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Th e Central Great Lakes Geologic Mapping Coalition 

(CGLGMC) is a partnership among the state geological 

surveys of Ohio, Indiana, Illinois, and Michigan, and the 

U.S. Geological Survey. Th e mission of the CGLGMC is to 

produce detailed three-dimensional geologic maps and 

information, along with related digital databases, that 

support informed decision-making involving ground water, 

mineral-resource availability and distribution, geological 

hazards, and environmental management. Th e initial Ohio 

project for the CGLGMC was the geologic and ground-water 

modeling of the Milan Quadrangle in north-central Ohio. 

Th is area was modeled as ten lithologic units, including 

alluvium, beach ridges, lacustrine sand and clayey silt units, 

Wisconsinan till, and a signifi cant pre-Wisconsinan buried 

valley aquifer. Tools in ESRI ArcGIS, including the Spatial 

Analyst extension, were used to analyze borehole and outcrop 

data, construct the bounding surfaces of each lithologic 

unit, and to produce raster data layers representing the 

three-dimensional framework of these units. 

We used the detailed three-dimensional geologic model 

and merged it with an equally detailed groundwater-fl ow 

model to produce a more realistic understanding of the 

controls that glacial geology and geomorphology exert on 

shallow ground-water fl ow systems. Th e top of the geologic 

model was the surface topography (digital elevation model), 

which was also used to derive the drainage network that is 

an important boundary condition in the ground-water fl ow 

model. Th e bottom of the geologic model was the top surface 

of the Devonian Ohio Shale. Flow in the shallow saturated 

zone refl ected strong control by surface topography and 

assumed hydraulic properties of the mapped sedimentary 

units. In contrast, the fl ow at depth was not strongly 

infl uenced by the topography of the Ohio Shale but did show 

some tendency for regional fl ow toward Lake Erie. 

Th e resultant three-dimensional geologic model and 

companion ground-water modeling results can be used 

to produce a range of derivative products such as maps of 

recharge and discharge areas. Such products can be used 

to address the wide variety of water management, land 

use, environmental, and resource issues that are crucial to 

local, state, and federal agencies, private industry, and the 

general public. 

7. Th e Mosaic to New Raster tool was then used 
to construct the elevation raster to be used as 
the starting point for the next unit down, the 
lacustrine silt/clay [blue]. Th e sub-sg-all and 

sand_base rasters were used as input, and the 
Mosaic Method chosen was Minimum. 

CONSTRUCTION OF THREE-DIMENSIONAL SURFACE ELEVATION RASTERS IN ARCGIS

2. To begin construction of the base eleva-
tion raster of the sand unit, all outcrop and 
borehole data were analyzed and a shapefi le of 
sand base points was developed [red dots]. Th is 
view also contains artifi cial sand base points 
that were added later as control for producing 
the desired raster.

3. Contours were also developed for addi-
tional control. Th ese do not need to cover the 
entire area of the sand or contain a regular in-
terval; they may be assigned any useful eleva-
tion.

4. To ensure that the edges of the polygons 
refl ect a zero thickness, the Feature Vertices 
to Points tool was used to create points at the 
edge of the sand. Elevations were assigned to 
these points using the Extract Values to Points 
tool (using the sub-sand and gravel surface as 

the input elevation raster). Th ese points were 

merged with the base elevation points.

1. Polygons of all geologic units at the sur-
face (1A) were constructed using outcrop, soils, 
borehole, and elevation data. Th e polygons for 
each geologic unit were then selected and ex-
ported as individual shapefi les. As the base of 
each unit was developed and merged into the 
surface elevation raster and removed from the 
model, the unit polygons for the underlying 
unit were modifi ed to include areas buried by 
higher units. In this example (1B) from the 
northwestern portion of the quadrangle, the 
estuary deposits, alluvium, and sand and grav-
el beach ridges have already been removed; the 
surface raster for the top of all remaining units 
[the sub_sg_all raster] became the starting 
raster for the top of sand raster. Shown here 
from top to bottom are sand [yellow], silt/clay 
[blue], till [green], and bedrock.

1A

1B

5. Th e Topo to Raster (5A) tool was used to 
generate an initial elevation raster. For this 
surface, Spot was the primary input data, 
and the No_Enforce drainage option was se-
lected. Under the environments tab, Gener-
al Settings>Snap Raster was selected, and the 
starting raster, sub_sg_all, was specifi ed to en-
sure that the new raster (5B) would have the 
same extent and cell locations as previously 

constructed rasters.

5A

5B

6. Th e Raster Calculator (6A) was used to subtract the new raster [T2R_sand] from the sub_sg_all ras-
ter. Th e resultant calculated thickness raster (6B) should have positive sand thicknesses in the sand 

areas [blue] and negative values in the areas where sand is absent [red]. If there were signifi cant unde-
sired results, additional control points and contours were added, and the process was repeated. Once 
the desired raster was produced, the Reclassify tool was used with the above thickness raster to produce 
a two-class raster that has an integer value of 1 for positive values and <NoData> for negative values. 

Th e resultant integer raster was input into the Raster to Polygon tool to produce a new sand polygon 
fi le. Th e Extract by Mask tool was used with these new polygons and the T2R_sand raster input to pro-
duce a raster [sand_base] that only has elevation values for the base of the sand areas. Th e mask was 
also used to extract the top of the sand raster from the sub-sg-all raster.
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8. Th is view of the fi nal three-dimension-
al model, as displayed in ArcScene, consists 
of elevation rasters for the top of each unit. 
Th ese rasters were imported into EVS for con-

struction of a true three-dimensional voxel 
model, which was used for ground water fl ow 
modeling.

Visualize resu lts (m ap)

Calculations
• 3D resu ltan t flow
• 2D resu ltan t flow
• Zen ith ang le (ve rtica l)
• R a tio o f ve rtica l to horizonta l flow

THREE-DIMENSIONAL GROUND-WATER MODELING:
G round-w ate r flow s im ula tion

Decision Tree:
• A ng le /d irec tion o f flow
• D om inance o f vertica l flow
• R ate of flow

Conversion from A S C II fo rm at to
proprie ta ry da ta m ode l

Model output
3D flow vecto rs (vx, vy, vz)

Synthesis/Thresholding/Classification

Decision and Thresholding Criteria:
• Vertical flow (DISCHARGE): 0-45 degrees
• Vertical flow (RECHARGE): 135-180 degrees
• Ratio of vertical to horizontal flow:

• vz/Vr_xy > 1
• Flow rates:

• weak: 5 to 25 cm/day
• medium: 25 to 50 cm/day
• high: > 50 cm/day

• Classification (for mapping):
+3 strong discharge
+2 medium discharge
+1 weak discharge
0 horizontal or weak flow
-1 weak recharge
-2 medium recharge
-3 strong recharge

Investigation of recharge and discharge areas has implications for water supply 
(if impervious surfaces prevent recharge) and water quality (if urban or indus-
trial areas supply contaminants that migrate directly to the ground-water table). 
Understanding the hydrologic controls on wetlands can provide guidance in re-
storing wetlands, or establishing successful wetlands in alternative locations.

RECHARGE AREA MAPPING

Th e results of the ground-water fl ow modeling were used in recharge/discharge 
area mapping for the Milan Quadrangle. Th ree-dimensional fl ow vectors were 
used to calculate the direction and rate of fl ow of water from the surface through 
the unsaturated zone. Th e results were classifi ed into low, moderate, or high rates 
of recharge or discharge.

Th e preliminary results suggest that the vertical spacing of the layers in the un-
saturated zone should be reduced to capture details of ground-water discharge.

3-D fl ow at a contact between high andlow 
conductivity sediments
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EVS MODEL VIEWS GROUNDWATER MODEL AND

FINITE-DIFFERENCE GRID

It is necessary to have a numerical model capable of handling variably-saturated 
flow subject to a heterogeneous distribution of hydraulic properties and non-uniform 
topography.

Th e colors in the fi gures below represent the 3-D fi nite-diff erence grid (“brickpile”) at 
its current resolution. Th e brickpile was generated from the virtual wells using a custom 
computer program and is visualized here using 3DIVS.
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We created 3-D arrays, where each grid cell node is characterized by: i (row), j (column), 
k (layer), an ID for van Genuchten characteristic equation parameters as well as saturated 
hydraulic conductivity and Kh/Kv ratio.

Grid Details:

608 Grid cells in the Y direction (Rows)

459 Grid cells in the X direction (Columns)

  61 Grid cells in the Z direction (Layers)

17x106 Calculation Grid Cells

Node
i, j, k

Row
Column

Layer

GOVERNING EQUATION OF FLOW (FREEZE, 1971)
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Where:
K(Ψ): hydraulic conductivity, pressure dependent in the unsaturated zone.
C(Ψ)=dθ/dΨ: specifi c moisture capacity, pressure dependent in the unsaturated zone.
Ψ: pressure head, negative in the unsaturated zone.

Solving for the pressure head (Y) allows to calculate the hydraulic head (h):
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van Genuchten Characteristic Equations:

C( ) = 0 in the saturated zone
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