bi(i ∈ I). Since ϕ∗H∞(∂Ω, K) ⊂ θ∗H∞(∂Ω, K), there is fi ∈ H∞(∂Ω, K)

such that ϕ∗gi = θ∗fi, i.e. for i ∈ I,

(4.1) ϕ∗(z)bi = θ∗(z)fi(z).

Define ϕ1 : ∂Ω → L(K) by for i ∈ I,

(4.2) ϕ1(z)bi = fi(z).

For i ∈ I, define ϕi ∈ H∞(∂Ω, L(K)) by ϕi(z)bj = δijfi(z)(j ∈ I), where δij =



1 if i = j

0 otherwise
Then

(4.3) ϕ1 =
∑
i∈I

ϕi.

By (4.1), for each i ∈ I, ϕ∗(z)bi = θ∗(z)ϕ1(z)bi. Since ϕ∗(z) and θ∗(z)ϕ1(z) have the

same value on a basis of K,

ϕ∗ = θ∗ϕ1.

To prove that (b) implies (a), we have to show that ϕ1 ∈ H∞(∂Ω, L(K)). Since

θ ∈ H∞ is a quasi-inner function, there is c > 0 such that |θ(z)| ≥ c for every

z ∈ A ⊂ ∂Ω with m(A) = 0. For any x ∈ K with ‖x‖ = 1 and z ∈ A,

(4.4) ‖ϕ1(z)x‖ =
‖ϕ∗(z)x‖
|θ∗(z)| ≤ ‖ϕ‖∞

c
.

From (4.3) and (4.4), we conclude that

ϕ1 ∈ H∞(∂Ω, L(K)).
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Therefore there is ψ ∈ H∞(Ω, L(K)) such that ϕ = θψ and ψ∗ = ϕ1 which proves

(b) ⇒ (a).

By the same way as above, (a) ⇔ (c) is proven. We begin to prove (a) ⇔ (d). If

θ|ϕ, ϕ = θϕ1 for some ϕ1 ∈ H∞(Ω, L(Cn)). Then

ϕ(z)ϕ(z)∗ = θ(z)ϕ1(z) ϕ1(z)∗θ(z) ≤ ‖ϕ1‖2
∞ |θ(z)|2ICn .

Let λ = ‖ϕ1‖∞. Since ϕ is quasi-inner, ϕ 6= 0 and so λ > 0. Thus (a) implies (d).

Conversely, suppose that for any z ∈ Ω,

(4.5) ϕ(z)ϕ(z)∗ ≤ λ2|θ(z)|2IK

for some λ > 0. For each z ∈ Ω, we will define a linear mapping Fz ∈ L(K). Let

A = {z ∈ Ω : θ(z) = 0}

and

B = {z ∈ Ω : θ(z) 6= 0}.

If z ∈ A, then let Fz = 0. If z ∈ B, then range of θ(z)IK is K and so we can define a

linear mapping Fz from K to range of ϕ(z)∗ by

Fz(θ(z)f) = ϕ(z)∗f

for f ∈ K.

Since
∥∥∥Fz(θ(z)f)

∥∥∥
2

= ‖ϕ(z)∗f‖2 = (ϕ(z)ϕ(z)∗f, f) ≤ λ2(|θ(z)|2f, f) = λ2 ‖θ(z)f‖2,

that is,

(4.6)
∥∥∥Fz(θ(z)f)

∥∥∥ ≤ λ ‖θ(z)f‖,

Fz is well-defined for z ∈ B. By definition of Fz, if z ∈ B, then Fzθ(z) = ϕ(z)∗, and

so

(4.7) θ(z)F ∗
z = ϕ(z).
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If z ∈ A, by 4.5 ‖ϕ(z)‖ = 0 and so ϕ(z) = 0. Thus θ(z)Fz = ϕ(z) for any z ∈ Ω.

Define a function F : Ω → K by

F (z) = F ∗
z .

Then by equation (4.15),

ϕ(z) = θ(z)F (z)

for z ∈ Ω. To finish this proof, we have to prove that F ∈ H∞(Ω, L(K)). From

inequality (4.6), we can get

(4.8) ‖F‖∞ ≤ λ

and so F = ϕ
θ

has only removable singularities in Ω. Thus F can be defined on

{z ∈ Ω : θ(z) = 0} so that F is analytic and

ϕ = θF .

From (4.8), we can conclude that F ∈ H∞(Ω, L(K)) which proves (d) ⇒ (a). ¤

Note that for ϕ ∈ H∞(Ω, L(Cn)), we can think ϕ(z)(z ∈ Ω) as an n × n matrix,

say (ϕij(z))n×n.

Lemma 2.27. If ϕ = [ϕij]
n
i,j=1 is a function in H∞(Ω, L(Cn)), then D(ϕ) =

∧
ϕij.

Proof. Let
∧

ϕij = θ1. If θ ∈ H∞(Ω) ia a quasi-inner function such that θ|ϕ,

then ϕ = θφ for some φ ∈ H∞(Ω, L(Cn)). Thus

(ϕij)n×n = (θφij)n×n

for each i, j = 1, 2, · · ·, n. Thus ϕij = θφij for each i, j = 1, 2, · · ·, n. Since φ ∈
H∞(Ω, L(Cn)), φij ∈ H∞(Ω) and so θ|ϕij for each i, j = 1, 2, · · ·, n. By definition

of greatest common divisor, we can conclude that θ|θ1. Clearly θ1|ϕ. Thus D(ϕ) =

θ1. ¤
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Theorem 2.28. For any quasi-inner functions θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω, L(K)),

the following assertions are equivalent:

(a) ϕ|θ.
(b) θH∞(Ω, K) ⊂ ϕH∞(Ω, K).

(c) θH2(Ω, K) ⊂ ϕH2(Ω, K).

(d) There is a λ > 0 such that |θ(z)|2IK ≤ λ2ϕ(z)ϕ(z)∗ for any z ∈ Ω.

Proof. This theorem is proven by the same way as Theorem 2.26. ¤

Proposition 2.29. For any quasi-inner functions ϕ and ϕ′ in H∞(Ω, L(Cn)) and

H∞(Ω, L(Cn)) respectively, the following assrtions are equivalent:

(a) ϕ|lϕ′.
(b) ϕ′H∞(Ω,Cn) ⊂ ϕH∞(Ω,Cn).

(c) ϕ′H2(Ω,Cn) ⊂ ϕH2(Ω,Cn).

Proof. In the same way as the proofs of Theorem 2.26, it is proven that (a) and

(b) are equivalent and so are (a) and (c). ¤

Corollary 2.30. Let ϕ and ϕ′ be quasi-inner functions in H∞(Ω, L(Cn)). Then

ϕ|lϕ′ and ϕ′|lϕ if and only if there exist a function ϕ ∈ H∞(Ω, L(K1, K2)) such that

ϕ(z) is invertible for any z ∈ Ω with sup ‖ϕ(z)−1‖ < ∞ and ϕ1(z) = ϕ2(z)ϕ(z) for

any z ∈ Ω.

Proof. By Proposition 2.29, we can conclude that ϕ|lϕ′ and ϕ′|lϕ if and only if

ϕ′H2(Ω,Cn) = ϕH2(Ω,Cn). Then by Corollary 2.16, this Corollary is proven. ¤

For quasi-inner functions ϕ and ϕ′ in H∞(Ω, L(Cn)), ϕ(z) is a bounded operator

on the Hilbert space Cn. When we consider some relationships between ϕ|lϕ′ (ϕ|rϕ′)
and ϕ(z)|lϕ′(z) (ϕ(z)|rϕ′(z), respectively) for each z ∈ Ω, first of all, we obtain easily

if ϕ|lϕ(ϕ|rϕ′) then ϕ(z)|lϕ′(z)(ϕ(z)|rϕ′(z), respectively) for each z ∈ Ω.
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For every ϕ ∈ H∞(Ω, L(Cn)), we construct a new function ϕ∼ ∈ H∞(Ω, L(Cn))

by

ϕ∼(z) = ϕ(z)∗

for z ∈ Ω.

Lemma 2.31. Let ϕ1 and ϕ2 be functions in H∞(Ω, L(Cn)). Suppose that z ∈ Ω

if and only if z ∈ Ω. Then following statements are equivalent:

(a) ϕ1|lϕ2.

(b) ϕ∼1 |rϕ∼2 .

Proof. (⇒) Since ϕ1|lϕ2, there is a function ϕ3 ∈ H∞(Ω, L(Cn)) such that

ϕ2(z) = ϕ1(z)ϕ3(z)

for z ∈ Ω. By our assumption, ϕ2(z) = ϕ1(z)ϕ3(z) for z ∈ Ω. Thus

ϕ2(z)∗ = ϕ3(z)∗ϕ1(z)∗

for z ∈ Ω and so ϕ∼1 |rϕ∼2 .

(⇐) By the same way as the proof of (⇒), this implication can be proven. ¤

From Lemma 2.31, we can get a following result.

Corollary 2.32. Let ϕ1 and ϕ2 be functions in H∞(Ω, L(Cn)). Suppose that

z ∈ Ω if and only if z ∈ Ω. Then following statements are equivalent:

(a) ϕ1|ϕ2.

(b) ϕ1|rϕ2 and ϕ∼1 |rϕ∼2 .



CHAPTER 3

C0-Operators

In this chapter we will summarize basic results about classical C0-operators rel-

ative to the open unit disk D. References are H. Bercovici [6], and B. Sz.-Nagy and

C. Foias [27]. Also fundamental results of C0-operator relative to a bounded finitely

connected region Ω in the complex plane, whose boundary ∂Ω consists of a finite

number of disjoint, analytic, simple closed curves will be provided. References for

C0-operator relative to a bounded finitely connected region Ω are J.A. Ball [4] and

Adele Zucchi [31].

1. C0-Operators Relative to D

1.1. A Functional Calculus. It is well-known that for every linear operator A

on a finite dimensional vector space V over the field F , there is a minimal polynomial

for A which is the (unique) monic generator of the ideal of polynomials over F which

annihilate A. If the dimension of F is not finite, then generally there is no such a

polynomial. However, to provide a function similar to a minimal polynomial, B. Sz.-

Nagy and C. Foias focused on a contraction T ∈ L(H) which is called to be completely

nonunitary, i.e. there is no invariant subspace M for T such that the restriction T |M
of T to the space M is a unitary operator.

Let H be a subspace of a Hilbert space K and PH be the orthogonal projection

from K onto H. We recall that if A ∈ L(K), and T ∈ L(H), then A is said to be a

dilation of T provided that for n = 1, 2, ...,

33
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(1.1) T n = PHAn|H.

If A is an isometry (unitary operator) then A will be called an isometric (unitary)

dilation of T . An isometric (unitary) dilation A of T is said to be minimal if no

restriction of A to an invariant subspace is an isometric (unitary) dilation of T . B.

Sz.-Nagy proved the following interesting result:

Proposition 3.1. Every contraction has a unitary dilation.

Let T ∈ L(H) be a completely nonunitary contraction with minimal unitary

dilation U ∈ L(K). For every polynomial p(z) =
∑n

j=0 ajz
j we have

(1.2) p(T ) = PHp(U)|H,

and so this formula suggests that the functional calculus p → p(T ) might be extended

to more general functions p. Since the mapping p → p(T ) is a homomorphism from

the algebra of polynomials to the algebra of operators, we will extend it to a mapping

which is also a homomorphism from an algebra to the algebra of operators. By

Spectral Theorem, since U ∈ L(H) is a normal operator, there is a unique spectral

measure E on the Borel subsets of the spectrum of U denoted as usual by σ(U) such

that

(1.3) U =

∫

σ(U)

zdE(z).

Since the spectral measure E of U is absolutely continuous with respect to Lebesgue

measure on ∂D, for g ∈ L∞(σ(U), E), g(U) can be defined as follows:

(1.4) g(U) =

∫

σ(U)

g(z)dE(z).

It is clear that if g is a polynomial, then this definition agrees with the preceding one.

Since the spectral measure of U is absolutely continuous with respect to Lebesgue
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measure on ∂D, the expression g(U) makes sense for every g ∈ L∞ = L∞(∂D). We

generalize formula 1.2, and so for g ∈ L∞, define g(T ) by

(1.5) g(T ) = PHg(U)|H.

While the mapping g → g(T ) is obviously linear, it is not generally multiplicative,

i.e. it is not a homomorphism. Evidently it is convenient to find a subalgebra in

L∞ on which the functional calculus is multiplicative. Recall that H∞ is the Banach

space of all (complex-valued) bounded analytic functions on the open unit disk D

with supremum norm [29]. It turns out that H∞ is the unique maximal algebra

making the map a homomorphism between algebras. In section 1, we saw that H∞

can be regarded as a subalgebra of L∞(∂D).

We note that the functional calculus with H∞ functions can be defined in terms

of independent of the minimal unitary dilation. Indeed, if u(z) =
∑∞

n=0 anzn is in

H∞, then

(1.6) u(T ) = lim
r→1

u(rT ) = lim
r→1

∞∑
n=0

anr
nT n,

where the limit exists in the strong operator topology.

B. Sz.-Nagy and C. Foias introduced this important functional calculus for com-

pletely nonunitary contractions.

Proposition 3.2. Let T ∈ L(H) be a completely nonunitary contraction. Then

there is a unique algebra representation ΦT from H∞ into L(H) such that :

(i) ΦT (1) = IH , where IH ∈ L(H) is the identity operator;

(ii) ΦT (g) = T , if g(z) = z for all z ∈ D;

(iii) ΦT is continuous when H∞ and L(H) are given the weak∗-topology.

(iv) ΦT is contractive, i.e. ‖ΦT (u)‖ ≤ ‖u‖ for all u ∈ H∞.

We simply denote by u(T ) the operator ΦT (u).
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B.Sz.- Nagy and C. Foias [29] defined the class C0 relative to the open unit disk

D consisting of completely nonunitary contractions T on H such that the kernel of

ΦT is not trivial. If T ∈ L(H) is an operator of class C0, then

ker ΦT = {u ∈ H∞ : u(T ) = 0}

is a weak∗-closed ideal of H∞, and hence there is an inner function generating ker

ΦT . The minimal function mT of an operator of class C0 is the generator of ker

ΦT , and it seems as a substitute for the minimal polynomial. Also, mT is uniquely

determined up to a constant scalar factor of absolute value one [6]. The theory of

class C0 relative to the open unit disk has been described by B.Sz.- Nagy, C. Foias

([29]) and H. Bercovici ([6]).

1.2. Jordan Operator. We know that every n×n matrix over an algebraically

closed field F is similar to a unique Jordan canonical form. To extend that theory

to the C0 operator T ∈ L(H), B.Sz.- Nagy and C. Foias [29] introduced a weaker

notion of equivalence. They defined a quasiaffine transform of T which is bounded

operator T ′ defined on a Hilbert space H ′ such that there exists an injective operator

X ∈ L(H,H ′) with dense range in H ′ satisfying T ′X = XT . We write

T ≺ T ′

if T is a quasiaffine transform of T ′. Instead of similarity, they introduced quasisimi-

larity of two operators, namely, T and T ′ are quasisimilar, denoted by

T ∼ T ′,

if T ≺ T ′ and T ′ ≺ T .

Given an inner function θ ∈ H∞, the Jordan block S(θ) is the operator acting

on H(θ) = H2 ª θH2, which means the orthogonal complement of θH2 in the Hardy

space H2, as follows :

(1.7) S(θ) = PH(θ)S|H(θ)
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where S ∈ L(H2) is the unilateral shift operator defined by

(Sf)(z) = zf(z)

and PH(θ) ∈ L(H2) denotes the orthogonal projection of H2 onto H(θ).

Proposition 3.3. [6] For every inner function θ in H∞, the operator S(θ) is of

class C0 and its minimal function is θ.

Proposition 3.4. [6] Let T1 ∈ L(H) and T2 ∈ L(H) be two completely nonuni-

tary contarctions of class C0. If T1 and T2 are quasisimilar, then mT1 ≡ mT2.

From Proposition 3.3 and Proposition 3.4, we can easily see that for every in-

ner functions θ1 and θ2 in H∞, if S(θ1) and S(θ2) are quasisimilar, then θ1 ≡ θ2.

Conversely,

Proposition 3.5. [6] Let θ1 and θ2 be inner functions in H∞. If θ1 ≡ θ2, then

S(θ1) and S(θ2) are quasisimilar.

Let

Θ = {θi ∈ H∞(Ω) : i = 1, 2, 3, · · ·}

be a family of inner functions. Then Θ is called a model function if θi | θj whenever

j ≤ i. The Jordan operator S(Θ) determined by the model function Θ is the C0-

operator defined as

S(Θ) =
⊕

i<γ′
S(θi),

where γ′ = min{k : θk ≡ 1}. We will call S(Θ) the Jordan model of the operator T if

S(Θ) ∼ T ,

and in the sequel
⊕

i<γ′S(θi) always means a Jordan operator determined by a model

function.
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By using Jordan blocks, C0-operators relative to the open unit disk D can be

classified ([6] Theorem 5.1) :

Theorem 3.6. Any C0-operator T relative to the open unit disk D acting on a

Hilbert space is quasisimilar to a unique Jordan operator.

Theorem 3.7. If Θ and Θ′ are two model functions and S(Θ) ≺ S(Θ′), then

Θ ≡ Θ′ and hence S(Θ) = S(Θ′).

From Theorem 3.6 and Theorem 3.7, we can conclude that ” ≺ ” is an equivalence

relation on the set of C0-operators.

2. C0-Operator Relative To Ω

J.A. Ball([4]) defined the class of C0 relative to a bounded finitely connected

region Ω in the complex plane, whose boundary ∂Ω consists of a finite number of

disjoint, analytic, simple closed curves.

2.1. Functional Calculus. Let H be a Hilbert space and K be a compact subset

of the complex plane.

Definition 3.8. If T ∈ L(H) and σ(T ) ⊆ K, we say that K is a spectral set for

the operator T if

‖r(T )‖ ≤ max {|r(z)| : z ∈ K},

whenever r is a rational function with poles off K, i.e. r ∈ R(K).

To define a C0-operator relative to Ω, we need to provide a representation de-

fined on H∞(Ω) and need to provide an operator with other properties instead of a

completely nonunitary operator.
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If T ∈ L(H) is an operator with Ω as a spectral set and with no normal summand

with spectrum in ∂Ω, that is, T has no reducing subspace M ⊆ H such that T |M is

normal and σ(T |M) ⊆ ∂Ω, then we say that T satisfies hypothesis (h).

Theorem 3.9. ([31], Theorem 3.1.4) Let T ∈ L(H) be an operator satisfying

hypothesis (h). Then there is a unique algebra representation ΨT of H∞(Ω) into

L(H) such that :

(i) ΨT (1) = IH , where IH ∈ L(H) is the identity operator.

(ii) ΨT (g) = T , if g(z) = z for all z ∈ Ω.

(iii) ΨT is continuous when H∞(Ω) and L(H) are given the weak∗−topology.

(iv) ΨT is contractive, that is, ‖ΨT (f)‖ ≤ ‖f‖ for all f ∈ H∞(Ω).

From now on we will denote ΨT (f) by f(T ) for all f ∈ H∞(Ω). With this

functional calculus, we can provide the definition of a C0-operator relative to Ω as in

the previous section.

Definition 3.10. An operator T satisfying hypothesis (h) is said to be of class

C0 if the kernel of ΨT is not trivial.

2.2. Jordan Model. A.Zucchi provided a classification of C0 operators relative

to Ω by a similar way to that of C0 operators relative to the open unit disk([31]).

A nonzero function θ in H∞(Ω) is said to be inner if |θ| is constant a.e. on each

component of ∂Ω. Let θ and θ′ be two inner functions in H∞(Ω). We say that θ

divides θ′ (or θ|θ′) if θ′ can be written as θ′ = θ · φ for some φ ∈ H∞(Ω). We will use

the notation

θ ≡ θ′

if θ and θ′ are two inner functions in H∞(Ω) that differ only by a scalar factor. Thus

the relations θ|θ′ and θ′|θ imply that θ ≡ θ′.
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Clearly every inner function is also quasi-inner. To use Theorem 2.14, we define

a Jordan block S(θ) for a quasi-inner function θ instead of an inner function.

Proposition 3.11. [24] If M is a closed R(Ω)-invariant subspace of Hp(Ω) (1 ≤
p ≤ ∞), then there is an inner function ϕ in H∞(Ω) such that M = ϕHp(Ω).

Definition 3.12. (i) Given a quasi-inner function θ ∈ H∞(Ω), the Jordan block

S(θ) is the operator acting on the space H(θ) = H2(Ω)ª θH2(Ω) as follows :

S(θ) = PH(θ)S|H(θ)

where S ∈ L(H2(Ω)) is defined by (Sf)(z) = zf(z).

(ii) Let

Θ = {θi ∈ H∞(Ω) : i = 1, 2, 3, · · ·}

be a family of quasi-inner functions. Then Θ is called a model function if θi | θj

whenever j ≤ i. The Jordan operator S(Θ) determined by the model function Θ is

the C0-operator defined as

S(Θ) =
⊕

i<γ′
S(θi),

where γ′ = min{k : θk ≡ 1}.

Lemma 3.13. If θ is a quasi-inner function in H∞(Ω), then there is an inner

function θ1 ∈ H∞(Ω) such that S(θ) = S(θ1).

Proof. By Theorem 2.14, θH2(Ω) is a closed R(Ω)-invariant subspace of H2(Ω)

and so by Proposition 3.11, there is an inner function θ1 ∈ H∞(Ω) such that θH2(Ω) =

θ1H
2(Ω). It follows that H(θ) = H(θ1). Thus S(θ) = S(θ1). ¤

We will call S(Θ) the Jordan model of the operator T if S(Θ) ∼ T , and in the

sequel
⊕

i<γ′ S(θi) always means a Jordan operator determined by a model function.

A.Zucchi [31] provided the following classification of C0 operators relative to Ω.
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Theorem 3.14. Every operator T of class C0 relative to Ω is quasisimilar to

a Jordan operator S(Θ). Moreover S(Θ) is uniquely determined by either of the

relations S(Θ) ≺ T or T ≺ S(Θ).

2.3. Scalar Multiples. Let K and K ′ be Hilbert spaces and ϕ ∈ H∞(Ω, L(K, K ′))

be a quasi-inner function. By Proposition 2.13, ϕH2(Ω, K) is a closed subspace of

H2(Ω, K ′). Thus we define

H(ϕ) = H2(Ω, K ′)ª ϕH2(Ω, K)

and denote by S(ϕ) the compression of SK′ to H(ϕ), i.e.,

S(ϕ) = PH(ϕ)SK′|H(ϕ),

where PH(ϕ) denotes the orthogonal projection onto H(ϕ). Until now, a lot of prob-

lems for the C0-operator relative to D have been solved. In this paper, we will prove

some similar results for the C0-operator relative to Ω by using quasi-inner functions

instead of inner functions in H∞.

In Proposition 3.3, we have already mentioned that for any inner function θ ∈ H∞,

the Jordan block S(θ) is of class C0 with minimal function. Even though S(ϕ) is

defined by the same way as S(θ), ϕ is an operator-valued function. Thus to study

the minimal function of S(ϕ), we provide a new concept.

Definition 3.15. The function ϕ ∈ H∞(Ω, L(K,K ′)) is said to have a scalar

multiple u ∈ H∞(Ω), u 6= 0, if there exists ψ ∈ H∞(Ω, L(K ′, K)) satisfying the

relations ϕ(z)ψ(z) = u(z)IK′ and ψ(z)ϕ(z) = u(z)IK for z ∈ Ω, that is ϕ|u.

In fact, by using scalar multiple of a quasi-inner function ϕ ∈ H∞(Ω, L(K, K ′)),

we can determine whether S(ϕ) is of class C0 relative to Ω or not.

Theorem 3.16. Suppose that ϕ ∈ H∞(Ω, L(K, K ′)) is a quasi-inner function and

u ∈ H∞(Ω). Then the following assertions are equivalent :
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(a) u is a scalar multiple of ϕ.

(b) u(S(ϕ)) = 0.

(c) uH2(Ω, K ′) ⊂ ϕH2(Ω, K).

Proof. Assume (a), and let ψ ∈ H∞(Ω, L(K ′, K)) satisfy the relation ϕ(z)ψ(z) =

u(z)IK′ for z ∈ Ω. Then

u(S(ϕ))H(ϕ) = PH(ϕ)u(SK′)H(ϕ) ⊂ PH(ϕ)uH2(Ω, K ′) ⊂ PH(ϕ)ϕH2(Ω, K).

Thus u(S(ϕ)) = 0. Thus (a) → (b).

Next, assume (b). Then u(SK′)H(ϕ) = uH(ϕ) ⊂ ϕH2(Ω, K). It follows that

uH2(Ω, K ′) = uH(ϕ) + uϕH2(Ω, K) ⊂ ϕH2(Ω, K).

Thus (b) → (c).

In order to prove (c) → (a), let

M = {f ∈ H2(Ω, K) : ug = ϕf for some g ∈ H2(Ω, K ′)}.

Then M is rationally invariant. By Theorem 2.14, there is a Hilbert space K1 and a

quasi-inner function ϕ1 ∈ H∞(Ω, L(K1, K)) such that

M = ϕ1H
2(Ω, K1).

From the Theorem 2.2.4 in [31], u = θF where θ is a function such that |θ| is constant

almost everywhere on each component of ∂Ω, i.e. an inner function in H∞(Ω), and

F is an outer function in H∞(Ω). By the definition of M ,

θH2(Ω, K ′) = θFH2(Ω, K ′) = uH2(Ω, K ′) = ϕM = ϕM = ϕϕ1H
2(Ω, K1).

Since θ is inner, θIK′ ∈ H∞(Ω, L(K ′)) is quasi-inner. Then by Corollary 2.16, there

exist ϕ2 ∈ H∞(Ω, L(K ′, K1)) such that θIK′ = ϕϕ1ϕ2. Then uIK′ = ϕ(Fϕ1ϕ2), that

is,

u(z)IK′ = ϕ(z)(F (z)ϕ1(z)ϕ2(z)).
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Since Fϕ1ϕ2 ∈ H∞(Ω, L(K ′, K)), it is proven. ¤

If ϕ ∈ H∞(Ω, L(Cn)) is given, then ϕ(z) can be regarded as an n×n matrix. Let

det be the determinant function on n× n matrices over C and for a n× n matrix A,

adj A be the algebraic classical adjoint of A, i.e. (adj A)A = A(adj A) = (det A)I.

Then we define two functions det ϕ and adj ϕ on Ω by (det ϕ)(z) = det ϕ(z) and

(adj ϕ)(z) = adj ϕ(z).

In the next Proposition, we will see that when ϕ ∈ H∞(Ω, L(Cn)) is a quasi-inner

function, det ϕ and adj ϕ are also quasi-inner.

Proposition 3.17. Let K and K ′ be Hilbert spaces with dim K = dim K ′ = n(<

∞).

(a) If ϕ ∈ H∞(Ω, L(K,K ′)) is a quasi-inner function, then ϕ(z) is invertible a.e.

on ∂Ω.

(b) If ϕ ∈ H∞(Ω, L(Cn)) is a quasi-inner function, then θ, defined by θ(z)=

det ϕ(z), is quasi-inner.

(c) If ϕ ∈ H∞(Ω, L(Cn)) is a quasi-inner function, then adj ϕ is quasi-inner.

(d) If ϕ ∈ H∞(Ω, L(K,K ′)) be a quasi-inner function, then S(ϕ) on H(ϕ) is of

class C0.

Proof. (a) Since ϕ ∈ H∞(Ω, L(K, K ′)), ϕ has nontangential limits for any z ∈
∂Ω\A with m(A) = 0. For a fixed z0 ∈ ∂Ω\A, since for some c > 0 and a ∈ K,

c ‖a‖ ≤ ‖ϕ(z0)a‖,

range of ϕ(z0) is closed, and ϕ(z0) is one-to-one. By the first isomorphism theorem,

ϕ(z0)K ∼= range of ϕ(z0).

Thus K and range of ϕ(z0) have the same dimension.
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Since dim K = dim K ′ and range of ϕ(z0) is a closed subspace of K ′, we conclude

range of ϕ(z0) = K ′, that is, ϕ(z0) is one-to-one and onto. Thus ϕ(z) is invertible for

z ∈ ∂Ω\A.

(b) If ϕ ∈ H∞(Ω, L(Cn)), then θ = det ϕ is a polynomial and so θ ∈ H∞. Since

ϕ is quasi-inner, there exist m(> 0), and M(> 0) such that for h ∈ Cn,

m ‖h‖ ≤ ‖ϕ(z)h‖ ≤ M ‖h‖ a.e. z ∈ ∂Ω.

Then

mn ≤ | det ϕ(z)| = |θ(z)| ≤ Mna.e.z ∈ ∂Ω.

Thus θ ∈ H∞ is quasi-inner.

(c) By (b), there is m1 > 0 such that m1 ≤ |det ϕ(z)| a.e. z ∈ ∂Ω. Since ϕ is

quasi-inner, there exist c1(> 0), and c2(> 0) such that for h ∈ Cn, c1 ‖h‖ ≤ ‖ϕ(z)h‖ ≤
c2 ‖h‖ a.e. z ∈ ∂Ω. Since (ϕ(z)(adj ϕ(z)) = det ϕ(z)ICn , for h ∈ Cn, m1 ‖h‖ ≤ |det

ϕ(z) | ‖h‖ =‖ϕ(z) adj ϕ(z)h‖≤ c2 ‖adj ϕ(z)h ‖. Thus for h ∈ Cn,

(2.1)
m1

c2

‖h‖ ≤ ‖adj ϕ(z)h‖

a.e. z ∈ ∂Ω.

Next, c1‖ adj ϕ(z)h‖≤‖ϕ(z) adj ϕ(z)h‖= | det ϕ(z)| ‖h‖ ≤‖ det ϕ(z)‖∞ ‖h‖ a.e.

z ∈ ∂Ω. Since ϕ ∈ H∞, ‖ det ϕ(z)‖∞= M0 < ∞. Thus

(2.2) ‖adj ϕ(z)h‖ ≤ M0

c1

‖h‖

a.e. z ∈ ∂Ω. Clearly adj ϕ is holomorphic, i.e. adj ϕ ∈ H∞(Ω, L(Cn)). From (2.1)

and (2.2), we conclude that adj ϕ is also quasi-inner.

(d) By Theorem 3.16, it’s enough to prove that ϕ has a scalar multiple u ∈ H∞(Ω).

Let ψ(z) = adj ϕ(z) and u(z) = det ϕ(z). Then by (c), ψ ∈ H∞(Ω, L(K ′, K)) and by

(b), u ∈ H∞(Ω). Since ϕ(z)(adj ϕ(z)) = (det ϕ(z))IK′ , for z ∈ Ω, it is proven. ¤
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Corollary 3.18. Let K and K ′ be Hilbert spaces with dim K = dim K ′ =

n(< ∞). If ϕ ∈ H∞(Ω, L(K, K ′)) is quasi-inner, and ψ ∈ H∞(Ω, L(K ′, K)) such

that ϕ(z)ψ(z) = u(z)IK′ for u ∈ H∞(Ω), u 6= 0, then ψ(z)ϕ(z) = u(z)IK.

Proof. By Proposition 3.17 (a), ϕ(z) is invertible a.e. on ∂Ω. From the equation

ϕ(z)ψ(z) = u(z)IK′ , we obtain

ψ(z) = ϕ(z)−1[u(z)IK′ ] = u(z)ϕ(z)−1IK′ = u(z)IKϕ(z)−1

for a.e. z ∈ ∂Ω. It follows that for a.e. z ∈ ∂Ω, ψ(z)ϕ(z) = u(z)IK which proves this

Corollary. ¤

From Corollary 3.18, we see that if K and K ′ are Hilbert spaces with finite di-

mension, a quasi-inner function ϕ ∈ H∞(Ω, L(K,K ′)) has a scalar multiple if and

only if there exists ψ ∈ H∞(Ω, L(K ′, K)) satisfying the relations

ϕ(z)ψ(z) = u(z)IK′

for z ∈ Ω

Corollary 3.19. (a) If ϕ ∈ H∞(Ω, L(Cn)) and u ∈ H∞(Ω) are quasi-inner

functions such that

ϕ(z)ψ(z) = u(z)ICn

where ψ ∈ H∞(Ω, L(Cn)), then ψ is also quasi-inner.

(b) Conversely, if ϕ ∈ H∞(Ω, L(Cn)) and ψ ∈ H∞(Ω, L(Cn)) are quasi-inner

functions such that

ϕ(z)ψ(z) = u(z)ICn or ψ(z)ϕ(z) = u(z)ICn

for some u ∈ H∞(Ω)(u 6= 0), then u is quasi-inner.

Proof. (a) It could be proven in the same way as the proof of Proposition 3.17

(c).
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(b) Since ϕ ∈ H∞(Ω, L(Cn)) and ψ ∈ H∞(Ω, L(Cn)) are quasi-inner functions,

there exist m1(> 0), and m2(> 0) such that for h ∈ Cn, m1 ‖h‖ ≤ ‖ϕ(z)h‖ and

m2 ‖h‖ ≤ ‖ϕ(z)h‖ a.e. z ∈ ∂Ω. Then

‖ϕ(z)ψ(z)h‖ ≥ m1 ‖ψ(z)h‖ ≥ m1m2 ‖h‖

and so ‖ϕ(z)ψ(z)‖ ≥ m1m2. Let m′ = m1m2. Since |u(z)|= ‖ϕ(z)ψ(z)‖, it is

proven. ¤

From Corollary 3.19(a), we also conclude that If u1 ∈ H∞(Ω) and u2 ∈ H∞(Ω)

are quasi-inner functions such that

u1(z)u3(z) = u2(z)ICn

where u3 ∈ H∞(Ω), then u3 is also quasi-inner.

Proposition 3.20. Let ϕ ∈ H∞(Ω, L(Cn)) be a quasi-inner function and ζ ∈
H∞(Ω) be a function defined by

ζ(z) = adj (ϕ(z)).

If θ0 ∈ H∞(Ω) is the minimal function of S(ϕ), then

det ϕ(z) ≡ θ0(z)D(ζ)(z).

Proof. From the fact (adj A)A = A(adj A) = (det A)ICn for any n× n matrix

A, we obtain that

ϕ(z)ζ(z) = ϕ(z) adj(ϕ(z)) = (det ϕ(z))ICn .

Since the minimal function of S(ϕ) is θ0, by Theorem 3.16, θ0 is the least scalar

multiple of ϕ and from the equation ??, if u(z) = det ϕ(z), then θ0|u. Let

(2.3) det ϕ(z) = θ0(z)q(z)

for z ∈ Ω where q ∈ H∞(Ω). Since θ0 is the least scalar multiple of ϕ, there exists ψ

∈ H∞( Ω, L(Cn)) satisfying the relation
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ϕ(z)ψ(z) = θ0(z)ICn

for z ∈ Ω. Then

ϕ(z)q(z)ψ(z) = q(z)θ0(z)ICn = det ϕ(z)ICn = ϕ(z) adj (ϕ(z)) = ϕ(z)ζ(z),

and so

(2.4) ϕ(z)[q(z)ψ(z)− ζ(z)] = 0.

Since ϕ is a quasi-inner function, equation (2.4) implies that q(z)ψ(z) = ζ(z). Thus

(2.5) q|D(ζ)

and ζ(z) = adj (ϕ(z)) = D(adj (ϕ(z)))ψ′(z) for some ψ′ ∈ H∞( Ω, L(Cn)).

It follows that D(adj (ϕ(z)))ψ′(z)ϕ(z) = [adj (ϕ(z))]ϕ(z) = det ϕ(z)ICn or ψ′(z)ϕ(z) =

ϕ(z)ψ′(z) = [det ϕ(z)/D(adj (ϕ(z)))]ICn = det ϕ(z)
D(ζ)(z)

ICn . By Corollary 3.18,

ψ′(z)ϕ(z) = ϕ(z)ψ′(z) = det ϕ(z)
D(ζ)(z)

ICn ,

and so by Theorem 3.16,

(2.6) θ0|det ϕ(z)

D(ζ)(z)
.

By (2.5), there is a function q1 ∈ H∞(Ω) such that D(ζ)(z) = q(z)q1(z). Then from

equation (2.3), we obtain [det ϕ(z)]q1(z) = θ0(z)q(z)q1(z) = θ0(z)D(ζ)(z) and so

(2.7) det ϕ(z)|θ0(z)D(ζ)(z).

From (2.6) and (2.7), we can conclude that det ϕ(z) ≡ θ0(z)D(ζ)(z).

¤

Corollary 3.21. Let ϕ and ψ be quasi-inner functions in H∞(Ω, L(Cn)). If

ψ(z)ϕ(z) = φ(z)ICn(z ∈ Ω) for some φ ∈ H∞(Ω) and S(ϕ) ∼ ⊕
i<ω S(θi) ( θi ∈

H∞(Ω) is a quasi-inner function for i = 0, 1, 2...), then D(ψ)θ0 ≡ φ.
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Proof. This Corollary can be proven if we substitute φ(z) and ψ(z) instead of

det ϕ(z) and adj (ϕ(z)) respectively in Proposition 3.20. ¤

3. Quasi-equivalence and Quasi-similarity

3.1. Normal Form. Let M be an m× n matrix with entries in the polynomial

algebra F [x] over a field F , 1 ≤ k ≤ min(m, n), and δk(M) is the greatest common

divisor of the determinant of all k × k submatrices of M . It is well known that M is

equivalent to a matrix N which is in normal form [20], i.e., every entry off the main

diagonal of N is 0 and on the main diagonal of N there appear (in order) polynomials

f1,..., fl such that fk divides fk+1, 1 ≤ k ≤ l − 1. In fact,

(3.1) fk =
δk(M)

δk−1(M)
.

To get a similar conclusion for any n×n matrices over H∞(Ω, K), we need another

equivalence relation on the set of all n× n matrices over H∞(Ω, K).

Definition 3.22. A quasi-unit X of order n is a collection of n×n matrices over

H∞(Ω) such that for det X = {det A : A ∈ X}, det X is relatively prime, that is,

∧
A∈X det A ≡ 1.

Definition 3.23. If A and B are m × n matrices over H∞(Ω), then A will be

called quasi-equivalent to B if there exist quasi-units X and Y of order m and n

respectively such that XA = BY .

In [15], Theorem 4.7.3 says that each function f ∈ Hp(Ω) has a factorization

(3.2) f = θF

where θ is inner and F is an outer function in Hp(Ω). In this paper, (f)i denotes θ,

i.e. inner part θ when we have the factorization 3.2.
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Definition 3.24. If A and B are n×n matrices over H∞(Ω) and δ is an H∞(Ω)

function, then A will be called δ-equivalent to B if there are square matrices X and

Y of order n such that XA = BY and (det X)i and (det Y )i are factors of δ.

It is immediate that if A is δ-equivalent to B for all δ in a relatively prime family,

then A is quasi-equivalent to B. A matrix E over H∞(Ω) is in normal form or simply,

normal provided

(3.3) E =


D 0

0 0




where D is a diagonal matrix of nonzero quasi-inner functions, each with a positive

first nonvanishing Taylor coefficient, and each one except the first divisible by its

predecessor.

Definition 3.25. Let Dk(A) be the greatest common quasi-inner divisor of all

minors of rank k of A (k is no larger than min{m,n}) and D0=1. Then the invariant

factors for a m× n matrix A over H∞(Ω) are defined by

ξk(A) = Dk(A)/Dk−1(A)

for k ≥ 1 such that some minors of rank k are not 0.

With these definitions, we obtain the following conclusion.

Proposition 3.26. Let K be a finite dimensional Hilbert space. Every n × n

matrices over H∞(Ω, K) is quasi-equivalent to a unique normal matrix. In fact,

given any n × n matrix A over H∞(Ω, K) and any quasi-inner function ψ, A is δ-

equivalent to the normal matrix formed from the invariant factors of A for some δ

relatively prime to ψ.

Proof. The proof is analogous to that of Theorem 3.1 in [23] ¤
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Corollary 3.27. Let ϕ be a quasi-inner function in H∞(Ω, L(Cn)). If A is a

matrix over H∞(Ω) representing ϕ, and A is quasi-equivalent to a normal matrix N

whose diagonal entries are θ0, ..., θn−1, then

det ϕ(z) ≡ θ0 · · · θn−1.

Proof. Let ψ = θ0 · · · θn−1. By Proposition 3.26, there is δ1(∈ H∞(Ω)) relatively

prime to ψ such that A and N are δ1-equivalent. Thus there are square matrices X1

and Y1 of order n such that X1A = NY1, (det X1)i|δ1, and (det Y1)i|δ1. Since δ1 is

relatively prime to ψ = det N , so are (det X1)i and (det Y1)i. It follows that

det N = θ0 · · · θn−1|(det A)(det X1)

and so

(3.4) (det N)|(det A).

From Proposition 3.17, if ω = det A, then ω(z) = det ϕ(z) is a quasi-inner function.

By Proposition 3.26, there is δ2 ∈ H∞(Ω) relatively prime to ω such that A and N

are δ2-equivalent. Thus there are square matrices X2 and Y2 of order n such that

X2A = NY2, (det X2)i|δ2, and (det Y2)i|δ2.

Clearly (det X2)i and (det Y2)i are relatively prime to ω. Because X2A = NY2 and

(det Y2)i is relatively prime to ω = det A,

(det A)|(det N).

Therefore 3.4 and 3.1 imply that det A = det ϕ(z) ≡ det N ≡ θ0 · · · θn−1. ¤

Let f1 and f2 be in H∞(Ω). If M is the w∗-closure of f1H
∞(Ω) + f2H

∞(Ω), then

by the same way as Theorem 1 in [24], we obtain M = (f1 ∧ f2)H
∞(Ω).

Theorem 3.28. Let ϕ1, ϕ2 ∈ H∞(Ω) be such that ϕ1∧ϕ2 ≡ 1. If f ∈ L2(∂Ω,Cn),

ϕ1f ∈ H2(∂Ω,Cn) and, ϕ2f ∈ H2(∂Ω,Cn), then f ∈ H2(∂Ω,Cn).
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Proof. Since ϕ1 ∧ ϕ2 ≡ 1, w∗-closure of ϕ1H
∞(∂Ω) + ϕ2H

∞(∂Ω) is H∞(∂Ω).

Thus there are nets {fα} and {gα}(α ∈ A which is a directed set) in H∞(∂Ω) such

that hα = ϕ1fα + ϕ2gα weak∗-converges to 1, that is,

(3.5)

∫

∂Ω

(hα − 1)hdm → 0

for any h ∈ L1(∂Ω). We will prove that hαf → f weakly in L2(∂Ω,Cn), that is,

((hαf − f), g) → 0

for any g ∈ L2(∂Ω,Cn). If f = (f1, · · ·, fn) and g = (g1, · · ·, gn), then ((hαf −
f), g) =

∑i=n
i=1

∫
∂Ω

(hα − 1)fiḡidm. Since f , g ∈ L2(∂Ω,Cn), fi and ḡi ∈ L2(∂Ω)

for any i = 1, · · ·, n. By the Hölder’ inequality, fi · ḡi ∈ L1(∂Ω). From (3.5),
∫

∂Ω
(hα − 1)fiḡidm → 0. It follows that

∑
i

∫
∂Ω

(hα − 1)fiḡidm → 0 and so

(3.6) hαf → f

weakly in L2(∂Ω,Cn). Since a subspace of a Banach space is norm closed if and

only if it is weakly closed [11] and H2(∂Ω,Cn) is a closed subspace of L2(∂Ω,Cn),

H2(∂Ω,Cn) is weakly closed. Since ϕ1f , ϕ2f ∈ H2(∂Ω,Cn), hαf ∈ H2(∂Ω,Cn).

From (3.6), we conclude that f ∈ H2(∂Ω, Cn). ¤

3.2. Quasi-similarity. In this section, we will discuss about some relations of

quasi-equivalence, quasi-similarity, and quasi-affinity.

Proposition 3.29. Let ϕ1 and ϕ2 are quasi-inner functions in H∞(Ω, L(Cn)).

If ϕ1 and ϕ2 are quasi-equivalent, then S(ϕ1) and S(ϕ2) are quasisimilar.

Proof. Since ” ≺ ” is an equivalence relation on the set of C0-operators, it will

suffice to prove S(ϕ1) ≺ S(ϕ2). In the same way as Corollary 3.27, there are functions

∆ and Λ in H∞(Ω, L(Cn)) whose determinants are relatively prime to those of ϕ1
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and ϕ2 and satisfying the equation

(3.7) ∆ϕ1 = ϕ2Λ.

Since ϕ2 is a quasi-inner function in H∞(Ω, L(Cn)), ϕ2H
2(Ω,Cn) is a closed subspace

of H2(Ω,Cn).

Define

X = PH(ϕ2)∆|H(ϕ1).

Since ∆ϕ1H
2(Ω,Cn) ⊂ ϕ2H

2(Ω,Cn), for any f ∈ H(ϕ1), XS(ϕ1)f = PH(ϕ2)∆PH(ϕ1)Sf =

PH(ϕ2)∆Sf = PH(ϕ2)S∆f = PH(ϕ2)SPH(ϕ2)∆f = S(ϕ2)Xf. Thus

XS(ϕ1) = S(ϕ2)X.

Next, we will prove that X is quasi-affinity. Suppose v ∈ H(ϕ2) is orthogonal to

the range of X, and let u ∈ H2(Ω,Cn). Then u = u1 + ϕ1u2 for some u1 ∈ H(ϕ1)

and u2 ∈ H2(Ω,Cn). Since v ∈ H(ϕ2),

(v, ∆u1) = (PH(ϕ2)v, ∆u1) = (v, PH(ϕ2)∆u1) = (v, Xu1) = 0,

and equation (3.7) implies that

(v, ∆ϕ1u2) = (v, ϕ2Λu1) = 0.

Thus v is orthogonal to ∆H2(Ω,Cn), which includes (det ∆)H2(Ω,Cn), because of

adj ∆ ∈ H∞(Ω,Cn). However v is also orthogonal to ϕ2H
2(Ω,Cn), which include

(det ϕ2)H
2(Ω,Cn).

Since det ∆ and det ϕ2 are relatively prime, (det ∆)H2(Ω,Cn) and (det ϕ2)H
2(Ω,Cn)

span H2(Ω,Cn), thus v = 0. Consequently X has dense range.

Let ω ∈ H(ϕ1) such that Xω = 0, i.e.

(3.8) ∆ω ∈ ϕ2H
2(Ω,Cn).
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By Proposition 3.17, there is a measure zero set B of ∂Ω such that ϕ1(z) is invertible

on ∂Ω\B and ω has nontangential limits on ∂Ω\B and so we can define g : ∂Ω → Cn

such that g(z) = ϕ1(z)−1ω(z) for z ∈ ∂Ω \ B. Then g ∈ L2(Ω,Cn), because ϕ1 is

uniformly bounded below. Since ϕ1(z)g(z) = ω(z),

(3.9) ϕ1g ∈ H2(Ω,Cn)

From the fact that ϕ2Λg = ∆ϕ1ϕ1
−1ω = ∆ω a.e. on ∂Ω, by (3.8) we conclude that

ϕ2Λg ∈ ϕ2H
2(Ω, Cn). Since ϕ2 is quasi-inner, ϕ2 is invertible a.e. on ∂Ω. Thus

(3.10) Λg ∈ H2(∂Ω,Cn).

(3.9) and (3.10) imply that (det ϕ1)g ∈ H2(∂Ω,Cn) and (det Λ)g ∈ H2(∂Ω,Cn).

Since (det ϕ1) ∧ (det Λ) ≡ 1, by Theorem 3.28, g ∈ H2(∂Ω,Cn). Then there is

a function F ∈ H2(Ω,Cn) such that F ∗ = g and so ϕ1F = ω a.e. on ∂Ω. It follows

that ϕ1F = ω on Ω. Thus

ω ∈ ϕ1H
2(Ω, Cn) ∩H(ϕ1),

and so ω = 0. Hence X is one-to-one and so S(ϕ1) ≺ S(ϕ2). ¤

Corollary 3.30. Let ϕ be a quasi-inner function in H∞(Ω, L(Cn)). If A is a

matrix over H∞(Ω) representing ϕ and A is quasi-equivalent to a normal matrix N

whose diagonal entries are θ0 · · · θn−1(θi+1|θi for i = 0, 1, · · ·, n− 1), then

S(ϕ) ∼ ⊕n−1
i=0 S(θi).

Proof. Since S(N) ∼ ⊕n−1
i=0 S(θi), by Proposition 3.29, S(ϕ) ∼ ⊕n−1

i=0 S(θi),

because ” ∼ ” is an equivalence relation. ¤

Corollary 3.31. Let ϕ1 and ϕ2 be quasi-inner functions in H∞(Ω, L(Cn)). If

S(ϕ1) is a quasi-affine transform of S(ϕ2), then ϕ1 and ϕ2 are quasi-equivalent.
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Proof. Let ϕ1
′ and ϕ2

′ be the normal matrices that are quasi-equivalent to ϕ1

and ϕ2 respectively. Then by Proposition 3.29 and the hypothesis, S(ϕ1
′) ∼ S(ϕ1) ≺

S(ϕ2) ∼ S(ϕ2
′) and so

(3.11) S(ϕ1
′) ≺ S(ϕ2

′).

By Corollary 3.30, if θ0, · · ·, θn−1 and g0, · · ·, gn−1 are diagonal entries of ϕ1
′ and ϕ2

′

respectively, then S(ϕ1
′) ∼ ⊕n−1

i=0 S(θi) and S(ϕ2
′) ∼ ⊕n−1

i=0 S(gi). Thus by (3.11),

(3.12)
n−1⊕
i=0

S(θi) ≺
n−1⊕
i=0

S(gi).

It was shown that if one Jordan operator is a quasiaffine transform of another, then

they are both determined by the same nonconstant quasi-inner functions (Theorem

4.3.9. in [31]). Consequently, ϕ1
′ = ϕ2

′. It follows by transitivity that ϕ1 and ϕ2 are

quasi-equivalent. ¤

Corollary 3.32. Let ϕ be a quasi-inner function in H∞(Ω, L(Cn)). If S(ϕ) ∼
⊕n−1

i=0 S(θi), then det ϕ(z) ≡ θ0(z), · · ·, θn−1(z) (z ∈ Ω).

Proof. Let N be a normal matrix whose diagonal entries are θ0, · · ·, θn−1. Since

S(N) ∼ ⊕n−1
i=0 S(θi), S(ϕ) ∼ S(N). By Corollary 3.31, ϕ and N are quasi-equivalent.

Then by Corollary 3.27, det ϕ(z) ≡ θ0(z), · · ·, θn−1(z) ¤

4. Tensor operations

By using Beurling’s theorem, every invariant subspace M of S(θ) for an inner

function θ ∈ H∞ is characterized in Proposition 1.10 [6], that is, M has the form

φH2 ª θH2. We extend this result to a R(Ω)-invariant for S(ϕ) where ϕ is a quasi-

inner function in H∞(Ω,L(F, F ′)) for some separable Hilbert spaces F and F ′. When

we prove this result, we will use our generalized Beurling’s theorem (Theorem 2.14)

instead of Beurling’s theorem.
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Theorem 3.33. Let F and F ′ be two separable Hilbert spaces and ϕ be a quasi-

inner function in H∞(Ω, L(F, F ′)).

(i) If M ⊂ H(ϕ) is a rationally invariant subspace (i.e.R(Ω)-invariant) for S(ϕ),

then there is a Hilbert space K and quasi-inner functions ϕ1 ∈ H∞(Ω, L(F, K)) and

ϕ2 ∈ H∞(Ω, L(K,F ′)) such that ϕ(z) = ϕ2(z)ϕ1(z) for z ∈ Ω and

(4.1) M = ϕ2H
2(Ω, K)ª ϕH2(Ω, F )

(ii) Conversely, if K, ϕ1 and ϕ2 are as above , then 4.1 defines a rationally

invariant subspace of H(ϕ). Moreover, if

S(ϕ) =


T1 X

0 T2




is the triangularization of S(ϕ) with respect to the decomposition H(ϕ) = M ⊕ (H(ϕ)

ªM), then T2 = S(ϕ2) and S(ϕ1) is similar to T1.

Proof. (i). Since M is rationally invariant, the space M ⊕ ϕH2(Ω, F ) is also

rationally invariant subspace of H2(Ω, F ′) and so Theorem 2.14 implies the existence

of a Hilbert space K and a quasi-inner function ϕ2 ∈ H∞(Ω, L(K,F ′)) such that

(4.2) M ⊕ ϕH2(Ω, F ) = ϕ2H
2(Ω, K).

Since M ⊂ H(ϕ), by (4.2) we get (4.1) holds.

The inclusion ϕH2(Ω, F ) ⊂ ϕ2H
2(Ω, K) implies that for any f ∈ H2(Ω, F ) there

is φf ∈ H2(Ω, K) such that ϕf = ϕ2φf . Let

(4.3) M ′ = {φf ∈ H2(Ω, K) : ϕf = ϕ2φf for some f ∈ H2(Ω, F )}.

Since ϕ(rf) = ϕ2(rφf ) for any r ∈ R(Ω) and f ∈ H2(Ω, F ), M ′ is also a (closed)

rationally invariant subspace of H2(Ω, K), and so

M ′ = ϕ3H
2(Ω, K ′)
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for some Hilbert space K ′ and a quasi-inner function ϕ3 ∈ H∞(Ω, L(K ′, K)) by

Theorem 2.14. It follows that

ϕH2(Ω, F ) = ϕ2ϕ3H
2(Ω, K ′)

by the definition of M ′. By Corollary 2.16, there is a function ϕ4 ∈ H∞(Ω, L(F, K ′))

such that ϕ = ϕ2ϕ3ϕ4.

Let ϕ1 = ϕ3ϕ4 ∈ H∞(Ω, L(F, K)). Since ϕ and ϕ2 are quasi-inner functions, so

is ϕ1. Then ϕ1 is a quasi-inner function satisfying ϕ = ϕ2ϕ1.

(ii). The rationally invariance of the subspace M described by 4.1 is obvious.

Since H(ϕ)ªM = H2(Ω, F ′)ª ϕ2H
2(Ω, K) = H(ϕ2),

T2
∗ = S(ϕ)∗|H(ϕ)ªM = S∗F ′|H(ϕ2) = S(ϕ2)

∗.

Thus T2 = S(ϕ2).

It remains to prove similarity of T1 and S(ϕ1). Define Y : H2(Ω, K) → ϕ2H
2(Ω, K)

by

Y f = ϕ2f.

Clearly Y is onto. Since ϕ2 is a quasi-inner function, Y is one-to-one. Since Y (ϕ1H
2(Ω, F )) =

ϕ2ϕ1H
2(Ω, F ) = ϕH2(Ω, F ), ϕ2H

2(Ω, K) = M⊕ϕH2(Ω, F ) and H2(Ω, K) = H(ϕ1)⊕
ϕ1H

2(Ω, F ),

PMY (H(ϕ1)) = M.

Thus we define a bounded linear function F : H(ϕ1) → M by

Fg = PMϕ2g for g ∈ H(ϕ1),

then F is onto. Since ϕ2 is a quasi-inner function, ker F = {g ∈ H(ϕ1) : ϕ2g ∈
ϕH2(Ω, F )} = {g ∈ H(ϕ1) : g ∈ ϕ1H

2(Ω, F )} = {0}. It follows that F ∈ L(H(ϕ1),M)
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is bijective. By the Open Mapping Theorem, F is invertible and we can easily check

that T1F = FS(ϕ1). ¤

We recall that the Hilbertian tensor product of the Hilbert spaces F1, F2, · · ·, Fn,

n ≥ 1, is a Hilbert space denoted F1 ⊗ F2 ⊗ · · · ⊗ Fn which is the completion of

the algebraic tensor product of the given spaces. The inner product in this space is

defined by

(x1 ⊗ · · · ⊗ xn, y1 ⊗ · · · ⊗ yn) = (x1, y1) · · · (xn, yn),

for xi, yi ∈ Fi, and 1 ≤ i ≤ n. If Ti ∈ L(Fi) then there is an unique operator

T1 ⊗ T2 ⊗ · · · ⊗ Tn ∈ L(F1 ⊗ F2 ⊗ · · · ⊗ Fn) such that

(T1 ⊗ T2 ⊗ · · · ⊗ Tn)(x1 ⊗ x2 ⊗ · · · ⊗ xn) = T1x1 ⊗ T2x2 ⊗ · · ·Tnxn,

for xj ∈ Fj, and 1 ≤ j ≤ n.

Fix n ≥ 1, and consider the mapping Γn : L(F ) → L(⊗nF ) given by Γn(T ) =

T ⊗ T ⊗ · · · ⊗ T , where F is a Hilbert space and T ∈ L(F ).

Define a unitary representation πn : Sn → L(⊗nF ), where Sn denotes the group

of permutations of {1, 2, · · ·, n}, defined by

πn(σ)(x1 ⊗ x2 ⊗ · · · ⊗ xn) = xσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n),

for σ ∈ Sn, xj ∈ F , and 1 ≤ j ≤ n.

Next, we recall that the C∗-algebra C∗(G) of a finite group G consists of all formal

sums
∑

g∈Gαgg, where αg ∈ C for g ∈ G, and multiplication is defined such that G

can be regarded as a multiplicative group in C∗(G), and g∗ = g−1 for g in G.

The homomorphism πn : Sn → L(⊗nF ) can be extended to a ∗-homomorphism,

still denoted πn, from C∗(Sn) to L(⊗nF ).

Definition 3.34. If A is a finite-dimensional C∗-algebra, a (self-adjoint) pro-

jection p ∈ A ia said to be minimal if p 6= 0 and the only projection q such that
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0 ≤ q ≤ p are 0 and p. A projection p which is minimal in the center of A will be

called a minimal central projection.

For a minimal central projection p ∈ C∗(Sn), define

φp(T ) = Γn(T )|πn(p)(⊗nF ).

We will use the alternating projection an ∈ C∗(Sn) defined by

an = 1
n!

∑
σ∈Sn

ε(σ)σ,

where ε(σ) is the sign of σ, i.e. ε(σ) = +1 or −1 according to whether σ is an even

or odd permutation.

Let Φ ∈ H∞(Ω, L(F )) and define a new function Γn(Φ) ∈H∞(Ω, L(⊗nF )) by

[Γn(Φ)](z) = Γn(Φ(z))

for z ∈ Ω. The analyticity of Γn(Φ) follows from the fact that Γn is a homogeneous

polynomial, and the estimate ‖ Γn(Φ) ‖∞≤‖ Φ ‖n
∞ is obvious.

If p ∈ C∗(Sn) is a minimal central projection, we can define a function φp(Φ) ∈
H∞(Ω, L(πn(p)(⊗nF ))) by

[φp(Φ)](z) = φp(Φ(z))

for z ∈ Ω.

If {Mi}i∈I is a family of subsets of the Hilbert space H, we denote by
∨

i∈I Mi the

closed linear span generated by
⋃

i∈I Mi.

Definition 3.35. Let T ∈ L(H) be an operator with spectrum in Ω. A subset

G ⊆ H with the property that

∨{r(T )m ; r ∈ R(Ω), m ∈ G} = H,

is called an R(Ω)-generating set for T . The multiplicity µT of T is the smallest

cardinality of an R(Ω)-generating set for T . The operator T is said to be multiplicity-

free if µT = 1. If µT = 1, any vector x ∈ H such that



3. C0-OPERATORS 59

∨{r(T )x ; r ∈ R(Ω)} = H

is said to be R(Ω)-cyclic for T .

Thus µT is the smallest number of R(Ω)-cyclic subspaces that are needed to gen-

erate H, where an R(Ω)-cyclic subspace for T is a subspace of the form
∨{r(T )x ; r

∈ R(Ω)} for some x ∈ H.

Proposition 3.36. Let H be a separable Hilbert space. Assume that T ∈ L(H) is

an operator of class C0 relative to Ω such that µT = n < ∞, H ′ is a R(Ω)-invariant

subspace for T , and T =


T ′ Y

0 T ′′


 is the triangularization of T with respect to the

decomposition H = H ′ ⊕ (H ªH ′).

If ⊕j<ωS(θj), ⊕j<ωS(θ′j), and ⊕j<ωS(θ′′j ) are the Jordan models of T , T ′, and T ′′,

respectively, then

(4.4) θ0 · · · θk−1|θ′0 · · · θ′k−1θ
′′
0 · · · θ′′k−1,

for every k such that 1 ≤ k < n, and

(4.5) θ0 · · · θk−1 ≡ θ′0 · · · θ′k−1θ
′′
0 · · · θ′′k−1,

for every k ≥ n.

Proof. Let f ∈ H∞(Ω, L(Cn)) be a quasi-inner function such that if B is a

matrix over H∞(Ω) representing f , then B is a normal matrix whose diagonal entries

are θ0, · · ·, θn−1. Then by Corollary 3.30,

S(f) ∼ ⊕n−1
j=0 S(θj).

Since µT = n, T ∼ ⊕j<ωS(θj) ∼ ⊕n−1
j=0 S(θj) and so T ∼ S(f). Thus there is an

injective operator X ∈ L(H, H(f)) with dense range such that

(4.6) S(f)X = XT.
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Let M = XH ′. Since H ′ is a R(Ω)- invariant subspace for T , so is M for S(f).

Then by Theorem 3.33, there are quasi-inner functions f1 ∈ H∞(Ω, L(Cn)) and f2 ∈
H∞(Ω, L(Cn)) such that f = f2f1 and

M = f2H
2(Ω,Cn)ª fH2(Ω,Cn).

If S(f) =


T1 Z

0 T2


 is the triangularization of S(f) with respect to the decom-

position H(f) = M ⊕ (H(f)ªM), then T1 is similar to S(f1) and T2 = S(f2) by

Theorem 3.33.

Let X ′ = X|H ′. Then by equation (4.6),

(4.7) T1X
′ = S(f)X|H ′ = XT |H ′ = X ′T ′.

Since µT ≤ n, we get µT ′ ≤ n and so equation (4.7) implies that T1 ∼ T ′ ∼ ⊕n−1
j=0 S(θ′j).

Since T1 is similar to S(f1),

S(f1) ∼ ⊕n−1
j=0 S(θ′j).

Define X ′′ : H(f)ªM → H ªH ′ by

X ′′ = X∗|H(f)ªM.

Then X ′′ is injective with dense range in H ªH ′ and

X ′′T2
∗ = X∗S(f)∗|H(f)ªM = T ∗X∗|H(f)ªM = (T ′′)∗X ′′.

Thus µT ′′ ≤ n and T2 ∼ T ′′ ∼ ⊕n−1
j=0 S(θ′′j ). It follows that

S(f2) ∼ ⊕n−1
j=0 S(θ′′j ).

Fix k such that 1 ≤ k < n and note that

φak
(f) = φak

(f2)φak
(f1).
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Since φak
(f) is also a diagonal inner function with diagonal entries θi1θi2 · · · θik where

ip 6= iq for p 6= q, the minimal function of S(φak
(f)) is θ0θ1 · · · θk−1. Similarly, the

minimal functions of S(φak
(f1)) and S(φak

(f2)) are θ′0θ
′
1 · · · θ′k−1 and θ′′0θ

′′
1 · · · θ′′k−1,

respectively. By Theorem 3.16, there are functions g′, g′′ ∈ H∞(Ω, L(πk(ak)(⊗kCn)))

such that

(4.8) g′φak
(f1) = θ′0θ

′
1 · · · θ′k−1I

and

(4.9) g′′φak
(f2) = θ′′0θ

′′
1 · · · θ′′k−1I,

where I is the identity function on πk(ak)(⊗kCn)). Combining these relations (4.8)

and (4.9), we get

g′g′′φak
(f) = g′g′′φak

(f2)φak
(f1) = θ′0θ

′
1 · · · θ′k−1θ

′′
0θ
′′
1 · · · θ′′k−1I,

and this Corollary follows because θ0θ1 · · · θk−1 is the least scalar multiple of φak
(f)

by Theorem 3.16.

Next, for k = n, since S(f) ∼ ⊕n−1
j=0 S(θj), S(f1) ∼ ⊕n−1

j=0 S(θ′j), and S(f2) ∼
⊕n−1

j=0 S(θ′′j ), by Corollary 3.32,

det f(z) ≡ θ0(z)θ1(z) · · · θn−1(z),

det f1(z) ≡ θ′0(z)θ′1(z) · · · θ′n−1(z),

and

det f2(z) ≡ θ′′0(z)θ′′1(z) · · · θ′′n−1(z),

for z ∈ Ω. From the fact f(z) = f2(z)f1(z) for any z ∈ Ω, we obtain det f(z) =

(det f2(z))(det f1(z)) which proves for the case k = n.

For k ≥ n, since θk ≡ θ′k ≡ θ′′k ≡ 1, by the case of k = n,

θ0θ1 · · · θk−1 ≡ θ0θ1 · · · θn−1 ≡ θ′0θ
′
1 · · · θ′n−1θ

′′
0θ
′′
1(z) · · · θ′′n−1 ≡ θ′0θ

′
1 · · · θ′k−1θ

′′
0θ
′′
1 · · · θ′′k−1.
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¤

In Proposition 3.36, we have proved some relations (4.4) and (4.5) when T ∈ L(H)

is an operator of class C0 relative to Ω such that µT = n < ∞. In next Theorem, we

will have a same result with Proposition 3.36 without the assumption µT = n < ∞.

We have following Proposition from Theorem 4.3.10. in [31].

Proposition 3.37. Let T ∈ L(H) be an operator of class C0 relative to Ω. If

⊕j<ωS(θj) is the Jordan model of T , then for any k = 1, 2, 3, ..., there are R(Ω)-

invariant subspaces M−1, M0,..., Mk−2 and h0, h1,...,hk−1 in H such that

(4.10) hi ∈ Mi−1 and mhi
= mT |Mi−1

for i = 0, 1, ..., k − 1, and

(4.11) Ki ∨Mi = Mi−1 and Ki ∩Mi = {0}

for i = 0, 1, ..., k − 1, where M−1 = H and Ki =
∨{r(T )hi : r ∈ R(Ω)}

Theorem 3.38. Let H be a separable Hilbert space. Assume that T ∈ L(H)

is an operator of class C0 relative to Ω, H ′ is a R(Ω)-invariant subspace for T ,

and T =


T ′ Y

0 T ′′


 is the triangularization of T with respect to the decomposition

H = H ′ ⊕ (H ªH ′).

If ⊕j<ωS(θj), ⊕j<ωS(θ′j), and ⊕j<ωS(θ′′j ) are the Jordan models of T , T ′, T ′′,

respectively, then

θ0 · · · θk−1|θ′0 · · · θ′k−1θ
′′
0 · · · θ′′k−1,

for every k = 1, 2, 3, ....
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Proof. Fix k ≥ 1. Since T ∼ ⊕j<ωS(θj), by Proposition 3.37, there are R(Ω)-

invariant subspaces M−1, M0,..., Mk−2 and h0, h1,...,hk−1 in H satisfying (4.10) and

(4.11).

Let hi = hi
′+hi

′′ where h′i ∈ H ′ and h′′i ∈ HªH ′ (i = 0, 1, ..., k−1), and M(⊂ H)

be a R(Ω)-invariant subspace for T generated by h′0, ..., h
′
k−1 and h′′0, ..., h

′′
k−1.

If T |M ∼ ⊕j≤2kS(φj), clearly for i = 0, ..., k − 1,

φi|θi.

Since hi ∈ M for i = 0, ..., k − 1,

θi|φi

and so for i = 0, ..., k − 1,

(4.12) θi ≡ φi.

Let T1 = T |M and H1
′ = M∩H ′. Then clearly H1

′ is a R(Ω)-invariant subspace for T1.

If T1 =


T1

′ Y1

0 T1
′′


 is the triangularization of T1 with respect to the decomposition

M = H ′
1 ⊕ (M ªH ′) and ⊕jS(φj), ⊕jS(φ′j), and ⊕jS(φ′′j ) are the Jordan models of

T1, T1
′, and T1

′′, respectively, then by Proposition 3.36 (note that µT1 ≤ 2k),

φ0 · · · φk−1 | φ′0 · · · φ′k−1φ
′′
0 · · · φ′′k−1.

By (4.12), we conclude that

(4.13) φ0 · · · φk−1 ≡ θ0 · · · θk−1,

and since T ′|H1
′ = T1

′,

(4.14) φi
′|θi

′,

for i = 0, ..., k − 1.

Next, let H1
′′ = M ªH ′

1, H ′′ = H ªH ′, and PH′′ : H1
′′ → H ′′ be an orthogonal

projection into H ′′, that is, PH′′f = g if f = g + h with g ∈ H ′′ and h ∈ (H ′′)⊥. If
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a ∈ kerPH′′ , then a ∈ H ′ ∩ (M ªH ′
1) ⊂ H ′ ∩M = H1

′. Since a ∈ H1
′′(= M ªH ′

1),

a = 0. Thus PH′′ is one-to-one. Moreover, H ′ is invariant for T , H ′′ is invariant for

T ∗. Thus

T ∗PH′′ = PH′′T ∗PH′′

and so

PH′′T = (T ∗PH′′)∗ = (PH′′T ∗PH′′)∗ = PH′′TPH′′ = T ′′PH′′ .

We have PH′′T1
′′ = PH′′PMªH1

′T |M ªH1
′ = PH′′T |M ªH1

′ and an easy calculation,

we get

T ′′PH′′ = PH′′T1
′′.

The fact that PH′′ is one-to-one implies

(4.15) φi
′′|θi

′′,

for i = 0, ..., k − 1. Thus from (4.8), (4.13), (4.14), and (4.15), we can conclude that

θ0 · · · θk−1|θ′0 · · · θ′k−1θ
′′
0 · · · θ′′k−1. Since k is arbitrary, this theorem is proven. ¤



CHAPTER 4

Modular Lattice for C0-Operators

1. Lattice of subspaces

1.1. Modular Lattice. Let H be a Hilbert space. If Fi(i ∈ I) is a subset of H,

then the closed linear span of
⋃

i Fi will be denoted by
∨

i Fi. The collection of all

subspaces of a Hilbert space is a lattice. This means that the collection is partially

ordered (by inclusion), and that any two elements M and N of it have a least upper

bound or supremum (namely the span M∨N) and a greatest lower bound or infimum

(namely the intersection M ∩N). A lattice is called distributive if

(1.1) L ∩ (M ∨N) = (L ∩M) ∨ (L ∩N)

for any element L, M, and N in the lattice.

In the equation (1.1), if N ⊂ L, then L ∩N = N, and so the identity becomes

(1.2) L ∩ (M ∨N) = (L ∩M) ∨N

If the identity (1.2) is satisfied whenever N ⊂ L, then the lattice is called modular.

For an arbitrary operator T ∈ L(H), Lat(T ) denotes the collection of all closed

invariant subspaces for T . The following fact is well-known([17]).

Proposition 4.1. The lattice of subspaces of a Hilbert space H is modular if and

only if dim H is finite.

We will think about Lat(T ) for a C0-operator T relative to D.

65
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Definition 4.2. The cyclic multiplicity µT of an operator T ∈ L(H) is the

smallest cardinal of a subset A ⊂ H with the property that
∨∞

n=0 T nA = H. The

operator T is said to be multiplicity-free if µT = 1.

Thus µT is the smallest number of cyclic subspaces for T that are needed to

generate H, and T is multiplicity-free if and only if it has a cyclic vector.

1.2. Property (P ). In this section, every C0-operator means C0-operator rel-

ative to D. Let H be a Hilbert space and for an operator T ∈ L(H), T ∗ denote

the adjoint of T . It is well known that H is finite-dimensional if and only if every

operator X ∈ L(H), with the property ker(X) = {0}, also satisfies ker(X∗) = {0}.
The following definition is a natural extension of finite dimensionality.

Definition 4.3. An operator T ∈ L(H) is said to have property (P) if every

operator X ∈ {T}′ with the property that ker(X) = {0} is a quasiaffinity, i.e.,

ker(X∗) = ker(X) = {0}.

From the fact that the commutant {0}′ of zero operator on H coincides with

L(H), we can see that H is finite-dimensional if and only if the zero operator on H

has property (P ).

Let T1 and T2 be operators in L(H). Suppose that

X ∈ {A ∈ L(H) : AT1 = T2A}.

If M is in Lat(T1), then (XM)− is in Lat(T2). By using these facts, we define a

function between Lat(T1) and Lat(T2) as following:

(1.3) X∗(M) = (XM)−.

The operator X is said to be a (T1, T2)-lattice-isomorphism if X∗ is a bijection of

Lat(T1) onto Lat(T2). We will use the name lattice-isomorphism instead of (T1, T2)-

lattice-isomorphism if no confusion may arise.
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If X ∈ {A ∈ L(H) : AT1 = T2A}, then X∗T ∗
2 = T ∗

1 X∗. Thus (X∗)∗ : Lat(T ∗
2 ) →

Lat(T ∗
1 ) is well-defined by

(X∗)∗(M ′) = (X∗M ′)−.

Proposition 4.4. [6] (Theorem 7.1.9) Suppose that T ∈ L(H) is an operator

of class C0 with Jordan model
⊕

α S(θα). Then T has property (P ) if and only if

∧
j<ω θj ≡ 1.

Thus, if T has property (P ), then H is separable and T ∗ also has property (P ).

Proposition 4.5. [6] An operator T of class C0 fails to have property (P ) if and

only if T is quasisimilar to T |N , where N is a proper invariant subspace for T .

Proposition 4.6. [6](Lemma 7.1.20) Assume that T1 ∈ L(H1) and T2 ∈ L(H2)

are two operators, and X ∈ {A ∈ L(H1, H2) : AT1 = T2A}. If the mapping X∗ is onto

Lat(T2) if and only if (X∗)∗ is one-to-one on Lat(T ∗
2 ).

Corollary 4.7. Assume that T1 ∈ L(H1) and T2 ∈ L(H2) are two operators,

and X ∈ {A ∈ L(H1, H2) : AT1 = T2A}. The mapping X∗ is one-to-one on Lat(T1)

if and only if (X∗)∗ is onto Lat(T ∗
1 ).

Proof. Since XT1 = T2X, T ∗
1 X∗ = X∗T ∗

2 . By Proposition 4.6, (X∗)∗ is onto

Lat(T ∗
1 ) if and only if (X∗∗)∗ = X∗ is one-to-one on Lat(T1). ¤

From Proposition 4.6 and Corollary 4.7, we obtain the following result.

Corollary 4.8. If T1 ∈ L(H1) and T2 ∈ L(H2) are two operators, and X ∈
{A ∈ L(H1, H2) : AT1 = T2A}, then X is a lattice-isomorphism if and only if X∗ is

a lattice-isomorphism.
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Proposition 4.9. [6] (Proposition 7.1.21) Assume that T1 ∈ L(H1) and T2 ∈
L(H2) are two quasisimilar operators of class C0, and X ∈ {A ∈ L(H1, H2) : AT1

= T2A} is an injection. If T1 has property (P), then X is a lattice-isomorphism.

Recall that if T is an operator on a Hilbert space, then ker T = (ran T ∗)⊥ and

ker T ∗ = (ran T )⊥.

Corollary 4.10. Assume that T1 ∈ L(H1) and T2 ∈ L(H2) are two quasisimilar

operators of class C0, and X ∈ {A ∈ L(H1, H2) : AT1 = T2A} has dense range. If T2

has property (P), then X is a lattice-isomorphism.

Proof. Since XT1 = T2X, T ∗
1 X∗ = X∗T ∗

2 . Let Y = X∗ and so

(1.4) Y T ∗
2 = T ∗

1 Y.

From the fact that ker Y = ker(X∗) = ( ran X)⊥ = {0}, we conclude that Y is

injective. Since T2 has property (P ), so does T ∗
2 by Proposition 4.4. By Proposition

4.9 and equation (1.4), Y = X∗ ia a lattice-isomorphism. From Corollary 4.8, it is

proven that X is a lattice-isomorphism. ¤

Corollary 4.11. Suppose that Ti ∈ L(Hi)(i = 1, 2) is a C0-operator and T1 has

property (P ). If X ∈ {A ∈ L(H1, H2) : AT1 = T2A} and X is an injection, then X is

a lattice-isomorphism.

Proof. Define Y : H1 → (XH1)
− by

Y h = Xh for any h ∈ H1.

Since X is an injection, so is Y . Clearly, Y has dense range. Note that (XH1)
− is

invariant for T2. By definition of Y ,

(1.5) Y T1 = (T2|(XH1)
−)Y.
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It follows that T1 ≺ (T2|(XH1)
−) and so T1 ∼ (T2|(XH1)

−). By Proposition 4.9, it is

proven. ¤

Corollary 4.12. Suppose that Ti ∈ L(Hi)(i = 1, 2) is a C0-operator and T2 has

property (P ). If X ∈ {A ∈ L(H1, H2) : AT1 = T2A} and X has a dense range, then

X is a lattice-isomorphism.

Proof. By assumption, X∗T ∗
2 = T ∗

1 X∗. Since T2 has property (P ), by Proposi-

tion 4.4, so does T ∗
2 .

Because X has dense range, X∗ : H2 → H1 is an injection. By Corollary 4.11, X∗

is a lattice isomorphism. From Corollary 4.8, X is also a lattice isomorphism. ¤

1.3. Quasi-Affinity and Modular Lattice. For operators T1 ∈ L(H1) and

T2 ∈ L(H2), if Y ∈ {B ∈ L(H1, H2) : BT1 = T2B}, then we define a function

Y∗ : Lat(T1) → Lat(T2)

the same way as equation (1.3). For any N ∈ Lat(T2), if M = Y −1(N), then

Y T1(M) = T2Y (M) ⊂ T2N ⊂ N and so T1(M) ⊂ M . It follows that

M = Y −1(N) ∈ Lat(T1)

for any N ∈ Lat(T2). If Y is invertible, that is, T1 and T2 are similar, and Lat(T1) is

modular, then clearly, Lat(T2) is also modular. In this section, we consider when T1

and T2 are quasi-similar instead of similar, and find an assumption in Theorem 4.14

such that Lat(T2) is modular, whenever Lat(T1) is modular.

Proposition 4.13. Let T1 ∈ L(H1) and T2 ∈ L(H2). Suppose that Y ∈ {B ∈
L(H1, H2) : BT1 = T2B} and for any N ∈ Lat(T2), the condition M = Y −1(N)

implies that Y∗(M) = N .

Then for any Mi = Y −1(Ni) with Ni ∈ Lat(T2) (i = 1, 2),

Y∗(M1 ∩M2) = Y∗(M1) ∩ Y∗(M2).
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Proof. Assume that Ni ∈ Lat(T2) and Mi = Y −1(Ni) for i = 1, 2. Then by

assumption, we obtain

(1.6) Y∗(Mi) = Ni.

Since Y −1(N1 ∩N2) = Y −1(N1) ∩ Y −1(N2) = M1 ∩M2, by assumption,

Y∗(M1 ∩M2) = N1 ∩N2

which proves that Y∗(M1 ∩M2) = Y∗(M1) ∩ Y∗(M2) by equation (1.6).

¤

Theorem 4.14. Let T1 ∈ L(H1) be a quasiaffine transform of T2 ∈ L(H2) and

Y ∈ {B ∈ L(H1, H2) : BT1 = T2B} be a quasiaffinity.

If Y∗ : Lat(T1) → Lat(T2) is onto and Lat(T1) is modular, then Lat(T2) is also

modular.

Proof. Suppose that Lat(T2) is not modular. Then there are invariant subspaces

Ni(i = 1, 2, 3) for T2 such that

(1.7) N3 ⊂ N1,

and

(N1 ∩N2) ∨N3 6= N1 ∩ (N2 ∨N3).

Let

(1.8) Mi = Y −1(Ni),

for i = 1, 2, 3. Since Y T1 = T2Y , definition (1.8) of Mi implies that for i = 1, 2, 3,

Y T1(Mi) = T2Y (Mi) ⊂ T2Ni ⊂ Ni.

It follows that T1Mi ⊂ Y −1(Ni) = Mi for i = 1, 2, 3. Thus Mi is a closed invariant

subspace for T1. Condition (1.7) implies that
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M3 ⊂ M1.

Since Y (Mi) ⊂ Ni, for i = 1, 2, 3,

(1.9) Y∗(Mi) = (Y (Mi))
− ⊂ Ni.

Since Y∗ is onto, there is a function φ : Lat(T2) → Lat(T1) such that Y∗ ◦ φ is the

identity mapping on Lat(T2). Hence for i = 1, 2, 3,

Y∗(φ(Ni)) = Y (φ(Ni))
− = Ni.

It follows that for i = 1, 2, 3,

(1.10) φ(Ni) ⊂ Mi.

Since Y∗ ◦ φ is the identity mapping on Lat(T2), (1.10) implies that for i = 1, 2, 3,

(1.11) Ni = Y∗(φ(Ni)) ⊂ Y∗(Mi).

By (1.9) and (1.11), we get

(1.12) Y∗(Mi) = Ni,

for i = 1, 2, 3. Hence we can easily see that function Y satisfies the assumptions of

Proposition 4.13.

Thus by Proposition 4.13 and equation (1.12),

(1.13) Y∗[M1 ∩ (M2 ∨M3)] = Y∗(M1) ∩ Y∗(M2 ∨M3) = N1 ∩ (N2 ∨N3).

Since M1∩M2 = Y −1(N1)∩Y −1(N2) = Y −1(N1∩N2), by the same way as above,

we obtain

(1.14) Y∗(M1 ∩M2) = N1 ∩N2.

By equations (1.12) and (1.14), we obtain

(1.15) Y∗[(M1 ∩M2) ∨M3] = (N1 ∩N2) ∨N3.
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Since (N1 ∩N2)∨N3 6= N1 ∩ (N2 ∨N3), from equations (1.13) and (1.15), we can

conclude that

(M1 ∩M2) ∨M3 6= M1 ∩ (M2 ∨M3).

Therefore Lat(T1) is not modular.

¤

2. Modular Lattice for C0-Operators with Property (P )

We provide some operators, say T , of class C0 relative to D such that Lat(T ) is

modular.

Proposition 4.15. [6] Let θ be a nonconstant inner function in H∞. Then every

invariant subspace M of S(θ) has the form

φH2 ª θH2

for some inner devisor φ of θ.

We can easily check that if M1 = θ1H
2 ª θH2 and M2 = θ2H

2 ª θH2 where θi

(i = 1, 2) is an inner inner devisor of θ, then

(2.1) M1 ∩M2 = (θ1 ∨ θ2)H
2 ª θH2

and

(2.2) M1 ∨M2 = (θ1 ∧ θ2)H
2 ª θH2

where θ1 ∨ θ2 is the least inner multiple of θ1 and θ2. Note that if M1 ⊂ M2, then

(2.3) θ2|θ1.

Lemma 4.16. If θ is an inner function in H∞, then Lat(S(θ)) is distributive.

Proof. Let M1, M2, and M3 be invariant subspaces for S(θ). Then by Propo-

sition 4.15, there are nonconstant inner functions θ1, θ2, and θ3 in H∞ such that
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Mi = θiH
2 ª θH2 for i = 1, 2, 3.

From equations (2.1) and (2.2), we obtain that

(2.4) M1 ∩ (M2 ∨M3) = (θ1 ∨ (θ2 ∧ θ3))H
2 ª θH2,

and

(2.5) (M1 ∩M2) ∨ (M1 ∩M3) = ((θ1 ∨ θ2) ∧ (θ1 ∨ θ3)H
2 ª θH2.

Since θ1 ∨ (θ2 ∧ θ3) = (θ1 ∨ θ2)∧ (θ1 ∨ θ3), by equations (2.4) and (2.5), this lemma is

proven.

¤

In this section, we will consider a sufficient condition for Lat(T ) of a C0-operator

T to be modular.

Proposition 4.17. [6] (Proposition 2.4.3) Let T ∈ L(H) be a completely

nonunitary contraction, and M be an invariant subspace for T . If

(2.6) T =


T1 X

0 T2




is the triangularization of T with respect to the decomposition H = M ⊕ (H ªM),

then T is of class C0 if and only if T1 and T2 are operators of class C0.

Proposition 4.18. [6] (Corollary 7.1.17) Let T ∈ L(H) is an operator of

class C0, M be an invariant subspace for T , and

(2.7) T =


T1 X

0 T2




be the triangularization of T with respect to the decomposition H = M ⊕ (H ªM).

Then T has property (P ) if and only if T1 and T2 have property (P ).
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Let H and K be Hilbert spaces and H⊕K denote the algebraic direct sum. Recall

that H ⊕K is also a Hilbert space with an inner product

(〈h1, k1〉, 〈h2, k2〉) = (h1, h2) + (k1, k2)

Theorem 4.19. Let T ∈ L(H) be an operator of class C0 with property (P ). Then

Lat(T ) is a modular lattice.

Proof. Suppose that T has property (P ) and let Mi (i = 1, 2, 3) be an invariant

subspace for T such that M3 ⊂ M1. Then evidently,

(2.8) (M1 ∩M2) ∨M3 ⊂ M1 ∩ (M2 ∨M3).

Let Ti = T |Mi (i = 1, 2, 3). Define a linear transformation X : M2 ⊕ M3 →
M2 ∨M3 by

X(a2 ⊕ a3) = a2 + a3

for a2 ∈ M2 and a3 ∈ M3.

Then for a2 ⊕ a3 ∈ M2 ⊕M3 with ‖a2 ⊕ a3‖ ≤ 1, ‖X(a2 ⊕ a3)‖ = ‖a2 + a3‖ ≤
‖a2‖+ ‖a3‖ ≤ 2. It follows that ‖X‖ ≤ 2 and so X is bounded.

Since M2 ∨M3 is generated by {a2 + a3 : a2 ∈ M2 and a3 ∈ M3}, X has dense

range. By the definition of Ti (i = 1, 2, 3),

X(T2 ⊕ T3)(a2 ⊕ a3) = Ta2 + Ta3

and

(T |M2 ∨M3)X(a2 ⊕ a3) = Ta2 + Ta3.

Thus

X(T2 ⊕ T3) = (T |M2 ∨M3)X.
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By Proposition 4.17, since T is of class C0, so do T2 ⊕ T3 and T |M2 ∨ M3 and

by Proposition 4.18, since T has property (P ), so do T2 ⊕ T3 and T |M2 ∨M3. Thus,

Proposition 4.4 implies that T |M2 ∨M3 has Property (P ). By Corollary 4.12, X is a

lattice-isomorphism.

Thus X∗ : Lat(T2 ⊕ T3) → Lat(T |M2 ∨M3) is onto. Let

(2.9) M = {a2 ⊕ a3 ∈ M2 ⊕M3 : a2 + a3 ∈ M1}.

Since M = X−1(M1), M is a closed subspace of M2 ⊕M3. Evidently, M is invariant

for T2 ⊕ T3. From the equation (2.9), we conclude that

(2.10) M = (M1 ∩M2)⊕M3.

Since X−1(M1 ∩ (M2 ∨M3)) = {a2 ⊕ a3 ∈ M2 ⊕M3 : a2 + a3 ∈ M1 ∩ (M2 ∨M3)} =

{a2 ⊕ a3 ∈ M2 ⊕M3 : a2 + a3 ∈ M1},

X−1(M1 ∩ (M2 ∨M3)) = M

Since X is a lattice-isomorphism,

(2.11) X∗M = (XM)− = M1 ∩ (M2 ∨M3).

By equation (2.10) and definition of X,

(2.12) X∗M = (XM)− ⊂ (M1 ∩M2) ∨M3.

From (2.11) and (2.12), we conclude that

(2.13) M1 ∩ (M2 ∨M3) ⊂ (M1 ∩M2) ∨M3.

Thus if T has property (P ), then by (2.8) and (2.13), we obtain that

M1 ∩ (M2 ∨M3) = (M1 ∩M2) ∨M3.

¤
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