## LOW-EXCITED 1+ STATES IN $^{90}{\rm Nb},\,^{120}{\rm Sb}$ AND $^{208}{\rm Bi}$ FROM (^3He,t) CHARGE EXCHANGE AT E3 $_{He}$ = 200 MeV

F.D. Becchetti, <u>J. Jänecke</u>, A. Nadasen and D. Roberts University of Michigan, Ann Arbor, Michigan 48109

G.P.A. Berg, R. Sawafta \* and E.J. Stephenson Indiana University Cyclotron Facility, Bloomington, IN 47408

## M.N. Harakeh

Natuurkundig Laboratorium, Vrije Universiteit, Amsterdam, The Netherlands

S.Y. van der Werf Kernfysisch Versneller Instituut, Groningen, The Netherlands

The investigation of the ( $^{3}$ He,t) charge-exchange reaction with the IUCF K600 magnetic spectrometer at  $\Theta=0^{\circ}$  has led to the observation of numerous isobaric analog states and giant resonances. In addition, transitions to low-excited states were observed which have distinct L=0 characteristics. The ray-tracing capability of the focal-plane detection system permits the identification of maxima in the cross section at  $0^{\circ}$ . This provides a unique signature for L=0 transitions.

Figure 1 displays triton energy spectra measured near  $\Theta = 0^{\circ}$  for the regions of low excitation energies in  $^{90}$ Nb,  $^{120}$ Sb and  $^{208}$ Bi. Apparently, only a very small number of the many states in the odd-odd final nuclei are selectively excited. Most of these are 1<sup>+</sup> spinflip Gamow-Teller transitions which are indicated in the spectra and listed in Table 1.

| Table 1. | Cross sections $d\sigma/d\Omega$ at | 0° for ( <sup>3</sup> He,t) transitions to | low-excited (mostly 1 <sup>+</sup> ) |
|----------|-------------------------------------|--------------------------------------------|--------------------------------------|
| states.  |                                     |                                            |                                      |

| Target            | Final               | $\mathrm{E}_x$ | $ J\pi$    | ${ m d}\sigma/d\Omega$ |
|-------------------|---------------------|----------------|------------|------------------------|
| Nucleus           | Nucleus             | (MeV)          |            | (mb/sr)                |
| $^{90}{ m Zr}$    | <sup>90</sup> Nb    | 0.382          | 1+         | $0.314 \pm 0.023$      |
|                   |                     | 0.651          | 3+         | $0.258 \pm 0.021$      |
|                   |                     | 0.854          | (2+)       | $0.234 \pm 0.020$      |
|                   |                     | 2.126          | Ì+         | $1.05 \pm 0.04$        |
| <sup>120</sup> Sn | $^{120}\mathrm{Sb}$ | 0.000          | 1+         | $0.639 \pm 0.033$      |
|                   |                     | 0.94           | 1+         | $0.19 \pm 0.02$        |
|                   |                     | 1.26           | 1+         | $0.47\ \pm0.05$        |
|                   |                     | 1.49           | 1+         | $0.39 \pm 0.04$        |
| $^{208}{ m Pb}$   | $^{208}\mathrm{Bi}$ | 1.803          | 1+         | $0.302 \pm 0.015$      |
|                   |                     | 3.174          | 1+         | $0.204 \pm 0.014$      |
|                   |                     | 3.863          | 1+         | $0.194 \pm 0.013$      |
|                   |                     | 4.043          | 1+         | $0.173 \pm 0.013$      |
|                   |                     | 4.621          | 1+         | $0.350 \pm 0.018$      |
|                   |                     | ~ 5.6          | 1+ (broad) |                        |

Such states are usually difficult to identify in (p,n) charge-exchange reactions due to the lower energy resolution. For example, low excited Gamow-Teller states were observed in  $^{208}$ Pb  $(p,n)^{208}$ Bi at 134 MeV.<sup>2</sup> The present  $(^{3}$ He,t) work provides a better identification of these states. Furthermore, energies assigned in the (p,n) work to resonances from  $E_x = 7$  to 12 MeV to describe the observed continuum do not appear to have counterparts in the  $(^{3}$ He,t) spectrum. The advantage of charged-particle spectroscopy is evident, but the extraction of Gamow-Teller strength from  $(^{3}$ He,t) cross sections even at  $0^{\circ}$  may be more involved because of the presence of the tensor interaction.

- \* present address: Brookhaven National Laboratory
- 1. J. Jänecke et al., Nucl. Phys. A526, 1 (1991).
- 2. B.S. Flanders et al., Phys. Rev. C40, 1985 (1989).



Figure 1. Triton energy spectra from the ( ${}^{3}\text{He,t}$ ) charge exchange reactions for  $\text{E}_{{}^{3}\text{He}}=200~\text{MeV}$  and  $\Theta=0^{\circ}$  on targets of  ${}^{90}\text{Zr}$ ,  ${}^{120}\text{Sn}$  and  ${}^{208}\text{Pb}$  for transitions to excitation energies up to 6 MeV.