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ZOOARCHAEOLOGICAL MEASURES OF RESOURCE INTENSIFICATION AND 
DEPLETION: EXAMPLES FROM EASTERN NORTH AMERICA 
 
Abstract: 
 

The impact that increased human population size and agricultural intensification had on 

the prehistoric animal ecology of eastern North America is poorly understood. New 

methods for examining archaeologically recovered faunal remains permit a more detailed 

understanding of the interaction between humans and their environment.  Techniques for 

the accurate estimation and comparison of age, size and sex parameters of prehistoric 

deer and raccoon populations are presented.  Measurements include ageing by tooth 

eruption and wear, estimating deer weight based on osteological measurements of the 

astragalus, and determining raccoon sex based on canine tooth measurements.   

Combined examination of the age and size parameters of deer over time indicates that the 

population density and distribution of deer in the Late Prehistoric period was 

substantially impacted by human activity.  This resource depletion is indicated by a 

decline in the presence of old individuals and an increase in body size in areas 

surrounding major Mississippian sites.  Deer populations appear stable at distance from 

these sites and maintain the parameters of age and size seen in the Archaic period.  An 

understanding of this variation over space and time is used to interpret the efficiency of 

various deer hunting techniques.  Examination of the distribution of raccoon remains by 

sex at archaeological sites demonstrates targeted procurement by Late Prehistoric 

farmers.  Intensified procurement of raccoon is revealed by an increased presence of 

males over time in archaeological samples, a good indication of deliberate trapping.  

Intensified procurement may relate to a crop protection effort; stable carbon isotope data 

from the Angel site suggest that raccoon and squirrel may have consumed sufficient 

quantities of maize to modify their d13C values 
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Chapter 1 

Introduction 

 

 Local increases in human population density are often associated with the 

intensified use and cultivation of certain plants.  In prehistoric eastern North America, the 

effect of concentrated agricultural populations on hunting strategies and animal ecology 

is poorly understood.  Views range from the proposal that depleted floodplain resources 

required annual hunting trips to the uplands to speculation that horticultural activity 

favored and attracted deer.   

 Broad scale studies tend to infer changes in population density from shifts in 

settlement systems or sociopolitical patterns.  In most cases these shifts are also linked to 

significant changes in the subsistence economy.  In eastern North America, large-scale 

and long-term population concentrations require the creation of surplus that is seen with 

the intensification of maize agriculture (Emerson et al. 2005).  For the purposes of this 

study local population density is inferred from a general increase in site size and intensity 

of occupation, which appears to be correlated with the intensification of maize farming 

beginning in the Late Woodland and continuing through the Mississippian. 

While several Late Woodland studies in the eastern United States employ 

resource depletion models (Woodrick 1981; Barfield and Barber 1992), others suggest a 

focal economy where abundant, high quality faunal resources were consistently available 

(Cleland 1976).   Some Mississippian studies advocate a garden hunting model (Morse 

and Morse 1983; Muller 1997), which is distinct from both of the Late Woodland 

explanations. 
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 Similar inconsistencies in interpreting the balance between human populations 

and animal resources are employed as causal explanations for animal domestication in the 

Old World.  Therefore, zooarchaeological techniques for examining resource depletion 

have a wider significance.  Successful methodology in North America may shed light on 

events leading up to animal domestication worldwide. 

 Previous approaches have not correctly identified the appropriate 

zooarchaeological measures to answer specific questions surrounding resource 

intensification and depletion. While approaches utilizing summary data on taxonomic 

diversity or relative abundance may be used to generate hypotheses, these are inadequate 

for providing the detail needed to examine the complex interaction between humans and 

the environment.  Approaches which are so focused that they only examine a single 

variable, such as mortality profiles, are unlikely to succeed because there are a number of 

factors which can produce the observed variation.  

The purpose of this dissertation is to collect and examine data using new 

methodologies to demonstrate changing patterns of animal exploitation through time.  

Examining the dynamics of animal populations by measuring combinations of variables 

such as mortality profiles, size estimates and sex distributions of key species is more 

likely to successfully discriminate the cause of observed variation.  

Examination of a single species using several osteological measures in concert 

permits investigating faunal remains without the restrictions that frequently plague 

regional analyses.  This approach may be applied to assemblages that could not be 

directly compared due to differences in taphonomy, environment, sample size, or 

intensity of site occupation.  This approach is therefore proposed as a formal way to 
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examine changing patterns of faunal exploitation in eastern North America and to 

examine their impact on various species. 

 

Chronology 

 In terms of broad-scale comparisons, this study divides the Holocene in eastern 

North America into three major subdivisions, Archaic, Woodland and Late Prehistoric.  

These subdivisions reflect major changes in the subsistence economy and settlement 

patterns of prehistoric Native Americans. 

Archaic samples are taken to represent groups that are limited in overall 

population size and maintain residential mobility.  Lifeways are primarily hunting and 

gathering.  Toward the end of the Archaic, populations may have been involved in the 

planting of selected crops but the overall impact of this activity is very limited (Yarnell 

and Black 1985).  Within this study, Archaic samples represent a baseline non-

agricultural situation that may be compared to later developments. 

Woodland populations exhibit various levels of horticultural activity.  Even 

though the importance of domesticates in Early to Middle Woodland times is 

controversial (Fritz 1993:40), a combination of settlement patterns and botanical 

evidence suggests a geographically limited horticultural economy (Smith 1987, 1992).  

By early Late Woodland, large masses of carbonized seeds provide indisputable evidence 

for intensified plant utilization (O’Brien 1987:184).  A mass of nearly 5 million seeds at 

the Newbridge site indicates a significant dietary staple (Asch and Asch 1981:287).  

Settlement patterns indicate increased residential stability and burial mound construction 

indicates increased territioriality (Charles 1985). 
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 After 1200 ybp, stable carbon isotopes are probably the most accurate measure of 

maize cultivation.  Studies of delta 13C values in human bone collagen demonstrate a 

rapid expansion of corn production in the Late Woodland (Ambrose 1987).  For the 

purposes of this study, Fort Ancient, Middle Mississippian and some protohistoric groups 

are considered relatively intensive maize agriculturalists.  Although there is some 

variability in their overall consumption of maize (Schurr 1998), these cultures are 

combined within the Late Prehistoric heading because of the over-riding significance of 

their agricultural economy.   

Classic Middle Mississippian examples are further subdivided from this group in 

levels of investigation because the impressive mound centers provide a clear example of 

intense and stable site occupation, which may be contrasted to contemporary outlying 

occupations.  According to various estimates, large Mississippian sites such as Cahokia 

may have contained more than 10,000 people (Fowler 1974, Pauketat 1997).  The 

presence of elite social strata (Steponaitis 1986) and the function of Mississippian chiefs 

in managing agricultural risk through control of prestige goods (Peebles and Kus 1977) 

indicate some substantial differences from other agricultural groups.   

Within many large sites it is likely that maize itself is no longer the primary force 

in effecting centralization, but that storage, exchange and diversification take a leading 

role.  Thus, while based within an economic system (intensive maize agriculture) they 

actually depend on an organizational form (chiefdom). 

Pauketat (1991, 1994, 1997, 2002) places ideology in a primary role in the 

development of Cahokia leading to a so called “Big Bang” model that posited an internal 

mechanism for the rapid centralization of the political economy of the American Bottom.   
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Estimates of total population density in eastern North America are neither 

possible nor required for this investigation.  Although general trends in decreased 

mobility and increased regional population size are associated with aggregation in 

resource-rich major river valleys (O’Brien 1987:181), local population density exhibits 

considerable fluctuation across time and space.  Local population size may be reflected in 

vertical and horizontal site dimensions and the abundance of structures and storage pits.  

Unfortunately, duration of occupation and seasonality of site occupation may also 

influence these features. 

 Within this study subjectively differentiating broad types of sites, for example 

village, camp and rockshelter, by their site structure is sufficient.  An upland 

Mississippian hunting camp may exhibit the same local population density as an Early 

Archaic site, thus they provide good comparable examples when considering the effect of 

climate vs. local population size.  Although quantification of site size is difficult, these 

subjective measures appear to be effective and make sense for a comparative perspective. 

 

Previous Approaches 

 Several approaches have been used to investigate prehistoric faunal exploitation 

outside of the customary site-specific faunal reports, taphonomic, and methodological 

studies.  Some of these studies have focused on examining how archaeofaunas reflect 

local environments or long-term environmental change.  Others have attempted to 

examine cultural patterns of behavior, including economic decision-making and various 

hunting strategies  
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Previous studies are important because they present hypotheses that can be tested 

with new methods.  Examples of environmentally and culturally focused interpretations 

are examined briefly in the following section and provide the basis for more thorough 

investigations in the following chapters.   

 Archaeologists have long looked toward animal remains from archaeological sites 

as indications of paleoenvironments.  Traditionally, species with narrow habitat 

requirements are used to interpret paleoenvironments and to track environmental 

continuity or change.  These studies are usually descriptive in nature; however, some of 

the work by Styles (1986) is broader in scope.  

Styles examines increasing productivity of aquatic habitats through time.  Linking 

increased representation of aquatic species at archaeological sites to late Pleistocene and 

Holocene floodplain evolution provides a natural explanation for changing subsistence.  

This approach follows a longstanding recognition that riparian habitats are an important 

locus for population increase and culture change (Binford 1968) but places the focus of 

change on environmental characteristics rather than human behavior. 

Increased utilization of fish is also tied to changes in technology as is 

demonstrated by Yerkes (1980, 1981a, 1981b).  The investigation of zooarchaeological 

indicators for the methods and location of fish capture is taken to its apex in the work of 

Needs-Howarth (1999).  She examines taxonomic abundance, age, size, and season of 

death of fish remains using a wide variety of techniques to test a number of models of 

prehistoric fishing.  Her extensive investigation of Great Lakes fishing allows the 

discrimination of angling, spearing, netting and the use of weirs at a number of 

prehistoric sites.  The use of zooarchaeological measures for detailed investigation of 
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prehistoric fish ecology in her dissertation provides a model for combining measures to 

investigate prehistoric deer and raccoon ecology in this dissertation.    

Proceeding from the recognition that animal populations respond to changes in 

environment, even within the Holocene, studies of skeletal measurements of various 

mammals have been used to track environmental change (Purdue 1980).  Early work 

focused on species such as rabbits and squirrels that have demonstrable north to south 

clinal variation.  Purdue’s keen interest in ecological parameters has extended into 

investigating clinal variation in deer size across time and space, associating this variation 

with changes in climate and regional ecology (Purdue 1991).  His basic premise is that 

environmental variation affecting forage quality is the major control upon deer size.  As a 

result, there is little consideration of the impact prehistoric human populations had on 

deer ecology.  

Culture focused approaches may either examine how groups make rational 

choices about exploiting their environment, or examine the patterns of behavior they 

utilize in doing so.  Stimulated by Caldwell’s (1958) theory of primary forest efficiency, 

economic approaches have centered on predictions of optimal diet and their comparison 

to recovered faunal remains (Reidhead 1981; Keene 1981; Hewitt 1983).  While optimal 

foraging models have proven effective in understanding decision making within a fixed 

environment, they have not been extensively applied to studies of long-term change.  Part 

of this may relate to the choice of variables used in these types of studies.  Most 

applications are heavily focused on theoretical modeling and do not investigate the 

interactive relationship between humans and their environment.  As a result, very little 
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consideration is given either to the impact of populations on the local environment or to 

long-term environmental changes.  

 Various ways of procuring game, often combined within the sphere of hunting, 

are the most direct expression of the interaction between humans and wild animals.  

Specifically, these procurement strategies may include various forms of hunting (stalking, 

ambushing, driving) or different types of trapping (snares, deadfalls, pit traps).  The 

former strategy has been a focus of several studies, but the latter is often disregarded.  

A number of investigators have examined white-tailed deer mortality profiles and 

argued for selective hunting (Elder 1965; Cleland 1966; Smith 1975; Waselkov 1978).  

These approaches use various levels of ecological data or inference, some of it incorrect.  

Much of the resulting interpretation was tainted by Western views towards conservation 

and has now been discredited based on a thorough consideration of methodological and 

taphonomic factors (Munson 1991).   It has been demonstrated that the under-

representation of young individuals in archaeofaunas is mostly the result of age-mediated 

taphonomic factors, such as canid ravaging.  Further elaboration on the mechanics of 

preferential destruction of ungulate mandibles is provided in Munson and Garniewicz 

(2003); however, neither of these last two critical publications provides a practical 

alternative for interpreting white-tailed deer mortality profiles.  This leaves an extensive 

amount of data without any valid interpretation (see Chapter 3, Table 3.7).  One of the 

major goals of this dissertation is to re-evaluate and interpret these data. 

There has been some limited investigation of species other than deer.  Of 

particular interest are studies of raccoon (Hamblin 1973, Smith 1975).  Basing 

interpretations on the paucity of young individuals or the resulting abundance of adults, 
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both investigators have misinterpreted observed archaeological mortality profiles that 

differ from the expected distribution of living individuals.  Their proposal for selective 

hunting of raccoon based on prime-dominated mortality profiles are untenable given what 

we now know about the preferential destruction of juvenile bone in archaeological 

contexts.  Other methodological problems include the use of ageing criteria that are not 

replicable and the failure to examine non-Middle Mississippian samples for comparative 

purposes.  Recent improvements in methodology and increased sample sizes now permit 

mortality profiles and other measures of raccoon populations to be interpreted 

(Garniewicz 2000). 

Previous examinations of deer and raccoon hunting are flawed because they try to 

use mortality profiles to determine hunting strategies.  Even without the problems 

associated with taphonomy, changes in mortality profiles may have multiple causal 

factors.  Theoretical models suggest that both increased harvesting pressure and the 

effects of environmental stress will increase the percentage of juveniles in a population 

(Wolverton 2001:42).  Thus mortality profiles alone provide insufficient information to 

discriminate between cultural and environmental factors. 

 Studies that have examined the interaction between culture and environment have 

been limited in chronological and geographic scope.    Three important works have 

focused on animal utilization by Woodland or Mississippian societies (Theler 1987; 

Styles 1981; Smith 1975).  Styles has also been the principle investigator of long-term 

trends in Midwestern faunal exploitation (Styles 1994; Styles et al. 1982; 1984). 

 Each of these studies has attempted to compare sites based on the entire range of 

fauna present.  While this approach is understandable from a perspective of trying to 
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utilize all available information, it is problematic in that few site assemblages are directly 

comparable.  Even minor variations in environment, seasonality, preservation or recovery 

may dramatically alter the overall composition of a faunal assemblage, particularly in 

relation to the abundance of small animal remains.  Thus measures that are all inclusive, 

such as the Shannon-Weaver diversity index (Reitz and Wing 1999, Oetalaar 1990) or 

rarefaction analysis (Raup 1975, Styles 1981) are as likely to reflect random site-specific 

variation as they are to discriminate general patterns of behavior associated with resource 

depression or intensification. 

 From the current perspective, each of these cultural studies is methodologically 

limited.  Due to requirements of assemblage comparison, the sites examined are restricted 

in temporal or geographic scope, which precludes broad-scale diachronic studies.  

Furthermore, the variety of methodologies does not permit the inclusion of new data to 

create a broader view; each study is independent and the results cannot be integrated. 

While understanding patterns of faunal exploitation by some Middle Mississippian 

populations is interesting and important, the ability to compare and contrast data to 

understand how exploitation changed from the Archaic and Woodland strategies would 

be truly informative.  

 

Diachronic change: 

 Most attempts to look at diachronic change focus on specific sites (e.g. Jenkins 

1993; Lippold 1971; Emerson 1979).  These reports provide an interesting glimpse at 

change on a local level, but it is exceedingly difficult to evaluate whether these variations 

reflect broad scale trends.  Site-specific studies are likely to exhibit problems involving 
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variation in context and size of samples as well as changes in density and duration of site 

occupation.  The presumption that the immediate environment is a constant may also be 

problematic when considering long-term change. 

By combining a number of sites within the lower Illinois River and central 

Mississippi River valleys, Styles (1994) has demonstrated long-term change in 

percentage values of broadly defined taxonomic groups.  These trends are subjectively 

linked to environmental change as well as variation in human settlement and mobility 

strategies.  Unfortunately, by compressing fauna into broad taxonomic groups, much of 

the detail and specificity about how people interact with their environment is lost.   

Current diachronic studies may demonstrate the existence of resource depletion or 

intensification, but they do not indicate how specific animal populations were affected or 

how people changed their patterns of behavior as a result.  Thus they provide us with an 

abstract measure rather than real detail on prehistoric life.  

 

New directions 

 Approaches that have attempted to summarize subsistence, let alone examine 

change through time, become encumbered by both a large quantity of data and an 

uncertainty as to what these data mean.   In addition to the presence of horticulture or 

agriculture, a large number of variables may affect a faunal assemblage.  Taphonomy, 

site size and duration of occupation, as well as environmental variation on the local and 

regional levels, may affect faunal assemblages by changing the taxonomic diversity or 

the abundance and demography of certain species.  While all of these factors may be 

recognized, it is not possible to control all of them following traditional methods of 
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analyses.  Traditional studies focus on identifying all specimens within a sample and 

comparing the distribution of species in one sample to the distribution of species in 

another sample.   Environmental approaches often focus on a very narrow type of data 

(e.g. deer size). 

What is apparent in the current situation is that the way zooarchaeological data 

are used to test hypotheses is inadequate.  Based on the same variation in mortality 

profiles, interpretations may range from scarcity models to abundance models, including 

both non-selective hunting and selective hunting of prime animals.  Using the 

proportional representation of various taxa, for example, resultant interpretations of the 

data may range from an intrinsic response to environmental change to models of resource 

depletion.  By using measures of size, it is possible to show a correlation with 

environmental change, but is that a valid explanation for the cause of change?  

What previous investigators have failed to realize is that hypotheses focused on 

either environment or culture can be combined and tested by examining multiple lines of 

evidence relating to individual species.  By combining analyses of mortality profiles with 

data on size or sex, the actual population characteristics of animal species may be 

reconstructed and tracked across time and space.  Using multiple lines of evidence 

actually permits the discrimination of environmental change and variation caused by 

human influences.  By combining ecological approaches and examinations of cultural 

activities such as hunting at a species level, it is possible to provide a view of the 

dynamic relationship between humans and their environment that is clearer than that 

which may be seen from a sheer mass of descriptive data. 



 13

The simplified approach used here focuses on key species and examines changes 

in their utilization and population characteristics through time.  Such an approach results 

in a more in-depth study of some species, avoiding some of the pitfalls that plagued 

earlier investigations.  Although not comprehensive of all species present in any 

assemblage, the resulting detail allows for a greater understanding of the interaction 

between prehistoric people and key species.  This dissertation demonstrates that it is 

possible to extract the appropriate ecological and cultural data from zooarchaeological 

specimens and use them to examine long-term changes in animal populations and cultural 

behavior.  It is also anticipated that this methodology may be applied to new geographic 

areas and novel species. 

 

Overview 

 This study begins with an examination of techniques for investigating taxonomic 

diversity.  Key concepts include the use of relative abundance measures rather than strict 

taxonomic diversity measures, the appropriate use of number of identified specimens 

(NISP) data, and the calculation of exploitation intensity values by using optimal 

foraging techniques. 

 At the most basic level of investigation it is possible to demonstrate that 

proportions of various taxa change through time. White-tailed deer and raccoon are 

identified as key species that exhibit inverse relative abundance values and may give 

different indications of resource intensification or depletion.  Further calculations on the 

intensity of exploitation based on deer being the top ranked resource show increased 
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exploitation levels of several small- to medium-bodied species.  This relationship has 

been clearly demonstrated by Styles (1981, 2000). 

 The decreased relative abundance of deer and the increase in intensity of raccoon 

exploitation suggest that these two key species are worthy of further investigation to 

understand how and why their exploitation changed through time.  Previous models 

examining resource depletion have failed to recognize prey responses to resource 

depletion.  In this study, changes in the population dynamics or behavior of prey species 

are examined in detail.  In addition to a reduction in overall numbers, these populations 

may also exhibit a change in the distribution of individuals across the landscape, variation 

in the age or sex of individuals killed, and deviations in characteristics such as body size. 

 The third chapter begins the examination of white-tailed deer populations in 

greater detail, to distinguish between the effects of natural environmental change and the 

effects of human activity.   Several authors suggest that changes in size or taxonomic 

diversity are related to natural environmental variation (Purdue 1991, Styles 1986).  The 

other possibility is that the variation is due to changing patterns of human activity.  

Whether this anthropogenic change is the same as that proposed in previous studies of 

mortality profiles (i.e. Elder 1965, Waselkov 1978) will be examined.    

As considered in Chapter 3, the ability to distinguish between environmental and 

cultural factors depends on combining multiple lines of evidence when analyzing faunal 

remains.  While the number of individuals living to old age could be decreased by either 

environmental degradation or increased hunting intensity, it can be demonstrated that 

only the latter would result in an increase in body size.  An approach utilizing both lines 

of evidence permits the rejection of one of the two otherwise logical explanations.  The 
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data supplied in this chapter permit future work at any site to consider the remains of 

white-tailed deer in the context of human exploitation pressure. 

 The fourth chapter explores how the relationship between people and raccoons 

has changed through time.  Previous approaches that used the same sample to examine 

raccoon mortality profiles produced conflicting results and interpretations.   This appears 

to be largely the result of methodology that was not replicable. Thus, prior to the 

examination of additional samples a new methodology for ageing raccoons from dental 

wear is proposed.  Although examining mortality profiles provides some insight, the key 

to studying raccoon populations turns out to be a simple dental measurement used to 

discriminate sex.  Again, this methodology is easily applied to new samples that may then 

be combined with previous results. 

The fifth chapter integrates information on these key species to explore the 

concept of ”garden hunting” and the economics of deer hunting and raccoon trapping in 

Late Prehistory.  Middle Mississippian techniques of deer hunting are suggested based on 

evidence of patch depletion surrounding major settlements.  In the proximity of villages, 

solitary hunting was probably the most common practice; however, at distance from 

villages, in less heavily exploited patches, deer drives likely predominated.   Efforts near 

major villages where deer were depleted focused on more intensive procurement of other 

species such as raccoons.  This intensification is indicated by changes in the mode of 

procurement from hunting to trapping.  Preliminary data on stable carbon isotopes from 

faunal remains support the additional hypothesis that intensified procurement of raccoon 

may have also been a directed crop-protection effort. 
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Chapter 2 

Relative Abundance Measures and 

Exploitation Intensity of Key Species 

 

Introduction 

At the most basic level, the costs required to procure, process and utilize animal 

foods cannot exceed the value that they yield in fulfilling the variety of nutrients required 

for human existence.  While many groups will violate this rule to procure particularly 

desirable delicacies, these are a minor component of their entire food economy and 

generally are of limited economic significance.  Thus, given some cultural variability, 

people develop subsistence strategies that efficiently exploit animals in the surrounding 

environment and this is reflected in zooarchaeological remains.   

While hunter-gatherers retain the ability to move to new environments where 

species abundance fits with their subsistence strategy, sedentary populations permanently 

alter their environment and subsistence strategies adjust as an expression of a bilateral 

interaction between culture and environment.  This chapter begins the analysis of how 

culture and environment interact from the Archaic through the Late Prehistoric periods of 

eastern North America.  

It is widely recognized that sedentism carries the risk of over-exploiting wild 

resources and this is inherently tied to debates about the origin of agriculture.  Volumes 

have been written on the origins of agriculture and its extension into eastern North 

America, but relatively little of this work has examined the impact of the increased 

human population density upon the animal ecology of the same area.   
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Traditionally, to avoid exceeding the carrying capacity of their immediate 

environment, expanding populations without domestic stock are considered to have 

limited options.  Theoretically hunters may deliberately adjust their activities to avoid 

killing animals when their populations become over-exploited; however, deliberate 

conservation involves making choices that result in significant short-term costs for the 

individuals involved.  As a result, conservation ideals rarely act as a motivator for 

changing strategies of subsistence hunters (Winter 2002:14, Krech 1999), but strategies 

do change when populations of preferred species are depleted and game animals are 

encountered with decreasing frequency.  Change occurs because people optimize their 

hunting efficiency by either switching to new prey species or shifting their activities to 

new locations. 

  When the exploitation of high ranked species becomes more difficult, animal 

exploitation is diversified to include a wider variety of animals and this ultimately 

involves seeking out lower-ranked species.  This is the model of resource depletion that is 

predominantly interpreted at multicomponent sites.  Whether the diversity takes the form 

of utilizing culturally less desirable sources of meat protein or using smaller animals that 

may involve more work in capture and processing, the overall result is the same.  The 

proportion of highly ranked species declines and the taxonomic diversity of 

archaeological assemblages generally increases.  

Sedentary populations may also use a pattern of logistic mobility by sending a 

segment of the population to utilize distant, less-heavily exploited areas.  Logistic hunting 

may be followed by processing to remove skeletal elements and to repackage the hides, 

meat and fat of animals.  This type of activity is frequently overlooked at single sites 
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because it may not be directly reflected in the faunal assemblage.  Although the logistic 

model is not examined with relative abundance measures, it is considered in more detail 

in the concluding discussion on hunting.  

 

Methodology 

 Measures of taxonomic diversity such as the Shannon-Weaver (Shannon-Wiener) 

index may be used to measure the heterogeneity of zooarchaeological samples (Reitz and 

Wing 1999:105).  The more heterogeneous a sample, the greater the proportion of it is 

presumably composed of low ranked species.  The Shannon-Weaver index is calculated 

according to the equation below: 

        s 
 H’=∑(pi)(log pi) 
       i=1 
 
 Where: 
 H’ = information content of the sample 
 pi + the relative abundance of the ith taxon within the sample  

Log pi = the logarithm of pi. This can be to the base 2, e, or 10. 
 s = the number of taxonomic categories 
 

With this measure of diversity, samples with an even distribution of abundance between 

taxa have a higher diversity than samples with the same number of taxa but with 

disproportionately high abundances of a few taxa.  More taxonomic categories lead to 

greater diversity values when samples show the same degree of equitability in abundance.  

Thus, this measure includes both the numbers of species and their relative abundance.  

Unfortunately it also requires that all species within a community are included in the 

sample and we know this isn’t true in archaeological samples. 
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 The number of species encountered in archaeological assemblages is dependent 

on the size of the sample.  This premise in ecological and paleontological samples is the 

basis for rarefaction analysis, a measure of species richness.  Recognizing that as sample 

size increases new rare species are added at a decreasing rate, a plot of the number of 

species against the number of specimens produces a logarithmic curve.  This rarefaction 

curve is widely used by invertebrate paleontologists to correct for variations in species 

richness due to variation in sample sizes (Raup 1975, Foote 1992).  Simply put, 

rarefaction, through a process of random sampling, reduces all samples to the same size 

as the smallest sample in the comparison.  This allows statistically valid comparison, but 

at a loss of data.   As a compensatory mechanism for comparing samples of varying sizes, 

rarefaction has also been applied to archaeological samples (Styles 1981:41-45). 

 In applying rarefaction, or the Shannon-Weaver index, to archaeological samples 

a significant problem arises.  Zooarchaeologists have no real measure of the true 

individuals present in a sample.  In contrast to botanists or zoologists who may count 

individuals, or in invertebrate paleontology where each specimen represents an 

individual, zooarchaeologists must estimate the number of individuals present. 

 Typically zooarcheologists calculate the number of identified specimens (NISP) 

where each identifiable fragment of bone is given a count of one.  Theoretically, a single 

individual may then result in hundreds of NISPs.  By looking at individual elements, 

portions of elements, and sometimes age, sex and size criteria, a zooarchaeologist can 

also determine the minimum number of individuals (MNI) that would be required to 

produce the recovered sample.  Although many people treat this as a true number of 

individuals, it certainly is not.  Use of MNIs is further complicated by sample size 
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problems and is not an effective measure with small samples (Marshall and Pilgram 

1993). 

 Grayson (1984:152) argues that diversity and hererogeneity indices may not be 

used on archaeological samples because of the inability to measure true individuals.  

While this may be true from a theoretical standpoint, in practice it may be possible to 

cautiously use NISP and MNI data in certain situations. 

 Given that zooarchaeologists are already working with somewhat questionable 

measures of individuals, heterogeneity indices might still work given: 1) standardized 

recovery techniques for all samples, 2) levels of taxonomic identification that are 

comparable between all analyses, and 3) samples that are unbiased by taphonomic 

factors.   Unfortunately the resulting heterogeneity indices, even when calculated for 

separate taxa such as birds, reptiles, and fish, show such large variance that differences 

between sites of the same period are significantly greater than differences between major 

cultural periods.  This problem has not prevented zooarchaeologists working in eastern 

North America (Oetalaar 1990) or the Old World (Stiner et al. 2000) from using 

heterogeneity indices. 

That this methodology is used despite the recognition that samples fail to meet the 

prerequisite criteria for comparison and at best produce ambiguous results (Stiner et al. 

2000:41) may relate to an ability to produce a simple number for an otherwise complex 

comparison.  Experimentation by the author with these techniques on samples from 

eastern North America also failed to produce the desired results.  Analysis of samples 

presented in Appendix 1 resulted in greater variability within any time period than 

between any time period.  Problems with taphonomic effects, differential recovery, 
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environmental variation and differing levels of taxonomic identification appear to be of 

larger magnitude than any real variation in taxonomic diversity.  The use of a single 

diversity index is judged by the author to be too general to apply to most samples studied. 

Instead of measuring the general heterogeneity of samples, the author proposes 

using a sequence of three measures of increasing specificity to examine changes in 

species abundance through time.  The most general of these is a relative abundance index 

of mammals based on size classes.  This is followed by an examination of relative 

abundance of key species.  Finally these values are converted to an index based on 

comparison with deer.  This conversion, along with corrections for NISP variations, 

allow for comparisons of actual NISP values from archaeological assemblages to 

predicted NISP values based on optimal foraging theory. 

 

Relative Abundance Index 

An approach that utilizes relative abundance indexes was introduced by Bayham 

(1979) and has been elaborated on by Ugan and Bright (2001).  The method is very basic, 

computing the ratio of large bodied animals to the sum of large-, medium- and small-

bodied animals.  This index, as it is used, implies that body size is a proxy measurement 

for prey rank.  Following from this, values close to one in the index indicate relatively 

high foraging returns; values closer to zero indicate low returns for the amount of effort 

expended.  Applications in the western United States have focused on mammalian 

species (Ugan and Bright 2001).  Given the possibility of major environmental and 

taphonomic variability in the representation of fish and migratory waterfowl, the focus of 

work here follows the mammalian model.   
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 The relative abundance index of size is calculated using the following criteria.  

Small mammals include all mammals up to rabbit size.  Medium mammals continue up 

through medium-sized canids.  Large mammals include all mammals wolf-sized or 

larger.  Numerical values are calculated based on the number of identified specimens 

(NISP).   

 The relative abundance index of individual species to all mammals may be 

calculated by dividing the NISP of a species by the total NISP of all mammals.  The 

results tend toward low fractional numbers for all species other than deer.   The utility of 

these numbers is hindered in comparison to modern situations because of the difficulty in 

calculating the proportion of one species to the proportion of all mammals in a modern 

ecosystem that is not as clearly bounded as an archaeological faunal assemblage. 

 Given all practical measures of zooarchaeological and ethnographic data, as well 

as general agreement between archaeologists, zooarchaeologists and modern hunters, 

white-tailed deer are the number one ranked prey species in most of eastern North 

America.  Based on the assumption that all populations focused a significant portion of 

their hunting efforts on the exploitation of white-tailed deer, they form a logical constant 

to use when comparing values of other species through time.  By dividing all species’ 

relative abundance values by the value for deer, results from prehistoric assemblages can 

be compared to known modern situations. 

   

Optimal Modeling 

 A ranking of prey species may be produced by examining the intrinsic 

characteristics of individual species.  This process introduces bias by the investigator; 
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however, the success of ranking may be evaluated by comparing the predicted values to 

the observed representation in archaeological samples.   Through such comparisons 

specific criteria for ranking may also be evaluated. 

Because people do not make choices solely based on the size of animals, the 

assumption that the relative abundance by size index is an adequate measure of rank may 

be questioned.  Choice of individual prey species is more complex than this assumption; 

however, modifying the methodology to include all possible variables determining rank is 

impossible.  Some modification to this measure is warranted and a determination was 

made that the fat content (and therefore caloric value) of various species is probably also 

significant (Speth and Spielman 1983).   It is recognized that this approach using size and 

fat content does not take into account many of the non-size related costs associated with 

capture and processing that may vary from species to species.  

 While nutritional analysis of fat content is not available for all wild species, it is 

available for some of the most significant.  Summary data based on the USDA National 

Nutrition Database (1999) are presented in Table 2.1.  When ranked by amount of fat 

content per 100g of meat, some medium-sized mammals such as beaver, opossum and 

raccoon rate very high.  One small mammal (muskrat) and a large mammal (bear) also 

rank in the highest group.   

 Unfortunately the USDA does not have nutritional data on all wild animals; thus, 

quantification of some significant species such as woodchuck that have high fat content is 

unavailable.  Seasonal variation in fat content is also significant but not indicated in this 

table, nor can it be calculated for most mammalian remains recovered from 

archaeological contexts. 
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Table 2.1. USDA nutritional data on wild mammals, sorted by increasing fat content. 

100g cooked meat Energy (kcal) Energy (kj) Protein (g) Fat (g) 
  Moose 134 561 29.3   1.0 
  Elk 146 611 30.2   1.9 
  White-tailed deer 158 661 30.2    3.2 
  Rabbit 173 724 33.0   3.5 
  Caribou 167 699 29.7   4.4 
  Squirrel 134 724 30.8   4.7 
  Beaver 212 887 34.8   7.0 
  Opossum 221 925 30.2 10.2 
  Muskrat 234 979 30.1 11.7 
  Bear 259 1084 32.4 13.4 
  Raccoon 255 1067 29.2 14.5 

 

By assigning arbitrary values of one through three for large through small 

mammals and values of one through three for fat values of 15-10g, 10-5g and 5-0g of fat 

per 100 g sample of cooked meat, the combined effects of size and fat may be calculated.   

The results are presented in Table 2.2.  Using this approach the group containing bear, 

opossum and raccoon ranks highest, followed by the group composed of white-tailed 

deer, muskrat, beaver and elk.  The group containing rabbit and squirrel ranked lowest.  

 

Table 2.2. Hypothetical ranking of common mammalian species based on size and fat  
content  

 
  Species  Size Rank Fat Rank Total Rank 
  Bear 1 1 2 
  Opossum 2 1 3 
  Raccoon 2 1 3 
  White-tailed deer 1 3 4 
  Muskrat 3 1 4 
  Beaver 2 2 4 
  Elk 1 3 4 
  Rabbit 3 3 6 
  Squirrel 3 3 6 
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While recognizing that the rank of species formulated from these limited data is 

subjective, the author believes that the grouping of high fat animals (raccoon, opossum, 

bear, muskrat, beaver) is of significant interest.  The group of relatively low fat animals 

includes both large animals (elk, deer) that we know were highly ranked historically and 

prehistorically and small animals (rabbits and squirrel) of uncertain rank in prehistoric 

times. 

 As discussed previously, NISP is used for all calculation of relative abundance.  

Unfortunately it is not valid to compare NISP directly to the abundance of individual 

species (i.e. rank).  These comparisons require other derived variables such as the 

minimum number of individuals (MNI) or meat weight (MW).  The latter two techniques 

have been demonstrated to have some value in site-specific analyses with large sample 

sizes, but are not good techniques for producing the aggregate data required by this study. 

The advantage of MNI and MW is that they allow important dietary 

reconstruction, but the disadvantage is that they over-estimate the importance of rare 

occurrences (i.e. when NISP=MNI).  This over-estimate is related to problems of sample 

size and is particularly pronounced when MNIs for large mammals are close to NISPs for 

those mammals.   

 The relationship between NISP and MNI has been documented by Grayson 

(1978), Bobrowsky (1982), Marshall and Pilgram (1993) and Needs-Howarth (1995).  

The general conclusion of these works is that NISP is a more sensitive indicator for 

comparison between sites that may have varied sample sizes.  Unfortunately, some value 

is lost in using NISP rather than MW.  The relative number of bones that are identifiable 
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(or are commonly identified) varies by general size class and by species.   Thus, NISP 

does not relate directly to actual or relative number of individuals of a species used by the 

inhabitants of a given site.  Because more bones are identified at a specific level for 

larger animals, NISP comparisons under-represent smaller animals.  

Tick Creek, a thoroughly analyzed and extremely large sample studied by 

Parmalee (1965), serves as an excellent model.  At this site, a white-tailed deer NISP of 

23,751 results in an MNI of 825, a ratio of 28.9 NISP/MNI for large mammals.  In 

contrast, a raccoon NISP of 1350 results in an MNI of 312, a ratio of 4.3 NISP/MNI for 

medium mammals.  Therefore, NISPs cannot be treated as representing individuals and 

there must be some correction factor to permit their use in subsistence models.  

Recognizing this problem, Munson and Limp (n.d.) started work on a correction 

factor that may be used to convert between NISP data and MNIs.  The rationale behind 

this factor was that, particularly with small samples and large animals, when one NISP 

creates one MNI the resultant calculations of meat weight are heavily skewed.  More 

pertinent for this study is their observation that the ratio of NISP to MNI also varies by 

the size of the animal, and that smaller species have fewer identified specimens per 

individual.   By using sites with relatively large samples they were able to demonstrate 

distinctive ratios of NISP to MNI for various species.  Using NISPs >25 for small species 

and NISPs >100 for deer, the following correction factors in Table 2.3 were proposed.  

Sufficient NISP values are not present to predict a correction factor for bear or elk and it 

is presumed in this study that these factors are similar to deer.  Sample sizes for other 

species such as opossum were also insufficient to calculate a correction factor; however, 
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in the case of opossum it is not possible to use a similar-sized animal since opossum 

elements are very distinctive. 

 
Table 2.3.  Correction factor (NISP/MNI) for converting NISP to estimated MNI, also  

used for converting modern yields of individual species to predicted NISP in 
archaeological assemblages (Munson and Limp n.d.). 

 
 

Species Correction factor SD 
Raccoon   5.3 1.07 
White-tailed Deer   40.7 16.9 
Muskrat   8.6 3.88 
Beaver 15.1 2.57 
Rabbit   8.9 2.78 
Grey Squirrel    8.9 3.26 
Fox Squirrel   7.1 1.72 
Woodchuck   6.7 2.99 

 

As originally devised, this correction factor was to be used for the comparison of 

sites with small samples to sites with large samples.  By dividing NISP by this correction 

factor a proxy for MNI is produced that is less dependent on sample size.  As used in this 

study, the correction factor has a greater significance in converting predicted yields of 

species in modern ecological settings (optimal foraging data) into predicted NISP values 

(expected representation in zooarchaeological assemblages).  Multiplying the expected 

number of animals in an optimal foraging model (a number of individuals) by this 

correction factor gives the expected NISP at an archaeological site. 

 While recognizing that the abundance of species is likely to vary across space and 

time, general estimates of density and yield of selected species are calculated for the 

eastern United States following Smith (1975) and Reidhead (1981).  As presented in 

Table 2.4, species such as deer and raccoon are expected to average about 40 individuals 
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per square mile.  Other species such as bear may have considerably less dense 

populations (0.5 individuals per square mile), while species such as squirrel may have 

considerably more dense populations (320 individuals per square mile).  

Potential offtake of species varies according to their reproductive strategies.  Two 

types of reproductive strategies are defined based on variables present in the equation that 

defines carrying capacity.  Within the equation, d N / d t = r N x (K - N) / K, where: 

d  - means a change in  
N - the number of individuals in a population  
t - a unit of time  
r - realized intrinsic rate of population growth  
K - carrying capacity,  

 
the variable r is taken to represent species with relatively high intrinsic rates of 

population increase and the variable K is taken to represent species with  relatively low 

intrinsic rates of population increase (Raven and Johnson 1995). 

Some species have relatively high intrinsic rates of population increase.  These r-

selected species have high reproductive rates, mature rapidly and are generally short-

lived.  Although many individuals die before they reproduce, high reproductive rates 

make up for this mortality.   Of particular concern to farmers, most pest species are r-

selected.  These small, rapid-maturing animals are difficult to extirpate even when this is 

the goal of harvesting strategies.    

Other species may have slower reproductive rates and invest more care into their 

offspring.  These K-selected species are more susceptible to over-harvesting, because the 

removal of adults from the population may outstrip the ability of the population to replace 

itself.  These populations have adapted to live within the carrying capacity of their 

environment and depend on stable mortality rates 
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 Even within a balanced ecosystem, r-selected species may have high offtake 

ratios, and in this study the ratios of several relatively r-selected species are set at 50 

percent of the total population.  As a result of their reproductive strategy, K-selected 

species such as deer and bear cannot maintain their population levels when more than 20 

percent of the population is removed annually through hunting.  With this very 

generalized model of a 50 percent yield for r-selected species and a 20 percent yield for 

K-selected species, Table 2.4 provides the number of individuals that may be harvested 

per square mile per year.  These are “actual individuals” and may be converted to 

expected NISP in archaeological assemblages by multiplying with the correction factor 

presented in Table 2.3.  This provides the predicted NISPs per square mile of territory. 

 

Table 2.4.  Optimal foraging data from modern environmental settings converted to 
expected NISP ratios.  Density and potential annual yield from Smith (1975) and 
Reidhead (1981); correction factor from Munson and Limp (n.d); other variables 
calculated in this study. 
 

 
 

Species 

 
Density 

mi2 

 
Potential 

annual yield

 
Predicted 

individuals

 
Correctio
n factor 

 
Predicted 

NISP 

Ratio of 
predicted NISP 

to NISP deer 
  Raccoon 40 50% 20.0   5.3 106 0.33 
  Deer 40 20%   8.0 40.7 326 1.00 
  Bear 0.5 20%   0.1 40.7     4 0.01 
  Rabbit 140 50% 70.0   8.9 623 1.91 
  Squirrel 320 50%      160.0   8.0     1280 3.93 
 

Finally, the predicted NISP may be converted to a value relative to the most 

highly ranked species.  Based on the assumption that deer were always exploited at their 

maximum potential, all other values can be corrected by dividing by the predicted NISP 

of deer.  The resulting expected NISP ratio that is presented in the last column of Table 
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2.4 may be compared to NISP ratios from archaeological sites that have been corrected 

by dividing by the values of deer.  The closeness of the expected vs. the predicted value 

can be used to evaluate previously assigned rank based on archaeological measures of 

abundance. 

 

Results 

A sample of sites from eastern North America was selected based on several 

criteria, predominantly large sample sizes and comparability of taxonomic levels in the 

published raw data.  These 19 sites are presented in Appendix 1.  Mammals from all sites 

identified to genus level or better provide a sample size of more than 70,000 identified 

specimens.  Because the goal is to utilize methodology that eliminates major variation 

caused by environment, taphonomy or levels of taxonomic identification, the results are 

considered representative of trends seen in the archaeofaunas of eastern North America 

even though the list of sites is neither exhaustive nor unbiased.  

 Samples are grouped by cultural chronology into Archaic, Woodland and Late 

Prehistoric samples.  Given the data utilized at this stage of analysis, further 

chronological subdivisions were considered untenable.  Species-specific data in following 

chapters will be the focus of more detailed chronological analysis.   Relative abundance 

indices for the three size categories and three culture-chronological groups are presented 

in Table 2.5. 

There will be little surprise amongst archaeologists that the relative abundance of 

large mammals decreases through time and that the relative abundance of both medium 

and small mammals increases.  According to the assumptions outlined previously this 
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indicates a general decrease in foraging efficiency through time.  As encounters with 

large mammals decrease, greater efforts must be focused on acquiring smaller species 

that likely result in lesser overall return rates.  As an exercise, these calculations fit well 

with formal models of diet breadth, but the results give little detail on how people’s 

subsistence choices change through time.  For example, does foraging efficiency decrease 

due to increased hunting pressures that result from a long-term increase in human 

population density? 

 

Table 2.5. Relative abundance indices of small, medium and large mammals through time 
in eastern North America 
 

Taxon Archaic Woodland Late Prehistoric 
 Large mammals 0.89 0.86 0.73 
 Medium mammals 0.08 0.10 0.18 
 Small mammals 0.03 0.04 0.09 
 Total NISP 14960 33592 22387 

 

Tracking of individual mammalian species through time is more informative and 

may be linked to rank-based choices by prehistoric populations.  When the relative 

abundance index by species is considered (Table 2.6) overall results are promising.   

Raccoon and opossum rank at very similar levels based on size and fat content and show 

similar proportional changes.  They remain fairly stable through the Archaic and 

Woodland and both more than double in abundance in the Late Prehistoric.  The range of 

opossum has increased in the Holocene so their change in abundance may have an 

alternate explanation (Guilday 1958). Black bear was exploited at very low numbers in 

the Archaic and Woodland and exhibits a six-fold increase in abundance in the Late 

Prehistoric.  The results for muskrat, beaver and elk are ambiguous, and this may relate 
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more to environment and availability at the sites studied than to actual trends.  White-

tailed deer show a minor decline in abundance into the Woodland period and a larger 

decline into the Late Prehistoric.  Rabbits (Sylvilagus and Lepus) and squirrels (Sciurius 

spp.) show very low levels of exploitation in the Archaic and Woodland and four- to 

seven-fold increases in the Late Prehistoric 

 

Table 2.6. Relative abundance indices of various species through time based on data in 
Appendix 1. 
 

Species  Archaic Woodland Late Prehistoric 
 Elk  0.010 0.008 0.017 
 White-tailed deer 0.874 0.846 0.690 
 Rabbit 0.011 0.009 0.042 
 Squirrel 0.009 0.006 0.051 
 Beaver 0.006 0.023 0.027 
 Opossum 0.002 0.002 0.007 
 Muskrat 0.000 0.018 0.004 
 Bear 0.001 0.004 0.024 
 Raccoon 0.032 0.029 0.073 

 

While there is the possibility of a wide variety of food preferences, taboos, or 

ritual disposal of the remains of some species offsite, these effects are hopefully minor 

for the animals considered here.  This caveat does not hold for the only domestic animal 

in precontact eastern North America, the dog.  As Schwartz (1997) demonstrates, the 

cultural variability in the use and treatment of the dog makes it particularly unsuitable for 

an analysis of this type. 

Opossum, muskrat, beaver and elk do show more erratic variation over time than 

other species examined.  Likely, this results from these species not being ubiquitous in 

either their geographic or temporal distribution in the eastern United States.  In the case 
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of the opossum, it has an expanding range through the Holocene (Guilday 1958).  In the 

case of muskrat, beaver, and elk, they have habitat requirements which limit their range.   

Consequently, these are not good species for generalized studies of long-term change.  

The remaining species or taxonomic groups are fairly ubiquitous and provide good 

models for further study. 

 Of these species, those selected as good indicators include raccoon, black bear, 

white-tailed deer, rabbits and squirrels.  Taking the relative abundance data for each 

species from Table 2.6 and correcting them using the relative abundance of deer (NISP 

species x/NISP deer) results in a ratio that may be compared to the ratios predicted from 

optimal foraging data in Table 2.4.  Table 2.7 presents the corrected relative abundance 

of key species.  

 
Table 2.7.  Corrected NISP ratios of key species from Table 2.6 using relative  

abundance of deer as a correction factor. 
 
 
Species 

Hypothetical  
Rank 

 
Archaic 

 
Woodland

 
Late Prehistoric

 Raccoon 1 0.036 0.034 0.105 
 Black bear 1 0.001 0.005 0.035 
 White-tailed deer 2 1.000 1.000 1.000 
 Rabbits 3 0.013 0.011 0.060 
 Squirrels 3 0.011 0.007 0.074 
 

These results may be compared to expected NISP ratios based optimal foraging 

data (Table 2.4).  By dividing the actual corrected NISP ratio by the expected optimal 

foraging NISP ratio, a variable is created that indicates intensity of exploitation 

(Ei=corrected NISP species i/predicted NISP species i).  Results are presented in Table 

2.8.  Because data have been previously corrected based on the NISP of deer, the 
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exploitation of deer is forced by the model to be set at 1.0.  The intensity of exploitation 

of other species may be compared to deer, though it should be mentioned that this 

comparison does not take into account the preferential survival of large mammal bones 

that is linked to variables such as bone density and size.   

The following trends are apparent in Table 2.8.  Deer with its assigned rank of 1 is 

constant.  Bear and raccoon with their high fat rank are intensively exploited in the Late 

Prehistoric period; bear, with its large body size is represented at 3 times its predicted 

availability.  Rabbit and squirrel show increased exploitation into the Late Prehistoric 

period compared to earlier samples, but the overall intensity of exploitation is still low 

compared to their potential. 

 

Table 2.8 Intensity of exploitation [Ei=corrected NISP species i/predicted NISP  
species i], deer is theoretically set at a constant of 1. 
 

 
Species 

Hypothetical 
Rank 

 
Archaic 

 
Woodland 

 
Late Prehistoric 

Raccoon 1 0.111 0.104 0.323 
Bear 1 0.081 0.407 2.849 
Deer 2 1.000 1.000 1.000 
Rabbit 3 0.007 0.006 0.031 
Squirrel 3 0.003 0.002 0.019 

 

 The overall results suggest that ranking based on both fat content and size is valid.  

In the Late Prehistoric period the order of magnitude difference between large and 

medium high-fat species (0.11) is in accord with the difference between large and small 

low-fat species (0.03).   Because raccoon, rabbit and squirrel elements are much less 

likely than bear or deer to survive taphonomic effects in archaeological assemblages, 

their real intensity of exploitation may be even higher than that indicated here. 
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Discussion: 

 In terms of uncorrected relative abundance, deer show the most significant overall 

decrease through time and this partially accounts for the corresponding increase in other 

species. Even at their lowest relative abundance in the Late Prehistoric they comprise 69 

percent of the mammal remains by NISP in the assemblages studied.  This certainly 

supports their continued ranking as the primary prey species in eastern North America.   

If deer relative abundance declines at archaeological sites through time yet they remain 

the number one ranked species, the decline should indicate a change in the number of 

deer available to human hunters.  Deer as an example of resource depression is examined 

in detail in Chapter 3. 

 The author agrees with the primary placement of deer, yet recognizes that the rank 

of deer may vary seasonally. Deer are easily hunted in the fall when they are in rut.  In 

season they provide an excellent source of protein and fat, while also providing 

secondary products such as antler and hides for the production of tools and clothing.  

However, out of season venison procurement priorities may change.  These changes in 

rank are probably related to changes in the fat content of meat.  Although an extreme 

case, Speth and Spielman (1983) document the protein poisoning associated with eating 

meat with no fat content.   

The journals of Lewis and Clark discuss the lack of fat in deer and other cervids 

between February and May:  ”The deer are pore and their flesh by no means as good as 

that of the Elk which is also poore”(February 18, 1806).  ”...the Elk I killed this morning, 

thought it fat, but on examineation found it so lean that we took the tongue marrowbones 
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and skin only”(May 17, 1805).  Lewis and Clark do not discard meat because it is 

unpalatable, but because consuming it will accelerate starvation. 

The narrative of James Smith, who was taken captive and lived among the 

Caughnewaga, Wiandot and Ottawa in northern Ohio between 1755 and 1759, provides 

supportive information about the seasonality of hunting (Smith 1799).  Based on his 

record of activities, deer hunting is most frequent between October and December, and 

bear hunting is most frequent between January and April.  While this shift may partially 

be explained by the behavioral patterns of these two species, the fat content of bear meat 

is certainly significant during the late winter and early spring, a season typically marked 

by famine.  Unfortunately the procurement of smaller species is not noted in enough 

detail to determine if other fatty species such as raccoon, woodchuck, and opossums were 

also sought after during this season. 

 Most if not all archaeologists and zooarchaeologists would probably rank raccoon 

as a moderately ranked meat source when compared to deer.  This ranking undoubtedly 

reflects the modern perception that raccoon are a low ranked species and may take into 

account the relatively small body size of raccoon compared to deer and the amount of 

effort required to exploit the potential harvest of raccoons.  It does not take into account 

the fact that by weight raccoon have more than four times the fat content of deer and 

nearly twice the caloric value (Table 2.1) 

 Noting that raccoon have the highest fat content of the game mammals examined, 

it is proposed that their ranking amongst prehistoric groups in the eastern United States 

may be higher than expected based on size alone.  Calculations of hunting intensity 

suggest that raccoon are the most sought after mammal after deer in the Archaic and 
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Woodland and after deer and bear in the Late Prehistoric.  Other factors relating to the 

conflict between raccoons and agriculturalists may also come into play and these are 

discussed in Chapter 4. 

 While deer and raccoon are discussed in more detail later in this dissertation, 

some other species, including bear, rabbit and squirrel are not.   In the case of bear, 

significant samples did not exist to reconstruct population parameters; in the case of 

rabbit and squirrel, appropriate zooarchaeological measures were not identified.  

Therefore, it is appropriate to make a few comments on these species here. 

Given the extraordinarily high value for exploitation intensity, bear may have 

been more common in areas surrounding Late Prehistoric sites than predicted by various 

models.  With the optimal foraging models used here, an exploitation intensity of 2.85 

would require an annual culling of 57 percent of the bear population.  Because this would 

rapidly extirpate bear, either the optimal foraging data under-estimate the number of bear 

available, or prehistoric populations ranged further in the procurement of bear and were 

likely to transport skeletal elements back to their sites.  Because bear are highly exploited 

relative to deer, deer may also have been less common than predicted by optimal foraging 

models.   

While interpretation of bear remains at archaeological sites has been complicated 

by concerns related to ceremonialism and culturally biased disposal (Wallace, 1949; 

Ritchie, 1950), their proportional representation is probably also complicated by hunting 

technology.    Bear were commonly hunted in the winter after going into hibernation 

because they are "very difficult to hunt when in full control of their senses” (Reidhead 

1981:123).  Dens were either discovered opportunistically during other winter activities 
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or by organized parties sent out to look for them.  Bear were often driven out of their 

dens by the use of fire or smoke and shot with arrows upon their exit. 

Ethnohistorically, the bow and arrow was the weapon of choice for hunting 

hibernating bear even after the introduction of firearms.  As Perrot reports, the sound of 

guns was believed to awaken other hibernating bears, so they would exit their dens awake 

and angry when hunters attempted to smoke them out (Blair 1911:126).  It is possible that 

the expansion in relative abundance of bear in the Late Prehistoric is due to a 

combination of effects that may include increased ranking of high fat meat, new hunting 

technology and increased archaeological visibility of late winter-spring site occupations.  

Exploitation in previous periods may have been resulted in ephemeral surface scatters at 

temporary camps; the presence of major villages with more significant occupations may 

increase the likelihood of preservation.    

 Two other taxonomic groups show both low fat values and small size (rabbits and 

squirrels), yet these groups also show increases in proportional representation through 

time.  Overall, the intensity of exploitation of these taxa is still much lighter than that 

seen in raccoon.  With these lean species, the author believes that the increases are due to 

intensified exploitation as a result of decreased availability of higher ranked species.  

Although not selected for fat, these taxa may have made a significant contribution of 

meat protein.  It is also possible that increased representation of at least one of these 

species is related to garden hunting, a model proposed in Chapter 5.   

 The overall low numbers of these small species are undoubtedly related to 

taphonomic effects (Payne and Munson 1985).  However, this does not diminish the 

ability to track changes in their intensity of their exploitation through time, because all 
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sites examined in eastern North America appear to be subjected to similar levels of canid 

ravaging.  Thus, models that examine changes through time are less likely to reflect 

taphonomic biases than models that compare prehistoric situation to modern ones.  

 

 

Conclusions 

 In combination, the data presented here suggest that changes in relative 

abundance through time are partially related to rank.  Studies using size as a proxy for 

rank demonstrate a decrease in relative abundance of large mammals and an increase in 

relative abundance of medium and small mammals.  At a general level this reflects a 

diversification of resource use that may be related to depression of large, highly ranked 

species.  Other species-specific changes in relative abundance through time may relate to 

ranking variables other than size.   

 Studies examining both size and fat content as a measure of rank show that, when 

controlling for size, animals with a higher percentage of body fat are more heavily 

exploited in the Late Prehistoric period.  Given the continued importance of oily/starchy 

seeds and particularly nuts even amongst intensive agriculturalists (Bush 2004) the 

importance of meat with high fat content should not be a surprise.  Fat is an important 

ranking variable in the Late Prehistoric, though its importance may vary over time.  As 

Classen (1985) demonstrates, a great deal of energy was expended processing mussels in 

the Late Archaic despite their low fat content.  The abrupt termination of the shell mound 

culture helps demonstrate the possibility of a highly visible and dramatic change related 



 40

to food preferences.  In the case of increased relative abundance of bear, additional 

factors such as changing procurement strategies may also play a role. 

Variables, such as resilience to over-exploitation in certain species, may also play 

a significant role in changing relative abundance.  It is argued in the following chapters 

that the relatively K-selected white-tailed deer is not resilient to over-exploitation, 

whereas the relatively r-selected raccoon is resilient.  The significant zooarchaeological 

changes seen in these populations over time provide detailed evidence of the interaction 

between culture and environment. 
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Chapter 3 

 Prehistoric white-tailed deer exploitation 

 
White-tailed Deer Biology 

 
 East of the Mississippi River, the white-tailed deer (Odocoileus virginianus) is 

divided into two subspecies: north of the Ohio River O. v. borealis occurs, and to the 

south O. v. virginianus predominates.  White-tailed deer are a plastic species, and this 

separation reflects variation in the pelage color, external dimensions, cranial details, and 

antler tine-size and spread (Baker 1984:14). Of specific interest to this study are external 

dimensions and other size-related variables. 

 White-tailed deer fawns weight between 1.8 and 3.6 kilograms at birth.  The 

maximum weight recorded for a dressed-out adult male is 183 kilograms (Minnesota) 

(Sauer 1984:80).  Growth, like total weight depends on range; however, generally deer at 

6 months have attained half their adult weight, with 18-month old individuals weighing 

70% of an adult more than 30 months of age. 

 The weight of white-tailed deer exhibits clinal variation, with the heaviest deer 

living in northern latitudes and the lightest deer living in tropical or insular habitats.  The 

variation in live weight for adult bucks ranges from means of 137 kilograms in Ontario to 

23 kilograms in the Florida Keys; mature non-pregnant does weigh between 25% and 

40% less than mature bucks (Baker 1984:16). 

 Prior to the work of Riney (1951) there is a lack of standard terminology for deer 

teeth; thus, some of the early literature can be confusing, relating to certain teeth as 

pincers, laterals and corners and referencing the first premolar (Severinghaus 1949:198).  
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Primitive placental mammalian dentition consists of three incisors, one canine, four 

premolars and three molars in each demi-mandible.  In early artiodactyl evolution, the 

lower canine became incisiform, while the first premolar took on the form and function 

of the canine (Loomis 1925).  Although some artiodactyls retain a canine-like first 

premolar (e.g. Sus spp.), deer only retain premolars two through four.  See Figures 3.1 

and 3.2 for current deer tooth terminology. 

White-tailed deer fawns are born with four teeth and their remaining deciduous teeth 

erupt within several weeks.  At six months the first molars are erupting and by twelve 

months they are in occlusion and the second molars are erupting.  By 24 months all adult 

teeth are in place and functioning. Critical to ageing deer in this study are the 

characteristics of tooth-wear in deer exceeding 2 years.  Details of tooth wear are 

summarized after Severinghaus (1949). 

 

Figure 3.1.  Deer mandible with deciduous dentition (6 months)  
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Figure 3.2.  Deer mandible with adult dentition (30 months) 

 
 
 
Table 3.1.  Tooth eruption in the New York white-tailed deer (Severinghaus 1949).  

D indicates deciduous teeth, P indicates permanent teeth, () indicate erupting 
teeth.  The lower canine tooth in deer is incisiform, resulting in the appearance of 
four incisors. 

   
                          Incisors       Canine   Premolars    Molars    .      

Age 1 2 3 1 2 3 4 1 2 3 
1 to 3 weeks (D)(D) (D) (D) (D) (D) (D)    
2 to 3 months D D D D D D D   (P)   
6 months P D D D D D D   (P)   
12 months P P P P D D (P)   P (P)  
18 months P P P P P (P) P   P P P 
24 months P P P P P P P   P P P 

 

 Severinghaus records instances of deer living to between 14 and 16 years; 

however, all of these deer had been captive raised and been fed higher quality softer diets 

than wild deer.  The loss of tooth height above the gum-line in 10 year-old individuals 
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under a normal diet regime is taken in this study to indicate that potential ecological 

longevity (PEL) of deer in the wild is 10 years. 

 

Table 3.2.  Descriptions of adult white-tailed deer tooth wear based on Severinghaus  
(1949) 

 
2.5 Years - Lingual crests on the first molar sharp with enamel well above the  

narrow dentine.  Wear on the posterior cusp of the third molar is slight. 
3.5 Years - Lingual crests on the first molar blunt and dentine is wider than the  

enamel. The posterior cusp of the third molar is flattened by wear and exhibits a 
concave occlusal surface. 

4.5 Years - The lingual crests of the first molar were almost worn away and the  
dentine is twice as wide as the enamel.  The posterior cusp of the third molar is 
worn so that the occlusal surface slopes in the buccal direction. 

5.5 Years - No lingual crests remain on first and second molars.  The flat surface of  
the tooth slopes in the buccal direction, giving the horizontally rounded lingual 
edges the appearance of crests, but the original crests have worn away.  

6.5 Years - At this stage only a small lingual crest remains on the third molar and the  
third and fourth premolars show heavy wear.   

7.5 Years - The first molar is worn down to within 3mm of the gum line on the  
buccal side and within 5 mm on the lingual side; the second molar is worn almost 
smooth and the lingual crests are worn off the third molar. 

8.5-9.5 Years - At this stage the infundibulum is worn away on all molars, and the  
dentine is thus joined.  All cheek teeth are reduced to within 3 mm on the buccal 
side and 5 mm on the lingual side. 

10.5 Years - Wear continues from the previous subclass, with teeth worn to the gum  
line.  In some specimens dentine is worn through exposing the pulp cavity. 

 

 White-tailed deer have a compound stomach that permits them to utilize lower 

quality foods that are digested by microbial symbionts in the rumen and reticulum.  Deer 

are not as effective as cattle at utilizing woody materials and have difficulty surviving on 

an exclusively woody browse (Verme and Ullrey 1984:111).  Despite their classification 

as browsers, some have suggested that they could be considered true grazers, consuming 

grasses, sedges, fruits, nuts, forbs and mushrooms, as well as portions of shrubs and trees 

(Nagy et al. 1967). 
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 Deer are selective feeders and will smell and taste food to discriminate plants and 

plant parts.  As captive and wild individuals select different forage under the same 

conditions, it is likely that some preferences may be transmitted by imitation from one 

generation to the next.  However these food choices are made, they are generally 

successful in terms of survival even under adverse conditions.  During periods of 

scarcity, deer will utilize any food available.  This often results in consumption of woody 

browse during the winter in northern climates.  At the northern limits of their range and 

in overpopulated areas deer do die of winter starvation (Verme and Ullrey 1984:112-

115).   

 Whether deer attain maximum body size is dependent on the availability of 

browse during their first two years of growth.  At carrying capacity, deer population 

density is limited by the availability of food, and a segment of the population generally 

starves over the course of the winter.  In most instances deer populations are not at 

carrying capacity, either because populations are controlled by natural predators (wolves, 

mountain lions, coyotes) or they are reduced in number by human hunting.  In the few 

modern instances where natural predation and human hunting both have been eliminated, 

dense deer populations tend to out-compete other species for food.  Deer in these dense 

populations are also in strict competition with each other for food and young individuals 

tend to be undernourished.  As a result, average size of the deer in these populations is 

dramatically reduced, resulting in deer populations with diminutive individuals and low 

mean body weights. 

 The relationship between the number of deer and the available forage may be 

altered by a change in deer population density or an alteration in the quantity or quality of 
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available forage.    Low numbers of deer relative to the food supply, and hence large 

individual size, may be the result of a reduction in population or an increase in available 

forage.  A decrease in deer size may be the result of an increase in the number of deer or 

a decrease in available forage.  

 The George Reserve deer population in southern Michigan has been extensively 

studied since 1928.  In regards to record buck production [antler weight is highly 

correlated with body weight according to the following formula: body weight (kg) = -

1695.5 + 28.8*antler weight (g), r2 = 0.57 (McCullough 1984)] no example demonstrates 

the deer density - size - age relationship in a clearer format.  McCullough states: 

Record bucks were produced not at high densities, which have the oldest 
individuals, but rather at the lowest densities.  The largest buck ever taken 
and the next largest were taken in 1971 when the total buck harvest was 
37....  The highest proportion of bucks weighing more than 90.5 kg was 
obtained at lowest densities....  This occurred despite these periods of 
heavy harvest having the youngest age structure in both the population and 
the kill.  The record buck was five years old and the next largest was three 
years old.  No buck taken in 1971-1975 or 1980-81 exceeded five years of 
age and most were yearlings, two and three-year-olds (McCullough 
1984:234). 

 

McCullough also demonstrates from a population of black-tailed deer in California that 

deer density is a far more important variable controlling productivity than all other 

variables combined (McCullough 1984:232).  These other variables include predation by 

coyotes and other predators, poaching, drought and variation in mast crops.  It is 

important to point out that the geographical area studied (Hopland Field Station) exhibits 

a substantial variation in climate, with mild wet winters and hot dry summers.  These 

studies by McCullough demonstrate that two different species of deer from populations in 
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widely different ecological situations (Michigan, California) exhibit the same relationship 

between deer density and size. 

 Two examples of an opposing relationship between deer density and size are 

presented by Klein (1985).  He notes that the response to hunting is opposite to the 

pattern of increased body size that has been observed after reduction of deer densities 

through hunting among North American deer (Klein 1970).  Both of these examples 

occur outside the United States (roe deer in Denmark and red deer in New Zealand).  

Crucial to the case in New Zealand is that hunting was continuous (not seasonal) and 

therefore excluded deer from areas without sufficient escape cover and restricted the 

surviving deer to dense forests with heavy cover.  It is very likely that what occurs in 

these situations is that while overall density decreases, the relative density in marginal 

environments (heavy cover) actually increases.  In the New Zealand situation deer were 

reluctant to forage in open areas as a result of hunting pressure and their functional range 

was thus restricted. 

 Although wildlife biologists have noted that shifts in hunting strategies, trapping 

techniques and patterns of hunter choice may all affect mortality profiles, they do not do 

so in the way many archaeologists presume.  Changed intensities of hunting do not 

change the relative representation of young age classes.  In unregulated hunting the 

largest number of kills is always in the 0-1 year age class, followed by the 1-2 year age 

class, etc. in descending order.  What changes in heavily hunted populations is not the 

large number of young but the small number of old individuals.  In most modern “bucks 

only” hunting situations it is unusual for a male to live past 4 years of age.  In the same 

population there are comparatively large numbers of females exceeding this age and 
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continuing to live up to 9+ years.  This variation in mortality is best demonstrated in 

Figure 3.3, based on data from Dusek et al. (1983).   

 
Figure 3.3.  A stacked area graph showing the age and sex distribution of an actual 
modern white-tailed deer population.  The female mortality curve is one only slightly 
affected by hunting (poaching) while the male mortality curve is strongly affected by 
hunting.  Based on data from Dusek et al. (1989). 

 

Although the selective hunting of prime individuals has been proposed as an 

explanation of prehistoric mortality profiles, this strategy would not noticeably affect the 

density of deer or their available forage.  The only shift in mortality profiles that creates a 

shift in available forage is a reduction in deer density through intensive hunting (or 

trapping).  There is dramatic evidence presented in numerous modern wildlife biology 

studies (frequently through the comparison of heavily hunted males to weakly hunted 

females) that hunting reduces the number of individuals living to old age. 

Figures 3.3 and 3.4 demonstrate that increased hunting pressure results in a 

steepened mortality profiles.  This is demonstrated by an actual study of deer subjected to 

different hunting regimes (Dusek et al. 1989) and by a theoretical model produced by 
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Eberhardt (1969).  In his study annual survival rates of male and female fawns is 0.58; 

thereafter, female survival rate is 0.70 and male survival rate is 0.28 (survival rates 

calculated on the basis of actual survival of deer in Michigan’s Lower Peninsula 

subjected to bucks-only hunting). 

 
Figure 3.4.  A stacked area graph showing the age and sex distribution of a theoretical 
white-tailed deer population where males are subjected to heavy hunting and females are 
not subject to hunting.  Based on data from Eberhardt (1969) modified to cap life 
expectancy at 10 years. 
 

  

 Based on these observations from modern wildlife studies, all previous 

archaeological interpretations of deer hunting based on the age composition of deer kills 

are inherently flawed.  The premise of this study is that prehistoric deer kills reflect the 

natural composition of deer populations and that variation in the number of young 

individuals reflects age-mediated taphonomic changes to the assemblage.  The 

appropriate methodology for answering questions about changed intensities of hunting, as 

well as for investigating hunting strategies, would be to look at the relative representation 
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of older individuals and compare this to body size estimates.  By combining these data it 

is possible to examine deer population density. 

 

Methods 

 Given the above-observed variation in mortality profiles and size of modern 

white-tailed deer, specific measures were identified to track this variation in prehistoric 

populations.  In attempting to unravel the relationship between prehistoric hunters and 

their prey, the most critical factor is deer population density.  Although deer density 

cannot be directly measured for prehistoric cases it can be tracked by examining the 

relationship between deer mortality profiles and deer size. 

 

Deer Mortality Profiles 

 A variety of techniques can be used to determine age of white-tailed deer.  These 

include epiphyseal fusion (Purdue 1983b), cementum annuli (Gilbert 1966), crown height 

measurements (Walker 2000), and tooth eruption and wear (Severinghaus 1949).  Each of 

these techniques has advantages and disadvantages.  In small samples, the epiphyseal 

fusion technique frequently provides a larger number of specimens than dental or 

mandibular ageing; however, this technique cannot provide ages past 3 years, when 

fusion for all elements is complete.  In samples with complete recovery, techniques that 

use individual teeth, such as cementum annuli studies and crown height measurements, 

are less biased against young individuals (Munson and Garniewicz 2003).  Unfortunately 

annuli studies are destructive and can be difficult to apply to archaeological materials.  

Crown height measurements provide an objective technique for determining age; 
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however, some studies of known-age samples demonstrate accuracy that is no greater 

than that of traditional eruption and wear studies (Walker 2000).  Interestingly, 

Severinghaus (1949) published detailed crown height measurements on his sample but 

found that wear stages were more accurate because of individual variation in tooth size.  

 In the present study deer are aged by tooth eruption and wear using the criteria 

described by Severinghaus (1949) in combination with a modern reference sample.  At 

the start of this project the technique chosen for ageing deer was tooth eruption and wear.  

This technique allows for fairly rapid and accurate assessment of archaeological 

specimens, it is non-destructive, and it is the most widely used (and published) technique 

for ageing prehistoric material from eastern North America.   

A separate taphonomic study conducted during this dissertation (Munson and 

Garniewicz 2003) indicated that mandibles exhibited substantially more destruction by 

various taphonomic forces when compared to individual teeth.  Even considering this 

recent work on survivorship, if this study were repeated, I would still use tooth eruption 

and wear for a number of reasons.  This technique permits the use of previously 

published data from sites where faunal materials are no longer available for research.  

Many of the large collections available for analysis were collected prior to the 

widespread use of 1/4 inch screening.  Thus, the representation of individual teeth may be 

even more biased than that of the mandibles. 

The study by Munson and Garniewicz defined ageable demi-mandibles as 

“fragments with any two or more teeth in place” (Munson and Garniewicz 2003:405).  To 

the author’s knowledge, no other archaeological study or white-tailed deer mandibular 

ages identifies specimen completeness, making this variable difficult to control.  Many 
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authors state that they used ‘relatively complete mandibles’; however, the exact meaning 

of this statement is unclear.   When a sample of mandibles from Tick Creek rockshelter 

(Parmalee 1965:27) was reanalyzed, some of the specimens that had been aged by 

Parmalee contained no teeth at all.  These were ageable based on the presence of tooth 

crypts indicating a certain stage of eruption and the rami of the mandibles themselve were 

nearly complete, they just didn’t have any teeth.  Given the apparent variation in 

completeness of previously analyzed samples, the author decided to include all reliably 

ageable mandibles in the samples used in this study regardless of completeness.  The 

relative completeness of each mandible studied is presented in Appendix 2 for future 

reference.   

 Replicability of ageing by tooth eruption and wear by experienced wildlife 

biologists has been shown to be less accurate than analysis of cementum annuli counts.  

A study by Hamlin et al. (2000) shows 42.9% accuracy based on eruption and wear and 

85% accuracy based on cementum annuli when known age individuals were examined.    

Part of this variability is explained by the cementum annuli ages being performed by a 

single individual (Dr. Gary Matson) who has extensive experience and runs the only 

commercial wildlife ageing laboratory in the United States; this is compared to the results 

of six wildlife biologists, with comparatively less experience, ageing deer in the field 

under check-station conditions.  Another serious problem may be that starting in the 

second edition of the Wildlife Techniques Manual (Mosby 1963) and continuing until 

1994, tooth wear drawings are marked improperly (lingual and buccal crests are 

confused).  This is critical in that Severinghaus uses the width of dentine vs. enamel on 

these crests to differentiate age classes.  Using the Wildife Techniques Manual rather 
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than Severinghaus’ original 1949 publication would result in ageing 4 ½ year olds as 3 ½ 

year olds and ageing 3 ½ year olds as 2 ½ year olds.  Finally, studies of deer in the field 

under check-station conditions would be expected to be less reliable than studies using 

the same ageing criteria for excised jaws (or archaeologically recovered mandibles) in a 

laboratory situation. 

Most errors presented in Hamlin et al. (2000) for old individuals are 

misassignments by one or two years, so grouping data into larger than one-year age 

classes should eliminate some of the variability. Based on these data and associated 

problems in criteria and investigator variability there is a reasonable expectation that 

there will be some variation in how zooarchaeologists age mandibles by eruption and 

wear.  These problems are further complicated by the fact that deer feeding on different 

quality browse and on varying soil types will also have different rates of tooth wear 

(Gilbert and Stolt 1970). 

 As indicated in the introduction, taphonomy is a significant problem in 

interpreting white-tailed deer mortality profiles.  Although often ignored by modern 

researchers, the taphonomic problem has been recognized by some for more than a 

century.  This taphonomic problem was first noted by Steenstrup (1855) who then 

conducted actualistic experiments, feeding bird bones to dogs and examining the results 

(Steenstrup 1862).  This preferential destruction of bones was also noted at investigations 

of shell middens in the United States (Wyman 1868:577, Eaton 1898:147); the effect of 

canid ravaging on juvenile specimens is specifically mentioned by Morlot (1861:300).   

This taphonomic problem is discussed in detail by Munson and Garniewicz 

(2003) and only the basic points will be covered here.  Based on actualistic studies, canid 
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ravaging results in a dramatic lowering of the representation of young individuals.  

Mandibles generally exhibit higher levels of destruction than individual teeth; however, 

survivorship of ageable mandibles approaches 100% by 18 months for raw specimens 

and 90% by 24 months for cooked specimens. Individual teeth from deer greater than 18 

months of age appear to be relatively unaffected.  Although various correction factors are 

possible, these depend on whether the specimens were raw or cooked and whether the 

investigators used individual teeth as well as relatively complete mandibular rami (2 or 

more teeth); these variables are unknown in most of the prehistoric samples considered. 

 Due to problems associated with the preservation of mandibles from young 

individuals this study considers only the relative representation of various adult age-

classes.  Although original data are presented with all age classes present, specimens 

under 24 months of age are eliminated from analyses that focus on older age classes.  

This not only eliminates taphonomic problems, but also shifts the focus to the age classes 

that are most severely affected by changes in the intensity of exploitation.   

Some preliminary analyses examined deer aged three to six years and six to nine 

plus years.  These results are presented briefly in Figure 3.6; however, the consideration 

of age classes shifted to 20-40%, 40-60% and 60-80% of potential ecological longevity 

(PEL) later in the study.  These PEL categories provide a more standardized grouping of 

data that is comparable to other ongoing work.  These three groups are essentially 2-4 

year olds, 4-6 year olds and 6-8 year olds; thus this grouping effectively removes the 

taphonomically questionable individuals under 24 months of age and also eliminates the 

individuals who are older than 8 years.  This old adult group may be important; however, 
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it is seriously affected by sample size problems since the number of individuals in these 

older age groups is such a small percentage of any real population. 

 

Size estimates 

 The first attempt to look at relative size of deer by comparison of osteological 

measurements was by Guilday et al. (1962).  They measured astragalus length of the 

sample from the Eschelman site and went on to state how interesting it would be if other 

researchers measured their samples for comparative purposes.  To my knowledge not a 

single zooarchaeologist has ever mentioned or responded to Guilday et al.’s work.  

Emerson (1978), apparently independent of Guilday et al., also suggested that deer 

weight could be accurately predicted from the maximum length measurement of the 

astragalus.   

Unfortunately, in the zooarchaeological literature from eastern North America, 

and contrary to European studies, osteological measurements on species other than 

domestic dogs are extremely rare.  Only two investigators (Emerson 1980; 1978; Purdue 

1991, 1989, 1987, 1986, 1983a) have calculated deer size from osteological measures.  

The original single measurement estimator as defined by Emerson (1978) has been 

redefined and refined by Purdue (1986). 

 Purdue (1986) considers a battery of six measurements taken with hand-held 

calipers to more accurately discriminate subtle differences in size and shape.  Purdue took 

measurements to the nearest 0.01 mm; however, I was unable to attain replicability at this 

level of measurement with repeated trials and suspect that measurements to the nearest 
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0.1 mm are sufficient.  This study employed the same 6 measurements used by Purdue 

(1986).  These measurements are indicated in Figure 3.5. 

 

 

Figure 3.5   Astragalus measurements  

  

 

 Table 3.3.  Key to astragalus measurements 
 =============================== 

ASMD = Astragalus medial depth 
 ASMLEN = Astragalus medial length 
 ASLD = Astragalus lateral depth 
 ASLLEN = Astragalus lateral length 
 ASDW = Astragalus distal width 

ASLEN = Astragalus minimum length 
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 Measurements taken according to Purdue can be converted for the purpose of 

comparison with Emerson’s estimates.  A regression of Purdue’s astragalus lateral length 

against Emerson’s maximum length reveals a high correlation (r2=.89), with Emerson’s 

maximum length equal to Purdue’s lateral length times 0.941.  Purdue’s estimator is 

much more accurate and all future measurements should be taken according to his 

methodology (Purdue 1986). 

 When only 5 out of 6 measurements were possible the remaining value was 

estimated.  I only performed this procedure when my sample size of complete specimens 

was less than 25.  Purdue used a site-specific regression from the other two most highly-

correlated values to estimate missing values; although, he specifically states “the 

astragalus differed between analytical units only by size, not by other proportions” 

(Purdue 1991:67).  I found that astragalus proportions were constant and that site-specific 

regressions were imprecise when sample size was less than 25 specimens (i.e. when they 

were necessary) and therefore substituted a multiple linear regression (MLR) on my 

entire sample.  This MLR resulted in the equations presented in Table 3.4 that were used 

to estimate the missing value from the remaining 5 values of each individual (all 

measurements in millimeters).  It is recommended that future work use these equations 

for estimating missing values. 

Table 3.4.  Equations for estimating missing measurements. 
============================================================ 
ASMD = -1.50 + 0.58 ASLD+0.26ASDW+0.12ASMLEN (r2 = 0.72, SE = 0.76) 
ASMLEN = 3.04 + 0.74 ASLEN + 0.47 ASLD (r2 = 0.71, SE = 1.14) 
ASLD = 1.97 + 0.28 ASLLEN + 0.20 ASMD +0.18 ASDW (r2 = 0.84, SE = 0.45) 
ASLLEN = 2.92 + 0.63 ASLEN + 0.75 ASLD (r2 = 0.88, SE = 0.71) 
ASDW = 1.26 + 0.74 ASLD + 0.34 ASMD (r2 = 0.69, SE = 0.85) 
ASLEN = -0.75 + 0.59 ASLLEN + 0.25 ASMLEN (r2 = 0.85, SE= 0.71) 
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More accurate estimates of body weight are possible if the sex of the individual 

can be determined.  Purdue (1986) transformed the measurements into z-scores 

considering each analytical unit separately.  As a result, clinal variation in size (whether 

this variation is through space or time) does not affect site-specific sex determination.  

Positive z-scores were than attributed to males, negative z-scores to females.  Purdue 

(1986) then provided a correction factor to eliminate the bias caused by miss-sexed 

individuals.  This correction factor was derived from a sample of 397 deer from six 

modern populations where sex and body weight were independently known.  With this 

correction factor, estimates of the means, standard deviations, and sample sizes on 

modern populations “compared favorably with their actual counterparts [population 

parameters] and, therefore, could be used with confidence” (Purdue 1986:69).  Purdue’s 

correction factors are presented in Table 3.5. 

 Once the sex is determined the weights of adult deer in the late fall can be 

estimated by the following regressions: 

  ln Bwf = -4.62775 + (0.88870 * ASVOf), 

 ln Bwm = -8.13984 + (1.26867 * ASVOm) 

Where Bwf is live body weight in kg for females, Bwm is live body weight in kg for 

males, ASVOf is astragalus volume for females and ASVOm is astragalus volume for 

males.  Astragalus volume is calculated from caliper measurements using the following 

equation: 

 ASVO = (ASMD/2)*(ASMLEN/2)*ASDW*Β. 
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Table 3.5. Purdue’s regressions for converting apparent to corrected statistics. 

    Sex   Statistic  Y-intercept        Slope SE 
    ================================== 

ASMD M Mean -1.24648 1.04243 0.13
 SD -0.24752 1.37317 0.13
 F Mean -1.15033 1.06346 0.06
 SD 0.25138 0.93032 0.10
 
ASMLEN M Mean -1.84986 1.03973 0.17
 SD 0.44023 0.83469 0.12
 F Mean -1.35830 1.04489 0.16
 SD 0.12806 1.09511 0.11
 
ASLLEN M Mean -1.76992 1.03515 0.22
 SD 0.75732 0.67082 0.13
 F Mean -1.44287 1.04430 0.15
 SD 0.28686 0.93994 0.15
 
ASDW M Mean -3.20911 1.11269 0.13
 SD 0.49871 0.74566 0.09
 F Mean -0.33910 1.02355 0.08
 SD 0.56172 0.61105 0.11
 
ASLD M Mean -1.13295 1.04166 0.13
 SD 0.56650 0.49630 0.08
 F Mean -0.61865 1.03634 0.09
 SD 0.24165 0.84831 0.09
 
ASLEN M Mean -1.82937 1.04583 0.14
 SD 0.72593 0.60713 0.11
 F Mean -1.17797 1.04630 0.10
 SD 0.11804 1.09953 0.08

 

The equations for the calculation of body weight and astragalus volume are 

presented by Purdue (1986:72) who determined them from known age and weight 

individuals in seven modern samples from the midwestern and southeastern U.S. 

(n=397).  Early work by Purdue (1983a, 1991) used principle components analysis of all 

six measurements rather than body weight for comparative purposes.  Based on my data 

both factor scores and estimated body weights were calculated.  Factor scores were then 
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regressed on body weight and a significant correlation was found.  This coefficient of 

determination was fairly high for males (r2 = .71); however the value for females was 

lesser (r2 = .48).   

To investigate this relationship an analysis of variance (ANOVA) was run 

between analytical units and body weight.  For males and females this proved significant 

at the P<0.01 and P<0.001 levels respectively.  A separate ANOVA was run between the 

analytic units and all six astragalus measurements.  All three of the measurements used to 

calculate weight were significant (P<0.05); however, two of the remaining measurements 

were not.  This suggests that the measurements that Purdue has chosen to use for 

calculating weight are well-chosen and that there is some unexplained variation that is 

represented by the other measurements.  This variability also suggests that factor scores 

of astragalus measurements are not a good proxy for body weight.   

 The goal of Purdue’s work was to demonstrate that deer size varied 

geographically and through time due to variation in environmental conditions, and 

unfortunately his data presentation is focused on this comparison.  He often presents body 

weight data as factor scores and never presents body weight of males and females by 

mean and standard deviation.  Mean body weights are readily calculated from Purdue’s 

presentation of mean measurements; however, standard deviations of body weight cannot 

be calculated from the corrected standard deviations of mean measurements.  

 In the following analyses all comparisons are by body weight rather than using 

proxy factor scores.  This technique provides data that are just as accurate, more 

appropriate and easily visualized (Factor score +1 or +2 vs. Female body weight of 56.1 

kg or 60.2 kg).  More importantly these body weight data can be compared across 
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independent studies in contrast to factor scores that are dependent of the specific array of 

sites analyzed by an investigator. 

 

Data 

 This section sets out, in a systematic fashion, both the previously published data 

and the data generated for this study.  Raw data relating to mortality profiles are 

presented first, followed by raw and corrected data relating to deer size.  Statistical 

comparisons of individual and grouped data are presented in the results section that 

follows the presentation of data. 

 

Mortality Profiles 

 Mortality profiles of white-tailed deer are generally presented in one-year 

increments, with the median for each age class used as a column heading.  Thus, deer 

aged zero to one year are designated 0.5.  The presentation of data in this section follows 

this format; when an original investigator lumped older age classes together (i.e. >7.5 

years) the number of individuals in this group was evenly divided amongst the remaining 

year age classes.  Due to the inclusion of some small samples that are useful when 

summing data by period, raw data are not converted to percentage values.  Conversion to 

percentages would make variation due to small sample sizes less apparent. 

Overall, 46 previously published samples of aged deer from archaeological sites 

in the eastern United States are presented and 8 additional samples of aged deer were 

generated for this study.  All samples are referenced to an original publication in Table 

3.4 unless they are newly analyzed samples designated ‘This Study’.  All samples 
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examined for this study have detailed analyses of teeth present and ages for each 

individual mandible in Appendix A.   All mortality profiles are listed in Table 3.7 by their 

abbreviations presented in Table 3.6 
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Table 3.6 Sites used in the analysis of deer mortality profiles 

Abbreviation Site Name State Reference Culture Period 

RH2 Rockhouse Hollow IN This Study Archaic 
TC1 Tick Creek MO Parmalee 1965 Archaic 
BR1 Brogley WI Emerson 1979 Archaic 
PR1 Preston WI Theler 1987 L. Archaic 
PR2 Preston WI Theler 1987 L. Archaic 
CL Claiborne MS Brent Smith 1974 L. Archaic 
IK Indian Knoll KY Skaggs 1934 L. Archaic 
BR2 Brogley WI Emerson 1979 Woodland 
TC3 Tick Creek MO Parmalee 1965 Woodland 
AC Apple Creek IL Parmalee, Paloumpis, and Wilson 1972 Woodland 
MI1 Millville WI Theler and Pillaert 1983 M. Woodland 
MA Macoupin IL Hill 1970 M. Woodland 
MI2 Millville WI Pillaert 1994 M. Woodland 
PR3 Preston WI Theler 1987 M. Woodland 
MI3 Millville  WI Pillaert 1969 M. Woodland 
CH Chesser Cave OH Prufer 1975 L.Woodland 
CO Conners Midden VA Mc Ginnes and Reaves 1957 L.Woodland 
MO Moccasin Bluff MI  Cleland 1966 L.Woodland 
HF Hales Ford VA Waselkov 1978 L.Woodland 
BM Belmont  VA Waselkov 1978 L.Woodland 
PH Pine Hill NY Cottrell 1979 L. Woodland 
PR4 Preston WI Theler 1987 L. Woodland 
BF Booth Farm VA Waselkov 1978 L.Woodland 
GV Graham Village OH Cleland and Kearney 1967 Fort Ancient 
BL1 Blain Village OH Parmalee and Shane 1970 Fort Ancient 
BL2 Blain Village OH This Study Fort Ancient 
PH Philo II OH Shane and Barber 1976:4 Fort Ancient 
BV Bundy-Voyles IN Garniewicz 1997 Oliver 
LI1 Lilbourn MO Smith 1975 Mississippian 
RH1 Rockhouse Hollow IN This Study Mississippian 
SN Snodgrass MO Smith 1975 Mississippian 
CH Chucalissa TN Smith 1975 Mississippian 
LI2 Lilbourn MO Waselkov 1974 Mississippian 
BA1 Banks AR Smith 1975 Mississippian 
BA2 Banks AR This Study Mississippian 
OR Orendorf, IL IL Emerson, 1981 Mississippian 
TU Turner  MO Smith 1975 Mississippian 
GO Gooseneck  MO Smith 1975 Mississippian 
LG Lake George MI  Belmont 1983 Mississippian 
AN Angel IN This Study Mississippian 
CT Chota-Tanasi TN Bogan 1976 Historic 
OU1 Ouiatenon IN Martin 1986 Historic 
SA Gumbo Point  MO Elder 1965 Historic 
MU Murphy IN This Study Miss. C-W 
BU Buffalo WV Guilday 1971 Historic/F.A. 
BR Brown MO Elder 1965 Historic 
UV Utz Village MO Elder 1965 Historic 
ES Eschelman PA Guilday, Parmalee, and Tanner 1962 Historic 
RH  Rhoads IL Parmalee and Klippel 1983 Historic 
BE2 Bell WI This Study Historic 
SH Shannon   VA  Barber and Baroody Historic 
OU2 Ouiatenon IN This Study Historic 
AR Arnold Research Cave MO Elder 1965 Mixed 
OB Ozark Bluff AR Cleland 1965 Mixed 
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Table 3.7.  Mortality profiles of white-tailed deer from eastern North America.  Sites are referenced in 
Table 3.4, (N) represents the number of demi-mandibles aged and the designations 0.5 through 9.5 
represent the mean of each one-year age class.  Note: Original analyses of OR and BR2 combined age 
classes; these age classes were divided out, resulting in fractional representation in the older age classes 
 

Site  (N)   0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 

RH2   (67)     8   14   12   12   10  3  4   1  0 3 
TC1 (212)   35   55   34   25   10 11 13 11 11 7 
BR1   (44)   13     7     8   10     3  3  0   0  0 0 
PR1     (8)     0     0     1     2     4  0  1   0  0 0 
TC2 (191)   43   36   26   25   17 10 12   7  6 9 
PR2   (12)     1     1     1     1     1  2  2   2  1 0 
CL   (11)     1     0     2     2     1  3  0   1  1 0 
IK (514)    30   60 126  125   65 46 39 10  6 7 
BR2 (248)   37   42   64   52   19 17        4.25        4.25       4.25       4.25
TC3 (547) 100 126   88   58   35 39      32 40 13     16 
AC   (58)   19   26     2     2     3  2  2   1  0 1 
MI1   (20)     3     5     6     3     1  1  1   0  0 0 
MA   (21)     2     8     3     3     4  1  0   0  0 0 
MI2   (18)     2   10     7     3     1  1  1   0  0 0 
PR3     (7)     3     2     0     0     0  1  0   0  1 0 
MI3   (24)     2   10     6     3     1  1  1   0  0 0 
CH   (33)     6   11     3     8     0  1  1   0  1 2 
CO   (12)     3     3     2     0     1  2  1   0  0 0 
MO   (56)   10     9   13     5     8  1  5   4  0 1 
HF   (25)      8     3     4     3     3  1  1   1  1 0 
BM   (17)     4     4     1     2     2  0  1   2  0 1 
PH   (58)     3     7   14     9     5 10  7   3  0 0 
PR4   (29)     8     4     2     3     4  2  3   1  2 0 
BF   (29)   10     7     2     3     2  2  3   0  0 0 
GV   (17)     0     4     7     4     1  1  0   0  0 0 
BL1   (36)     8   11     2     5     5  2  1   2  0 0 
BL2   (55)     9   21     8     7     3  6  0   1  0 0 
PH   (20)     6     4     2     2     2  1  1   2  0 0 
BV   (43)     7   13     6     8     5  0  2   1  1 0 
LI1   (10)     1     2     2     2     1  1  1   0  0 0 
RH1   (24)     3     1   10     3     2  2  1   2  0 0 
SN (130)     9   32   32   25   12  7  5   5  3 0 
CH   (55)     6     9   11     9     8  6  3   2  1 0 
LI2   (26)     4     4     7     4     2  2  1   1  1 0 
BA1   (81)   17   14   13   13   10  7  4   3  1 0 
BA2 (129)   18   41   27   21     8  6  7   1  0 0 
OR   (64)     6   10   15   19   11      0.6      0.6      0.6     0.6     0.6 
TU   (20)     0     3     7     5     3  1  0   1  0 0 
GO     (8)     0     2     3     1     1  0  1   0  0 0 
LG   (28)     9     6     6     2     2  1  1   0  1 0 
CT   (73)     6   12   11   22   14  3  2   1  1 2 
OU1   (15)     3     2     3     4     2  1  0   0  0 0 
OU2   (35)     7     6     5     4     6  3  1   1  1 1 
SA   (29)     1     5   13     5     3  1  1   0  0 0 
MU   (27)     4     7     5     2     4  4  1   0  0 0 
BU (345)   74   53   25   56   41 41      31   7      10 7 
BR (153)     5   32   35   34   18 11  5   8  5 0 
UV   (92)     7   17   20     7   12 11      10   2  1 5 
ES (182)   21   20   31   39   22 20      20   7  0 2 
RH    (98)   19   24   17   20     8  3  3   4  0 0 
BE2   (19)     4     1     4     7     1  1  1   0  0 0 
SH   (30)     6     5     7     3     1  3  1   1  2 1 
AR   (95)     4   23   17   10   10  9      12   8  1 1 
OB   (94)     5   18   21   17   14 10  2   2  3 2 
SB   (19)     2     5     5     1     2  1  1   0  1 1 
JN   (15)     2     4     4     2     2  1  0   1  0 0 
AN   (38)     4     7     8     5     5  2  3   2  1 1 
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Size estimates 

 Purdue presents descriptive statistics on the corrected measurements of astragali; 

however, these cannot be used to determine the standard deviations of estimated male and 

female body weights.  Without original data available it is not possible to determine 

statistical significance on direct comparisons of size with previously published sites.  

However, mean weights of males and females can be calculated from these corrected 

measurements.  The sites examined by Purdue and in this study are presented in Table 3.8 

and the resulting corrected measurements are presented in Table 3.9.  Mean weights 

calculated in this study are presented in Table 3.10, and calculated mean weights from 

corrected measurements are presented in Table 3.11. 

 For sites examined in this study estimated body weight is calculated for each 

specimen, so the mean and standard deviation of both male and female body weights may 

be calculated for each sample. Results are presented in Table 3.10.  Since these 

calculations are not subject to the correction factors for the means of each individual 

measurement, the results are slightly different than the means in Table 3.11.  The 

advantage of this method is that statistical comparisons of size may be made between 

individual samples. 
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Table 3.8.  Sites used in the study of white-tailed deer size.  Note, sites referenced “this 
study” have a site reference presented in Appendix 3. 
 

Site Site name State Investigator  Reference Culture Period 

AN Angel IN Garniewicz This Study Mississippian 
BA Banks AR Garniewicz Parmalee 1966 Mississippian 
BE1 Bell WI Purdue Parmalee 1963 Historic 
BE2 Bell WI Garniewicz This Study Historic 
BL Blain OH Garniewicz This Study Fort Ancient 
BR Brown MO Purdue Chapman 1982 Historic 
CB Crable IL Purdue Illinois State Museum Site Files Mississippian 
IR Crane/Loy/Macoupin IL Purdue Illinois State Museum Site Files Woodland 
CR Crawford Farm IL Purdue Parmalee 1964 Historic 
FC Fort de Chartes IL Purdue Parmalee and Bogan 1980a Historic 
SA Gumbo Point/Plattner MO Purdue Chapman 1959, Lewis 1979 Historic 
HY Hayes MO Purdue Chapman 1982 Historic 
K6 Koster Horizon 6 IL Purdue Brown and Vierra 1983 Archaic 
K8 Koster Horizon 8 IL Purdue Brown and Vierra 1983 Archaic 
K11 Koster Horizon 11 IL Purdue Brown and Vierra 1983 Archaic 
MD1 Modoc 4-5k IL Purdue Styles et al.1983 Archaic 
MD2 Modoc 5-6k IL Purdue Styles et al.1983 Archaic 
MD3 Modoc 7-8k IL Purdue Styles et al.1983 Archaic 
MU Murphy IN Garniewicz This Study Mississippian 
NW Noble-Weiting IL Purdue Parmalee and Bogan 1980b Mississippian 
OR Orendorf IL Purdue Santure 1981 Mississippian 
OU1 Ouiatenon IN Purdue Noble 1983 Historic 
OU2 Ouiatenon G IN Garniewicz This Study Historic 
PB Pabst IL Purdue Lewis 1979 Archaic 
RH Rhoads IL Purdue Parmalee and Klippel 1983 Historic 
RH1 Rockhouse Hollow IN Garniewicz This Study Archaic 
RH2 Rockhouse Hollow IN Garniewicz This Study Archaic 
TC Tick Creek MO Garniewicz This Study Archaic-Woodland 
TW Twenhafel 1-2k IL Purdue Hofman 1980 Woodland 
FC Waterman IL Purdue Parmalee and Bogan 1980a Historic 
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Table 3.9.  Descriptive statistics for corrected measurements of the astragalus of  
male white-tailed deer from all studied sites 

 
Site (N) Stat. ASMD ASMLEN ASLLEN ASDW ASLD ASLEN
CB (12) X 25.68 40.87 43.79 28.41 24.41 35.14

 SD 1.01 1.15 1.50 1.21 0.91 1.12
IR (32) X 24.53 40.32 43.18 27.84 24.14 35.13

SD 1.33 1.53 1.70 1.33 0.95 1.45
CR (3) X 26.49 42.91 46.47 29.59 25.84 37.41

SD 1.61 1.90 1.84 1.83 0.98 1.81
FC (12) X 23.23 38.69 41.70 26.61 22.91 33.50

SD 1.16 1.75 1.84 1.00 0.83 1.54
K6 (34) X 24.02 38.86 41.88 26.81 23.53 33.85

SD 1.24 1.66 1.70 1.18 0.95 1.31
K8 (5) X 23.79 38.70 41.93 27.41 23.30 33.57

SD 1.79 2.05 1.93 1.74 1.27 1.85
K11 (5) X 24.67 39.64 42.65 26.32 23.68 34.52

SD 1.56 2.24 1.85 1.18 0.76 1.71
MD1 (13) X 22.88 38.65 41.27 25.84 22.50 33.50

SD 1.03 1.48 1.51 1.16 0.88 1.21
MD2 (10) X 23.06 37.88 40.94 26.29 22.61 33.20

SD 1.02 1.65 1.56 1.25 0.90 1.53
MD3 (9) X 23.73 38.76 41.13 26.25 22.80 33.60

SD 1.24 1.32 1.26 1.14 1.02 1.24
NW (24) X 24.61 40.38 43.08 27.27 23.95 34.70

SD 1.28 1.62 1.61 1.44 1.03 1.44
OR (58) X 24.97 40.77 43.41 28.06 24.05 35.49

SD 1.48 1.86 1.78 1.82 1.06 1.62
PB (14) X 23.37 38.48 41.41 26.76 23.13 32.96

SD 0.83 1.55 1.49 1.06 1.09 1.32
RH (6) X 24.32 40.84 43.43 27.54 23.93 35.52

SD 0.48 0.99 1.06 1.23 0.94 1.32
TW (18) X 24.81 40.80 43.86 27.96 24.33 35.56

SD 0.95 1.55 1.44 1.29 0.99 1.36
SA (17) X 24.88 40.87 43.85 27.68 24.21 35.47

SD 1.92 1.87 1.93 1.34 1.09 1.69
HY (20) X 24.15 36.69 42.19 26.80 23.48 34.35

SD 0.81 1.48 1.71 1.12 0.95 1.42
BR (48) X 24.03 39.74 42.53 26.45 23.35 34.59

SD 1.28 1.56 1.55 1.27 0.91 1.37
FC (12) X 23.23 38.69 41.70 26.61 22.91 33.50

SD 1.16 1.75 1.84 1.00 0.83 1.54
OU1 (15) X 24.23 40.04 42.36 26.66 23.34 34.69

SD 1.09 1.39 1.57 1.31 0.94 1.43
AN (12) X 23.90 39.60 41.92 27.08 23.04 34.29

SD 1.00 1.44 1.60 1.16 0.88 1.24
OU2 (21) X 24.06 39.42 42.28 26.56 23.35 34.23

SD 1.15 1.33 1.61 1.30 0.95 1.40
RH1 (4) X 22.71 37.76 40.62 21.88 22.20 32.71

SD 0.54 1.15 1.33 1.15 0.83 1.41
RH2 (22) X 23.86 39.25 41.69 26.21 23.20 33.82

SD 1.26 1.63 1.77 1.15 0.93 1.56
BE (5) X 24.13 39.88 42.92 27.20 23.61 34.88

SD 1.07 1.63 1.60 1.36 0.77 1.46
TC (53) X 23.63 38.62 41.26 26.09 22.89 33.32

SD 1.11 1.33 1.62 1.25 0.90 1.33
BL (27) X 24.50 39.98 42.87 26.66 23.86 34.87

SD 1.04 1.67 1.80 2.12 0.93 1.54
BA (28) X 24.01 39.79 42.95 27.03 23.85 34.62

SD 1.13 1.36 1.56 1.26 0.93 1.50
MU (12) X 24.51 40.35 43.32 27.12 24.24 35.00

SD 1.07 1.33 1.27 0.95 0.88 1.23
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Table 3.10.  Descriptive statistics for corrected measurements of the astragalus of female 
  white-tailed deer from all studied sites 

Site (N) Stat. ASMD ASMLEN ASLLEN ASDW ASLD ASLEN 
CB (14) X 23.49 38.76 41.49 25.76 22.74 33.17 

  SD 1.45 1.97 2.09 1.13 1.16 1.44 
IR (28) X 23.23 38.01 40.42 25.81 22.74 33.01 

  SD 1.22 1.99 1.70 1.01 1.10 1.55 
CR (9) X 24.30 39.57 42.37 26.64 23.18 34.31 

  SD 1.19 1.74 1.33 1.16 1.10 1.25 
FC (13) X 22.68 37.28 40.05 25.02 22.26 32.28 

  SD 0.84 1.97 1.73 1.09 0.73 1.42 
K6 (35) X 22.70 37.18 39.72 25.11 22.20 32.18 

  SD 1.45 1.75 1.70 1.23 0.98 1.41 
K8 (9) X 21.74 36.19 38.12 24.69 21.32 31.18 

  SD 1.35 1.05 1.33 0.98 0.92 1.11 
K11 (6) X 21.75 36.65 38.53 24.30 21.28 31.61 

  SD 0.60 2.00 1.48 1.36 0.46 2.14 
MD1 (16) X 22.07 36.60 38.85 24.97 21.69 31.43 

  SD 1.07 0.98 1.08 1.12 0.85 0.85 
MD2 (15) X 22.28 36.70 39.19 24.68 21.78 31.84 

  SD 1.24 1.59 1.30 1.05 0.82 1.16 
MD3 (7) X 21.61 36.51 39.53 24.98 21.56 31.28 

  SD 1.44 2.47 1.75 1.20 0.88 1.97 
NW (23) X 23.59 38.25 40.82 25.46 22.83 32.95 

  SD 1.47 2.02 1.76 1.32 1.09 1.84 
OR (68) X 23.29 38.63 40.92 25.79 22.78 33.21 

  SD 1.29 2.15 1.54 1.20 0.97 1.39 
PB (11) X 22.40 36.05 38.44 24.69 21.98 30.91 

  SD 1.17 1.40 1.56 1.74 0.79 1.28 
RH (6) X 22.78 38.08 40.58 24.97 22.09 32.71 

  SD 1.77 2.39 2.05 1.44 1.55 1.81 
TW (18) X 23.50 38.59 41.14 26.16 22.90 33.51 

  SD 1.23 1.73 1.71 1.09 0.92 1.36 
SA (19) X 23.04 38.21 40.89 25.60 22.71 33.08 

  SD 1.37 1.43 1.13 1.16 0.86 1.16 
HY (29) X 22.93 37.74 40.56 25.32 22.44 32.61 

  SD 1.39 1.71 1.41 1.13 0.91 1.17 
BR (47) X 22.60 37.40 39.92 25.26 22.04 32.39 

  SD 1.05 1.51 1.59 1.04 0.93 1.32 
FC (13) X 22.68 37.28 40.05 25.02 22.26 32.28 

  SD 0.84 1.97 1.73 1.09 0.73 1.42 
OU1 (18) X 22.96 37.63 40.42 25.25 22.44 32.35 

  SD 1.21 1.54 1.56 1.10 1.04 1.31 
AN (15) X 22.35 37.88 21.64 39.71 25.91 32.73 

  SD 0.89 1.37 0.93 2.14 1.04 1.02 
OU2 (20) X 22.81 37.50 40.06 24.86 21.98 32.60 

  SD 0.88 1.60 1.72 1.12 0.89 1.42 
RH1 (7) X 21.71 36.71 39.28 24.37 21.66 31.35 

  SD 1.27 1.33 1.06 1.09 0.54 1.29 
RH2 (19) X 22.05 36.30 38.93 27.37 21.48 31.74 

  SD 1.24 1.37 1.50 1.23 0.82 2.03 
BE (5) X 23.20 38.30 40.72 26.39 22.41 33.32 

  SD 1.25 0.86 1.59 1.58 1.16 0.91 
TC (47) X 21.96 36.08 38.77 24.80 21.51 31.22 

  SD 1.29 1.63 1.82 1.28 1.01 1.26 
BL (26) X 22.62 37.18 39.97 25.30 22.14 32.47 

  SD 1.00 1.02 1.23 1.20 0.82 1.10 
BA (32) X 22.76 37.41 40.25 25.21 22.56 32.18 

  SD 1.15 1.58 1.57 1.59 0.87 1.24 
MU (11) X 22.71 37.92 40.56 25.61 22.51 33.22 

  SD 1.02 1.27 1.35 1.04 0.79 1.22 
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Table 3.11.  Deer body weight calculated from corr. measurements of the astragalus 
 

Site Males (N) Males (kg) Females (N) Females (kg) 
CB (12) 102.0 (14) 60.4 
IR (32) 92.2 (28) 58.8 
CR   (3) 118.8   (9) 65.3 
FC (12) 77.1 (13) 55.1 
K6 (34) 81.6 (35) 55.2 
K8   (5) 82.5   (9) 51.1 

K11   (5) 84.6   (6) 50.9 
MD1 (13) 72.7 (16) 52.8 
MD2 (10) 73.2 (15) 52.8 
MD3   (9) 78.0   (7) 51.7 
NW (24) 90.3 (23) 59.3 
OR (58) 96.6 (68) 59.8 
PB (14) 77.7 (11) 52.2 
RH   (6) 91.4   (6) 56.2 
TW (18) 95.4 (18) 61.0 
SA (17) 94.8 (19) 58.3 
HY (20) 76.4 (29) 56.8 
BR (48) 82.6 (47) 55.5 
FC (12) 77.1 (13) 55.1 

OU1 (15) 85.1 (18) 56.6 
AN (12) 84.2 (15) 56.8 

OU2 (21) 82.3 (20) 55.3 
RH1   (4) 72.5   (7) 51.0 
RH2 (22) 79.7 (19) 56.8 
BE   (5) 86.4   (5) 60.4 
TC (53) 76.6 (47) 51.6 
BL (27) 86.2 (26) 55.4 
BA (28) 85.0 (32) 55.8 
MU (12) 89.1 (11) 57.2 

 

Table 3.10.  Mean and standard deviations of body weight calculated in this study. 

Site Males  
(N) 

 Males 
 (kg) 

SD  Females  
(N) 

 Females (kg) SD 

AN (12) 86.657 9.186 (15) 55.282 3.296
OU2 (21) 85.033 9.579 (20) 53.910 4.105
RH1 (4) 70.975 6.976 (7) 49.923 4.378
RH2 (26) 80.009 11.666 (15) 48.677 4.058

BE (5) 89.059 12.394 (5) 58.749 6.102
TC (53) 79.567 9.329 (47) 49.846 4.355
BL (27) 88.746 12.189 (26) 63.928 3.598
BA (28) 87.599 9.728 (32) 54.239 4.132
MU (12) 91.475 7.383 (11) 55.638 3.825
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Analysis of Mortality Profiles and Size 

When all mortality profile data are grouped by major cultural group (Archaic, 

Woodland, Mississippian, Historic) and examined statistically, there are no significant 

differences in mortality profiles.  The results of a Kolmogorov-Smirnov  (K-S) Two 

Sample Test showing maximum differences for pairs of groups are presented below.  

 

Table 3.13. Results of a K-S Two Sample Test between Culture Periods 
=================================================== 

Archaic Woodland     Mississippian  
Woodland  0.429     
   p=0.35 
Mississippian  0.311  0.235 
   p=0.74  p=0.69 
Historic  0.354  0.682  0.250 

    p=0.62  p=0.68  p=0.69 
 ==================================================== 

Despite this poor statistical showing, there is an apparent trend in the composition of 

older age classes when the data are combined to create large sample sizes (Table 3.14).  

The Mississippian sample shows lesser representation in the older age classes compared 

to all other periods.  This is particularly notable in the 9.5 year age-class, but the 

Mississippian sample has the lowest (or tied for lowest) percentages in the 5.5, 6.5, 7.5 

and 8.5 year age classes as well. 

 

Table 3.14. Representation of age classes by culture period (percentages) 

 (N) 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
Archaic (868) 10.1 15.8 21.2 20.4 10.8 7.8 6.8 2.9 2.2 2.0

Woodland (1202) 18.3 23.0 18.1 13.1 7.4 6.8 5.3 4.7 1.9 2.1
Mississippian (811) 13.7 23.6 21.1 16.9 10.5 6.1 4.0 2.9 1.2 0.2

Historic (1071) 14.3 16.5 16.0 18.8 12.0 9.2 7.0 2.9 1.9 1.7
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It is probable that the lack of statistical significance in this examination relates to 

the variability of mortality profiles between sites.  This might be true because the sites 

considered are of various types (temporary camp, rockshelter, village) and the type of 

occupation may have a strong effect on the mortality profiles.  Individual sites will be 

discussed in more depth in a following section.    Although K-S tests are useful for 

comparing non-parametric data they are also more likely to not find significance (Type II 

errors) and are not powerful tests.   The lack of significance is not altered by aggregating 

data into fewer age classes or by the removal of the younger or older age classes because 

K-S tests are strongest when data are not aggregated. 

 Visually, removal of the younger age classes assists in viewing the variation in 

older age classes.  Two models are used, one which examines proportional representation 

of 3-6 and 6-9 year olds (Figure 3.6) and one which examines 2-4, 4-6, and 6-8 year olds, 

represented by 20-40, 40-60 and 60-80% Potential Ecological Longevity (PEL) (Figure 

3.7). 

When the representation of older age classes is examined, there is a slight but 

noticeable decrease in the percentage of individuals in the older age classes (6-9 years); 

the Mississippian sample is the only one where this value is less than 20% of adults 3-9 

years.  The Mississippian sample is also the only one where the percentage of individuals 

in the 60-80% PEL is less than 15% of adults in the 20-80% PEL group. 
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Figure 3.6.  Relative representation of 3 to 6 and 6 to 9 year age-classes 
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Figure 3.7.  Relative representation of 20 to 40 percent, 40 to 60 percent, and 60 to 80 
percent Potential Ecological Longevity (PEL). 
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Deer size based on astragalus measurements is summarized for the same major 

culture periods.  Table 3.15 presents these results with meat weight of males and females 

in kilograms.  The standard deviation is shown as SD and the number of sites in each 
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sample is indicated by (N).  A statistical analysis of all samples grouped by major cultural 

period gives the following results. 

 

Table 3.15.  Mean weight of deer by culture period 

 Sites (N) Males (kg) SD M  Females (kg) SD F
Archaic (10) 78.51 4.04 52.79 1.98

Woodland (2) 93.80 2.26 59.90 1.96
Mississippian (6) 88.24 8.81 56.96 3.04

Historic (10) 88.32 12.90 57.70 3.30
 

In this case there is a statistically significant difference in the mean size of deer when 

grouped by major cultural period.  When analyzing male body weight (N=28, r2 0.261) 

the probability of this variation occurring by chance is 0.06.  When analyzing female 

body weight (N=28, r2=0.459) the probability of this variation occurring by chance is 

0.002.  Most of the significance is accounted for by the differences between Archaic and 

Mississippian or Historic samples.  Due to only two Woodland samples being included in 

the analysis, the variance of this group is high and the large size exhibited in these 

samples may not be representative (See Figure 3.8). 

 

Figure 3.8.  Variance for male body weight (MBWT) and female body weight (FBWT) 
by culture period.  Archaic=1, Woodland=2, Mississippian=3, Historic=4) 
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 These results on age and size indicate that neither method provides stand-alone 

evidence for changes in deer exploitation.  Data on mortality profiles are not statistically 

significant and data on size may be explained by environmental variation.  As it turns out, 

the relationship between deer size and age at death is the key evidence for changes in 

exploitation.   

Comparisons of deer age and size may be made at a broad summary level.  When 

representation is calculated based on 10 kg intervals of deer male body weight, mortality 

profiles show a distinctive trend (Table 3.16, Figure 3.9).  For samples with weight of 70 

to 80 kg, 18.8 percent of adults fall in the 60-80% PEL category.  For samples with 

weights of 80 to 90 kg, this number drops to 10.2%.  For samples with weights greater 

than 90 kg the number of old individuals drops to 6.5%, only a third of what it was in 

samples with small deer. 

 

Figure 3.9. Age classes with sites sorted by male body weight 
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Table 3.16.  PEL age classes for sites sorted by male body weight 

MBWT (N) sites 20-40% 40-60% 60-80% 
x<80 (5) 56.3 24.9 18.8 

80<x<90 (10) 57.3 32.5 10.2 
x>90 (3) 72.7 20.7 6.5 

 

Broad summary data are unlikely to be a good indicator of what is happening at 

individual sites, but the variation in levels of deer exploitation at individual sites may also 

be examined with this age-size relationship. 

 When data are presented with a sort based on the mean size of male deer 

(Table 3.17) culture periods do not show any organizational pattern.  Mortality profiles 

do show a distinctive pattern, with strong representation of the older age classes at the top 

of the table and strong representation of the younger age classes at the base of the table.  

Although not a perfect relationship, this is a statistically significant one.  

Whole set correlation analysis (Cohen and Cohen 1983) is available on 

specialized statistical software (SYSTAT 10).  This complex analysis of correlation 

allows the measurement of correlation between two sets of variables.  It also produces a 

proxy for probability based on repeated sampling of the data.  

A whole set correlation analysis of the mean size of males and females versus the 

percentage of individuals in the 20 to 40, 40 to 60 and 60 to 80 percent PEL groups 

indicates a moderate correlation between age and size which is statistically significant at 

a larger than normal 90% confidence interval (r2=0.536 P=0.098).  The strongest 

correlation is negative and it is between the percentage of individuals in the oldest age 

class and size.  For males r2 = -0.664 and for females r2 = -0.710.   
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Table 3.17.  Mortality profiles and size data for the 18 analytic units in this study  
aligned by site and sorted by male body weight.  (deer body weight calculated 
from the corrected measurements of astragali) 
 

Site Males 
 (kg) 

Females 
(kg) 

Site Period % 20-40 
PEL 

% 40-60 
PEL 

% 60-80 
PEL 

RH1 72.5 51.0 RH1  Miss 65.0 20.0 15.0
TC 76.6 51.6 TC1  Archaic 56.7 20.2 23.1
TC 76.6 51.6 TC3  Woodland 50.0 25.3 24.7
TC 76.6 51.6 TC2  Archaic/Woodland 52.6 27.8 19.6

RH2 79.7 56.8 RH2  Archaic 57.1 31.0 11.9
OU2 82.3 55.3 OU2  Historic 45.0 45.0 10.0
BR 82.6 55.5 BR  Historic 62.2 26.1 11.7
AN 84.2 56.8 AN  Miss 52.0 28.0 20.0
BA 85.0 55.8 BA1  Miss 52.0 34.0 14.0
BA 85.0 55.8 BA2  Miss 68.6 20.0 11.4

OU1 85.1 56.6 OU1  Historic 70.0 30.0 0.0
BL 86.2 55.4 BL2  Fort Ancient 60.0 36.0 4.0
BL 86.2 55.4 BL1  Fort Ancient 41.2 41.2 17.6
BE 86.4 60.4 BE2  Historic 78.6 14.3 7.1
MU 89.1 57.2 MU  Protohistoric 43.8 50.0 6.3
RH 91.4 56.2 RH  Historic 67.3 20.0 12.7
SA 94.8 58.3 SA  Historic 78.3 17.4 4.3
OR 96.6 59.8 OR  Miss 72.6 24.8 2.6

 

Several cases included above exhibit high percentages of old individuals that do 

not conform to the overlying pattern.  These cases include Blain Village (BL1) and the 

Rhoads site (RH) both analyzed by Parmalee.   The identification of these two cases as 

outliers, with large leverage on a linear regression model, led to closer scrutiny of 

Parmalee’s mortality profiles.  An independent detailed analysis of the Blain Village 

material by the author (BL2) prior to any analysis produced a mortality profile that differs 

from Parmalee’s in having fewer old individuals, but fits the overall model quite well. 

The Tick Creek sample and the Apple Creek sample, both of which have 

relatively large percentages of individuals in the older age class, were also analyzed by 

Parmalee.  Unfortunately the Tick Creek Cave mandibles have lost their provenance 

information, but an expedient analysis of 191 unprovenienced materials by the author 



 77

(TC2) led to a profile that has relatively fewer individuals in the older age class when 

compared to Parmalee’s TC1 and TC2. 

  The remaining profiles, which show a stronger patterning when compared to 

deer size, were analyzed by a variety of other investigators. This indicates an apparent 

situation in which Parmalee has overestimated ages relative to other researchers or other 

researchers have underestimated age relative to Parmalee.  Because several studies show 

that tooth wear underestimates age relative to known age and cementum annuli ages, 

Parmalee’s ages may be more accurate than those of other observers.  When Parmalee’s 

samples are divided out, his Mississippian and Historic samples show reduced 

percentages of older individuals when compared to his Archaic and Woodland samples.  

Even with these samples, a drop in percentages of individuals in older age classes is 

linked to an increase in deer size.  Thus Parmalee’s data still show the same directionality 

as other samples. 

 Statistically there is a significant relationship between age and size.  Despite all 

variation due to differential application of ageing techniques by a variety of different 

investigators and variability in deer size due to geographic and environmental variation, 

the correlation between mortality profiles and size is still statistically significant at a 90% 

confidence interval (r2=0.563 P=0.098). 

Given this significant relationship between age and size, it is possible to examine 

the relationship between human and deer populations across long periods of time.  

Plotting sites based on the midpoint of date ranges, the male and female body weights as 

well as the percentage of individuals in the 60-80% PEL age class can be examined.  



 78

Figure 3.10 shows the unmistakable inverse relationship between deer age and size 

through time.  

 

Figure 3.10. Relationship between white-tailed deer age and size through time 
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This figure demonstrates the relationships of deer age, size and culture period.  

Although there are relatively few samples, data in the Archaic and Woodland 

demonstrate a fairly stable population structure.   There is a substantial drop in the 

number of old individuals (60-80 PEL) in some Mississippian samples circa 1200 YBP 
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and this is reflected in a corresponding rise in deer size.  Representation of old 

individuals and deer size continues to fluctuate across the Mississippian and historic 

periods. Some contemporary samples show contrasting patterns (i.e. large deer and few 

old individuals or small deer and many old individuals); however, the inverse relationship 

between age and size remains constant.  

 In conditions where environmental change reduces the quality or quantity of 

browse, both the numbers of deer living to old age and their overall size should be 

reduced.  Based on the fact that as a male deer ages it attains a greater body weight (with 

some seasonal fluctuation, female weight is stable for adults), the expected ecological 

relationship between age and size would be that if there were greater numbers of old 

individuals then the average weight of the population should be heavier.  The exact 

opposite relationship is seen in these data; there is a negative correlation between older 

individuals and mean body weight, suggesting an anthropogenic cause. 

 The only possible explanation of these data is that the overriding factor regulating 

body weight is the density of deer populations.  No other single factor can explain the 

decrease in old individuals and the increase in deer size.  By reducing deer density 

through hunting, the numbers of individuals living to old age dramatically decrease.  

When deer population densities are low, young deer have access to high quality forage 

and tend to attain their maximum body weights.  When culling of deer is low, populations 

are at or near carrying capacity, and deer are in competition for resources.  Decreased 

access of young individuals to high-quality forage results in smaller deer and a decreased 

intensity of hunting results in older deer. 
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Given the variation seen in Late Prehistoric samples, a closer comparison between 

individual sites is warranted.  As noted, Purdue’s mean deer sizes cannot be compared 

statistically; however, for the data compiled in this study mean size may be compared 

directly between sites.  Mean and standard deviations of white-tailed deer for this study 

are presented in Table 3.18. 

 

Table 3.18.  Mean and standard deviation of male and female body weight for sites in this 
study 
 

Site Males 
(N) 

Males (kg) SD Females
(N)

Females (kg) SD

AN (12) 86.657 9.186 (15) 55.282 3.296
OU2 (21) 85.033 9.579 (20) 53.91 4.105
RH1 (4) 70.975 6.976 (7) 49.923 4.378
RH2 (26) 80.009 11.666 (15) 48.677 4.058

BE (5) 89.059 12.394 (5) 58.749 6.102
TC (53) 79.567 9.329 (47) 49.846 4.355
BL (27) 88.746 12.189 (26) 63.928 3.598
BA (28) 87.599 9.728 (32) 54.239 4.132
MU (12) 91.475 7.383 (11) 55.638 3.825

 

 The best statistic for examining the differences between the means of any two of 

these samples is the Student’s t-Test.  Although it requires conditions of normal 

distribution and equal variance in the samples compared, it is robust to violations of 

either of these conditions.  In the case of the data compared here, all samples have 

relatively normal distributions and similar variance. 

   For the comparisons there are seven samples where comparison gives us 

significant information.  Historically we know that Fort Ouiatenon, a circa 1750 French 

fort, was heavily involved in the fur and hide trade, and thus it should provide an example 

of a deer population which has been modified by hunting pressures.  Large Middle 
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Mississippian and Fort Ancient sites such as Angel, Banks, Murphy and Blain had 

relatively high human populations and intensive occupations.  The prediction of this 

study would be that the deer populations they exploited would exhibit population 

densities similar to the deer surrounding Fort Ouiatenon. 

 In contrast, Archaic and Woodland material from the Rockhouse Hollow and Tick 

Creek rockshelters would not be expected to be heavily modified by hunting pressures, 

and thus should be significantly different than the preceding samples.  The Mississippian 

occupation of Rockhouse Hollow appears to be a minor occupation, presumably a 

temporary hunting camp, and is expected to behave like both Tick Creek and  the Archaic 

material from Rockhouse Hollow. 

 Student’s t-Tests between samples indicate a number of significant differences.  

The Archaic and Woodland sample from Tick Creek and the Archaic and Mississippian 

samples from Rockhouse Hollow are significantly different from Angel, Banks, Blain, 

and Murphy.  The mean weight for males at the Late Prehistoric sites ranged from 6.6 to 

16.6 kg larger and differences in the mean weight of females ranged from 4.3 to 6.6 kg 

larger.  Probablilites range from P=0.000 to 0.042 for females and P=0.001 to 0.070 for 

males.  A single comparison, males from Angel vs. Archaic males from Rockhouse 

Hollow is above the 95 percent confidence interval and accounts for the P=0.070 value 

above.  Due to the strong pattern of significant differences between these groups this 

difference is considered real by the author even though it is not within a strict 95 percent 

confidence interval.  Both the Ouiatenon males and females show an approximately 5 kg 

larger mean weight when compared to the Archaic sample from Rockhouse Hollow.  In 

the case of males the result is not statistically significant, but in females it is. P=0.001. 
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 When compared to each other there is no significant difference between any of 

the Mississippian, Fort Ancient, or Historic samples from this study; however, there is 

only one pair of samples that are statistically identical: females from Blain and 

Ouaiatenon (difference in means, 0.02 kg; P=0.988).  Likewise, there is no statistical 

difference between any of the samples from Rockhouse Hollow or Tick Creek.  One 

sample in this group, females from the Mississippian sample at Rockhouse Hollow and 

the Archaic and Woodland sample from Tick Creek are statistically identical (difference 

in means 0.08 kg; P=0.966).  Sample results are presented in Figures 3.11 and 3.12. 

 

Figure 3.11.  Distributions of statistically different body weights of both male (left chart) 
and female (right chart) deer in Mississippian samples from Angel (left plot) and 
Rockhouse Hollow (right plot) 
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Figure 3.12.  Distribution of similar male body weights (left chart) and statistically 
identical female body weights (right chart) at Blain (left plot) and Ouiatenon (right plot). 
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Discussion of Results 

Purdue argues that environment, particularly the availability of summer forage, is 

the main determinant in deer size (Purdue 1991).  He argues that in the Midwest deer size 

peaks between one and two thousand years ago as a result of ameliorating climatic 

conditions which allowed deciduous forest to encroach on grasslands, increasing the 

availability of high quality summer forage (Purdue 1989, 1991). In contrast he sees the 

sizes of deer in the southeast as steadily decreasing through the past 4,400 years as the 

result of increased annual dryness, a paleoclimatic regime which inhibited the growth of 

summer forage (Purdue and Reitz 1993:293).  An examination of the results from the 

current study (Figure 3.10) suggests that Purdue’s preliminary results do not withstand 

comparison to a larger sample.  Heavily hunted deer populations from early historic and 

protohistoric sites have average sizes of both males and females that are as large as the 

peaks seen in the Mississippian. 

 What are the alternate hypotheses for a change in deer size?  Purdue cites other 

possibilities: “Bergmann’s rule, fetal nutrition, seasonality of climate, and anthropogenic 

influences have all been proposed as possible explanations” (Purdue and Reitz 1993:294).   

The hypothesis presented here is that anthropogenic influences, i.e. the intensity of 

human hunting and the effect that this has on deer population density, have the largest 

effect on deer size.  This is seen in modern wildlife studies cited at the beginning of this 

chapter and would appear to be the simplest explanation for variations in deer size across 

time and space. 
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 Analyzing size alone, contemporary deer populations such as the Mississippian 

samples from Angel and Rockhouse Hollow exhibit statistically significant differences in 

mean weight.  These sites are located less than 100 km apart and should be subject to the 

same range of environmental change.  Thus these samples provide incontrovertible 

evidence of contemporaneous variation in deer size within a limited geographic area.  

The hypothesis that deer size is the result of deer population densities is therefore 

supported while Purdue’s climatic model is significantly weakened.  Further support for 

an anthropogenic hypothesis is provided by the covariation in male and female body 

weights and deer mortality profiles across the remaining sites. 

 Bell (1970) has shown that the distribution of patchy, high-quality forage makes it 

a cost-effective alternative for small-bodied animals with a limited rumen capacity 

(female deer); and that these individuals can afford the luxury of searching for high-

quality food.  In contrast, large individuals with plenty of rumen capacity tend to 

concentrate on forage of high fiber content and low digestibility (male deer).  These 

individuals are not affected by forage quality, but rather by forage quantity. 

 When samples from the Rockhouse Hollow Archaic and Mississippian levels are 

compared, male deer from the Mississippian period are 9 kg smaller than male deer from 

the Archaic period.  This difference has a probability of 0.073 of occurring by chance.  

Female deer from these two contexts show no significant difference, with a mean 

difference in weight of 1 kg and a probability of this occurring by chance of 0.538.  This 

suggests the possibility that there was a reduction in the quantity of available forage 

affecting males more than females, and that in the Mississippian deer populations were 

more dense in the hinterlands than they were in the Archaic.  
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  The variation in males and females probably relates to the example proposed by 

Klein (1985:15) of year-round hunting of introduced red deer in New Zealand.  This 

continuous hunting not only resulted in a reduction of deer numbers, but also caused a 

redistribution of deer populations.  In seeking refuge from hunting, deer became 

concentrated in dense forests with reduced forage availability.  Although not examined 

by Klein, this situation should also result in a reduction in individual size. 

 Prehistorically, the area around Rockhouse Hollow continued to be heavily 

forested while the area around Angel was cleared for maize agriculture.  It is a likely 

scenario that hunting pressures in the major river valleys pushed deer into refugia in the 

wooded uplands where reduced food quantity (i.e. a browse line) negatively affected 

males more than females.  Any reduction in predator levels by Mississippian hunting 

would have further exacerbated the effect of this redistribution. 

 When the statistical relationship between age classes and deer size is combined 

with the data on size, there can be little doubt about the relationship of prehistoric hunting 

to deer population densities, size and mortality profiles.  Only one site, Angel, shows 

higher than expected percentages of old individuals.  Of all the possible explanations 

noted by Purdue and Reitz, including that of climate change, only an anthropogenic 

influence would result in the combined changes of size and mortality profiles of deer that 

are seen at archaeological sites in eastern North America.  The strength and statistical 

validity of these age-size relationships permit further interpretations of deer hunting 

strategies in Chapter 5. 
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Chapter 4 

 Prehistoric Raccoon Exploitation 

 
Introduction 

  Of mammalian remains found at archaeological sites in the eastern United States, 

raccoon is second in abundance to white-tailed deer.  In the Late Prehistoric period 

exploitation of this species exhibits a substantial increase in intensity.  Despite their 

importance in prehistoric diets, there is comparatively little analysis of age and sex 

structures of archaeological raccoon populations.  The failure of zooarchaeologists to 

construct mortality curves may be due to problems in using the available dental wear-

stages for this species (Grau et al. 1970).  This may also explain the use of other ageing 

criteria by wildlife biologists.  The sparse previously published data on this species are 

also in need of revised interpretation.  

 Based on a low representation of young individuals, Smith (1975:52) suggested 

that Middle Mississippian hunting pressure on raccoons was light. Since that time, a 

focus on the importance of taphonomy has suggested that low percentages of small 

species and under-representation of young individuals is more likely a reflection of poor 

bone preservation than of human activity (Payne and Munson 1985).   As previously 

mentioned with deer, low numbers of young individuals in and of themselves provide an 

insufficient argument for low hunting pressures or any type of selective hunting.   

 Given their importance as a food source and their uncanny ability to adapt to 

anthropogenically modified habitats, it would indeed be surprising if raccoon populations 

did not respond to the intensified use and cultivation of certain plants.  Since the 
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association of raccoons with corn (maize) fields is legendary, the intensity of exploitation 

that Smith (1975) proposes for the Mississippian is contrary to what would be expected. 

 

Raccoon Biology and Ecology 

 The distribution of the raccoon covers the entire eastern United States as well as 

most of North America (Kaufmann 1982:567).  It is an adaptable species but tends to 

remain fairly close to permanent water sources.  Raccoons never den more than 400 

meters from a water source and make little use of uplands that are more than 1.6 

kilometers from floodplains (Hoffmeister 1989:283).  Dens are most commonly hollow 

trees with large dry cavities; however, if suitable denning trees are absent, raccoons will 

use the burrows of other species, rock crevices or caves. 

 Raccoons are omnivorous and opportunistic.  Invertebrate animal foods include 

crayfish, insects, mussels, snails and earthworms.  Fleshy fruits and nuts (especially 

acorns) are important seasonal plant foods.  Most significant, however, is their taste for 

maize.  In some areas of their modern range maize is the most important item in their diet 

(Kaufman 1982:573).  Based on a study of stomach contents, Mumford and Whittaker 

(1982:445) record maize as being the most important food by volume (28.1%) and 

frequency (34.1%) among Indiana raccoons.  Although this proportion may be 

exaggerated by modern harvesting procedures, it strongly suggests that raccoons may 

have been a problem for prehistoric farmers. 

 Raccoons have a restricted mating season that results in a fixed birthing period.  

Across North America raccoons mate once a year between January and June.  After a 60 

to 73 day gestation period, between 3 and 7 (median 4) young are born. In central Illinois 
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and surrounding areas raccoons have a peak littering date of April 15th (Grau et al. 

1970:365).  The young can walk at 6 weeks and are weaned when they are between 2 and 

3 months old. 

 Unfortunately there are no adequate modern survivorship curves for raccoon 

populations.  Rabinowitz (1981) suggests an average longevity of 2.5 years and a 

maximum longevity of 7.2 years for a population in the Smoky Mountains.  Popular 

sources suggest that raccoons in the wild may live to 10 years and that raccoons in 

captivity may live to 20 years.    There are some mortality profiles of trapped samples, 

but these are not classified by dental wear and are presented in 1-year age categories 

(Lehman 1977; 1980).  Some differential representation of young in mortality profiles 

has been demonstrated by Hasbrouck et al. (1992).  They examined mortality profiles for 

hunted vs. trapped raccoon populations and determined that when harvests were low, 

trappers tend to take more birth year raccoons than hunters.  With heavy exploitation this 

difference disappears.     

 More importantly, the probability of capture for males vs. females varies 

significantly when a raccoon population is subjected to trapping.  Gehrt and Fritzell 

(1996) used radiotelemetry and live trapping to demonstrate that adult male raccoons 

were captured more frequently and that a higher proportion of the overall total of males 

was captured using traps.  This live trap bias toward males was also demonstrated by 

Urban (1970). 

 In the Gehrt and Fritzell study, females always outnumbered males within the 

study area; however, males were always more likely to be captured in traps.  The reason 

for this bias is that males have larger home ranges and tend to move about more than 
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females.  As a result of their aggressive behavior, adult males are often under-represented 

in the surviving raccoon population (Hasbrouck et al. 1992:698). Since females form a 

greater proportion of the adult population, non-selective procurement of raccoons should 

result in a preponderance of females in the harvest profile.   

 

Methods 

 Raccoon are among the easiest species to sex from archaeological remains.  Grau 

et al. (1970) sampled 104 individuals of known sex and found that all of the male canines 

were thicker than 4 mm, whereas 93% of the female canines were thinner than 4 mm.  

Techniques for measuring raccoon mandibles and teeth are presented by Wright and 

Lundelius (1963).   

 Kennedy and Lindsay (1984) demonstrate that raccoon morphology (size) varies 

considerably across their geographic range.  Ritke and Kennedy (1993) have further 

demonstrated geographic variation in the sexual dimorphism of raccoon canines.  In 

combination this research suggests that while a cutoff point may work for a specific 

population it is not universally applicable across wide geographic ranges.   

The most common techniques used by wildlife biologists to age raccoons are 

body weight, epiphyseal fusion of the radius and ulna, and the size and degree of 

ossification of the os baculum (Sanderson 1961). While epiphyseal fusion and the degree 

of ossification can be used on archaeological materials, their utility is limited to the 

younger age ranges and they are not useful in determining the relative ages of older 

adults.  For reasons similar to those in white-tailed deer (Chapter 3) tooth eruption and 
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wear was the primary choice for ageing archaeological materials even thought this is not 

a widely used technique for studying modern raccoon populations. 

 The deciduous dentition (0-3.5 months) could provide an important indication of 

summer occupation, a season which is difficult to identify archaeologically (Munson 

1984). Techniques for ageing deciduous material are presented by Montgomery (1964).  

Unfortunately archaeological specimens with deciduous dentition are rare.  Smith (1975) 

reports only one mandible out of 182 specimens and an earlier study by the author 

(Garniewicz 2000) identified only one out of 145 specimens.   

 Adult dentition begins erupting within 3.5 months of birth and tooth wear appears 

to be fairly regular in sequence despite probable variation in overall rates (Grau et al. 

1970:369).  Previous to the methodology presented by Garniewicz (2000), two methods 

were used to age raccoon mandibles.    

 Guilday et al. (1962:69) were the first to age raccoons based on tooth wear.  In 

their zooarchaeological analysis of material from the Eschelman site they used four wear 

stages: Class 1 (no wear); Class 2 (moderate wear); Class 3 (heavy wear); and Class 4 

(extreme wear, teeth flat).  All age assignments were subjective and there is little hope for 

comparison and replicability of results between investigators. 

 More stringent criteria for ageing raccoons by dental wear, which included 

drawings of individual wear stages, were developed by Grau et al. (1970). In this study, 

natural wear stages are identified and their corresponding age range is established using 

individuals of known age.  Although this technique provides age categories of unequal 

duration, it does identify realistic wear stages.  The illustrations presented by Grau et al. 

(1970) proved difficult to use, but the verbal descriptions of each age class are of some 
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utility.  They are summarized in Table 4.1. Though designed for studies of modern 

populations, the stages have been applied to archaeological material by Parmalee et al. 

(1972), Hamblin (1973), and Smith (1975).  To the author’s knowledge these stages have 

not been applied to modern raccoon populations other than during the original study. 

 

Table 4.1. Wear stages proposed by Grau et al. (1970) 

        ============================================================ 
 
 Class I  Little or no wear on any of the teeth 
 Class II  Wear begins on the buccal side of M1 and messial-buccal side of 

M2, but cones still present on both teeth. 
 Class III The cone on the distal-buccal surface of M1 and the cones on the 

buccal surface of M2 are worn flat.  The first appearance of wear 
on the premolars occurs at this time. 

 Class IV M2 worn flat; M1, with the exception of two areas of enamel still 
present, is also worn flat.  The distal-lingual cone of P4 is absent 
but the distal-buccal cone on P4 is present. 

 Class V Both M1 and M2 are worn flat.  The distal-buccal cone on P4 is 
absent. 

 
 General Wear also accounted for a shortening of the crowns on the incisors 

and canines. 
        ============================================================ 
 

 

Problems with Previous Ageing Criteria 

 Three problems arise when using previous work based on the criteria outlined by 

Grau et al. (1970).  First, there is no measure of specimen completeness; second, 

selection for relatively complete specimens results in a small sample size; and third, the 

results appear to be subject to a high degree of inter-observer error. 
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 No mention of the completeness of the mandibular dentition is made by Parmalee 

et al. (1972) or Smith (1975).  Hamblin, working with material from the Snodgrass site, 

states that only 34 out of 37 mandibles could be aged successfully because three 

mandibles contained no teeth (Hamblin 1973:40).  This suggests that mandibles with a 

single tooth were included in the sample, with questionable mandibles being placed 

within minimum and maximum age-classes.  A reduction to “relatively complete” 

mandibles reduces her sample size to 22 individuals. 

 The author was able to obtain consistent results between trials once he was 

experienced using the Grau system; however, the interpretation of written descriptions 

surely varies according to analyst.  Hamblin (1973) and Smith (1975) both analyzed 

material from the Snodgrass site and produced very different mortality profiles (Table 

4.2).  Although variation in the size of their samples may be a problem, these trials fall on 

opposite ends of the spectrum of published data. The analysis by Hamblin has one of the 

lowest percentages of Class II, while the analysis by Smith has one of the highest.  

Although the differences are not statistically significant, the results of this comparison 

certainly raise questions about the replicability of results between observers. 

 

Table 4.2.  Raccoon age profiles from Snodgrass (percentage) 

====================================================== 
Author     (N) Class I     Class II     Class III     Class IV     Class V 

                                      ----------------------------------------------------------------- 
 Hamblin (22) 22.7      27.3          40.9      9.0              0.0 
 Smith   (53) 13.2      43.4          30.2      9.4              3.8 

====================================================== 
Results are from Hamblin (1973) and Smith (1975).  Technique used is 
Grau et al. (1970) 
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 The author had an assistant attempt to use the Grau et al. technique on one of the 

samples in this study.  The results exhibit a similar degree of variation as seen in the 

analysis of material from Snodgrass and are shown in Table 4.3.  We found that the 

largest discrepancies are probably due to difficulties in determining what Grau et al. 

(1970) intended by subjective phrases such as “little wear“ or “worn flat” in their written 

descriptions.  Again, while these results are not statistically different, they suggest that 

the results using Grau’s technique are not replicable between observers. 

 

Table 4.3.  Raccoon age profiles from Angel (percentage) 

======================================================= 
Researcher       N Class I     Class II     Class III     Class IV     Class V 

----------------------------------------------------------------- 
 Garniewicz       49 16.3     49.0          16.3     12.2  6.1 
 Locklin   49 22.4     30.6          24.5     16.3   6.1 

======================================================= 
Results are based on a single trial by each investigator.  Technique used is 
Grau et al. (1970). 

 
 
New Ageing Criteria 
 
 Due to problems associated with fragmentary specimens and the replicability 

problems of the method outlined by Grau et al. (1970), a new series of mandibular wear 

stage drawings and descriptions were devised. Additional wear stages for isolated teeth 

allow for the expansion of sample size under carefully controlled conditions. 

 Most critical to ageing a mandible are the molariform teeth (P4-M2), which exhibit 

the most consistent wear.  These teeth formed the focus of Grau’s methodology and 

fortunately they are also the most likely to remain in archaeologically recovered 
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mandibles.  As a result, the following discussion and figures will focus on this portion of 

the dentition. 

 The methodology employed for ageing raccoons presented here includes 

techniques both for ageing relatively complete mandibles and for determining wear 

stages for individual teeth.  The presence of at least two of the three molariform teeth is 

required for a mandible to be included in the sample.  While this requirement reduces the 

size of the sample it also imposes uniformity on the samples to be compared.  Wear 

stages of individual teeth within relatively complete mandibles were also recorded.  The 

highest degree of correlation occurs between M1 and the overall wear stage (90%).  Wear 

on M1 also appears to be the most regular and even, suggesting that attempts at 

determining age from isolated teeth should use the M1 wear stages presented here. 

 Records for isolated teeth, particularly M1, provide a standard means for 

increasing sample sizes.  Values for isolated teeth can be compared to values for 

relatively complete mandibles.  If the distribution of these two data sets is similar their 

wear stages can be combined.  Any serious variation between these two data sets may 

preclude combination of results and should be investigated further.  

A line drawing of the lower right mandible of a young raccoon is presented in 

Figure 4.1.  This figure presents the terminology that is used in the written descriptions of 

tooth wear (Table 4.4).  Figure 4.2 presents five tooth wear stages.  This figure includes 

drawings of early and late phases of wear within each stage (designated A and B).  The 

gaps between early and late phases are large compared to the gaps between stages.  Most 

mandibles examined clearly fall within early and late phases of one stage, thereby 
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reducing much of the inter-observer error that can occur when one tries to place 

specimens using a single drawing.  Figure 4.3 presents 11 stages of wear for each tooth. 

 
Table 4.4. Wear stages of raccoon mandibular dentition. 

=============================================================== 
General.  The molariform teeth (M2, M1, P4) have been selected as the teeth that are most 

regular in wear.  Fortunately they are also commonly found in archaeologically 
recovered mandibles.  Wear through the enamel (dentine exposure) is shown by 
shaded areas in Figure 4.2. 

Stage 1: In this stage there is “little or no wear on any of the teeth (Grau et al. 
1970:368)”.  Specifically, the stage begins with the eruption of adult dentition and 
the presence of a completely intact enamel surface.  The stage continues until 
some dentine is visible on the cusp tips.  At this early stage all of the visible 
dentine is roughly round in shape except on the hypoconid and entoconid of M1 
which may join to form an elongate dentine exposure.             

Stage 2: This stage begins with an elongation of the dentine visible at the surface.  The 
triangular shape of dentine exposure at the metaconid and protoconid of M1 
indicates the beginning of wear stage 2.  At the termination of this stage, all of the 
exposed enamel is irregular in shape.   Wear may or may not occur on some 
cusps, noticeably the hypoconulid of M2 due to the vagaries of occlusion.  The 
distinctive character at the terminus of stage 2 is the conjoining of the entoconid, 
hypoconid and hypoconulid exposed dentine of M1. 

Stage 3: At the start of stage three there must be conjoining of more dentine than at the 
terminus of stage 2.  This joining most often occurs at either the paraconid and 
metaconid of P4, or between the protoconid and metaconid or hypoconulid of M1.  
At the end of this stage, increasing wear on the 2nd molar leads to conjoining of 
exposed dentine between the protoconid and metaconid. 

Stage 4.  At the beginning of stage four there are two cusps that remain discrete.  These 
are the hypoconid of M2 and the protoconid of P4. At the end of this stage all of 
the diagramed cusps are joined; however, there is still irregular enamel showing 
on the occlusal surfaces of all three teeth.  

Stage 5.  By stage five wear is extreme, at its start small areas of enamel may remain at 
the low points of the original molar surface.  These are distinguished from the end 
of wear stage 4 by their small size.  Often only one molar will have enamel 
remaining on its occlusal surface, thus simplifying its placement into stage 5.  At 
the end of stage 5 areas of M1 and M2 will often be worn down to the root.  Rarely 
the pulp cavity of M1 will be exposed. 

=============================================================== 
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Figure 4.1.  Morphology and terminology of 
raccoon teeth. 

 
 
Figure 4.2. Raccoon mandibular wear stages
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 Figure 4.3. Raccoon dental wear stages: isolated teeth (Garniewicz 2000) 
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Replicability of new wear stages 

 Using the standards presented in this paper, three trials on separate days were 

done by each investigator for a sample of mandibles from Angel Mounds.  Data are 

presented in Appendix 4.  In all cases the age class assigned agreed in at least two out of 

the three trials and the final results reflect the predominant assignment.  Summary results 

are presented in Table 4.5.   

 This new methodology appears to be fairly replicable.  A second person untrained 

in faunal analysis and untrained by the author except for reading the wear stages 

presented in Garniewicz (2000) produced results that agreed with those by the author on 

43 out of 49 specimens.  The remaining 6 specimens were off by only one age class and 

the variation was not directional, some were over-estimates and others were under-

estimates.  Statistically, the results of these ranked non-parametric data can be evaluated 

with pairwise correlations between observations. The correlation is extremely high, with 

Spearman’s rs = 0.956. 

 

Table 4.5.  Raccoon age profiles from Angel (percentage) 

================================================= 
Researcher  (N) Class I  Class II  Class III  Class IV  Class V 

------------------------------------------------------- 
  Garniewicz   (49) 12.2   36.7     22.4        18.4 10.2 
  Locklin   (49) 18.4   30.6     18.4        22.4  10.2 

================================================= 
Results are based on three trials by each investigator.  Technique 
used is Garniewicz (2000). Spearman’s rs=0.956.   
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 Every attempt was made to produce a replicable methodology with wear stages 

similar to those of Grau et al. (1970).  Despite this attempt, any users of these new criteria 

should be wary of attributing age ranges to the wear stages, since the stages presented 

here have not been tested against samples of known age.  Further, in establishing their 

correlation between wear stages and known age individuals, Grau et al. (1970) used 

raccoons raised in captivity.  Variations in diet are likely to cause significant differences 

in the rate of dental attrition.  This is particularly true of raccoons since they may have 

wide variations in the quantity of abrasive material in their diet. 

With this caveat, it is important to relate the wear stages to approximate ages in 

months to demonstrate that the age classes are of unequal duration.  Based on the data 

provided by Grau et al. (1970), Table 4.6 shows the relationship between the new wear 

stages and probable ages.  Because the wear stages are of unequal duration there may 

appear to be a higher percentage of individuals in an age class as a result of the age class 

representing a wider section of the population.  The frequency density correction factor in 

the third column can be multiplied by the number of individuals in an age class to 

equalize the age classes into 20% increments of lifespan.  Lifespan is calculated at 120 

months. 

Table 4.6. Hypothetical relationship between wear-stages and age 
======================================================= 
  Months Percent Lifespan Frequency Density 

Correction Factor 
  ————————————————————————— 
Class I  0-14   11.6   1.72 
Class II 15-38   19.2   1.04 
Class III 39-57   15.0   1.33 
Class IV 58-86   23.3   0.86 
Class V 87-120   27.5   0.73 
======================================================
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Mortality data 

 All data previously available to the author were published in Garniewicz (2000).  

These include sites with sample sizes under twenty and sites where the analysis did not 

follow the technique of Grau et al.    This chapter focuses on samples with greater than 20 

specimens.    Previous work using the technique of Grau et al. (1970) has built up a data 

set of eight sites with sample sizes greater than 20 mandibles.  Four of those sites were 

analyzed by the author during early stages of research (Garniewicz 2000).  Due to 

intensive work on ageing raccoon mandibles using a new methodology, it is no longer 

possible to use Grau et al.’s stages without the imprint of this technique and further 

assessment following that technique was abandoned.   Summary data on all of the sites 

analyzed using Grau et al.’s technique with sample sizes greater than 20 are presented in 

Table 4.7.  These data, not using the new ageing technique proposed in this chapter, are 

included so that some previously examined sites may be included.  

 

Table 4.7.  Age classes of archaeological material using Grau et. 
  al. (1970).  Raw data for sample sizes greater than 20. 
 

========================================================== 
 Site   Reference  (N) 1 2 3 4 5  

------------------------------------------------------------------------------ 
Indian Knoll   Garniewicz 2000   (33)  5 13  8 4 3 
Apple Creek  Parmalee 1972 (28)  5 13  3 3 4 

 Angel   Garniewicz 2000 (49)  9 21 10 5 4 
 Chucalissa  Smith 1975  (34)  4  9  8 7 6 
 Banks     Smith 1975  (68) 12 23 20 9 4 
 Snodgrass  Smith 1975  (53)  7 23 16 5 2 

Cramer    Garniewicz 2000 (35)  8 13  8 5 1 
 Sandusky   Garniewicz 2000 (28)  4 10 10 1 3 

========================================================== 
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These results may be visualized more readily when they are converted to 

percentages and then adjusted by a frequency density correction.  These adjustments are 

shown graphically in Figure 4.4.  

 
Figure 4.4. Age classes of archaeological material using Grau et al. (1970) converted 

to percentages and adjusted with frequency density correction factor. 
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 Work using the ageing techniques presented in this chapter has resulted in 5 

mortality profiles with greater than 20 demi-mandibles and one mortality profile with less 

than 20 mandibles, which can be enlarged to a sample size of 20 by including ageable 

isolated teeth.  These sites include one Late Archaic sample (Indian Knoll), a mixed 

Archaic and Woodland sample (Tick Creek), two Fort Ancient sites (Cramer Village and 

Sandusky Avenue), and two Middle Mississippian Sites (Angel and Murphy).  The first 
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two samples are pre-maize, the Fort Ancient sites are swidden maize horticulturalist, and 

the Middle Mississippian sites are heavily maize dependent.   

All of these mortality profiles have been compiled by a single experienced 

researcher, using a replicable technique.  These data are presented in Table 4.8 and the 

results are shown graphically in Figure 4.5 converted to percentages and then adjusted by 

a frequency density correction factor. 

 
Figure 4.5.  Age classes of archaeological material using Garniewicz (2000);  

converted to percentages and adjusted for frequency density. 
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Table 4.8.  Age classes of archaeological material using the methodology presented in 
Garniewicz (2000).  

 
========================================================== 

 Site   Reference  N 1 2 3 4 5 
------------------------------------------------------------------------------ 

Indian Knoll  Garniewicz 2000 33 4 11  6 7 5 
 Angel  Garniewicz 2000 49 6 18 11 9 5 

Cramer   Garniewicz 2000 35 2 15  8 6 4 
 Sandusky Garniewicz 2000 28 3  7 10 7 1 

Murphy This study mandibles 11 2 2 2 5 0  
Murphy  This study teeth 20 5 4 4 6 1 

 Tick Creek  This study  40 6 8 7 8 11  
========================================================== 

 

Mortality analysis and discussion 

 Both statistical and ocular examination of the data on raccoon mortality profiles 

have failed to show any significant variation.  While this was expected of the data based 

on Grau et al.’s technique, due to inter-observer error, it was anticipated that improved 

methodology applied to sites of various traditions would identify some variation in 

profiles.  The absence of statistical significance holds true when the data are compared at 

the site level and when they are grouped by culture period.  This failure to find significant 

difference remained even when age-classes were collapsed from five wear stages to two 

age groups (young and old adults).    

The only visible trend seen in the data is that the first and sometimes second age 

classes are strongly under-represented when compared to modern populations.  It is likely 

that taphonomic effects would override any over-representation of young individuals that 

may arise from trapping when compared to hunting. 

 The author is confident that this lack of significant variation is not due to the 

applicability of ageing raccoons by dental attrition, but rather from taphonomic effects 
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that reduce the representation of young individuals in these samples.  Part of the problem 

may also relate to the fact that raccoons are r-selected and relatively few individuals ever 

make it to be old adults.   

The new ageing methodology which shows early and late examples of wear 

within each stage is demonstrably more replicable than previous techniques which rely on 

matching archaeological examples to a single drawing and is proposed as a model for 

future dental wear studies.  

 
Data on the distribution of raccoon by sex 

The only other authors who have sexed archaeologically recovered raccoon 

canines are Hamblin (1973) and Smith (1975).  Unfortunately raccoon canine width 

measurements are not included in their published reports, so clinal variation at previously 

studied sites cannot be controlled for.  Both authors used a standard cutoff point of 4 mm. 

for separating males and females and this cutoff point is employed in the following 

analyses for purposes of comparability. 

Based on the samples analyzed by the author, this cutoff point appears to be very 

effective in most samples examined.  Raccoon sex distributions are presented in Table 

4.9 using this cutoff point.  Raccoon canine measurements for the four sites analyzed by 

the author are presented in Table 4.10.   In a single instance, the Tick Creek sample, the 

4.00 mm. cutoff point for males and females does not appear to follow the bimodal 

distribution of the data.  Using z-scores to separate males and females results in a 4.03 

cutoff point for males and females.  Both of these results are presented in the table 

because this minor change in the cutoff point results in altering the sex identification of 



 105

four individuals and makes an observable change in the results.  Using site-specific z-

scores does not alter more than a single individual in any of the remaining samples. 

 
Table 4.9. Sex distribution of archaeological material using canine width 
  measurement of 4.0 mm as cutoff point. 
 

========================================================== 
       

 Site   Culture period        Females   Males                     Females  Males 
      (N) (N)   (N) (N) 

------------------------------------------------------------------------------ 
 Indian Knoll  Late Archaic  (10)   (8)   55.6 44.4 
 Cramer   Fort Ancient    (18) (15)   54.5 45.5 
 Tick Creek Archaic/Woodland1 (29) (29)   50.0 50.0 
 Sandusky Fort Ancient    (13) (14)   48.1 51.9 
 Angel         Mississippian    (14) (15)   48.3 51.7 
 Banks  Mississippian    (28) (30)   48.3 51.7  
 Snodgrass Mississippian    (10) (13)   43.5 56.5 
 Tick Creek  Archaic/Woodland2  (25) (33)   43.1 56.9 
 Chuckalissa   Mississippian       (8) (11)   42.1 57.9  
 Lilbourn Mississippian       (6)    (8)   42.9 57.1  
 Turner   Mississippian       (3)   (4)   42.9 57.1  
 Murphy Mississippian    (5)   (7)   41.7 58.3 

========================================================== 
1 Tick Creek Sample using z-scores resulting in a 4.03 cutoff instead of 4.00 mm cutoff point 
2 Tick Creek sample using the standard 4.00 mm cutoff 

 
               
Table 4.10.  Width measurements of raccoon lower canines from archaeological sites. 
 
============================================================== 
    Width of lower canine in millimeters 
  3.00 3.25 3.50  3.75 4.00 4.25 4.50 4.75  5.00 
Site  3.24 3.49 3.74 3.99 4.24 4.49 4.74 4.99 5.25 (N) 

-------------------------------------------------------------------------------------- 
Indian Knoll 1 5 5 3 2 8 3 2 0 (33) 
Angel  0 5 3 2 4 2 1 1 0 (49) 
Cramer  0 2 7 9 3 3 5 3 1 (35) 
Sandusky 0 3 5 5 1 8 4 1 0 (28) 
Murphy 1 0 1 3 2 2 1 2      0 (12) 
Tick Creek 0 3 8        14 6        12 8 7      0 (58) 
============================================================== 
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Sex analysis and discussion 

 As indicated by Grau et al. (1970) and Ritke and Kennedy (1993), raccoons have 

a bimodal distribution of canine width that is indicative of sex.  An analysis of data from 

eleven sites indicates a distinct trend in the sex distribution of raccoon remains from 

archaeological contexts (Table 4.9).  When sorted by the percentage of males vs. females 

ten of the eleven samples are also sorted by culture period, with the single exception 

being a mixed sample from Tick Creek. 

 Variation in canine width size is not statistically significant when analyzed across 

all sites or between individual sites.  Even the two most dissimilar sites, Indian Knoll and 

Murphy, have a mean difference of less than 0.2 mm and no statistical difference 

(P=0.314).  Part of the difficulty in attaining significant difference is that these 

comparisons are between bimodal distributions of continuous variables and are not suited 

to standard statistical tests.  With this statistical caveat, the author believes that the results 

presented in Table 4.9 reflect a true variation in the pattern of exploitation seen over time.  

Failure to attain statistical significance may result from both the complexities of the data 

compared and the small sample sizes analyzed thus far. 

When females outnumber males in a sample the distribution most closely 

resembles the natural sex structure of an adult raccoon population.  This would indicate a 

non-selective method of raccoon procurement.  When males outnumber females in a 

sample the procurement of raccoon must be employ a technique that is biased toward the 

number of males.   Based on modern wildlife data, in hunting situations the number of 

females can be expected to exceed the number of males and in trapping situation the 

number of males can be expected to exceed the number of females.  
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 Modern raccoon hunting is primarily conducted at night with the use of dogs to 

tree raccoons.  Although Smith (1975:45) originally stated there was no ethnographic 

evidence that suggests aboriginal dogs were used for hunting in eastern North America, a 

more detailed review by Schwartz (1997) suggests that dogs had varied roles in hunting 

amongst hunter-gatherers across North America.  Schwartz cites Howard (1965) on the 

use of dogs to hunt raccoons by the Ponca; however, there is no evidence of a similar use 

of dogs amongst eastern groups so we can presume that hunting at night would have been 

a relatively unproductive venture.  Smith (1975:45) suggests two techniques that were 

probably used prehistorically.  Raccoons were probably taken by the searching out of 

raccoon denning trees or the setting of traps along the margins of marshes, oxbow lakes, 

streams, etc. 

 Both of these techniques appear to have been in use in the Midwest in the last half 

of the eighteenth century.  The captivity narrative (1755-1759) of Colonel James Smith 

who was taken captive and lived among the Caughnewaga, Wiandot and Ottawa in 

northern Ohio between 1755 and 1759 records both techniques.  During the winter, Smith 

records taking raccoons out of hollow trees as an opportunistic activity, often on the 

return from failed deer hunts (Smith 1799:21).  During maple sugar season he records 

making and attending traps for raccoons.  His narrative follows. 

”As the racoon is a kind of water animal that frequents the runs, or small water-

courses, almost the whole night, we made our traps on the runs, by laying one 

small sapling on another and driving in posts to keep them from rolling.  The 

upper sapling we raised about eighteen inches, and set so, that on the racoons 

touching a string, or a small piece of bark, the sapling would fall and kill it; and 
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lest the racoon should pass by, we laid brush on both sides of the run, only leaving 

the channel open.” (Smith 1799:52-53) 

 

Of the eleven mentions of hunting raccoon, seven occur in October and November and 

probably relate to taking raccoons out of denning trees, four occur from January to April 

and probably relate to using deadfall traps. 

 The Late Archaic sample from Indian Knoll has the highest proportion of females.  

This may be due to the combined effect of fall-winter occupation and the predominant 

method of capture being non-selective.   Juvenile mandibles of the white-tailed deer 

support the assumption that the site occupation was predominantly fall and winter.  The 

proposed non-selective method of capture in this case is the removal of raccoons from 

denning trees in the winter when their denning holes are visible.  

 Tick Creek, which is a mixed Archaic and Woodland sample is anomalous using 

the 4mm criterion; however when adjusted for slightly larger female deer using either the 

bimodal distribution of widths or the z-scores of measurements, Tick Creek plots with 

50% each of males and females. Parmalee (1965) does not discuss seasonality of the 

faunal remains from the rockshelter; however, he mentions mandibles from 24 deer aged 

less than six months; these would indicate June through November occupation at the 

shelter.  Although most hunting activity was likely in the fall, spring or summer trapping 

of raccoon should not be discounted since there is some limited evidence of occupation 

during this period. 

 The two Fort Ancient sites examined showed mixed results.  At the first site, 

Cramer village, females outnumber males probably due to the same non-selective 

procurement seen at Indian Knoll.  At the second site, Sandusky Avenue, males 
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outnumber females, probably as a result of selective procurement.  The Sandusky sample 

also includes one mandible with deciduous dentition that can be aged to between 78 and 

106 days old at the time of death.  The occurrence of a specimen that must have been 

taken during June or early July is also suggestive of trapping since it is difficult to locate 

denning trees during the summer and trapping is recorded ethnohistorically during this 

period. 

In all seven Middle Mississippian samples males outnumber females.  This 

distribution is much more typical of the trapped samples seen in modern wildlife biology 

studies.   Even with small samples, the probability of all seven Middle Mississippian 

samples being biased towards males by chance is extremely low (P=0.008). 

 Despite the absence of significant differences in mortality profiles, the 

demonstrably strong trends in the sex distribution of raccoon at archaeological sites over 

time indicates a shift in procurement strategies.  This shift from non-selective to selective 

procurement does not necessarily mean that one technology was completely replaced by 

another, but rather that the predominant mode of capture changes.  This shift in hunting 

technique is discussed in detail in Chapter 5 and may relate to both changes in the 

seasonality and intensity of procurement.  
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Chapter 5 

  The Effects of Maize Agriculture on Prehistoric Hunting in Eastern North America 

 

 The data collected in this dissertation is focused on identifying population 

parameters of prehistoric animal populations using osteological measurements and 

specifically avoids using suppositions about prehistoric hunting techniques.  Rather, these 

data are brought to bear on formulating suggestions as to how hunting patterns may have 

changed through time.  Specifically addressed in the following section is how increased 

agricultural activity in eastern North America may have altered the procurement 

strategies of white-tailed deer and raccoon in very different ways. 

 Ethnohistoric data have been used to show that drives were a common form of 

capturing deer in the historic period (Webster 1979:817).  Deer drives use either human 

beaters or lines of fire to drive deer toward an area where they are killed.  Waselkov 

(1978:16-17) describes both of these techniques being used either to drive deer to water 

where they are dispatched from canoes or to drive them to clearings in the woods where 

they are killed by bow and arrow. 

 Often these drives were situated to take advantage of natural features to direct and 

isolate deer.  In other cases intentional v-shaped funnel traps were created from brush.  

Samuel de Champlain witnessed an Iroqouis deer drive into such a trap in late October 

1615.  He writes: 

…we went to a spot some ten leagues away where our savages thought 
there were deer in great numbers.  Some twenty-five savages…went into 
the woods near a little grove of firs where they made a triangular 
enclosure, closed on two sides, open on one.  This enclosure was made of 
great wooden stakes eight or nine feet in height, joined close together, and 
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the length of each side was nearly fifteen hundred paces.  At the extremity 
of this triangle there is a little enclosure, getting narrower the farther it 
goes, and partly covered with branches, with only one opening five feet 
wide, about the width of an average gate, by which the deer were to enter.  
They did so well that in less than ten days their enclosure was 
ready….When everything was completed, they set out half an hour before 
daybreak to go into the woods about half a league from their enclosure, 
keeping about eighty paces apart, each having two sticks which they strike 
together, walking slowly in that formation until they reach the enclosure.  
The deer, hearing this noise, flee before them until they reach the 
enclosure into which the savages force them to enter.  Then the latter 
gradually coming together towards the opening of their triangle, they 
begin to shout and to imitate the cry of wolves, whereof there are many 
that devour deer.  The deer, hearing this terrifying noise, are forced to 
enter the retreat by the small opening, whither they are very hotly pursued 
with arrows, and when they have entered, they are easily caught in this 
retreat, which is so well enclosed and barricaded that they can never get 
out of it.  I assure you one takes eight days that we were there, they 
captured one hundred and twenty deer, with which they make good cheer, 
keeping the fat for the winter and using it as we do butter, and a little of 
the meat which they carry home for their feasts.  They have other devices 
for catching deer, such as traps wherewith they cause the death of many  
(Champlain 1929[3]:82-85). 
 

 Stalking deer by wearing a decoy (antlered deerskin) is widely described in 

ethnographic accounts of deer hunts.  The skill with which this deception was effected is 

revealed by John Lawson, who traveled extensively in the Carolinas in the early 1700s:  

”in these Habiliments (deerskin cape) an Indian will go as near a deer as he pleases, the 

exact Motions and Behaviour of a Deer being so well counterfeited by ’em, that several 

Times it hath been known for two Hunters to come up with a stalking head together, and 

unknown to each other, so that they have kill’d an Indian instead of a deer” (Lawson 

1967:29).  

Munson (1991) suggests that the novel appearance of this stalking technique to 

Europeans may result in an over-representation of this activity in the literature when 

compared to more familiar forms of hunting.  Solitary hunting was also conducted by 
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luring with calls and antler rattling, baiting by cutting down white cedars, stalking 

without a decoy, stalking at night by canoe, snaring, and ambushing (McCabe and 

McCabe 1984; Munson 1991). 

 The only likely variation that different stalking techniques would contribute to a 

deer assemblage is an over-representation of males if decoys or lures were used to attract 

the aggressive male deer during the fall rut.  Unfortunately the overall result of sex 

determination in prehistoric deer remains is unreliable for a number of reasons.   

Two elements readily identify adult deer as male or female.  The frontals with 

their antler attachments are the most obvious.  Unfortunately the greatly increased 

strength of male frontals which result from antler growth and rutting activity makes them 

much more likely to be preserved in almost all assemblages (Loomis and Young 

1912:23).  The pelvis may also be used to determine sex.  This method of determination 

requires excellent preservation of a bone that is inevitably destroyed by the processes of 

butchering, scavenging, burial or recovery.  The relatively large males and relatively 

smaller females may be statistically separated based on osteological measurements 

(Purdue 1983a).  This technique is problematic because the sexual dimorphism exhibited 

by deer is not great enough to create a bimodal size curve.  Thus, using a discriminant 

function separates a unimodal curve into two sections.  This technique presupposes a 

relatively even distribution of males and females so it would likely fail to identify 

samples that were predominantly male (Note: this is not a problem in using discriminant 

functions for subdividing raccoon samples because their distributions are demonstrably 

bimodal). 
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 As a result of the difficulty in accurately determining the distribution of hunted 

animals by sex based on fragmentary archaeological materials it was decided that it was 

not possible to accurately discriminate between the various types of solitary hunting 

(stalking vs. still hunting).  All varieties of solitary hunting may be contrasted to 

communal hunting, specifically deer drives, based on models of hunting efficiency. 

 Modern wildlife data demonstrate that the efficiency of drives, calculated as the 

number of deer captured per person per hour of work, is greatest when low numbers of 

people are involved and that efficiency is lowest when high numbers of people are 

involved (Wemmer and Stuwe 1985).  Drives using between two and seven drivers 

resulted in returns of 2-10 deer per hour per driver.  Drives using between 35 and 160 

drivers returned between 0.11 and 0.54 deer per hour per driver, though part of this 

variation may be accounted for by variations in habitat structure.  Deer drives are 

notoriously unsuccessful when deer are thinly scattered across the landscape and 

Wemmer and Stuwe only recommend drives for reducing dense populations of deer. 

 Waselkov (1978) proposes an evolution in hunting methods from stalking to 

drives based on the development of ranked societies.  Smith (1980) also promotes drives 

originating in the Mississippian period as a result of increasing social complexity.  These 

speculations are based equally on a misinterpretation of mortality profiles (Munson 1991) 

and a misunderstanding of the efficacy of drives.   

An efficiency based model of hunting around major villages with depleted deer 

populations would suggest that the most effective way of procuring deer would have been 

using solitary hunting techniques.  Because fewer than 10 individuals are required for a 

successful drive most Archaic populations, or even small family groups in the 
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Mississippian, would have contained the beaters required for a successful drive.  Wemer 

and Stuwe further argue that large numbers of beaters make excessive noise and become 

increasingly difficult to organize (despite the social complexity of modern wildlife 

biologists). Stress creates unpredictable behavior in deer and drive methodology depends 

of predictable responses.  When relatively small numbers of beaters are used the deer 

move steadily away.  Thus, there are no requirements of social complexity that would 

exclude the use of drives in the Archaic or Woodland.  As an efficient way of hunting, 

drive techniques were doubtlessly used in the Archaic and Woodland and may have 

continued into the Mississippian as a traditional form of hunting.  

 A possible problem in determining hunting techniques based on efficiency is that 

annual drives have historically served an integrative function for the group involved.  

Wasalkov  (1978:25) provides an example where the Pamunkey Indians continued to 

hunt deer through drives from the early seventeenth century into the middle of the 

twentieth century in Virginia.  Speck and Schaeffer (1950) speculate that this continuity 

affirmed the ”Indianness” of the Pamunkey and that it was conducted as a matter of 

honor in fulfilling their 1677 treaty obligation with the General Assembly of Virginia. 

 Inherent in the application of these drives to the sparse and scattered deer 

population of Virginia in the 1930s and 1940s was failure from an economic standpoint.  

In 1938 and 1939 the Pamunkey killed two deer per year.  In 1940 they killed a single 

deer.  While one would suspect that these deer were both young and large, the effect of 

drives such as these in the overall subsistence strategy of a group would be considered 

insignificant. 
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 Holland-Braund (1993:66) documents the decreased use of drives in hunting deer 

which paralleled decreasing deer populations in the Southeast.  Deer mortality profiles 

and body-size estimates for Middle Mississippian deer are statistically indistinguishable 

from the heavily hunted examples from historic sites.  The logical conclusion would be 

that at least around major sites the use of drives decreased in the Mississippian period.   

Deer drives may have continued to be viable in two situations.  One would be that 

they continue as in the case above for a non-subsistence function.  This is not of concern 

here.  The second situation is that deer in the Mississippian period are not evenly 

distributed across the landscape. 

 Hickerson (1965) and Watrall (1968) have proposed and documented the 

existence of a large contested area between the Chippewa and the Eastern Dakota in 

central Wisconsin.  Hickerson predicted that the high deer density that characterized this 

transitional ecological zone with extensive forest-edge habitats led to conflicts between 

the Chippewa and Eastern Dakota.  Deer were maintained in this area by the hostility-

based exclusion of hunters, except for communal hunting undertaken by large parties 

prepared for conflict at any time (Hickerson 1963:43-45).  Watrall (1968) documents the 

statistically significant difference in site density for this buffer zone when compared to 

neighboring regions during the Late Prehistoric and Protohistoric Periods (1200-800 

AD).  The buffer zone averages one site per 774 square miles and the surrounding areas 

average one site per 387 miles (X2=7.73, p=0.01).  Gramly (1977) suggests similar 

developments in the Northeast due to competition for deer hides. 

 It is then a reasonable expectation that buffer zones existed between Mississippian 

groups.  The heavily defended Angel Site with its bastioned stockade wall provides 
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supportive evidence.  I hypothesize that the Mississippian population which left faunal 

remains at the contemporary Rockhouse Hollow occupation was exploiting the dense 

population of deer which inhabited this refugium.  These deer population parameters are 

supported by the small size and higher percentage of older age classes present at 

Rockhouse Hollow.   

It is plausible that drives would have been used in this situation to exploit a dense 

population of deer in heavy cover.  The possibility of conflict and the need to transport 

large quantities of meat back to a village site would also necessitate a fairly large group 

size.  In all probability then the use of large numbers of beaters for drives in the 

Mississippian period would result from safety concerns related to increased interpersonal 

violence.  Although related to ranked societies and social complexity, this does not 

appear to be what Waselkov and Smith were proposing. 

Unfortunately due to the low percentage of Middle Mississippian sites in the 

uplands it was not possible to study another faunal sample from a similar situation.  The 

difficulty of finding upland Mississippian sites may also provide support (albeit from 

negative evidence) of the possibility of a non- or seasonally-occupied buffer zone. 

Although Muller (1986:223) has suggested that deer and other animals that 

exploit maize fields may have been taken as a result of field guarding in the 

Mississippian period, given our current understanding of deer population densities this 

seems an unlikely scenario.  Since deer rapidly develop evasive tactics to avoid hunting, 

the procurement of deer from heavily hunted populations by guarding fields would be 

expected to be minimal. 
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At low deer population levels, raccoons, squirrels, crows and other birds rank as 

significant agricultural pests, and Marshall’s argument (1987) for their increased 

exploitation parallel to agricultural development is sound.  Neusius (1994) has 

demonstrated that garden hunting tends to be non-selective and should result in a diverse 

faunal assemblage.  Deviations from the expected composition should be biased towards 

species that prefer garden habitats and/or are a significant threat to crops (Neusius 

1996:276-277).  These deviations may be identified by comparison to optimal resource 

utilization models or by comparison to pre-agricultural faunal samples.  

As seen in Chapter 1, in the Late Prehistoric period raccoons show a strong 

increase in both their relative abundance and their level of exploitation based on optimal 

resource utilization models.  This is in accord with their preference for garden habitats 

and their potential threat to agricultural crops.  The changes seen in the population 

characteristics of this species through time are most likely related to garden hunting.  

Presumably their high fat content and corresponding caloric value create an added 

benefit. 

Interpreting the hunting of raccoons by Middle Mississippian populations should 

consider the continuity of mortality profiles, the change in distribution by sex, and fit the 

economic model of Mississippians as agriculturalists. 

 Both authors previously studying the exploitation of raccoons by Middle 

Mississippian populations (Hamblin 1973; Smith 1975:42-52) erroneously interpret 

mortality profiles.  Hamblin infers that the under-representation of young age classes is 

an indication of Mississippian hunters purposefully avoiding young animals so that they 

can reach their maximum weight at two years of age (Hamblin 1973:42).  By allowing 
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these individuals to reproduce she also believes that this strategy ensures the propagation 

of the species.  She also believes that the oldest individuals were avoided because of 

undesirable meat and pelt qualities.  The naïve assumptions that cloud her interpretation 

are not in accord with Native American behavior in ethnohistoric accounts.  Brightman 

(1987:123) has clearly demonstrated that there is a far greater body of evidence for 

extravagant exploitation amongst Native American groups than any conservation or 

intentional management of populations.  This relates to both killing animals 

indiscriminately and in numbers beyond what can be reasonably utilized.  

 The prime-dominated model of raccoon hunting is also completely untenable 

given the impossibility of accurately ageing raccoons prior to killing them in a hunting 

situation and the impossibility of creating traps which selectively kill prime-aged 

individuals.  Smith (1975:49) realizes this and states:  

Deliberate sparing of young of the year raccoons by Middle Mississippi hunters is 
not a likely factor in low juvenile representation in raccoon kills: It would be quite 
difficult for Middle Mississippi hunters to identify juvenile raccoons older than 
seven months from older raccoons without resorting to close anatomical 
inspection…. The relatively high representation of the older age classes (animals 
five years or older) in the raccoon kills, especially at the Chucalissa site, suggests 
that the turnover rate of the raccoon populations was rather slow during the 
Mississippi period.    

 

 Neither of these studies examines non-Middle Mississippian raccoon samples and 

both are inherently flawed in their interpretation.  Even if it was possible from a hunting 

perspective, it is beyond comprehension from an economic one that Middle Mississippian 

populations would allow young raccoons to continue depredating their maize crop for 

two years to maximize raccoon body weight.  Mississippians were dependent on maize 
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productivity for survival and fattening raccoons is not an efficient use of agricultural 

crops.   

 The higher proportional presence of old individuals, like the under-representation 

of young is the result of age-correlated attrition of the more delicate juvenile mandibles.  

This taphonomic bias has been demonstrated to exist in the mandibles of larger ungulates 

(Munson 2000, Munson and Garniewicz 2003) and certainly exists in raccoons and other 

small mammals to an even greater degree (Payne and Munson 1985).    

This study demonstrates that mortality profiles of raccoon, unlike those of deer, 

do not exhibit any variation through time.  Therefore, interpretation of hunting patterns 

based on mortality profiles would be static.  This view is in discord with other data that 

support a garden hunting model.  An alternate explanation for mortality profiles of r-

selected species is proposed. 

 Targeted hunting (or trapping) of raccoon should result in mortality profiles that 

parallel the live distribution of raccoon populations.  This non-selective by age hunting of 

raccoons likely occurred throughout the entire prehistory of eastern North America.  As a 

result, there is no significant difference between mortality profiles at any archaeological 

sites.  Since raccoons have high reproductive rates (and correspondingly high mortality 

rates), increased levels of exploitation do not significantly alter the age structure of adults 

in the living population.  Changes in the intensity of hunting may increase the proportions 

of young of the year; however, due to taphonomic problems with juvenile mandibles this 

is not possible to assess archaeologically.   

Unlike deer populations, raccoon populations are resilient to over-exploitation and 

it is unlikely to have a significant impact on the age structure of living populations. With 
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r-selected species such as raccoon, young of the year make up approximately 50 percent 

of the total population; thus any variation in older age classes is swamped by the 

juvenile-adult difference. 

 While hunting raccoon results in a non-selective sampling of the population by 

sex, the population that is being sampled is naturally biased toward females.  Trapping 

raccoon results in a procurement bias and assemblages that are male dominated.  As 

demonstrated, raccoons exhibit a strong trend in the distribution of archaeological 

samples by sex.  Archaic and Woodland samples are predominantly female biased and 

Middle Mississippian samples are all male biased.  This differential representation by sex 

reflects a distinct change in procurement strategy of raccoon.  Two techniques are 

recorded ethnohistorically; the removal of raccoons from denning trees, which results in a 

female biased sample, and the use of deadfall traps which results in a male biased sample. 

The shift from hunting raccoons out of their dens in the Archaic to trapping at 

Middle Mississippian sites is an economically viable response to the problems associated 

with raccoons and maize agriculture.  As documented in Chapter 4, the efficient removal 

of raccoons from their denning trees required the visibility provided by the fall loss of 

deciduous foliage.  This strategy would only reduce raccoon populations after maize 

crops are harvested.  Each remaining female gives birth to a litter about mid-April and all 

of these individuals are threats to both green and ripe maize in the field. 

By additional trapping of raccoons in January through April and possibly 

continuing into the summer, the numbers of both old and young raccoons can be reduced, 

along with the corresponding loss of maize.  This trapping activity is biased towards 
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males and results in the male-biased sex distributions of raccoon from Middle 

Mississippian sites. 

Although not demonstrable by the data collected in this study, the increase in 

proportions of other small mammals (i.e. squirrels and rabbits) is probably also related to 

the resource depression of deer in the Late Prehistoric period.  Unfortunately there are no 

identified skeletal characteristics that would permit the tracking of squirrel and rabbit 

population changes through time.  Mortality profiles of these r-selected species are 

expected to respond like raccoon profiles and would provide little aid in understanding 

their populations.  Probably the best and perhaps the only avenue for examining whether 

individual species are actually consuming maize is by looking at stable carbon istotopes 

in faunal remains.   

 

Stable carbon isotopes 

Stable carbon isotopes have been used extensively to examine the proportion of 

maize in human diets (Price 1989), but thus far have not been used to examine this same 

question with animal species.  Presumably, if animals are a significant threat to crops, 

they may consume enough maize to alter the stable carbon isotope ratios in their bone 

collagen. The largest analyzed faunal sample consisted of 39 specimens of a range of 

species and was conducted to examine how consumption of various animals might be 

reflected in human isotope ratios (Katzenberg 1989). 

Common native plants that use the C3 pathway to fix carbon produce average 

d13C values of -26.5 ‰.  Xeric environment grasses such as corn use the C4 pathway to 

fix carbon and have average d13C values of -12.5 ‰.  As the carbon in plants is 
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consumed and transferred to the bone collagen of the consumer, d13C values become 

enriched by approximately 5 ‰. By moving up an additional trophic level (herbivores 

consumed by carnivores) enrichment of another 1 ‰ can be expected (Chisholm 1989).  

Thus, C3 herbivores and carnivores should have values of  -21.5 ‰ and  -20.5 ‰ 

respectively and C4 herbivores and carnivores should have values of -7.5 ‰ and -6.5 

respectively.     

Enrichment of d13C may occur as the result of either an increase in trophic level 

or increased consumption of maize.  Increased maize consumption does not increase the 

d15N, whereas increased trophic levels results in an increase in d15N.  More complicated 

analysis may also include taking d15N isotope ratios. 

A sample of 72 faunal specimens from the Angel site was analyzed by Dr. Mark 

Schurr at Notre Dame University. The results are presented in Appendix 5.  Deer showed 

mean d13C values of -20.5 ‰, raccoon showed mean d13C values of -18.7 ‰, rabbit 

showed mean d13C values of -22.3 ‰ and squirrel showed mean d13C values of -18.5 ‰.  

These preliminary results suggest that deer and rabbit do not appear to be significant 

consumers of maize, but that raccoons and squirrels may be.  Several dogs showed d13C 

values of approximately -10.6 ‰, indicating significant consumption of maize from 

either primary or secondary contexts. 

Nitrogen isotope data were also determined for five specimens each of deer and 

raccoon.  Deer nitrogen isotopes ranged from 3.99‰ to 5.31‰.  Raccoon nitrogen 

isotope ratios ranged from 6.12‰ to 8.18‰.  At a species level this seems to indicate that 

part of the increase in d13C may result from an increase in the trophic level or perhaps 

from consumption of aquatic resources. This does not seem to be the case at an individual 
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level, however, since the highest d15N value exhibits the lowest d13C value (possibly 

indicating a predominantly aquatic diet).  The highest d13C values also have relatively 

low d15N values, possibly indicating limited maize consumption. 

 One possible avenue of exploration would be to look at stable carbon isotope 

ratios of fauna through time to examine if animal species truly are eating maize.  As a 

result of observations here, further analysis of specimens from Indian Knoll (floodplain 

Archaic site) and Rockhouse Hollow (upland Archaic site) are underway so that variation 

in d13C through time may be examined. 

The d13C enrichment for raccoon is only slightly higher than deer, indicating that 

this would be a relatively minor component in the overall raccoon diet.  This is probably 

linked to the limited seasonal availability of maize to raccoons in contrast to the long-

term availability of stored maize to humans (with d13C around -9‰).  Based on modern 

behavioral models, squirrels may be more to likely to depredate green and ripening maize 

and this may account for their high d13C values compared to rabbit.   

Due to calibration problems with the mass spectrometer, these stable carbon 

isotope values are not accurate at the ppm level in these preliminary data, however work 

by Schurr and Garniewicz is ongoing to re-examine Mississippian samples from Angel 

and to compare them to Archaic samples from Indian Knoll and Rockhouse Hollow.  
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Chapter 6 

Conclusions 

 

Over the past several decades there has been a substantial evolution of 

zooarchaeological methodology and technique, beginning with the massive samples 

studied by Parmalee in the 1950s through the more complex studies of human ecology by 

Smith (1975) and Styles (2000).  Regional studies suggest a number of possible 

explanations for changes in animal ecology and hunting strategies (Barfield and Barber 

1992, Cleland 1976, Muller 1997) that have been evaluated in this study. 

Previous approaches using a single measure such as taxonomic diversity or 

relative abundance provide a descriptive view of changes over time; however, they do not 

resolve the causal mechanisms for this change.  Likewise, interpretations based solely on 

mortality profiles have failed to provide a unified conclusion.   Because multiple factors 

may produce the variation seen in archaeological assemblages, the wide-ranging 

interpretations that result from examining single lines of evidence are not unexpected.  

More conclusive interpretations can be reached by utilizing multiple lines of evidence as 

is demonstrated by this dissertation.   

Deer are the single most important game species in eastern North America, and, 

as a result they form a logical focus of analysis.  As demonstrated by Styles (1981) deer 

remains at archaeological sites generally decrease in abundance over time.  Purdue 

(1991) has independently shown that there are significant changes in white-tail deer body 

size over time.  The research presented herein interprets how deer exploitation changed 
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over time based on the observed changes in relative abundance, body size, and mortality 

profiles. 

Early in my studies of faunal remains I realized that deer bones from 

Mississippian archaeological sites were substantially larger than those of many modern 

comparative specimens.  This observation led to more thorough research into variation in 

deer body size, which revealed that deer population density (as it affects access to high-

quality forage) is the overriding factor in influencing deer size in most modern situations.  

Despite the recognition of this factor by virtually all wildlife biologists, there had been no 

application of this density-size relationship to the study of prehistoric remains.  Would it 

be possible to use size as a measure of density and what other variables could be 

investigated to support this interpretation? 

As I gathered modern comparative specimens as part of my research, it became 

clear that very few bucks in modern heavily-hunted situations are over 3 years of age 

while the less heavily hunted female deer may on occasion live up to 10 years of age.  In 

these modern situations, with the effects of limited seasons, controls on the number of 

animals taken, trophy hunting, and the cultural desire to bag a big buck there is more 

variation by sex than would be expected in prehistoric situations.  Yet, this provides an 

excellent model for survivorship in heavily hunted populations (modern males) versus 

lightly hunted populations (modern females).  Thus, the second variable for investigating 

deer population dynamics was identified. 

The fact that these variables, deer size and age at death, were both related to the 

density of deer is supported by modern wildlife studies.  In regard to one of the most 

heavily studied deer populations, the George Reserve, McCullough writes “Record bucks 
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were produced not at high densities, which have the oldest individuals, but rather at the 

lowest densities [where there are very few old individuals] (1984:234).”  Thus, in heavily 

hunted populations individual deer are large because deer densities are low relative to 

available forage and the population has few individuals living to old age because they are 

regularly culled.  In less heavily hunted populations individual deer are smaller because 

densities are high relative to available forage and the population has more individuals 

living to old age.   

In this study, a careful examination of 57 archaeological assemblages with white-

tailed deer mortality profiles and 30 archaeological assemblages with calculated deer size 

also shows this relationship.  In general, Archaic and Woodland sites have relatively 

small deer with a fair number of individuals living to old age.  Most Mississippian, 

Protohistoric and Historic sites have relatively large deer where few individuals live to 

old age.   This strongly supports a model where deer become a depleted resource as 

groups in eastern North America become dependent on agriculture and human population 

density increases. Yet this generalization obscures the most interesting finding of all. 

This change in the deer age-size relationship seen over time is not continuous 

across the entire landscape.  Rather, it is an artifact of the type of sites commonly chosen 

for investigation.  Choosing sites with large well-preserved faunal assemblages results in 

a selection of Archaic rockshelters, Late Archaic shell middens and major Mississippian 

villages.  The outlying Mississippian sites are overlooked in favor of their large 

counterparts.  In order to avoid the problems associated with site types, a Mississippian 

rockshelter component was specifically targeted in this study. 
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The remains from Rockhouse Hollow (12 Pe 100) provide very specific data on 

how landscape use changes from the Archaic through the Mississippian.  While Archaic 

deer from Rockhouse Hollow are relatively small and tend to be long lived, the 

Mississippian deer from Rockhose Hollow are even smaller and have a greater proportion 

of old individuals than the Archaic sample.  This is the exact opposite of what we see at 

contemporary major Mississippian villages, which contain larger, younger deer.   

This finding contradicts previous models that correlate deer size to long-term 

environmental change.  Instead, it suggests hunting pressures have substantially reduced 

deer populations that surround major Mississippian villages, but that deer in the 

hinterlands may be more densely populated and less heavily hunted than they were in the 

Archaic!  This model supports the existence of a buffer zone between culture groups, 

where hunting was probably a high-risk activity of limited duration, likely undertaken in 

the fall or winter.  These findings provide substantial support for the existence of buffer 

zones such as those proposed by Hickerson (1965), Watrall (1968) and Turner (1978).  

This faunal evidence suggests that the requirements of increased human 

populations had a measurable impact on prehistoric deer populations.  Overall, deer 

population densities decrease and the distribution of deer across the landscape appears to 

undergo reorganization.  Densities of deer populations are lightest near major Late 

Prehistoric sites and are probably most dense in contested territories.   As a result of 

patch depletion surrounding major sites, deer appear to form a smaller proportion of Late 

Prehistoric diets than they do during preceding periods.   

As a result of cultural changes that impact deer populations, procurement 

strategies for deer also exhibit shifts from the Archaic to the Late Prehistoric.  Deer 
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drives were likely used in the Archaic through Woodland, but probably decreased in 

number and efficiency near major settlements in the Late Prehistoric.  The success of 

deer drives in the Late Prehistoric would be linked to high deer densities in contested 

territories which could only be exploited briefly and with large group sizes.  In this 

particular situation large numbers of beaters in deer drives provide the additional benefit 

of security while within these zones. 

As noted in Chapter 2, as the relative abundance of deer decreases, the abundance 

of small and medium mammals increases; however, an examination of relative abundance 

and fat content indicates a proportionally greater increase in mammals with a high fat 

content.  Although the focus of the research presented here is on non-domesticated 

animals, Schwartz (1997:63) has linked increased consumption of dogs with a shift 

towards an agricultural way of life.  Snyder (1991) has also demonstrated the nutritional 

importance of dogs as a food resource on the Plains, with the primary advantage of dogs 

being their high fat content.  While outside the geographic area of concentration, the 

other significant sources of fat (ie preferred species) amongst Plains groups were raccoon 

and beaver (Snyder 1991:371). 

This study independently identified raccoon as a key species, not just because of 

their high fat content, but also because of their penchant for maize and their ability to 

adapt to life in proximity to humans.  Of all mammalian remains found at archaeological 

sites in the eastern United States, raccoon are second in abundance to white-tailed deer.  

As a result sample sizes are sufficient to examine their population parameters.  

Although an investigation of raccoon mortality profiles proved not to be as 

successful as the examination of deer age at death, improved ageing methodology 
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demonstrates that these results are replicable.  Varied representation of juveniles would 

have been the most likely indicator of changing procurement; however, this class was 

universally underrepresented due to taphonomic factors.  The under-representation of 

older individuals in all samples is likely related to the naturally high reproductive and 

mortality rates of raccoon, not to human behavior. 

Fortunately the distribution of raccoon remains by sex provided much more 

informative support to understanding their increase in relative abundance over time.  

Previous determinations of sex in raccoon remains had only examined Mississippian sites 

and had noted a predominance of males.  This study examined Archaic, Woodland, Fort 

Ancient and Mississippian raccoon remains.  While all Mississippian samples were male 

dominated, all Archaic and Woodland samples were female dominated.  Fort Ancient 

sites were intermediate; with some being male dominated and others being female 

dominated. 

The mechanism behind this shift is easily explained by understanding male vs. 

female raccoon behavior.  Males tend to be more aggressive and less wary than females. 

As a result, they have both larger home ranges and higher mortality rates.  Within a given 

area there are more females than males, and a random sampling of their population will 

result in a female dominated sample.  Any capture technique that counts on raccoons 

making poor choices (re survival) is more likely to be biased towards males. 

Archaic and Woodland procurement of raccoon therefore appears to be the result 

of a random sampling of the population.  The most likely mechanism for this is the 

removal of raccoons from denning trees, one of the techniques documented as being in 

use at the time of contact.  This strategy randomly samples the raccoons within a given 
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area and results in a female dominated assemblage.  According to ethnohistoric accounts 

this technique is also opportunistic in that denning trees are observed in the course of 

other travels or activities, not deliberately sought out. 

  Late Prehistoric procurement of raccoons appears to differ from earlier 

techniques in being a targeted attempt to procure raccoons, most likely through trapping.  

Trapping of raccoons with either snares or deadfall traps is more likely to produce male 

dominated assemblages.  This bias is well documented in modern wildlife studies and the 

most likely explanation for the male dominated assemblages observed in the Late 

Prehistoric.  Since raccoon also increase in abundance at Late Prehistoric sites this shift 

in procurement strategies does not appear to impact their overall population structure, at 

least partially explaining the lack of observable variation in mortality profiles.  The 

success of raccoon in this situation is an indication of their adaptability and perseverance, 

characteristics that likely led to their status as a pest species.  Stable carbon isotope 

analysis by Schurr (this study) suggests that they may have been prehistoric crop-raiders.  

While we see a shift in the predominant mode of raccoon procurement over time 

it is probable that at many prehistoric sites the recovered samples result from a 

combination of the opportunistic removal of raccoons from denning trees and deliberate 

trapping.  Of particular interest is that the samples from Fort Ancient sites exhibit the 

only inconsistency in the sex bias of raccoon.   

An examination of Oliver Phase, Fort Ancient, and Mississippian plant remains 

by Bush (2004) uses correspondence analysis to show distinct patterns of plant use 

between these groups.  Fort Ancient sites form a very tight cluster with more balanced 

utilization of nuts and corn than other groups.  While Bush notes that there is a lack of 
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agreement between her findings and stable carbon isotope data (Schurr 1998), with 

regards to the overall significance of maize, she makes an important point in regards to 

scheduling.   

Central to the distinction of Oliver, Fort Ancient, and Mississippian plant use 

patterns may be a fall scheduling conflict between the use of nut resources and the 

demands of fall-maturing crops such as corns, beans and squash.  As Bush aptly points 

out nut resources are also an important source of fat.  “Nut resources were important to 

Oliver people.  At most sites, hickory was favored over other nuts, probably for the ease 

with which oil could be extracted from the nuts (Talalay et al. 1984)” (Bush 2004:101). 

If the nutshell/corn distinction does relate to a fall scheduling conflict, Bush 

proposes that some groups choose to process maize at that time while others focus on the 

mast crop, which may otherwise have been rapidly depleted by wildlife.  In regards to 

raccoon procurement a decision may also have been made between investing time to 

protect maize fields from marauding raccoons vs. utilizing a host of potential wild 

resources and opportunistically procuring raccoons from their dens.  The decisions 

regarding the importance of wild resources may thus extend well outside the season of 

harvest.   

These decisions may also reflect the importance of total calories (agriculture) 

versus calories from fat (raccoon and nut resources).  There is the additional possibility 

that while not a dietary necessity for certain Late Prehistoric groups, the raccoon was a 

highly valued food that could be targeted at the expense of more productive agricultural 

crops.  If this was the case decisions regarding the hunting of raccoon (and perhaps 
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hunting in general) might be more open because populations are not dependent on corn 

agriculture for survival. 

While I am skeptical of Classen’s (1991) hypothesis that shell mounds were 

ceremonial constructs and that the meats were inconsequential, I would not be as hasty as 

she is to reject the hypothesis that the cessation of shellfishing 3000 years ago may be the 

result of a reallocation of women’s labor from gathering shellfish to starchy seed 

horticulture.  Instead I would argue that the scheduling of agricultural activities is even 

more complex than planting and harvesting and that garden hunting may have played a 

significant role in the reorganization of labor.  Thus, the shift from opportunistic hunting 

of raccoon in the Archaic to deliberate trapping of raccoon in the Mississippian may 

reflect a more widespread change in the division of labor, where a greater percentage of 

overall food requirements, including meat protein, are the result of activities of women 

and children.  Hunting of large animals with drives in the Mississippian may have 

ultimately had more significance for social rather than subsistence reasons.   

 To come full circle, as Reitz and Wing (1999) define zooarchaeology, it is a field 

of study that draws upon the knowledge of both biology (zoology) and anthropology 

(archaeology) and benefits both in return. The zooarchaeological models of resource 

intensification and depletion presented herein are proposed as species-specific studies 

tracking the interaction between humans and their environment as they affect key species.  

By examining prehistoric animal ecology, by simply being curious as to why 

Mississippian deer bones are larger than modern comparative specimens, we can gain 

valuable insight into patterns of human behavior that may otherwise have left little 

evidence in the archaeological record. 
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The work done in this dissertation would not be possible without the significant 

contributions of a number of other zooarchaeologists, Charles Cleland, Thomas Emerson, 

John Guilday, Paul Parmalee, Rick Purdue, Bruce Smith, Bonnie Styles, and many 

others.  Like the work of my forebears, the methodology, data presentation and 

interpretation used in this study encourage continued additions of data and testing of the 

models presented herein.  Future research will continue to shed more light on the 

dynamics of human-animal interactions as they have evolved in the Eastern Woodlands 

from the Archaic through the Late Prehistoric periods, continuing to unwind the complex 

relationship between prehistoric culture change and shifting animal population 

parameters.  
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Appendix 1 Sites used for relative abundance study 
 

    Didelphis 
virginianus

Ursus 
americanus

Procyon 
lotor 

Mustela 
vision 

Mustela 
frenata 

Martes 
pennanti

Martes 
americana

Lutra 
canadensis

Mephitis 
mephitis 

Mephitis 
negra 

Spilogale 
putorius 

Site State Reference Culture
Fairport Harbor OH Goslin (1943) Fort Ancient 3 285 794 8 18

Scaccia Site NY Guilday (1973) Early Woodland 4 1
Westheimer NY Guilday (1973) Middle Woodland 20

Sackett NY Ritchie (1973) Late Woodland 14 1 1
Nahrwold No. 1 NY Guilday (1973) Late Woodland 33 3

Garoga Site NY Guilday (1973) Protohistoric 201 5 1 2
Chucalissa TN Parmalee (1960) Mississippian 25 36 50 2 1 4
Chucalissa TN Smith  (1975) Mississippian 56 13 183 7 2 18
Chucalissa TN Smith  (1975) Mississippian 1

Banks AR Smith (1975) Mississippian 58 3 228 19 5 4
Lilbourn MO Smith (1975) Mississippian 2 57 9 2
Lilbourn MO Smith (1975) Mississippian 1 19
Lilbourn MO Smith (1975) Mississippian 1 83 3 1

Turner MO Smith (1975) Mississippian 4 2 36 1
Snodgrass MO Smith (1975) Mississippian 5 155 3 2

Powers Fort MO Smith (1975) Mississippian 4 13 5
Gooseneck Site MO Smith (1975) Mississippian 1 1

Schultz MI Cleland (1966) Early Woodland 2 1 1 1
Schultz MI Cleland (1966) Middle Woodland 8 6 4
Schultz MI Cleland (1966) Late Woodland 2 0
Schultz MI Cleland (1966) Woodland 35 35 4 7 3 10 2

Juntunen MI Cleland (1966) Woodland 7 1 1 11
Moccasin Bluff MI Cleland (1966) Woodland 4 18 2 2

Tick Creek MO Parmalee (1965) Archaic 36 11 440 2 9 145 4
Tick Creek MO Parmalee (1965) Woodland 54 14 910 1 21 232 13

Raddatz WI Parmalee (1959) Archaic 33 1 1 2
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Taxidea 
taxus

Urocyon 
cinereo.

Vulpes 
fulva

Canis 
famil.

Canis 
lupus

Canis 
latrans

Canis 
sp.

Felis 
cougar

Felis 
concolor

Lynx 
rufus

Marmot
a monax

Tamias 
striatus

Tamias. 
hudson.

Sperm. 
tridec.

Sciurus 
carolin.

Sciurus 
niger 

Glauco.
volans

Glauco. 
sabrinus

Site 
Fairport Harbor 12 95 1 47 6 7 149 1
Scaccia Site 2 8 6
Westheimer 2 17 6 2
Sackett 2 1 1 1 8 1 7
Nahrwold No. 1 6 90 1 1 5 1
Garoga Site 6 3 27 1 18 3 3 1
Chucalissa 27 2 6 6 8 105
Chucalissa 211 4 3 10 3 51 507
Chucalissa 4 2 23
Banks 95 1 1 20 18
Lilbourn 3 1 10 1 23 86
Lilbourn 1 2 2 13 8
Lilbourn 5 72 29
Turner 3 5 1 1 3
Snodgrass 5 15 1 5
Powers Fort 3 4 9
Gooseneck Site 3 2 2
Schultz  1
Schultz  6 1
Schultz  0
Schultz  27 2
Juntunen 196 26 2
Moccasin Bluff 2 58 3 1 15 1
Tick Creek 98 75 12 16 27 66 7 35 78 13
Tick Creek 2 167 118 30 1 21 44 101 4 39 139 85
Raddatz 2 33 20 1 2 33 55 27 25 26 1
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 Castor 

canad.
Microtus 

penns.
Microtus 

ochrog.
Microtus 

sp
Clethr. 

gapperi
Blarina 
brevic.

Peromys
cus sp.

Geomys 
bursar.

Neoto. 
florid.

Sigmodo
hispidus

Oryzo.
palustris

Synapt.
cooperi

Ondatra 
zibethica 

Erethiz.
dorsat.

Sylvil. 
florid.

Sylvila. 
aquatic.

Sylvila.
or Lepus

Sylvilag
us sp.

Site 
Fairport Harbor 304 3 4 86 8

Scaccia Site 2 1 1 1
Westheimer 3 4

Sackett 6 1
Nahrwold No. 1 16 5 1 2 4 1

Garoga Site 208 1 16 6 1
Chucalissa 11 2 6 1 87 19 4
Chucalissa 18 2 20 126 13 220 81 22
Chucalissa 1 1 5 5 2

Banks 28 25 9 75 114 14
Lilbourn 2 2 1 1 19 75 35 63 46 22
Lilbourn 4 61 9 15 12 4
Lilbourn 3 3 16 37 122 9 7 9 78

Turner 10 3 2 4 1 1
Snodgrass 4 19 1 3 1 1

Powers Fort 4 8 21 1
Gooseneck Site 2 1 1

Schultz 8 16
Schultz 47 106
Schultz 5 16
Schultz 146 171 2 5 457

Juntunen 245 5 23 4 1 10
Moccasin Bluff 178 4 31 3

Tick Creek 66 11 91 1 144
Tick Creek 133 2 2 27 117 1 1 261

Raddatz 20 5 1 4 2 3 24
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 Lepus 

americ.
Cervis 
canad.

Alces 
alces

Odocoileus 
virginianus

Rangifer 
tarandus

Cervidae Scalopus 
aquatic.

Talpidae Bat Sp. Myotis 
sp.

Eptesicu
s fuscus

Bison 
bison

Rattus 
norveg.

Unid. 
mammal

U. Small 
Mammal

U. Lg. 
Mammal

Site 
Fairport Harbor 324 1160

Scaccia Site 313
Westheimer 1 4567 2812

Sackett 477
Nahrwold No. 1 1 31 6227

Garoga Site 1 44 1388
Chucalissa 1803
Chucalissa 1 3230 1 213 4515
Chucalissa 90 1 153 93

Banks 2832 25
Lilbourn 504 1 431 694
Lilbourn 152 29 367
Lilbourn 335

Turner 544 1 37 960
Snodgrass 1 3023 2 167 2047

Powers Fort 172 36 454
Gooseneck Site 224 2 35 720

Schultz 46
Schultz 4 167
Schultz 1 14
Schultz 16 619

Juntunen 37 10 4 8 13
Moccasin Bluff 39 934 1

Tick Creek 109 8683 2 4 3 1
Tick Creek 176 15068 4 1 3 3 2 6

Raddatz 34 4409 15 6 7
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Appendix 2 
 
White-tailed deer Rockhouse Hollow  Archaic (Kellar 1962) 
 
Specimen # D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
1527-3490-1      1 1 1 1 L 2.5 
1527-3490-2         1 L 1.5 
1527-3512         1 R 4.5 
1527-3525-1 1 1 1       R 0.5 
1527-3525-2       1 1 1 R 0.5 
1527-3525-3       1 1  R 1.5 
1527-3544       1 1  L 5.5 
1527-3573-1   1    1 1  L 1.5 
1527-3573-2       1   R 1.5 
1527-3573-3  1 1       L 1.5 
1527-3575-1    1 1 1    R 3.5 
1527-3575-2    1 1 1 1   L 3.5 
1527-3611        1 1 R 2.5 
1527-3621-1       1   L 1.5 
1527-3621-2        1 1 L 2.5 
1527-3621-3      1 1   L 3.5 
1527-3720-1         1 R 1.5 
1527-3720-2         1 L 4.5 
1527-3737-1         1 R 4.5 
1527-3737-2        1 1 L 6.5 
1527-3737-3      1 1 1  L 2.5 
1527-3737-4      1 1 1  L 2.5 
1527-3867-1        1 1 L 1.5 
1527-3867-2     1 1 1 1  L 0.5 
1527-3894      1 1 1  L 3.5 
1527-1214-1         1 R 1.5 
1527-1214-2    1 1     R 4.5 
1527-1243         1 R 3.5 
1527-1624        1 1 L 1.5 
1527-1625      1 1   L 5.5 
1527-1657-1    1 1 1 1 1  L 4.5 
1527-1657-2     1 1 1 1  L 3.5 
1527-2102-1        1 1 R 2.5 
1527-2102-2        1 1 R 3.5 
1527-2070        1  R 3.5 
1527-2168       1 1 1 L 1.5 
1527-2115        1 1 L 5.5 
1527-2200          L 0.5 
1527-2199-1    1 1     L 3.5 
1527-2199-2   1    1   L 0.5 
1527-2673      1 1 1 1 L 6.5 
1527-2187    1 1 1    R 9.5 
1527-2673-2     1 1 1 1 1 L 9.5 
1527-2684-1         1 R 3.5 
1527-2684-2    1 1  1 1  R 4.5 
1527-2684   1       R 0.5 
1527-2689 1 1 1    1   L 0.5 
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Specimen # D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
1527-2753    1 1 1 1 1  R 2.5 
1527-2707         1 R 2.5 
1527-2710     1 1    R 9.5 
1527-2753         1 L 2.5 
1527-2738      1 1 1  R 6.5 
1527-2772-1        1 1 L 2.5 
1527-2772-2        1  L 3.5 
1527-2806        1 1 R 2.5 
1527-2801       1 1 1 R 1.5 
1527-2777         1 R 0.5 
1527-2812        1 1 R 4.5 
1527-2829       1   R 1.5 
1527-2880    1 1     R 6.5 
1527-2882         1 R 3.5 
1527-2876    1      R 1.5 
1527-2926    1 1 1 1 1 1 R 7.5 
1527-2936-1         1 R 2.5 
1527-2936-2         1 R 4.5 
1527-2936-3       1 1  R 4.5 
1527-2936-4        1 1 L 4.5 
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White-tailed deer Rockhouse Hollow  Mississippian (Kellar 1962) 
 

Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
1527-523-1 1 1 1 L 7.5 
1527-523-2 1 1 R 3.5 
1527-523-3 1 1 1 1 R 4.5 

1527-612 1 L 2.5 
1527-689 1 R 5.5 

1527-778-1 1 1 1 1 R 6.5 
1527-778-2 1 1 1 R 7.5 
1527-778-3 1 R 4.5 

1527-738 1 1 1 1 R 0.5 
1527-730 1 1 L 5.5 
1527-675 1 1 L 2.5 
1527-901 1 1 R 2.5 
1527-962 1 1 1 R 0.5 

1527-1729 1 L 1.5 
1527-2393 1 L 0.5 
1527-3011 1 1 L 3.5 
1527-3082 1 1 1 R 2.5 
1527-3030 1 R 3.5 

1527-3824-1 1 1 L 2.5 
1527-3824-2 1 1 L 2.5 
1527-3929-1 1 R 2.5 
1527-3929-2 1 L 2.5 

1527-3967 1 L 2.5 
1527-3936 1 L 2.5 
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White-tailed deer Ouiatenon Historic  (Martin 1986) 
 

Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
OUI-1 1 1 1 1 1 L 4.5 
OUI-2 1 1 1 1 1 R 0.5 
OUI-3 1 1 1 1 R 1.5 
OUI-4 1 1 1 1 1 1 R 6.5 
OUI-5 1 R 2.5 
OUI-6 1 1 1 1 1 R 2.5 
OUI-7 1 1 1 1 1 L 2.5 
OUI-8 1 1 1 1 1 1 R 1.5 
OUI-9 1 1 1 1 1 1 L 3.5 

OUI-10 1 1 L 5.5 
OUI-11 1 1 1 1 1 L 0.5 
OUI-12 1 1 1 R 3.5 
OUI-13 1 1 1 1 R 4.5 
OUI-14 1 1 1 L 3.5 
OUI-15 1 1 1 1 R 0.5 
OUI-16  
OUI-17 1 1 R 4.5 
OUI-18 1 L 4.5 
OUI-19 1 1 1 1 1 1 L 7.5 
OUI-20 1 1 L 0.5 
OUI-21 1 R 2.5 
OUI-22 1 1 1 L 5.5 
OUI-23 1 1 1 1 R 3.5 
OUI-24 1 R 2.5 
OUI-25 1 1 L 1.5 
OUI-26 1 1 1 1 1 1 L 4.5 
OUI-27 1 1 1 R 8.5 
OUI-28 1 1 1 1 1 R 1.5 
OUI-29 1 1 1 1 1 1 R 5.5 
OUI-30 1 R 0.5 
OUI-31 1 L 1.5 
OUI-32 1 1 1 R 9.5 
OUI-33 1 1 L 0.5 
OUI-34 1 1 1 R 1.5 
OUI-35 1 1 1 L 0.5 
OUI-36 1 1 1 1 1 L 4.5 
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White-tailed deer Murphy  Mississippian  (Munson in press) 
Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 

142.399.2 1 R 4.5 
142.1.2 1 1 R 5.5 

142.200.2 1 L 1.5 
142.6.3 1 R 1.5 

142.12.3 1 R 2.5 
142.295.2 1 1 1 1 L 4.5 
142.295.2 1 L 1.5 

142.22.3 1 L 0.5 
142.429.2 1 1 1 R 0.5 
142.229.3 1 1 R 5.5 
142.206.2 1 1 1 1 1 L 4.5 

142.211.15 1 R 0.5 
142.382.2 1 1 L 3.5 
142.382.2 1 R 1.5 

141.2968.1 1 1 R 5.5 
141.2945.2 1 1 R 4.5 
141.2958.3 1 1 1 1 1 R 0.5 
141.2894.2 1 1 1 1 1 R 3.5 
141.2896.3 1 1 L 2.5 
141.2905.1 1 1 1 1 1 L 2.5 
141.2908.2 1 1 1 L 1.5 
141.2910.1 1 R 6.5 
141.2916.1 1 1 R 1.5 
141.2935.1 1 1 1 L 1.5 
215.80.1.1 1 1 L 5.5 
215.80.1.1 1 1 L 2.5 

261.145 1 1 R 2.5 
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White-tailed deer Banks   Mississippian  (Smith 1975) 
 

Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
9-29 1 1 1 L 0.5 
9-29 1 1 R 0.5 
9-29 1 1 1 1 R 5.5 
9-29 1 1 1 1 1 1 L 3.5 

10-29 1 L 2.5 
10-29 1 1 R 1.5 
10-29 1 1 R 0.5 
10-29 1 1 1 R  
10-29 1 1 1 1 L 2.5 
10-29 1 1 1 1 L 1.5 
10-29 1 1 R 3.5 
10-29 1 1 R 1.5 
10-29 1 L 1.5 
10-29 1 1 1 R 4.5 
10-29 1 1 1 1 L 0.5 
10-29 1 1 1 R 6.5 
10-29 1 1 L 2.5 
10-29 1 1 1 L 1.5 
10-29 1 L 4.5 
10-29 1 L 2.5 
10-29 1 1 1 1 1 1 L 5.5 
10-29 1 1 1 1 1 L 6.5 
10-29 1 1 1 L 4.5 
10-29 1 1 1 R 1.5 
10-29 1 1 1 1 1 L 3.5 
10-29 1 1 1 R 1.5 
10-29 1 L 1.5 
10-29 1 L 2.5 
10-29 1 L 0.5 
10-29 1 R 1.5 
10-29 1 1 1 1 L 5.5 
10-29 1 1 1 R 1.5 
10-29 1 R 6.5 
10-29 1 1 1 R 0.5 
10-29 1 1 1 L 2.5 
10-29 1 1 L 5.5 
10-29 1 L 1.5 
10-29 1 1 R 5.5 
10-29 1 1 L 3.5 
10-29 1 L 1.5 
10-29 1 1 1 R 3.5 
10-29 1 1 1 L 0.5 
10-29 1 1 1 L 2.5 
10-29 1 L 2.5 
10-29 1 1 L 6.5 
10-29 1 L 2.5 
10-29 1 L 2.5 
10-29 1 R 6.5 
10-29 1 L 1.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
10-29 1 L 1.5 
10-29 1 L 1.5 
10-29 1 L 2.5 
10-29 1 L 1.5 
10-29 1 R 1.5 

8-29 1 1 1 1 1 R 0.5 
None 1 1 L 2.5 
None 1 1 1 1 1 L 1.5 
None 1 1 1 1 1 1 L 1.5 
None 1 1 L 2.5 
None 1 1 R 3.5 
None 1 1 1 1 L 1.5 
None 1 1 1 1 1 L 0.5 
None 1 1 1 L 1.5 
None 1 1 1 R 2.5 
None 1 1 L 2.5 
None 1 1 1 1 1 L 3.5 
None 1 1 R 3.5 
None 1 1 1 1 1 R 1.5 
7-29 1 1 1 R 1.5 

None 1 1 1 1 1 1 L 2.5 
None 1 1 1 1 1 1.5 
None 1 1 1.5 
None 1 1 1 1 L 0.5 
None 1 1 1 1 R 1.5 
None 1 1 1 1 R 0.5 
None 1 1 1 1 R 3.5 
None 1 1 1 1 R 3.5 
None 1 1 L 2.5 
None 1 1 1 R 3.5 
None 1 1 1 1 L 1.5 
None 1 1 1 R 3.5 
None 1 1 R 2.5 
None 1 L 3.5 
None 1 1 1 1 1 1 R 1.5 
None 1 1 1 R 1.5 
None 1 1 1 1 L 4.5 
None 1 1 1 1 3.5 
None 1 1 1 1 R 6.5 
None 1 R 4.5 
None 1 L 1.5 
None 1 1 L 0.5 
None 1 1 1 1 1 R 7.5 
None 1 1 1 1 R 0.5 
None 1 1 L 2.5 
None 1 1 1 1 L 0.5 
None 1 1 1 1 L 1.5 
None 1 1 1 1 1 1 R 3.5 
None 1 R 1.5 
None 1 1 R 1.5 
None 1 1 1 L 3.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
None 1 1 1 R 0.5 
None 1 1 L 0.5 
None 1 1 1 1 R 3.5 
None 1 L 3.5 
None 1 R 4.5 
None 1 1 1 R 1.5 
None 1 1 1 1 L 1.5 
None 1 1 1 L 2.5 
None 1 1 1 1 1 R 3.5 
None 1 1 1 R 1.5 
None 1 1 L 0.5 
None 1 1 1 R 4.5 
None 1 1 1 1 R 5.5 
None 1 R 2.5 
None 1 1 1 1 L 0.5 
None 1 1 1 1 1 L 6.5 
None 1 1 1 1 1 L 1.5 
None 1 1 1 1 L 3.5 
None 1 1 1 L 3.5 
None 1 1 1 1 1 0.5 
None 1 1 1 1 R 3.5 
None 1 1 R 2.5 
None 1 1 1 R 1.5 
None 1 1 1 1 R 2.5 
None 1 1 1 1 1 1 L 2.5 
None 1 R 4.5 
None 1 1 1 1 1 1 L 2.5 
None   1 1 1 L 2.5 
None   1 1 1 1 1 1 R 2.5 
None   1 L 1.5 
None   1 L 1.5 
None         1 R 1.5 
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White-tailed deer Indian Knoll Late Archaic  (Skaggs 1943) 
Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 

1 1 1 L 0.5 
2 1 1 L 1.5 
3 1 1 1 1 L 0.5 
4 1 1 R 0.5 
5 1 1 R 0.5 
6 1 1 L 0.5 
7 1 1 1 L 1.5 
8 1 L 0.5 
9 1 1 L 1.5 

10 1 1 L 1.5 
11 1 1 1 R 0.5 
12 1 1 R 0.5 
13 1 1 L 0.5 
14 1 1 1 L 1.5 
15 1 1 1 R 1.5 
16 1 1 1 R 0.5 
17 1 1 1 1 R 0.5 
18 1 1 L 0.5 
19 1 1 R 0.5 
20 1 1 1 L 0.5 
21 1 1 1 L 0.5 
22 1 1 1 L 1.5 
23 1 1 L 0.5 
24 1 1 R 0.5 
25 1 L 0.5 
26 1 1 1 R 1.5 
27 1 R 1.5 
28 1 1 L 1.5 
29 1 1 R 1.5 
30 1 1 1 R 1.5 
31 1 1 1 R 0.5 
32 1 1 1 R 1.5 
33 1 1 1 L 1.5 
34 1 1 R 0.5 
35 1 1 L 1.5 
36 1 1 1 L 0.5 
37 1 1 R 0.5 
38 1 1 1 1 1 L 1.5 
39 1 1 1 L 1.5 
40 1 1 1 L 1.5 
41 1 1 1 1 L 1.5 
42 1 1 1 L 1.5 
43 1 1 1 L 0.5 
44 1 1 1 1 R 1.5 
45 1 1 1 L 1.5 
46 1 1 1 L 0.5 
47 1 1 1 L 0.5 
48 1 1 1 R 0.5 
49 1 1 1 1 1 1 R 1.5 
50 1 1 1 1 R 1.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
51 1 1 1 1 R 1.5 
52 1 1 1 R 1.5 
53 1 1 1 1 R 0.5 
54 1 1 1 R 1.5 
55 1 1 1 1 R 1.5 
56 1 1 1 R 0.5 
57 1 1 1 1 L 1.5 
58 1 1 1 R 1.5 
59 1 1 L 1.5 
60 1 1 1 1 L 1.5 
61 1 1 1 R 1.5 
62 1 1 L 1.5 
63 1 1 1 R 1.5 
64 1 R 1.5 
65 1 L 1.5 
66 1 R 1.5 
67 1 R 1.5 
68 1 1 L 1.5 
69 1 1 R 1.5 
70 1 R 0.5 
71 1 1 1 1 1 1 L 6.5 
72 1 1 1 1 1 1 L 2.5 
73 1 1 1 1 1 1 L 3.5 
74 1 1 1 1 1 1 L 2.5 
75 1 1 1 1 1 1 R 3.5 
76 1 1 1 1 1 1 R 6.5 
77 1 1 1 1 1 1 L 5.5 
78 1 1 1 1 1 1 L 4.5 
79 1 1 1 1 1 1 R 7.5 
80 1 1 1 1 1 L 3.5 
81 1 1 1 1 1 R 2.5 
82 1 1 1 1 1 L 2.5 
83 1 1 1 1 1 1 L 3.5 
84 1 1 1 1 1 1 R 2.5 
85 1 1 1 1 1 1 R 3.5 
86 1 1 1 1 1 1 R 6.5 
87 1 1 1 1 1 1 R 3.5 
88 1 1 1 1 1 1 R 2.5 
89 1 1 1 1 1 1 R 2.5 
90 1 1 1 1 1 1 R 3.5 
91 1 1 1 1 1 1 R 2.5 
92 1 1 1 1 1 1 R 5.5 
93 1 1 1 1 1 1 R 3.5 
94 1 1 1 1 1 1 R 8.5 
95 1 1 1 1 1 L 6.5 
96 1 1 1 1 1 L 5.5 
97 1 1 1 1 L 2.5 
98 1 1 1 1 L 5.5 
99 1 1 1 1 L 2.5 

100 1 1 1 1 1 1 L 5.5 
101 1 1 1 1 L 4.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
102 1 1 1 1 1 L 2.5 
103 1 1 1 1 L 3.5 
104 1 1 1 1 L 3.5 
105 1 1 1 1 L 3.5 
106 1 1 1 1 1 L 2.5 
107 1 1 1 1 1 L 5.5 
108 1 1 1 1 1 L 2.5 
109 1 1 1 1 1 L 5.5 
110 1 1 1 1 L 5.5 
111 1 1 1 1 L 2.5 
112 1 1 1 1 1 L 2.5 
113 1 1 1 1 L 2.5 
114 1 1 1 1 L 3.5 
115 1 1 1 1 L 6.5 
116 1 1 1 1 1 L 3.5 
117 1 1 1 1 1 L 3.5 
118 1 1 1 1 1 L 5.5 
119 1 1 1 1 1 L 2.5 
120 1 1 1 1 1 L 2.5 
121 1 1 1 R 3.5 
122 1 1 L 3.5 
123 1 1 R 3.5 
124 1 1 L 1.5 
125 1 1 L 3.5 
126 1 1 L 4.5 
127 1 1 L 1.5 
128 1 1 R 3.5 
129 1 1 L 3.5 
130 1 1 R 6.5 
131 1 1 L 1.5 
132 1 1 L 4.5 
133 1 1 R 4.5 
134 1 1 1 R 2.5 
135 1 1 L 6.5 
136 1 1 R 4.5 
137 1 1 L 5.5 
138 1 1 R 1.5 
139 1 1 R 2.5 
140 1 1 R 2.5 
141 1 1 L 1.5 
142 1 1 R 3.5 
143 1 1 1 L 7.5 
144 1 1 R 2.5 
145 1 1 R 2.5 
146 1 1 R 2.5 
147 1 1 L 3.5 
148 1 1 L 1.5 
149 1 1 R 2.5 
150 1 1 L 2.5 
151 1 1 R 5.5 
152 1 1 1 R 1.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
153 1 1 L 3.5 
154 1 1 L 3.5 
155 1 1 L 5.5 
156 1 1 R 2.5 
157 1 1 L 4.5 
158 1 1 R 3.5 
159 1 1 R 3.5 
160 1 1 R 1.5 
161 1 1 1 L 3.5 
162 1 1 L 5.5 
163 1 1 R 6.5 
164 1 1 R 2.5 
165 1 1 1 R 1.5 
166 1 1 L 5.5 
167 1 1 L 2.5 
168 1 1 R 1.5 
169 1 1 L 2.5 
170 1 1 L 4.5 
171 1 1 R 3.5 
172 1 1 L 3.5 
173 1 1 R 2.5 
174 1 1 L 2.5 
175 1 1 R 3.5 
176 1 1 L 4.5 
177 1 1 R 4.5 
178 1 1 R 2.5 
179 1 1 R 3.5 
180 1 1 L 3.5 
181 1 1 R 5.5 
182 1 1 R 6.5 
183 1 1 R 3.5 
184 1 1 L 3.5 
185 1 1 R 4.5 
186 1 1 L 2.5 
187 1 1 R 5.5 
188 1 1 L 7.5 
189 1 1 R 2.5 
190 1 1 R 3.5 
191 1 1 1 L 1.5 
192 1 1 L 4.5 
193 1 1 L 2.5 
194 1 1 L 2.5 
195 1 1 L 2.5 
196 1 1 L 4.5 
197 1 1 L 3.5 
198 1 1 R 2.5 
199 1 1 R 3.5 
200 1 1 R 4.5 
201 1 1 R 3.5 
202 1 1 R 4.5 
203 1 1 R 3.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
204 1 1 R 1.5 
205 1 1 R 3.5 
206 1 1 L 3.5 
207 1 1 1 1 L 5.5 
208 1 1 R 1.5 
209 1 1 L 6.5 
210 1 1 1 L 2.5 
211 1 1 L 2.5 
212 1 R 6.5 
213 1 1 R 4.5 
214 1 1 L 1.5 
215 1 1 L 6.5 
216 1 1 R 2.5 
217 1 1 L 3.5 
218 1 1 L 2.5 
219 1 1 R 4.5 
220 1 1 R 3.5 
221 1 1 R 1.5 
222 1 1 R 2.5 
223 1 L 5.5 
224 1 R 3.5 
225 1 R 2.5 
226 1 R 3.5 
227 1 L 2.5 
228 1 R 2.5 
229 1 L 2.5 
230 1 R 3.5 
231 1 R 5.5 
232 1 L 3.5 
233 1 L 3.5 
234 1 L 2.5 
235 1 L 3.5 
236 1 R 6.5 
237 1 L 2.5 
238 1 1 L 1.5 
239 1 R 3.5 
240 1 R 4.5 
241 1 L 5.5 
242 1 1 R 2.5 
243 1 R 3.5 
244 1 L 3.5 
245 1 L 6.5 
246 1 R 3.5 
247 1 L 2.5 
248 1 L 2.5 
249 1 1 1 1 R 4.5 
250 1 1 1 1 R 3.5 
251 1 1 1 1 L 6.5 
252 1 1 1 1 R 2.5 
253 1 1 1 1 L 3.5 
254 1 1 1 1 R 2.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
255 1 1 1 1 R 6.5 
256 1 1 1 1 1 R 2.5 
257 1 1 1 1 R 4.5 
258 1 1 1 1 1 R 3.5 
259 1 1 1 1 1 R 6.5 
260 1 1 1 1 1 R 2.5 
261 1 1 1 1 R 2.5 
262 1 1 1 1 1 R 3.5 
263 1 1 1 1 1 R 3.5 
264 1 1 1 1 1 R 3.5 
265 1 1 1 1 1 1 R 3.5 
266 1 1 1 1 1 R 2.5 
267 1 1 1 1 L 3.5 
268 1 1 1 1 L 5.5 
269 1 1 1 1 1 R 5.5 
270 1 1 1 1 L 3.5 
271 1 1 1 1 R 4.5 
272 1 1 1 1 1 R 3.5 
273 1 1 1 1 L 2.5 
274 1 1 1 1 1 L 3.5 
275 1 1 1 L 3.5 
276 1 1 1 L 3.5 
277 1 1 1 1 L 4.5 
278 1 1 1 1 L 3.5 
279 1 1 1 L 4.5 
280 1 1 1 1 L 2.5 
281 1 1 1 1 L 2.5 
282 1 1 1 1 L 2.5 
283 1 1 1 1 L 3.5 
284 1 1 1 1 L 5.5 
285 1 1 1 1 L 3.5 
286 1 1 1 1 L 6.5 
287 1 1 1 L 2.5 
288 1 1 1 1 L 2.5 
289 1 1 1 1 L 2.5 
290 1 1 1 L 2.5 
291 1 1 1 1 L 3.5 
292 1 1 1 L 2.5 
293 1 1 1 1 L 3.5 
294 1 1 1 1 L 4.5 
295 1 1 1 1 L 2.5 
296 1 1 1 1 L 5.5 
297 1 1 1 1 L 2.5 
298 1 1 1 L 7.5 
299 1 1 1 L 4.5 
300 1 1 1 1 L 3.5 
301 1 1 1 1 L 5.5 
302 1 1 1 1 1 L 3.5 
303 1 1 1 1 L 3.5 
304 1 1 1 1 L 2.5 
305 1 1 1 L 3.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
306 1 1 1 L 2.5 
307 1 1 1 1 L 4.5 
308 1 1 1 L 2.5 
309 1 1 1 1 1 L 5.5 
310 1 1 1 L 2.5 
311 1 1 1 L 4.5 
312 1 1 1 1 L 2.5 
313 1 1 1 L 4.5 
314 1 1 1 L 7.5 
315 1 1 1 L 3.5 
316 1 1 1 L 5.5 
317 1 1 1 L 2.5 
318 1 1 1 L 5.5 
319 1 1 1 L 2.5 
320 1 1 1 1 L 3.5 
321 1 1 1 L 2.5 
322 1 1 1 L 3.5 
323 1 1 1 1 L 4.5 
324 1 1 1 L 3.5 
325 1 1 1 R 2.5 
326 1 1 1 1 L 6.5 
327 1 1 1 L 7.5 
328 1 1 1 L 2.5 
329 1 1 1 L 3.5 
330 1 1 1 L 4.5 
331 1 1 1 L 4.5 
332 1 1 1 1 L 2.5 
333 1 1 1 L 6.5 
334 1 1 1 L 7.5 
335 1 1 1 L 6.5 
336 1 1 1 1 1 R 2.5 
337 1 1 1 L 1.5 
338 1 1 1 R 3.5 
339 1 1 1 1 R 5.5 
340 1 1 1 1 R 2.5 
341 1 1 1 1 R 2.5 
342 1 1 1 R 5.5 
343 1 1 1 1 R 4.5 
344 1 1 1 L 4.5 
345 1 1 1 1 R 3.5 
346 1 1 1 1 R 3.5 
347 1 1 1 R 6.5 
348 1 1 1 L 3.5 
349 1 1 1 R 6.5 
350 1 1 1 1 R 2.5 
351 1 1 1 1 1 R 3.5 
352 1 1 1 1 R 6.5 
353 1 1 1 1 R 2.5 
354 1 1 1 1 R 4.5 
355 1 1 1 1 R 9.5 
356 1 1 1 R 4.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
357 1 1 1 R 3.5 
358 1 1 1 R 4.5 
359 1 1 1 1 R 6.5 
360 1 1 1 1 R 3.5 
361 1 1 1 R 8.5 
362 1 1 1 1 1 R 6.5 
363 1 1 1 1 R 5.5 
364 1 1 1 R 2.5 
365 1 1 1 L 3.5 
366 1 1 L 3.5 
367 1 1 1 R 4.5 
368 1 1 L 3.5 
369 1 1 1 L 2.5 
370 1 1 L 3.5 
371 1 1 1 R 3.5 
372 1 1 1 L 3.5 
373 1 1 R 4.5 
374 1 1 R 2.5 
375 1 1 1 R 2.5 
376 1 1 L 6.5 
377 1 1 1 R 6.5 
378 1 1 L 10.5 
379 1 1 R 6.5 
380 1 1 1 L 2.5 
381 1 1 1 R 3.5 
382 1 1 R 3.5 
383 1 1 R 3.5 
384 1 1 1 L 4.5 
385 1 1 L 2.5 
386 1 1 R 3.5 
387 1 1 L 9.5 
388 1 1 L 5.5 
389 1 1 1 R 3.5 
390 1 1 1 L 3.5 
391 1 1 R 5.5 
392 1 1 L 4.5 
393 1 1 1 R 3.5 
394 1 1 1 R 5.5 
395 1 1 1 L 2.5 
396 1 1 R 6.5 
397 1 1 R 4.5 
398 1 1 R 3.5 
399 1 1 L 5.5 
400 1 1 R 2.5 
401 1 1 R 3.5 
402 1 1 R 2.5 
403 1 1 L 3.5 
404 1 1 L 5.5 
405 1 1 1 L 4.5 
406 1 1 L 3.5 
407 1 1 1 L 4.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
408 1 1 1 L 4.5 
409 1 1 R 4.5 
410 1 1 1 R 6.5 
411 1 1 L 4.5 
412 1 1 L 3.5 
413 1 1 1 L 3.5 
414 1 1 1 R 6.5 
415 1 1 1 L 10.5 
416 1 1 1 L 4.5 
417 1 1 1 R 8.5 
418 1 1 L 2.5 
419 1 1 1 R 4.5 
420 1 1 1 R 3.5 
421 1 1 1 R 5.5 
422 1 1 1 1 L 11.5 
423 1 1 L 3.5 
424 1 1 R 2.5 
425 1 1 L 4.5 
426 1 1 1 R 3.5 
427 1 1 1 1 R 4.5 
428 1 1 1 1 R 4.5 
429 1 1 1 R 2.5 
430 1 1 1 R 8.5 
431 1 1 1 1 R 3.5 
432 1 1 1 1 R 3.5 
433 1 1 1 R 2.5 
434 1 1 1 R 5.5 
435 1 1 1 L 4.5 
436 1 1 1 L 2.5 
437 1 1 1 R 2.5 
438 1 1 1 R 2.5 
439 1 1 1 R 6.5 
440 1 1 1 1 R 4.5 
441 1 1 1 R 2.5 
442 1 1 1 R 9.5 
443 1 1 1 R 6.5 
444 1 1 1 R 2.5 
445 1 1 1 R 5.5 
446 1 1 1 R 6.5 
447 1 1 R 3.5 
448 1 1 1 1 R 2.5 
449 1 1 1 1 R 7.5 
450 1 1 1 L 4.5 
451 1 1 1 L 2.5 
452 1 1 1 R 2.5 
453 1 1 1 R 2.5 
454 1 1 1 1 R 5.5 
455 1 1 1 R 4.5 
456 1 1 1 R 5.5 
457 1 1 R 4.5 
458 1 1 1 R 6.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
459 1 1 1 R 4.5 
460 1 1 1 R 3.5 
461 1 1 1 1 R 3.5 
462 1 1 1 R 1.5 
463 1 1 1 R 2.5 
464 1 1 1 R 2.5 
465 1 1 1 R 2.5 
466 1 1 1 1 R 8.5 
467 1 1 1 1 R 2.5 
468 1 1 1 R 2.5 
469 1 1 1 R 2.5 
470 1 1 1 R 4.5 
471 1 1 1 R 8.5 
472 1 1 1 R 3.5 
473 1 1 1 R 3.5 
474 1 1 1 R 6.5 
475 1 1 1 R 5.5 
476 1 1 1 R 4.5 
477 1 1 1 R 2.5 
478 1 1 1 R 7.5 
479 1 1 1 R 5.5 
481 1 1 1 R 6.5 
482 1 1 1 R 2.5 
483 1 1 1 R 9.5 
484 1 1 1 1 R 3.5 
485 1 1 1 1 R 2.5 
486 1 1 1 R 4.5 
487 1 R 4.5 
488 1 1 1 1 L 5.5 
489 1 R 3.5 
490 1 L 2.5 
491 1 R 2.5 
492 1 1 L 2.5 
493 1 1 R 4.5 
494 1 L 2.5 
495 1 R 5.5 
496 1 R 3.5 
497 1 L 2.5 
498 1 R 3.5 
499 1 R 3.5 
500 1 L 4.5 
501 1 R 4.5 
502 1 R 1.5 
503 1 R 3.5 
504 1 L 3.5 
505 1 L 4.5 
506 1 R 2.5 
507 1 1 1 1 L 6.5 
508 1 R 5.5 
509 1 R 7.5 
510 1 L 2.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
511 1 R 3.5 
512 1 L 2.5 
513 1 L 2.5 
514 1 L 0.5 
515 1 L 3.5 
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White-tailed deer Blain  Mississippian 
Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 

U1 B7/8 1 1 1 R 2.5 
U1 B7/8 1 R 7.5 
U1 B7/8 1 1 1 1 L 0.5 
U2 B7/8 1 1 1 L 0.5 
U2 B7/8 1 1 1 R 0.5 
U3 B7/8 1 1 1 L 1.5 
P6 B8/8 1 1 1 L 5.5 
P6 B8/8 1 1 1 R 2.5 

U3 H1 B8/8 1 1 1 1 1 1 L 1.5 
U3 H1 B8/8 1 1 1 1 1 L 1.5 
U3 H1 B8/8 1 1 1 1 1 1 R 5.5 
U3 H1 B8/8 1 1 1 L 3.5 
U3 H1 B8/8 1 1 1 R 3.5 

P Bach B8/8 1 1 1 1 1 1 R 1.5 
U3 B8/8 1 1 1 1 1 1 R 1.5 
U3 B8/8 1 1 1 1 1 L 2.5 
U3 B8/8 1 1 1 1 1 R 3.5 
U3 B8/8 1 1 1 1 1 R 2.5 
U3 B8/8 1 1 1 L 1.5 
U3 B8/8 1 1 1 1 L 4.5 
U3 B8/8 1 1 1 R 1.5 

P Schubert B8/8 1 1 L 3.5 
P Schubert B8/8 1 1 1 1 1 1 L 3.5 
P Schubert B8/8 1 L 1.5 
P Schubert B8/8 1 1 1 1 R 4.5 

P 4 B8/8 1 1 1 1 1 1 L 1.5 
P 4 B8/8 1 1 1 1 1 R 1.5 

P Mozart B8/8 1 1 1 1 1 1 R 5.5 
P Mozart B8/8 1 1 1 L 5.5 

U2 B8/8 1 1 L 1.5 
U2 B8/8 1 L 0.5 
U2 B8/8 1 1 1 R 0.5 
U2 B8/8 1 1 1 1 R 1.5 
U2 B8/8 1 1 1 1 L 2.5 
U2 B8/8 1 1 1 1 1 1 L 2.5 
U2 B8/8 1 1 1 1 L 0.5 
U2 B8/8 1 L 3.5 
U2 B8/8 1 1 R 1.5 

U2 A4/A5 1 R 2.5 
U2 A4/A5 1 1 1 R 4.5 
U2 A4/A5 1 1 L 5.5 
U2 A4/A5 1 L 1.5 
U2 A4/A5 1 R 1.5 
U2 A4/A5 1 R 3.5 
U2 A4/A5 1 1 L 1.5 
U2 A4/A5 1 R 0.5 
U2 A4/A5 1 R 0.5 

U3 H1 Tr2 1 R 1.5 
U3 H1 Tr2 1 R 5.5 
U3 H1 Tr2 1 L 1.5 
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Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 
U3 H1 Tr2 1 R 1.5 
U3 H1 Tr2 1 R 2.5 
U3 H1 Tr2 1 R 1.5 
Unknown 1 L 1.5 
Unknown 1 R 0.5 
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White-tailed deer Angel   Mississippian (Black 1967) 
 

Catalog number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age
1 1 1 1 L 4.5
2 1 1 1 1 R 3.5
3 1 1 1 1 R 4.5
4 1 1 1 1 1 L 2.5
5 1 1 1 L 7.5
6 1 1 1 1 1 1 L 1.5
7 1 1 1 R 0.5
8 1 1 1 R 4.5
9 1 1 1 1 1 1 R 4.5

10 1 1 1 L 3.5
11 1 1 1 1 1 R 5.5
12 1 1 1 1 R 6.5
13 1 1 1 L 1.5
14 1 1 1 R 2.5
15 1 1 1 R 0.5
16 1 1 1 1 1 1 L 2.5
17 1 1 1 1  3.5
18 1 1 L 9.5
19  
20 1 1 1 1 1 R 5.5
21 1 1 1 R 0.5
22 1 1 L 3.5
23 1 1 1 R 8.5
24 1 1 1 1 1 1 L 2.5
25 1 1 1 1 L 2.5
26 1 R 2.5
27 1 L 1.5
28 1 L 1.5
29 1 L 2.5
30 1 1 L 1.5
31 1 R 6.5
32 1 L 3.5
33 1 L 4.5
34 1 R 6.5
35 1 R 1.5
36 1 R 2.5
37 1 R 0.5
38 1 R 1.5
39 1 1 1 L 7.5

 



 

 186

White-tailed deer Bell  Historic 
 
Catalog Number D2 D3 D4 P2 P3 P4 M1 M2 M3 S Age 

1  1 1 1 1 R 6.5 
2  1 R 0.5 
3  1 L 1.5 
4 1 1 1 1 1 L 0.5 
5 1 1 1 1 R 0.5 
6  1 1 1 1 1 R 2.5 
7  1 1 1 1 R 3.5 
8  1 1 1 1 L 5.5 
9  1 1 1 1 L 3.5 

10  1 1 1 1 1 1 L 3.5 
11  1 1 R 4.5 
12  1 1 1 1 L 2.5 
13  1 1 1 L 2.5 
14  1 1 L 3.5 
15  1 1 1 L 3.5 
16  1 1 1 1 L 3.5 
17  1 L 0.5 
18  1 L 2.5 
19  1 L 3.5 

 



 

 187

Appendix 3 
 
White-tailed deer Rockhouse Hollow  Archaic 
 

Specimen # ASMD ASMLEM ASLD ASLLEN ASDW ASLEN
1527-AST1 2.50 3.97 2.37 4.31 2.74 3.46
1527-AST2 2.23 3.97 2.26 4.16 2.71 3.37
1527-AST3 2.09 3.56 2.17 3.91 2.30 3.06
1527-AST4 2.14 3.78 2.12 4.01 2.40 3.27
1527-AST5 2.36 4.03 2.33 4.32 2.58 3.50
1527-AST6 2.12 3.42 2.14 3.69 2.24 2.94
1527-AST7 2.70 4.41 2.57 4.56 2.73 3.77
1527-AST8 2.16 3.55 2.14 3.96 2.35 3.15
1527-AST9 1.95 3.40 1.97 3.60 2.27 2.94

1527-AST10 2.15 3.57 2.05 3.81 2.37 3.08
1527-AST11 
1527-AST12 2.33 3.90 2.28 4.00 2.54 3.37
1527-AST13 2.31 3.81 2.31 4.13 2.46 3.28
1527-AST14 2.32 3.90 2.25 4.12 2.56 3.40
1527-AST15 2.50 3.78 2.29 4.11 2.72 3.26
1527-AST16 2.37 4.04 2.39 4.35 2.59 3.46
1527-AST17 2.27 3.66 2.17 3.81 2.46 3.16
1527-AST18 2.23 3.70 2.14 4.02 2.35 3.18
1527-AST19 2.02 3.42 2.00 3.60 2.26 2.97
1527-AST20 2.37 3.64 2.24 4.05 2.61 3.23
1527-AST21 2.48 4.04 2.34 4.40 2.68 3.58
1527-AST22 2.45 4.00 2.37 4.19 2.64 3.36
1527-AST23 2.35 3.70 2.19 3.88 2.60 3.22
1527-AST24 2.23 3.65 2.17 3.96 2.52 3.15
1527-AST25 
1527-AST26 2.39 3.95 2.26 4.10 2.65 3.45
1527-AST27 2.52 4.10 2.38 4.41 2.66 3.54
1527-AST28 2.52 4.11 2.46 4.37 2.83 3.63
1527-AST29 2.24 3.50 2.13 3.80 2.35 3.07
1527-AST30 2.26 3.88 2.31 4.05 2.51 3.28
1527-AST31 2.36 3.81 2.32 4.04 2.62 3.27
1527-AST32 2.20 3.63 2.13 3.85 2.45 3.11
1527-AST33 2.11 3.65 2.09 3.95 2.47 3.13
1527-AST34 2.37 3.75 2.25 4.00 2.74 3.19
1527-AST35 2.51 3.94 2.35 4.09 2.72 3.40
1527-AST36 2.31 3.97 2.30 4.25 2.66 3.45
1527-AST37 2.12 3.79 2.12 3.93 2.33 3.75
1527-AST38 2.49 3.91 2.32 4.12 2.63 3.41
1527-AST39 2.27 3.62 2.23 3.94 2.50 3.19
1527-AST40 2.28 3.68 2.15 3.85 2.40 3.13
1527-AST41 
1527-AST42 2.39 3.82 2.29 4.11 2.58 3.29
1527-AST43 2.15 3.55 2.15 3.84 2.51 3.04
1527-AST44 2.31 3.88 2.38 4.16 2.61 3.28
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White Tailed Deer  Rockhouse Hollow  Mississippian 
 

Specimen # ASMD ASMLEM ASLD ASLLEN ASDW ASLEN
1527-AST78 2.20 3.75 2.19 3.92 2.44 3.20
1527-AST79 2.34 3.85 2.28 4.17 2.63 3.33
1527-AST80 2.20 3.61 2.19 3.90 2.45 3.01
1527-AST81 2.34 3.91 2.26 4.15 2.63 3.45
1527-AST82 2.30 3.61 2.13 3.99 2.53 3.16
1527-AST83 2.21 3.80 2.11 3.95 2.48 3.23
1527-AST84 2.06 3.64 2.12 3.92 2.36 3.09
1527-AST85 2.10 3.46 2.18 3.73 2.37 2.93
1527-AST86 2.22 3.74 2.16 4.08 2.48 3.20
1527-AST87 2.29 3.74 2.26 3.98 3.23
1527-AST88 1.98 3.63 2.13 3.89 2.27 3.14
1527-AST89 3.74 3.99 2.40 3.17
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White Tailed Deer  Ouatenon  Historic 
 
 ASMD ASMLEM ASLD ASLLEN ASDW ASLEN

OUI-AST1 2.27 3.81 2.25 4.17 2.46 3.22
OUI-AST2 2.34 3.91 2.19 4.17 2.49 3.41
OUI-AST3 2.23 3.69 2.20 3.82 2.46 3.23
OUI-AST4 2.28 3.73 2.17 4.24 2.54 3.25
OUI-AST5 2.51 4.08 2.43 4.32 2.67 3.51
OUI-AST6 2.12 3.57 2.08 3.83 2.39 3.14
OUI-AST7 2.41 3.90 2.37 4.19 2.80 3.38
OUI-AST8 2.24 3.85 2.30 4.19 2.68 3.30
OUI-AST9 2.32 3.53 2.14 3.76 2.34 3.15

OUI-AST10 2.26 3.71 2.21 4.02 2.54 3.17
OUI-AST11 2.20 3.71 2.21 3.92 2.38 3.18
OUI-AST12 2.35 3.86 2.29 4.15 2.54 3.38
OUI-AST13 2.41 4.13 2.43 4.35 2.71 3.63
OUI-AST14 2.52 3.97 2.39 4.28 2.67 3.38
OUI-AST15 2.22 3.63 2.07 3.78 2.45 3.11
OUI-AST16 2.25 3.72 2.18 4.02 2.55 3.26
OUI-AST17 2.53 4.08 2.45 4.48 2.68 3.58
OUI-AST18 2.51 3.92 2.36 4.17 2.63 3.42
OUI-AST19 2.37 3.92 2.34 4.16 2.51 3.37
OUI-AST20 2.25 3.90 2.33 4.12 2.72 3.39
OUI-AST21 2.37 3.77 2.25 4.05 2.63 3.30
OUI-AST22 2.42 3.83 2.26 4.06 2.55 3.43
OUI-AST23 2.33 3.80 2.29 4.10 2.56 3.30
OUI-AST24 2.23 3.74 2.20 3.95 2.42 3.25
OUI-AST25 
OUI-AST26 2.59 4.11 2.54 4.55 2.82 3.65
OUI-AST27 2.42 3.91 2.28 4.13 2.78 3.36
OUI-AST28 2.37 3.99 2.37 4.29 2.72 3.42
OUI-AST29 2.47 4.13 2.37 4.42 2.77 3.62
OUI-AST30 2.27 3.93 2.18 4.15 2.46 3.43
OUI-AST31 2.36 4.02 2.32 4.23 2.58 3.41
OUI-AST32 2.12 3.36 1.98 3.65 2.25 2.93
OUI-AST33 2.29 3.96 2.24 4.17 2.46 3.45
OUI-AST34 2.29 3.73 2.19 3.92 2.50 3.14
OUI-AST35 2.61 4.12 2.43 4.33 2.87 3.61
OUI-AST36 2.53 4.02 2.34 4.26 2.62 3.49
OUI-AST37 2.22 3.86 2.17 3.99 2.44 3.38
OUI-AST38 2.40 3.80 2.26 4.15 2.77 3.29
OUI-AST39 2.19 3.66 2.10 3.97 2.34 3.20
OUI-AST40 2.42 3.85 2.25 4.35 2.62 3.33
OUI-AST41 2.21 3.86 2.28 4.02 2.49 3.36
OUI-AST42 2.33 3.66 2.27 3.95 2.54 3.15
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White-tailed deer  Murphy  Mississippian 
 

Catalog # ASMD ASMLEM ASLD ASLLEN ASDW ASLEN
215.80.1.1 22.53 38.29 22.48 41.24 26.43 33.27

261.138 21.29 37.52 21.53 38.78 24.01 31.87
261.116 22.57 37.88 22.46 40.75 25.61 32.66
261.113 21.40 36.49 21.34 38.79 24.34 31.42

141.2951.1 25.29 41.70 25.20 43.86 27.00 36.48
141.2936.1 24.21 38.96 24.57 42.70 26.20 34.77
141.2928.1 24.63 42.12 24.22 43.95 27.39 36.32
141.2923.1 22.79 39.48 23.51 41.93 26.87 34.41
141.2921.1 25.18 40.20 23.74 43.21 28.40 35.01
141.2920.1 24.29 38.93 23.50 42.74 26.73 33.46
141.2911.2 26.13 40.64 25.37 44.13 26.96 34.84
141.2909.1 22.71 38.80 22.42 41.30 26.37 34.07
141.2907.1 25.61 40.96 25.04 44.17 27.42 35.43
141.2906.1 23.39 36.04 22.93 40.70 25.61 33.29
141.2901.1 25.18 40.10 24.09 43.67 26.82 35.13
141.2899.1 23.74 37.71 23.29 40.33 25.50 32.56
141.2894.1 24.54 41.87 24.16 44.34 27.78 35.70
141.2893.1 25.36 41.16 24.65 44.29 27.69 35.20
141.2885.2 22.19 38.23 22.33 40.16 25.68 33.62

141.864.1 22.80 36.71 21.96 38.75 25.05 32.11
141.853.1 23.34 40.95 24.24 43.68 27.81 35.83
141.851.1 22.92 39.25 23.12 42.05 25.72 34.67
141.850.1 21.28 36.53 21.60 39.51 24.48 32.10
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White-tailed deer  Banks   Mississippian 
Catalog # ASMD ASMLEM ASLD ASLLEN ASDW ASLEN

1 22.47 37.40 22.58 40.72 25.56 32.12
2 23.39 38.48 22.82 40.78 25.66 32.87
3 25.62 38.75 24.16 42.01 17.17 34.08
4 24.65 41.47 23.42 43.07 26.56 35.72
5 22.95 38.23 23.23 41.47 25.88 33.09
6 22.21 37.21 21.45 39.47 25.58 31.60
7 23.30 37.28 22.31 41.41 27.04 33.07
8 23.98 39.33 24.67 28.70 34.75
9 23.82 39.44 23.08 44.34 25.58 35.06

10 24.25 40.89 24.23 43.30 28.58 35.30
11 24.15 38.19 23.33 41.55 26.66 33.03
12 24.36 39.78 24.46 43.57 27.72 34.53
13 23.89 39.92 22.46 41.65 24.76 32.94
14 23.77 41.02 24.48 43.90 27.12
15 22.22 37.47 22.14 40.36 25.00 32.20
16 21.86 37.47 22.62 39.46 25.75 31.96
17 24.20 39.61 23.80 43.82 27.38 33.99
18 22.16 36.35 22.21 39.60 23.74 31.38
19 23.28 36.81 23.14 40.27 23.49 31.55
20 24.52 39.11 24.11 41.91 25.71 33.12
21 22.87 37.71 23.19 40.70 25.52 32.30
22 23.44 37.67 22.73 41.87 25.70 32.69
23 23.83 38.94 23.21 41.29 25.76 33.79
24 24.55 40.50 24.72 44.58 27.69 35.66
25 21.30 35.59 21.62 37.66 25.14 30.37
26 23.48 39.90 42.74 26.33 34.89
27 23.16 38.53 22.54 41.50 27.60 34.13
28 22.18 37.55 22.53 40.82 26.05 32.67
29 26.30 39.95 25.04 43.21 27.40 34.56
30 26.00 42.20 24.62 44.88 27.88 35.87
31 22.79 36.50 22.76 39.90 25.57 30.11
32 23.58 39.30 23.23 43.35 27.48 35.62
33 23.53 36.48 22.73 39.23 26.34 32.21
34 25.33 41.00 24.40 45.00 27.01 36.08
35 21.07 35.40 21.97 39.32 23.72 31.40
36 22.89 36.91 22.12 39.70 26.44 31.74
37 22.45 36.76 22.04 39.50 26.42 32.31
38 23.12 36.16 22.04 38.51 24.42 31.30
39 22.52 39.18 23.84 43.30 25.38 34.74
40 24.13 40.48 23.62 43.93 28.50 35.37
41 24.76 40.14 24.99 43.98 28.10 35.76
42 23.48 40.02 23.90 43.17 26.00 33.91
43 23.79 38.91 23.20 41.12 27.74 32.98
44 22.14 39.46 23.44 41.42 25.84 32.68
45 22.17 37.80 22.86 40.87 24.77 32.80
46 21.82 35.59 20.87 37.18 24.32 30.16
47 21.22 39.40 22.00 40.56 25.39 32.24
48 25.88 41.86 24.42 44.22 29.02 35.92
49 24.48 39.30 24.67 42.53 28.06 34.12
50 22.44 35.60 21.94 37.75 24.44 30.32
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51
52 23.07 39.73 23.41 42.57 26.92 34.81
53 22.23 38.51 22.87 41.28 24.04 33.36
54 21.93 35.66 21.58 39.09 24.96 31.13
55 21.56 36.11 21.55 39.17 24.56 30.59
56
57 25.71 40.50 25.16 44.04 26.66 35.46
58 22.08 37.02 22.89 40.40 25.24 31.11
59 25.23 42.42 25.45 45.62 28.75 38.81
60 22.71 40.08 23.79 41.98 26.55 33.51
61 23.56 38.63 23.54 41.61 25.74 32.71
62 22.25 35.73 22.29 38.52 26.26 31.14
63 20.44 34.11 20.55 36.80 23.90 30.67
64 23.09 40.50 23.44 42.60 27.08 35.56
65 23.36 40.82 23.86 43.50 27.62 35.67
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White-tailed deer  Blain   Mississippian 
 
Catalog # ASMD ASMLEM ASLD ASLLEN ASDW ASLEN

1 24.30 39.13 23.25 42.33 25.10 33.30
2 21.92 37.34 21.43 39.26 26.11 31.80
3 22.32 37.22 21.35 39.37 24.54 31.90
4 21.24 35.62 21.28 38.02 25.27 30.43
5 24.45 39.70 24.30 40.63 27.11 34.26
6 25.75 42.00 24.02 44.52 29.82 37.79
7 25.28 39.92 23.81 43.12 26.70 33.98
8 25.32 42.26 25.53 44.34 28.33 35.75
9 24.05 39.81 23.98 41.56 26.36 34.22

10 23.82 39.90 23.84 42.84 25.70 33.14
11 22.78 37.32 22.53 39.54 25.66 32.48
12 22.75 37.29 22.84 41.72 25.68 32.28
13 22.78 36.02 22.14 40.08 23.95 31.44
14 23.26 39.47 22.93 42.48 27.21 35.12
15 24.00 36.04 21.73 38.10 25.03 31.25
16 24.46 41.96 25.24 44.73 26.46 36.34
17 22.38 37.82 22.45 39.75 24.46 33.62
18 26.03 42.74 24.97 45.45 28.84 37.64
19 24.72 38.92 23.26 41.37 26.15 33.90
20 22.74 38.05 23.21 40.85 26.80 33.44
21 25.91 41.41 24.05 44.87 26.84 36.30
22 25.30 43.24 24.52 46.09 17.48 37.06
23 21.83 37.07 21.58 39.86 26.12 32.68
24 26.19 41.30 24.74 44.82 28.94 36.40
25 25.65 41.22 23.91 43.73 26.54 35.64
26 22.82 37.38 22.64 40.03 25.00 33.08
27 22.82 38.06 22.69 41.99 27.59 34.12
28 23.31 39.00 24.08 41.66 27.15 34.51
29 24.92 40.99 23.83 42.82 28.34 36.00
30 25.17 40.38 23.98 44.32 28.59 35.70
31 22.59 35.66 21.86 38.26 23.95 31.33
32 22.12 36.66 21.42 39.27 24.82 31.21
33 24.36 38.66 22.72 41.32 25.49 33.79
34 22.64 38.07 22.52 40.96 25.17 33.48
35 23.30 40.56 24.55 45.03 26.80 35.71
36 24.00 39.08 23.66 42.36 27.90 34.65
37 25.33 38.10 22.89 40.53 26.95 33.55
38 22.47 36.22 22.55 39.30 26.04 31.45
39 22.39 36.97 22.43 40.18 23.70 32.39
40 21.83 37.58 21.45 40.40 24.44 32.95
41 21.76 36.91 21.53 39.65 24.42 31.98
42 23.78 35.81 22.59 39.48 24.76 31.65
43 23.07 37.10 22.30 40.29 26.62 32.30
44 24.54 39.64 23.99 42.62 26.97 34.05
45 23.75 38.02 23.72 42.29 27.10 33.43
46 25.32 41.52 24.56 44.40 26.44 36.34
47 23.24 37.67 21.92 40.20 26.16 33.19
48 23.73 22.53 41.89 25.86 33.48
49 38.84 21.55 41.59 27.12 33.48
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Catalog # ASMD ASMLEM ASLD ASLLEN ASDW ASLEN
50 39.40 23.48 42.58 26.46 34.67
51 22.14 22.23 39.38 25.02
52 21.26 36.42 20.87 38.51 24.36 31.75
53 22.05 36.33 21.19 39.08 24.35 31.09
54 25.71 39.15 24.57 41.88 27.65 34.65
55 22.52 38.24 22.92 41.39 26.94 33.68
56 21.54 36.49 21.53 39.80 22.88 31.96
57 20.15 35.52 20.68 37.84 24.14 31.32
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Appendix 4 
 
Raccoon wear stage, canine width  Indian Knoll Archaic 
 
                                  Mandible Tooth  

Specimen # Side Wear Stage M2 M1 P4 Canine Width
1 L 4 7 6
2 L 1 2 3
3 R 2 2 3
4 L 4 7 5
5 R 2 4 4
6 R 1 2 2
7 R 2 3 4 4.58
8 L 2 4 4
9 R 2 3 3

10 L 4 7 7
11 R 2 3 3 3.98
12 R 4 8 9
13 R 1 2 2
14 R 1 1 2
15 L 4 8 8
16 L 2 5 5
17 L 3 5 5 4.18
18 R 2 5
19 R 4 7 8
20 R 1 1 1
21 R 5 10 10 10
23 L 2 3 3 3
24 R 2 4 5 4
25 L 2 4 4 4
26 L 2 3 4 5
27 R 5 9 10 10
28 R 3 6 6 5
29 L 4 7 8 8
30 R 5 10 10 11
31 R 4 8 8
32 L 3 6 6 6
33 R 4 8 10 10 3.62
34 L 5 11 11
35 R 4.4
36 R 4.24
37 R 3.98
38 R 4.77
39 L 4.15
40 R 4.26
41 R 3.74
42 R 3.27
43 R 3.49
44 L 3.3
45 L 4.02
46 R 3.31
47 L 3.67
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Raccoon wear stage, canine width  Blain  Mississippian 
 
                                  Mandible Tooth 

Specimen # Side Wear Stage M2 M1 P4 Canine Width
1 L 2 4
2 R 4 8 9 4.54
3 L 3 6 7 8
4 R 4 7 6 3.67
5 R 1 2 2
6 R 2 3 4 4.61
7 L 5 11 3.94
8 L 2 3 4 3 3.8
9 L 5 11 11 11

10 R 2 3 3
11 L 4 7 7
12 L 2
13 R 3
14 L 1
15 L 1
16 L 3.81
17 L 3.76
18 R 3.56
19 L 3.56
20 L 4.83
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Raccoon wear stage, canine width  Murphy Mississippian 
 
                                  Mandible Tooth 

Specimen # Side Wear Stage M2 M1 P4 Canine Width
141.2966.2 R 3  7 6  
141.2966.3 R 1 2 1   
141.2961.1 R 2 4 4 4 4.65 

142.1.2 L 3  5   
142.33 L 1  2   

142.317.2 L     3.88 
142.3.3 R 4  8   

142.405.2 L 3 6 5 4 4.78 
142.228.2 L 4 9 9   

142.8.3 R 2  3   
142.14.3 R 2 4 3 4  
142.14.3 L 2  4   

142.288.5 R     4.18 
142.206.2 L     3.78 
142.216.2 R 1  2   
142.509.3 L 2   4  
142.327.2 R 1  1   
142.438.2 R 3 5    

142.43.2 R     4.48 
142.43.2 L     3.55 

142.458.1 L 1 1 1 1 4.29 
142.454.8 L 5   10  
142.397.2 L 4 11 8 9 3.09 
141.2884 L 4 7 7 8 4.13 

141.2887.2 L 4  9 11 3.97 
141.2888.2 L  8    
141.2924.1 L 4 9 10  4.76 
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Raccoon wear stage, canine width  Angel  Mississippian 
 
                                  Mandible Tooth 

Specimen # Side Wear Stage M2 M1 P4 Canine Width
1 R 3 5 5 4 4.74
2 L 2 2 3 4 3.58
3 R 4 8 8 4.13
4 L 1 2 3 3.48
5 R 5 10 10 10 4.34
6 R 2 5 4 4
7 R 2 3 3
8 L 3 5 5 5 4.31
9 L 4 6 7

10 R 4 7 7 5 3.14
11 L 4 8 7
12 L 2 4 5 3.72
13 R 2 3 3 3
14 L 3 6 7 5
15 L 2 4 4 4 4.5
16 R 4 7 7 7 4.42
17 L 1 1 2 3
18 R 3 5 5 4 4.3
19 R 4 7 5
20 R 2 4 4 4
21 L 4 7 7 7
22 R 3 5 5 5 4.26
23 R 1 1 2 1 3.48
24 R 2 4 4 3.54
25 R 2 4 3 3 3.93
26 R 3 7 6 5
27 L 1 1 2 3.44
28 R 3 5 5 5 3.43
29 L 2 5 4 4 4.85
30 R 4 9 10
31 R 3 6 5 6
32 R 1 3 3 3.8
33 L 2 4 4 3 4.56
34 L 2 4 4 4 3.88
35 R 4 8 9
36 L 4 8 8 9 4.27
37 L 2 3 3 3 3.54
38 L 5 9 10 11
39 R 2 3 3 3 3.72
40 L 3 6 4
41 R 1 4 3 3 4.39
42 L 2 4 4 4
43 R 4 8 9 4.1
44 L 2 1 3 4
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Specimen # Side Wear Stage M2 M1 P4 Canine Width
45 L 5 11 11
46 L 2 3 3 4
47 L 3 6 5 5 4.42
48 L 1 1 1 1
49 R 4.73
50 R 2 2 2 2 3.35
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Raccoon wear stage, canine width  Cramer  Fort Ancient 
 
                                  Mandible Tooth 
Specimen 

#
Side Wear 

Stage
M2 M1 P4 Canine 

Width
1 R 1 2 1 1 3.62
2 R 2 4 3 3 4.02
3 R 2 2 3 3 4.96
4 R 2 3 3 4
5 R 2 5 4 4 3.9
6 R 3 5 5 4 4.69
7 R 3 5 6 5 3.82
8 R 3 6 6 7 4.48
9 R 4 7 7 7 4.64

10 R 4 8 7 7
11 R 4 9 9 9 3.85
12 R 4 9 9 10
13 R 5 11 11 11 3.76
14 L 2 3 3 3 3.65
15 L 1 2 3 2 4.22
16 L 2 4 3 3
17 L 2 2 3 4
18 L 3 5 5 5 4.21
19 L 3 5 5 5 3.62
20 L 3 5 7 5 4.7
21 L 4 8 8 10 3.67
22 L 2 2 3
23 L 3 5 4 3.57
24 L 2 4 4 3.54
25 R 2 5 3
26 R 4 7 8 3.78
27 R 4 9 5 4.77
28 R 2 3 5
29 L 2 5 3 4 4.26
30 L 4 8 8 4.99
31 L 1 1 2 2
32 L 4 8 6 5 5.04
33 L 2 4 4 4 4.67
34 R 3 6 6 5 3.35
35 R 2 4 4
36 3.79
37 3.75
38 3.75
39 3.35
40 3.52
41 4.39
42 3.9
43 4.74
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Raccoon wear stage, canine width  Tick Creek Archaic-Woodland 
 
                                  Mandible Tooth 
Specimen 

#
Side Wear 

Stage
M2 M1 P4 Canine 

Width
1 L 3 7 6
2 L 4.77
3 L 1 2 2
4 L 1 2 2
5 L 2 4 2 2
6 L 5 11 11
7 L 2 4 3 4.37
8 L 3.99
9 L 5 10

10 L 4 7 6
11 L 3 5 4 3.91
12 L 4.01
13 L 5 11 11 11
14 L 3.81
15 L 3 6 6 5 3.68
16 L 4 4.27
17 L 5 11 11
18 L 3.74
19 L 3.28
20 L 4 9 9 9 3.81
21 L 4 8 4.21
22 L 9 4.82
23 L 3.85
24 L 5 11 10 3.83
25 L 1 2 2 3.91
26 L 2 4 4 4.01
27 L 2 3
28 L 2 3
29 L 4 7 8
30 L 3.46
31 L 4.31
32 L 3 5
33 L 4.98
34 L 1 2 2 2
35 L 2 4 4
36 L 5 10 10
37 L 3.62
38 L 5 10 10 3.66
39 L 4 8 5
40 L 5 11 11
41 L 4.55
42 L 4.81
43 L 4 8 4.33
44 L 4.65
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Specimen 
#

Side Wear 
Stage

M2 M1 P4 Canine 
Width

45 L 5 11 11
46 L 4.32
47 L 1 2
48 L 4 8
49 L 5 11 10 8 4.75
50 L 5 10
51 L 4.45
52 L 4.36
53 L 3.63
54 L 4 9
55 L 1 2 2
56 L 4.81
57 L 3 5 5 3 4.28
58 L 5 12 11 3.49
59 L 3.56
60 L 4.44
61 L 3.93
62 L 1 1 1 3.83
63 L 1 2 4.27
64 L 4 8 7 4.26
65 L 4.63
66 L 3 5 4
67 L 4.52
68 L 5 11 10 3.95
69 L 3.99
70 L 3.77
71 L 4 9 10 4.03
72 L 3.81
73 L 1 2
74 L 4.85
75 L 4 8
76 L 3 6 4 4.27
77 L 4.14
78 L 2 4 3 4 4.87
79 L 2 4 4 3
80 L 3.61
81 L 4.2
82 L 4.5
83 L 4 6 7
84 L 2 4 3
85 L 4.55
86 L 2 3 3 4.54
87 L 3 6 6
88 L 5 11 3.83
89 L 3.51
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Appendix 5. Stable carbon and nitrogen isotope data 
 
Results of stable carbon isotope analysis by Schurr 

Sample Provenience Species Extr Date % Yld d13C-C  
MS01 W10D/13180 Odocoileus virginianus 08/31/98 8.23 -20.29
MS02 P15A/362 Odocoileus virginianus 08/31/98 8.20 -20.02
MS03 S11D/3018 Odocoileus virginianus 08/31/98 5.79 -21.22
MS04 T13C/529 Odocoileus virginianus 08/17/98 2.17 -19.56

MS06b W10D/13232
PC947-2

Odocoileus virginianus 11/16/98 4.06 -19.73

MS07 MdF/2737 Odocoileus virginianus 09/21/98 2.88 -22.05
MS08b S11D/1607 Odocoileus virginianus 11/09/98 2.35 -21.5

MS09 S11D/3116 Odocoileus virginianus 08/17/98 3.50 -20.16
MS10 T13C/99 Odocoileus virginianus 08/24/98 5.05 -20.11

MS10 -2 T13C/99 Odocoileus virginianus 08/24/98 -21.05
MS11b W10D/13225

PC950-2
Odocoileus virginianus 11/09/98 9.89 -20.23

MS11b-2 W10D/13225
PC950-2

Odocoileus virginianus 11/09/98 -20.41

MS12 W10D/13503 Procyon lotor 08/17/98 12.92 -17.04
MS13 S11D/3049 Procyon lotor 09/14/98 2.18 -20.21
MS14 S11D/1262 Procyon lotor 09/28/98 6.80 -20.21
MS15 S11D/3243 Procyon lotor 09/14/98 3.35 -19.16
MS16 N13D/521 Procyon lotor 08/24/98 2.71 -18.18
MS17 T13C/118 Procyon lotor 09/07/98 5.18 -19.82
MS18 W10D/12983 Procyon lotor 09/28/98 6.02 -17.24
MS20 W10D/15554 Procyon lotor 08/17/98 5.79 -17.59
MS21 T13C/692 Procyon lotor 09/21/98 9.21 -19.02
MS23 W10D/15643 Didelphis virginiana 09/07/98 4.73 -19.04
MS24 W10D/15548 Didelphis virginiana 08/31/98 6.29 -18.94
MS24 W10D/15548 Didelphis virginiana 08/31/98 -18.19
MS27 MdF/4000 Sciurius sp. 09/28/98 4.17 -18.45
MS28 P13C/123 Sciurius sp. 08/31/98 3.31 -19.55
MS29 O13D/1153 Sciurius sp. 09/21/98 10.74 -18.4
MS31 MdF/3129 Canis familarus 08/17/98 11.13 -10.75

MS31 - rep MdF/3129 Canis familarus 08/17/98 -10.85
MS32 P15A/476 Felis concolor 08/24/98 3.24 -17.68
MS33 W10D/5049 Meleagris gallopavo 09/21/98 11.21 -19.72
MS34 W10D/3356 Meleagris gallopavo 09/07/98 17.27 -18.45
MS35 W10D/5682 Meleagris gallopavo 08/31/98 4.23 -20.98
MS36 W10D/5044 Meleagris gallopavo 09/28/98 11.37 -21.08
MS37 W10D/5483 Meleagris gallopavo 09/28/98 2.94 -20.84
MS38 W10D/5447 Meleagris gallopavo 08/31/98 16.25 -19.99
MS39 W10D/3258 Castor canadensis 09/07/98 5.05 -17.63
MS40 W10D/3474 Castor canadensis 09/28/98 5.36 -17.68
MS41 W10D/3259 Castor canadensis 09/21/98 5.84 -20.32

MS41 - rep W10D/3259 Castor canadensis 09/21/98 -18.72
MS42 W10D/5447 Castor canadensis 09/21/98 5.11 -18.7
MS43 W10D/3334 Castor canadensis 09/28/98 8.10 -22.04

MS43 - rep W10D/3334 Castor canadensis 09/28/98 -18.94
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Sample Provenience Species Extr Date % Yld d13C-C 

MS46 W10D/3513 Aplodinotus grunniens 09/14/98 2.56 -23.02
MS47 W10D/5682-2 Aplodinotus grunniens 09/21/98 0.28 -8.38

MS47 - rep W10D/5682-2 Aplodinotus grunniens 09/21/98 -8.13
MS48 W10D/3434 Aplodinotus grunniens 08/24/98 3.12 -22.83
MS52 W10D/3373

PC861
Canis familarus 11/09/98 5.02 -11.18

MS53 W10D/3206
PC861

Terrapene sp. 11/16/98 2.47 -17.98

MS55 W10D/3206
PC861-1

Mephitis mephitis 11/16/98 8.72 -17.84

MS56 W10D/2839 
PC861-1

Canis familarus (small) 11/09/98 9.46 -10.56

MS58 W10D/3474
PC 861

Terrapene sp. 11/16/98 6.55 -18.19

MS60 W10D/2967
PC 861-1

Sylvilagus floridanus 11/09/98 12.27 -21.41

MS61 W10D/3140
PC 861-1

Sylvilagus floridanus 11/16/98 6.69 -21.35

MS62 W10D/5377
PC 869-1

Sylvilagus floridanus 11/16/98 11.65 -24.07

MS64 W10D/2967
PC 861-1

Branta canadensis 11/09/98 12.11 -17.47

MS64 - rep W10D/2967
PC 861-1

Branta canadensis 11/09/98 -17.23

MS65 W10D/3186
PC 861-1

Branta canadensis 11/09/98 44.76 -19.15

MS66 W10D/5684
PC 869-2

Graptemys geographica 11/16/98 6.89 -22.5

MS67 W10D/3206
PC 861-1

Corvus brachyrhynches 11/16/98 14.04 -17.85

MS68 W10D/3137
PC 861-1

Anas sp. 11/09/98 13.29 -23.18

MS69 W10D/2948
PC 861-1

Anas sp. 11/16/98 13.11 -23.81

MS70 W10D/3513
PC 861

Anas sp. 11/16/98 14.81 -21.54

MS72 W10D/5682
PC 869-2

Anas sp. 11/09/98 10.60 -19.59

MS72 - rep W10D/5682
PC 869-2

Anas sp. 11/09/98 -20.04
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Sample  Catalog number Species MS date d15N d13C C/N
MS04 T13C/529 Odocoileus virginianus 09/10/98 4.21 -20.61 3.43
MS09 S11D/3116 Odocoileus virginianus 09/10/98 5.31 -21.31 3.48

MS09-2 Odocoileus virginianus 09/10/98 5.12 -20.16 3.44
MS10 T13C/99 Odocoileus virginianus 09/10/98 3.99 -21.14 3.44

MS11b W10D/13225
PC950-2

Odocoileus virginianus 01/25/99 4.14 -20.24 3.36

MS12 W10D/13503 Procyon lotor 09/10/98 6.6 -17.62 3.35
MS12-2 Procyon lotor 09/10/98 6.12 -18.8 3.1

MS16 N13D/521 Procyon lotor 09/10/98 6.95 -19.11 3.49
MS19 W10D/12954 Procyon lotor 09/10/98 8.18 -19.31 3.38
MS20 W10D/15554 Procyon lotor 09/10/98 7.03 -18.13 3.47
MS25 W10D/16072-2 Didelphis virginiana 09/10/98 8.53 -18.62 3.09
MS31 MdF/3129 Canis familiaris 09/10/98 7.85 -11.19 3.38
MS32 P15A/476 Felis concolor 09/10/98 7.98 -18.52 3.45
MS41 W10D/3259 Castor canadensis 01/25/99 4.18 -20.84
MS45 W10D/5484 Aplodinotus grunniens 01/25/99 8.26 -27.57

MS47A W10D/5682-2 Aplodinotus grunniens 01/25/99 4.18 -20.84
MS47B W10D/5682-2 Aplodinotus grunniens 01/25/99 4.07 -21.21

MS48 W10D/3434 Aplodinotus grunniens 09/10/98 8.51 -24.32 3.34
MS62 W10D/5377 PC

869-1
Sylvilagus floridanus 01/25/99 3.97 -25.1

MS64 W10D/2967 PC
861-1

Branta canadensis 01/25/99 6.97 -17.07

MS72 W10D/5682 PC
869-2

Anas sp. 01/25/99 7.21 -18.42
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