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I. Introduction

In chemical reactions, most of the nuclei can be considered as classical particles,

and dynamics using classical methods successfully describe the process of

chemical reaction. The electrons do need to be treated quantum-mechanically to

understand chemical reactions. But in some reactions, the behavior of some nuclei

is quantum mechanical; the classical method is not accurate anymore. The main

difference between classical mechanics and quantum mechanics is that in
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quantum mechanics, particles need to be treated as wave function on account of

the DeBroglie wave/particle duality. For example, hydrogen bonding properties

involving protons can be affected by nuclear quantization. Studying the behavior

of the proton will help us understand the mechanism of some reaction, where

proton transfer plays an important role. Hence, there is a need to study these

problems using Quantum Dynamics.

II. Review of background in my research

2.1 Quantum Wave packet Atom-centered Density Matrix Propagation

Recently, a quantum dynamics approach-Atom-centered Density Matrix

Propagation (ADMP) has been developed, which is used to treat electron-nuclear

dynamics in large systems. The method turns out to be very powerful. In this

scheme, the electronic structure, represented using the single particle electronic

density matrix, is propagated simultaneously with the classical nuclei by a simple

adjustment of the relative nuclear and electronic time-scales, which is effected by

using an extended Lagrangian scheme. In other words, in ADMP, both the nuclei

and electrons are treated by classical method, but in some systems, certain

subsystems behave quantum mechanically, so instead of applying ADMP on this

subsystem, we will use Quantum Wave packet Propagation, which basically treat

s the subsystem as wave function and let the wave function propagate in the space.

The method to treat the whole systems is called Quantum Wave packet Atom-

centered Density Matrix Propagation. The Quantum Wave packet Propagation can

also be combined with Born-Oppenheimer dynamics to study a large system, in
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which the nuclei and electrons are treated using BO, and the quantum subsystem

is treated using Quantum Wave packet Propagation.

The main steps for the Quantum Wave packet ADMP propagation is as follows:

First we start from the fundamental equation in quantum mechanics-the Time-

Dependent Schrodinger Equation (TDSE).

iti~v;(r,R;t) = Hv;(r,R;t)
at

(1)

If we assume that these individual parts of the full system only interact with each

other in an average sense then we may employ Dirac's Time-Dependent Self-

Consistent Field (TDSCF) method like partitioning scheme where the full

electron-nuclear system is divided into three parts: subsystem I will be treated

quantum dynamically, subsystem 2 and subsystem 3 will be treated using ADMP

or BO. Based on TDSCF, we can reduce Eq. (I) into three separate equations

iti~V;) (RQM;t) = HtV;) (RQM ;t)at
(2)

iti~V;2(Rc;t) = H2V;2(Rc;t)at
(3)

iti~V;3(r,t) = H3V;3(r,t)at (4)

Eq. (3) and Eq. (4) stand for classical nuclei and electrons; they will be treated

using ADMP.

For Eq. (2), the solution is
V;(t+6t) = exp{-i if tI ti} V;(t) ,

where

exp{-i if t / ti} is called propagator. It propagates the wave function from time =

t to time = t + f..t. If we guess the initial wave packet of the quantum mechanical
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system at time = 0, then by using the propagator, we can obtain the wave function

at any time. Thus, any observable physical property can be obtained using the

1\

wave function. Symbol H is the Hamiltonian operator, which is a sum of kinetic

1\ 1\

( K,) operator and potential (v) energy operator.

2.2 Distributed Approximating Functional for kinetic propagator

The propagator can be approximated using a kinetic reference symmetric split

operator approach:

{

I\

}

1\ 1\ 1\

exp -iH6t/ti =exp{-iv6tl2ti}exp{-iK,6t/ti}exp{-iK,6t/2ti}+O(6t3) (5)

We use this approximation because it provides dynamics that strictly obeys time-

reversal symmetry. In the position representation, the potential energy operator is

1\

local. Numerically, this means the matrix for the potential part exp{-i K,6t/2ti}

is diagonal. The free propagator is local in momentum representation, but non-

local in position representation, which means the matrix, is not diagonal anymore.

There are several approaches to obtain the result of free propagator acting on

wave packet. In current work, we use Distributed Approximating Functional

(DAF) representation for the position representation of the free propagator. In this

representation, the free propagator is a banded, sparse matrix.
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III. Research Work

3.1A brief view of my research

The quantum mechanical subsystem we are going to study is actually a

quantum particle in potential well. The particle is confined to the potential well,

which in turn, is created by the movement of the surrounding classical atoms and

electrons. For given classical nuclei geometry and density matrix, move the

quantum along the uniform grid point, on every grid point, solve the Time-

Independent Schrodinger Equation for the quantum particle, we can get the

potential energy surface along the grid space. In ADMP, the potential energy is

written as a density functional using McWeeny purification for the density matrix.

For this particle in a box problem, the wave function is zero on and outside the

boundaries. This is the boundary condition for solving Eq. (2), which is called

Dirichlet boundary condition. The construction of DAF representation for free

propagator at the grid point needs the information of wave function from the locus

of points close to it. So near the boundaries, the results using the DAF

representation for free propagator is not as accurate as in the middle of the

potential well, because we don't have wave function outside the box. Thus, a

more stable representation for free propagator is needed.

3.2 Symmetry-adapted DAF Representation for free propagator

3.2.1 DAF Representation for free propagator
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(R"M lexp{ n - )1 R QM)DAC= 0'(0) exp 20'(tltQM )'

~
[

0-(0)

]

2n+l

[

-I

] n ~,(27fr1/2Xn=Oo-(~tQM) 4 .

[

ROM -R'OM

]H2n - Jio-(~tQ~)

(6)

Where

{o-(~tQM)r= 0-(0)2 + i~tQMn
MQM

(7)

And H2n(x)are Hermite polynomials of even order. Eq. (6) is obtained from the

well-known analytical expression for free evolution of a Gaussian function,

{

iK~t M

)

x2
exp Q exp--

n 20-(0)

0-(0) x2
exp 2

o-(~tQM) 20-(~tQM)

(8)

along with the fact that the Hermite functions are generated from Gaussians

according to

x2

]

n dn y
I

x2
H (x)exp l-- =(-1) -exp--

n 20-2 dxn 20-2
(9)

Since the derivative operators :;n commute with the free propagator, the

Hermite functions can be used as a basis to expand the exact quantum free

propagator with coefficients as described in Eq. (6). This yields an efficient

propagation scheme to perform quantum dynamics and Feynman path integration
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through the action of a banded, sparse, Toeplitz matrix on a vector.

Eq. (6) is presented in its continuous form and is valid for all values of RQMand

R'QM. Here the free evolution of a wave packet X(RQM;t) is obtained by

discretization:

x( RQM;t+ ~t)

J '

( I
!

iK~toM

)1

'

)
,

= dR QM RQM exp - !i - R QM DAF X(R QM ;t)

(10)

It is also noted that,

.
( I

!

iK~toM

)1

'

)
,

hm ROM exp - - ROM - 8( ROM- ROM)
6/-0 - !i - - -

(11)

For DAF approximation, this become true only at large values ofM,

.
( 1

!

iK~toM

)1

'

)
, .

hm ROMexp - - R Qilf == 8DAF (RQiIf - R Qilf ) ~ 8(ROM - R OM)
6/-0 - !i DAF - -

(12)

X(RiQM;t + ~t)

!

. . 2

) [ ]

2n+J

= fu 2: exp (R'QM - RJ QM) I: 0-(0)
0-(0) J 2o-(~tQM)2 n=Oo-(~tQM)

[

-

)

n

[

Ri - RJ

]
X -.!. ~(27rrl/2XH2n - QM QM X(RJQM;t)

4 n. -fio-(~tQM)

(13)

Where /').x is the grid discretization in one dimension. The variables M and a (0)

determine the accuracy and width of the DAF. These parameters are not

independent and for a given value of M there exists a a (0) that provides optimal

accuracy for the propagation.

3.2.2 Construction of Symmetry-adapted DAF Representation for free propagator

As we discussed, the wave function for the quantum partice is not continuous



8 384

on the boundaries, the wave function on and outside the boundaries is zero and the

propagation does not work very well near the boundaries. The approach to

overcome this shortage is to assume that we have wave function in the whole

space, and the wave function has some symmetry properties. The simplest

symmetry a one dimensional wave function can have in space is CZv.For example,

our wave function inside the potential well looks like:

u.35
'hc12.1.chi' u 1 -----

0.3

u.25

0.2

u.15

-).1

(0
0

u.oJ5

2u 4u ';0 ~u 100 12-) 14(-

Figure 1 Wave function in potential well

After expanding the wave function in the whole space and make it have CZv

symmetry, the wave function looks like:
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Figure 2 Expanded Wave function in whole space

We can see that after expansion, the wave function is continuous in the whole

space. The first derivative is zero on the boundaries, which is called Neumann

boundary condition for differential equation.

Eq. (10) can be written as,

x( RQM;t+ 6.t)

= i:oo dR'QM8DAF(RQM-R'QM )X(R'QM;t)

(14)

Where 8DAF(RQM- R'QM) is the DAF representation for free propagator. After

expansion, the wave function becomes periodic with period of four times of the

length ofthe box L. Eq. (11) is simplified to,

x ( RQM ; t + 6.t)

r4L, (
'

)
'

= Jo dRQMDDAF RQM-RQM X(RQM;t)

(15)

'hc:l2.1. chi' ul-

j ..
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+00

Where DDAF(RQM- R'QM) = .z= DDAF(RQM- R'QM+ 4nL). Although we take the
n=-oo

limit of sum to be infinite, the banded nature of DDAF(RQM- R'QM) assures that

the DAF is significantly nonzero only in a finite neighborhood of RQM.Hence, the

upper and lower limits of the sum can be taken, in fact, to be finite and small. The

actual values chosen, however, depend on the choice of cr/!1(here, !1 is the grid

spacing between uniform grid points) and M (for the Hermite-DAF), and the

number of grid points, N. Hence,

"0

DDAF(RQM- R'QM) = .z= DDAF(RQM- R'QM+ 4nL) is a numerically accurate
n=-"o

definition.

We now further reduce DDAF(RQM- R'QM) operator, using C2vsymmetry. We

have seen that after expansion of the wave function, it has C2v symmetry in the

interval [O,4L].So Eq. (12) can be simplified further to,

x( RQM;t+ /j.t)

= lL dR'QMtDAF(RQM,R'QM)X(R'QM;t)

(16)

Here, TDAF(RQM'R'QM) is the symmetry-adapted representation for the free

propagator, it contains all the symmetry information of the wave function

belonging to C2vgroup.

The wave function now have some symmetry belongs to C2v group. The C2v

character table has the following form,
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It is obvious that our expanded wave function has AI symmetry, and hence we

can use the character of AI symmetry and the "Great Orthogonality Theorem" to

construct the symmetry-adapted DAF representation for free propagator as:

TDAF (Ri QM ' RJ QM )
/2-D. -D

- \j R'QM,O R'QM,1f/2

[ ( i - J )- DDAF R QM R QM +

DDAF(RiQM - RJQM- 2L)+ DDAF(RiQM + R1QM)

~2-DR} ° -DR} /2+D (Ri + RJ - 2L ) ]
QM' QM,1f

DAF QM QM .J2

(17)
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~2-8RiQJ{78-;::J{~2- and ~2-8RJQJ{,o -8RJQJ{,7f/2 are the factors due to the
J2 J2

trapezoid-rule quadrature approximation to the integral in Eq. (13) using grid

points {Ri QM} .

The expression of the symmetry-adapted DAF representation is written to code

using FORTRAN 77, and numerical test is done based on the a Gaussian-like

wave function ( see Appendix).

.IV Result

4.1 The comparison of propagation between the non-symmetry-adapted and

symmetry-adapted DAF for free propagator

The parameters are chosen as follows:

MQM = 1837.15265 a.u, /:).t = 0.413437 a.u, the grid spacing /:)'RQM

0.3149533 a.u, number of grid points is 137

First, we compare the I(7jJi non-symmetry _7jJi symmetry) I at every uniform grid point,

where 7jJinon-symmetrymeans the propagated wave function with non-symmetry

adapted DAF, 7jJilymmetryis the propagated wave function with symmetry adapted

DAF. We also get the standard deviation,

N

L I (7jJinon-symmetry- 7jJi symmetry) 12
i=l

N
(18)a=
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Where N is the number of grid points.

1.202..-34

0)
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20 4') ;0 so 1.)0 120 140

Figure 3 Deviation between the non-symmetry adapted and symmetry adapted DAF when M=20

The standard deviation is 1.2068 x 10-36 when M=20

4 ..) 05..-33

.)
0 20 40) ;C' so 10)C- 120 14C-

Figure 4 Deviation between the non-symmetry adapted and symmetry adapted DAF when M=30

The standard deviation is 4.1678 x 10-35 for M=30

\ l'fort.2' u 1
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Figure 5 Deviation between the non-symmetry adapted and symmetry adapted DAF when M=40

The standard deviation is 1.1889 xl 0-33 for M=40

So we can see that the symmetry-adapted DAF is a good approximation for the

free propagator.

4.2 The test for ,6.t-7 0 of symmetry-adaptedDAF

We let ,6.t = 0, then as we said before, the DAF is a good approximation of

Dirac function.

We compare the original function and the function with,

x (RQM ;t)

= foL dR'QM/5DAF(RQM,R'QM)X(R'QM;t)

(19)

We choose M=20, plot IX (RQM;t)- X(R'QM;t) I
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Figure 6 The deviation between the original function and the new function

So we can see that the DAF is a good approximation to Dirac function.

.V Future work

My future work is to put my symmetry-adapted code in Gaussian, and do

dynamics research of MMO.
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