We have made \(D_{NN}(0^\circ) \) and \(d\sigma/d\Omega(\theta) \) measurements on \(^{17}\text{O} \) and \(^{18}\text{O} \) gaseous targets at 120 and 185 MeV, respectively.

For the \(^{17}\text{O}(\vec{p},\vec{n})^{17}\text{F}(\text{g.s.})\) transition, i.e., an odd-mass \(T = 1/2 \) mirror transition, both Gamow-Teller and Fermi amplitudes contribute to the cross section. The relative weighting of GT and F cross sections in \(0^\circ \) \((p,n)\) spectra can be parameterized as a function of bombarding energy in the 50 – 200 MeV region as

\[
\frac{\sigma_{\text{GT}}/B(\text{GT})}{\sigma_{\text{F}}/B(\text{F})} = \left(\frac{E}{E_0} \right)^2 \equiv R^2
\]

where \(E_0 = 55 \) MeV was empirically determined for even mass nuclei.\(^1\) \(D_{NN} \) measurements for the \(^{17}\text{O}(\vec{p},\vec{n})^{17}\text{F}(\text{g.s.})\) were motivated due to the unexpected determination of \(E_0 = 45 \) MeV for odd-mass nuclei.\(^2\) Transverse polarization-transfer measurements yield direct determinations of the relative weighting of the GT and F contributions. Therefore, \(D_{NN} \) measurements will allow an independent check on the aforementioned empirical relationship.
Figure 1. The 0^+ spectra for the $^{17,18}\text{O}(\vec{p},\vec{n})^{17,18}\text{F}$ reactions at $E_p = 120$ MeV are shown. The peak located to the left of the $^{17}\text{O}(\vec{p},\vec{n})^{17}\text{F}(\text{g.s.})$ is contamination from ^{18}O. The $^{17}\text{O}(\vec{p},\vec{n})^{17}\text{F}(\text{g.s.})$ peak also contains contaminations from low lying states from $^{18}\text{O}(\text{p,n})$.

We are interested in using D_{NN} from the $^{18}\text{O}(\text{p,n})$ reaction to extract the cross section to the 0^- state at 1.08 MeV in ^{18}F. The IAS cross section to the 1.04 MeV state may include some contribution from the 0^- state. Because these two states are only 40 keV apart, we cannot hope to differentiate them with our 500 keV energy resolution. However D_{NN} is $+1$ for the IAS and -1 for the 0^- state. Thus we can use a D_{NN} measurement to check the DWIA prediction of a 10% yield due to the 0^- state. Separation of these two states is of particular interest because it has a direct implication for determining the ratio of the interaction strengths $J_{\sigma\tau}/J_{\tau}$.

27
where $K(E_p)$ and N_D are the kinematic factor and the distortion factor, respectively.

The experiment was performed at the Neutron-Time-of-Flight (NTOF) facility using a pressurized gas cell filled with oxygen: $^{17}\text{O}_2$ is a mixture of $(^{16}\text{O}, 17.7 \text{ atom%})$, $(^{17}\text{O}, 76.1 \text{ atom%})$, and $(^{18}\text{O}, 6.2 \text{ atom%})$; ^{18}O is $99\%^{18}\text{O}$ with a trace of ^{16}O. The gas cell was previously used in a ^4He experiment at IUCF, and consists of a welded stainless steel box with 25-μm thick Havar entrance and exit foils clamped between window frames that are also welded. At room temperature, 7 atm of pressure was easily contained in the cell, giving about 50 mg/cm2 of oxygen target thickness. An energy resolution of about 500 keV was achieved. A sample of the excitation energy spectra obtained for the $^{17,18}\text{O}(\vec{p},\vec{n})^{17,18}\text{F}$ reactions are shown in Fig. 1.

A preliminary D_{NN} value of $-0.1464 \pm 0.0345 \pm 0.0320$ was obtained for the $^{17}\text{O}(\vec{p},\vec{n})^{17}\text{F}(\text{g.s.})$, where the errors include both statistical and systematic uncertainties. This value was obtained after subtracting the ^{18}O background. Calculating the E_p parameter associated with our preliminary data gives a value of 49.87. A more detailed analysis of the data is progressing, with the hope of reducing systematic errors.

Extraction of the 0^- (1.08 MeV) state of the $^{18}\text{O}(p,n)^{18}\text{F}$ transition has begun. A preliminary D_{NN} value of $0.7263 \pm 0.0261 \pm 0.0568$ has been obtained for the 0^- and 0^+ states combined. This D_{NN} value suggests that 13.7$\%$ of the combined cross section is due to the $^{18}\text{O}(p,n)^{18}\text{F}(0^-)$ transition. This compares well with DWIA predictions of 10$\%$. Preliminary D_{NN} values for higher excitation energy states have been obtained. A D_{NN} value of $-0.2338 \pm 0.0389 \pm 0.0418$ has been calculated for the $^{18}\text{O}(p,n)^{18}\text{F}(1^+, 1.7 \text{ MeV})$ transition, and a D_{NN} value of $-0.3937 \pm 0.0602 \pm 0.0444$ has been obtained for the $^{18}\text{O}(p,n)^{18}\text{F}(1^+, 3.7 \text{ MeV})$ transition. We are in the process of comparing these results with DWIA calculations. Further analysis is expected to reduce both the statistical and systematic errors.