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Very short electron bunches, e.g. sub-millimeter in bunch length, can enhance applica- 
tions such as time-resolved experiments, next-generation light sources, rings that produce 
coherent synchrotron radiation, and damping rings for the next generation of linear collid- 
ers. A possible method to produce short bunches is to reduce the phase slip factor, or the 
momentum compaction factor for electron storage rings. Because of its potential benefit, 
the physics of particle dynamics in low a, lattices is important. 

Recently, we have studied the single particle dynamics and the stability of the QI 
dynamical system, where the particle motion satisfies the universal Weierstrass equation.' 
The particle motion in a QI storage ring can be described by the universal Weierstrass 
Hamilt onian, 

where 

are conjugate phase space variables with the time coordinate t = v,0, the small amplitude 

synchrotron tune, v, = 4-, and the orbiting angle 0 = s /Ro.  The particle 

motion of the Weierstrass Hamiltonian can be expressed in terms of the Jacobian elliptic 
function. The synchrotron tune can be expressed in term of the complete elliptic integral 
of the first kind. 

In the presence of synchrotron radiation damping, the damping parameter is enhanced 
by lfv,. However, the RF phase noise is also highly enhanced. The QI dynamics system 
can become chaotic even with small RF phase modulation. The equation of motion be- 
comes 

Numerical simulations show a sequence of period-two bifurcations evolving toward global 
chaos. The stability of particle motion has been throughly studied. We found that the QI 
dynamical system is not sensitive to the RF voltage modulation provided that the modu- 
lation amplitude is less than 20%. On the other hand, we showed that the &I dynamical 
system exhibited chaotic behavior at a relatively weak RF phase modulation. Due to 
synchrotron radiation damping, st able fixed points (SFPs) of parametric resonances be- 
come attractors. As the amplitude of the applied phase modulation increases, the system 
exhibits a sequence of ~eriod-two bifurcations enroute towards global chaos for the mod- 
ulation tune w, e (0,2). The sequence of period-two bifurcations has been attributed to 



parametric resonances of the Hamiltonian system. The critical phase modulation ampli- 
tude vs. the modulation tune shows a cusp,2 which is caused by the transition between the 
2:l  and the 1:l parametric resonances. 

Electrons in a storage ring emit synchrotron radiations. The synchrotron light fre- 
quency spectrum is continuous up to a critical energy given by fiw, = where fi 
is the Planck's constant, y is the relativistic Lorentz factor of the electron, c is the speed 
of light, and p is the bending radius. Synchrotron radiation by an electron is a quantum 
mechanical process. Since an electron normally emits hundreds to thousands of photons 
per revolution and the average energy of each emitted .photon is small, the effect of photon 
emission can be simulated by white noise. Thus electrons, in the presence of quantum fluc- 
tuations, are influenced by a Langevin force with a white noise spectrum. Including the 
harmonic RF noise, the equation of motion for the electron in a QI storage ring is similar 
to a class of physical problems such as the current-biased Josephson junction, stochastic 
resonances, etc. The Langevin equation of motion is given by 

xu + Ax' + x - x2 = B cos w,t + D[(t) 

with (5) = 0 and (6(t)6(tr )) = 6(t - t'). The Fokker-Planck equation for the distribution 
function XI! associated with the Langevin equation is given by 

d D2 d2 + Bw, sin(w,t + 

In the case of zero harmonic modulation with B = 0, the normalized steady-state distri- 
bution function for the Langevin equation is given by 

where the energy E is a Hamiltonian value, and the "thermal" energy Eth is given by 

It is worth noting that the iso-density contour of the distribution function follows the 
equi-energy line of the unperturbed Hamiltonian. We are studying the effects of quantum 
fluctuations by solving the Fokker-Planck equation. We are also studying the equilib- 
rium distribution due to potential-well distortion and Coulomb scattering leading to the 
Touschek effect .3  
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