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Abstract

This paper studies advertising, price ceilings and taxes in a sequential search model

with bilateral heterogeneities in production and search costs. We estimate equilibria

using a genetic algorithm (GA) applied to over 100 market scenarios, each differing

based on the number of firms, number of consumers, existence of price ceilings or

taxes, costs of production, costs of advertising, consumers’ susceptibility to adver-

tising and consumers’ search costs. We compare our equilibrium results to those of

the standard theoretical consumer search literature and analyze the welfare effects

of advertising, price ceilings and sales taxes. We find that price ceilings and unin-

formative advertising can improve welfare, especially if search costs are sufficiently

high.

JEL Classification: C63; D21; D43; D73; D83; M37

Keywords: Search; Advertising; Price Ceilings; Taxes; Welfare; Genetic Algorithms; Evo-

lutionary Games

1 Introduction

Taxes, price ceilings and advertising have all been addressed in the consumer search lit-

erature in different models with different fundamental assumptions. Advertising is par-

ticularly interesting since, despite its natural role in search, the two have not been stud-

ied together extensively under general market conditions with heterogeneous agents.1

1Robert and Stahl (1993) study advertising in a sequential search model but assume identical search
costs and costs of production, the focus being to find price dispersed equilibria in a homogeneous setting.
McCarthy (2007) considers bilateral heterogeneities but only with a duopoly.
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Through computational intelligence (CI) techniques, this paper addresses these issues.

First, we present a unified treatment of taxes, price ceilings and advertising with a com-

mon set of underlying assumptions. Second, we study uninformative advertising without

directly influencing buyers’ utilities or preferences. Advertising is uninformative in the

sense that advertisements do not send specific product information to buyers, but the

role of advertising remains clear—consumers do not visit firms in any predetermined

order, and advertisements facilitate this ordering. Our final contribution addresses two

issues in the theoretical search literature. One, we allow for a finite number of firms

and consumers. Despite Carlson and McAfee’s (1983) finding that a finite number of

firms can change both the general intuition and some specific comparative statics, many

theoretical search models still assume a continuum of consumers. Two, we significantly

lessen the computational requirements of firms in that they do not know each others’

costs of production or the distribution of consumer reservation prices.

Our underlying model is similar to Carlson and McAfee (1983) and Bénabou (1993)

in that we consider a set of firms with heterogeneous marginal costs selling an identical

product to consumers with heterogeneous search costs. Buyers know the prices in the

market, but not which firm is offering which price, and inelastically demand one unit

up to some reservation price. Contrary to the standard setup, however, firms only

observe their payoff to different pricing decisions and do not know the other prices or

costs in the market, the reservation prices of consumers, or even how many other firms

exist. Given this basic setup, the inclusion of sales taxes and price ceilings is relatively

straightforward. Taxes directly decrease the margin earned on each unit sold, while

price ceilings explicitly alter the population from which firms select their prices. In

regard to advertising, we follow a setup similar to Hertzendorf (1993) and treat each

ad as a commercial. Given buyers’ behaviors (e.g., how many commercials they watch),

consumers rank the number of advertisements viewed from each firm and sample firms

in the order determined by this ranking. If there are 3 firms and buyer i views 10 ads

from firm 1, 8 ads from firm 2, and 12 ads from firm 3, then they visit firm 3 first, firm

1 second, and finally firm 2. The number of commercials seen by consumer i for any

given firm is determined by a draw from the hypergeometric distribution.

We search for equilibria of these models using a genetic algorithm (GA), just one

technique under the CI umbrella. Adopting concepts from Darwin’s theory of evolution,

this algorithm evaluates a number of strategies where the best strategies reproduce and
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create a new population of strategies. Although these tools remain relatively unadopted

in the literature, a growing number of authors have used GAs to develop intuition for

models where analytical results have proven untractable or simply to represent their

usefulness through equivalence to analytical results. Price (1997), for instance, shows

that GA equilibria are essentially identical to analytical solutions in a standard Bertrand

or Cournot game. Similar equivalence holds for a model of a vertical chain of monopolies,

a pool model and others. Andreoni and Miller (1990) also apply a GA to their study of

bidding strategies in auctions (first price, second price, private value and common value).

They find that the GA not only converges near the Nash equilibrium but also that

the bidding patterns of the computer agents closely relate to observed human bidding

strategies, especially with regard to the overbidding often observed in real auctions.

Other applications include Albin and Foley (1992) and Keenan and O’Brien (1993), both

of which study spatial competition, and Arifovic (1994), which studies firm behavior in

a cobweb model. Arifovic shows that the GA can learn equilibrium strategies even when

some analytical approaches cannot and that the predicted behavior under the GA differs

less from experimental data than many other learning rules.2

Note that our goal is not to strictly analyze the mathematical properties of GAs.3

We also do not analyze the equivalence of our algorithm to those used in standard

evolutionary game theory; however, as Reichmann (2001a) shows, the canonical GA is

structurally equivalent to the commonly used replicator dynamic. It is also recognized

(see Reichmann (2001b)) that replicator dynamics do not cover the whole GA learning

process in that they cannot develop completely new strategies. We instead emphasize

the application of these tools to consumer search models and, in particular, advertising,

taxes and price ceilings. Although we briefly discuss convergence issues in Section 3, a

thorough explanation of GAs and their properties and interpretations can be found in

Dawid (1999).

Particularly with advertising, our GA approach allows us to study markets in which

analytical results have proven difficult. We consider 120 different market combinations,

each differing based on the number of firms, number of consumers, costs of production,

sales taxes, price ceilings, costs of advertising, consumers’ susceptibility to advertising
2For a more thorough description of how GAs have been implemented and many more examples,

see Holland and Miller (1991).
3See Goldberg (1989), Davis and Principe (1993) and Mitchell (1996) for a clear explanation of GAs

and their mathematical properties.
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and consumers’ search costs. In total, this provides 2400 simulated equilibrium pricing

strategies, 960 simulated equilibrium advertising strategies and 120 total welfare values

based on these equilibrium strategies. Using these datasets, we provide three general

findings.

One, firms’ prices are determined in large part by the number of buyers and firms,

the level of search costs and the existence of price ceilings or sales taxes. Specifically,

we expect lower prices if the market is subject to a price ceiling or has a high number of

consumers or firms, and we expect higher prices if search costs are high or the market

is subject to a sales tax. More interestingly, in response to a proportional sales tax,

firms increase price by a smaller proportion than the actual tax, as in Carlson and

McAfee (1983) and similarly with an increase in marginal cost. Two, in regard to

advertising, firms advertise less if charging a higher price or competing with more firms,

and firms advertise more intensely in response to higher search costs or more buyers in

the market. Note that the amount of advertisements buyers see has no significant effect

on the number of ads sent. Finally, with regard to welfare, we find that advertising has

a large positive effect on welfare if search costs are sufficiently high. This extends the

results of McCarthy (2007) from a duopoly to several firms. A similar welfare result holds

for price ceilings. This also supports results from a duopoly search model with price

ceilings from Rauh (2004). We want to emphasize, however, that our simulations cannot

determine necessity, only sufficiency.4 Elegant proofs are therefore unattainable in this

case. Nonetheless, our results strongly suggest that price ceilings and uninformative

advertising can improve welfare when buyers must search to gain information.

In regard to sales taxes, price ceilings and advertising, the search literature is rel-

atively thin. Carlson and McAfee (1983) show that proportional sales taxes increase

prices by a lesser degree than a per unit tax, which is completely passed on to buyers,

but they do not address welfare. Rauh (2004) finds that price ceilings might increase

welfare under certain conditions—dependent in part on the reduction in total search cost

expenditures and the transfer of production to higher cost firms. For informative ad-

vertising, Robert and Stahl (1993) show that equilibrium price dispersion can still arise

even without ex ante heterogeneities; however, they do not discuss welfare. Janssen and

Non (2006) develop a similar model for a duopoly with a small percentage of completely

informed consumers, i.e., shoppers. They show that the inclusion of informed consumers
4See Marks (2007) for a discussion on simulations, sufficiency and necessity.
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has important implications for comparative statics—especially the limiting cases of zero

search or advertising costs. McCarthy (2007) also studies informative advertising in a

duopoly, allowing for bilateral heterogeneities, and finds that the welfare effects of ad-

vertising vary depending on search costs and costs of production and advertising. In all

cases, advertising is assumed to be perfectly informative (i.e., each ad reveals perfectly

the price charged by a given firm).

The remainder of the paper is organized as follows. In Section 2, we present a brief

theoretical background for consumer search models. Section 3 explains the algorithm

and presents summary results for different market scenarios. Section 4 discusses com-

parative statics and welfare effects, Section 5 provides a discussion of GAs and their

interpretations and Section 6 concludes. All tables and figures are deferred to the ap-

pendix.

2 Basic Model

2.1 Consumers

As is standard is the sequential search literature, consider a buyer who is searching

for the best price for a particular good which we assume is homogeneous across all

firms. The consumer must also pay some search cost s for every price quote obtained.

Denote the lowest current price observed by p∗, in which case the expected gain from

an additional search is

b =
∫ p∗

pmin

[V (p)− V (p∗)] dF (p)− s,

where the distribution of prices F (p) is common knowledge to all buyers, but individual

firm prices are unknown prior to search. If each consumer inelastically demands one

unit, then an optimal stopping rule exists so that each consumer is myopic and has a

unique reservation price r(s) that solves

∫ r

pmin

(r − p)dF (p) =
∫ r

pmin

F (p)dp = s.5

Following Carlson and McAfee (1983), an analogous discrete result is to first rank
5This extends naturally to more general, downward-sloping demand.
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prices in ascending order so that p1 ≤ p2 ≤ ... ≤ pN , in which case a given consumer

with search cost s again adopts an optimal stopping rule based on the reservation price

pr that solves
r−1∑
j=1

(pr − pj) f(pj) = s, (2.1)

where f(pj) is the probability of finding price pj . Upon seeing any price p ≤ pr, the

consumer stops searching and purchases the product. If we let f(p) = 1
N (i.e., each firm

is equally likely to be sampled), then pr simply equates the difference between itself

and the average of the lower prices times the probability of finding a lower price to the

cost of search. As is standard in the literature, we assume that buyers enter the market

with a free initial search but must pay their search cost to visit additional firms. Note

that, due to the structure of equation (2.1), it is impossible for any buyer to search

exhaustively and still not find a price below their reservation price. As such, all buyers

eventually make a purchase.

2.2 Firms

To ensure that a pure-strategy equilibrium exists, we assume that firms have heteroge-

neous, constant marginal costs of production.6 Since buyers inelastically demand one

unit up to their reservation price, each firm’s demand is exactly equal to the number of

consumers that purchase from their store. Denote by qn the quantity sold by firm n, in

which case each firm’s profit is given by

πn = (pn − cn) qn.

The standard theoretical model assumes a continuum of consumers such that, given the

prices in the market and the search cost distribution, a distribution of reservation prices

emerges. This distribution provides the expected demand for each firm based on the

probability of consumers finding a particular firm—given that firm’s pricing decision.7

In this model, however, there are a finite number of consumers as well. Each firm’s
6Heterogeneous marginal costs of production are not necessary for the existence of pure-strategy

equilibria. See Rob (1985) for sufficient conditions for pure-strategy equilibria even with identical costs.
7In most cases, a continuum of firms is also assumed, in which case we look at a price distribution,

F (p) and determine the distribution of reservation prices in terms of this price distribution, the distri-
bution of marginal costs and the search cost distribution. See Bénabou (1993) for more detail. Carlson
and McAfee (1983) derive an analogous representation for a finite number of firms.
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profit function is therefore highly discontinuous as small price changes may yield large

jumps in profits.

Our algorithm derives directly from this consumer and firm behavior. Consumers

form their reservation values based on the prices in the market which then determines

their stopping rule. If there is no advertising, buyers sequentially visit firms, where each

new visit is randomly selected and where each firm has the same probability of being

selected. With advertising, buyers search in the order determined by the ranking of the

number of advertisements seen from each firm. To discover firms’ pricing strategies, we

adopt a GA similar to that used in Price (1997).

3 Genetic Algorithm

The standard GA developed as a search algorithm founded strongly on evolutionary

concepts.8 Agents consider a population of genetic (binary) strings, each of the same

exogenously specified length, representing all possible strategies. Based on the relative

fitness of the strings, the better-performing strategies are randomly matched together to

form sets of parents, which then produce offspring strategies consisting of information

from both genetic strings of the parents. These new strategies help form new popu-

lations. This requires an exogenously specified fitness function to determine relative

fitness, which is just a payoff function mapping strategies to some measure of perfor-

mance (e.g., profit, utility, etc.). In cases where the payoff depends on other agents, as in

our model, the fitness function is said to be state dependent. The process of developing

these new populations continues for some specified number of iterations.

Within the general algorithm, the process of updating populations depends on ge-

netic operators—mainly the process of selection, crossover and mutation. Selection

determines how strategies are chosen for each new population. Although several types

of selection processes exist, we adopt a tournament selection where the best strategies

in a given set of strategies replace the worst strategies to form the new population. The

tournaments themselves consist of a subset of prices randomly drawn from the popu-

lation that compete against one another for the highest payoff. This is also a type of

elitist selection process, but in our case, the worst strategies from the population are

not replaced—only the worst strategies selected in the given tournament. Crossover
8See Arthur (2006) for a review of the first agent-based simulation models used in economics.
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determines how new strategies are formed. Again, many crossover designs have been

considered in the literature, but in this paper, we adopt the standard one-point crossover.

This involves assigning some number (less than the length of the string) where the units

of the string beyond that number switch across the parents. For example, if we have a

string of length 7 and choose a crossover position of 4, then the 5th, 6th and 7th bits are

swapped across parents. This is intended to join the genetic information of both strate-

gies to produce possibly better strategies. Finally, another important aspect of genetic

operators is mutation—the process by which certain bits in each gene switch with some

probability. Although mutation has only a secondary influence on equilibrium selection,

the standard mutation involves randomly selecting a gene to switch from 0 to 1 or vice

versa. We adopt this mutation strategy in our algorithm.

3.1 Base Model, Sales Taxes and Price Ceilings

With genetic strings of length 7, our selection, crossover and mutation operations are

as follows. From the full population of 300 prices, we select 250 prices for each firm to

enter the tournament stage. The best 40 strategies for each firm then combine to form

new pairs from which offspring prices arise. These prices replace the worst prices of the

250 in the given tournament. The children are determined by the crossover position,

which we set to 4, and mutation follows the standard setup where we randomly select a

gene at each construction of a new population and switch this from 0 to 1 or vice versa.

Our specific algorithm consists of the following steps:

1. Set an initial population of prices of size P for each of N firms (identical for all

firms) and assign each firm a marginal cost of production c. Prices are coded as

binary numbers so as to represent a genetic string.

2. Assign each of K consumers a search cost drawn from an exogenously specified

distribution.

3. Each firm draws T prices from their population.

4. Compute the payoffs for each of the T prices for all firms. This is the tournament

stage of the algorithm where, for a given firm, each of the T prices compete against

one another to progress to the next stage’s population. To compute payoffs, we

do the following:
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(a) Convert prices from binary code to integers. Given prices and search costs,

each consumer forms T reservation prices—one for each tournament—following

equation (2.1).

(b) Given their reservation values, each consumer randomly selects a firm. If

that firm’s price is below their reservation price, the buyer stops searching

and buys the product. Otherwise, they randomly select another firm. This

process continues until all consumers find a firm from which to buy.

(c) This forms the quantity sold for each firm for each of the T tournaments, qnt

for t = 1, ..., T . The profit for each tth tournament is therefore (pnt − cn) qnt.

Note that each firm’s marginal cost, cn, remains unchanged throughout the

algorithm. This is also true for each consumer’s search cost.

5. Convert prices back to binary code, where the best-performing prices randomly

match with one another to spawn new prices. These new prices are formed by the

crossover and mutation operations discussed previously.

6. The new prices replace the worst-performing prices and form a new population.

7. Repeat until each firm’s population consists of the same prices (prices differ across

firms but not within a population for a given firm).

The above setup is our base model, and we consider 24 variants of this. These variants

consist of three different numbers of consumers (K = 30, K = 100, and K = 500), two

different numbers of firms (N = 10 and N = 30), two levels of search costs and two

levels of production costs. We study each variant with a population of size 300 and

allow firms to update prices for 250 generations. In all cases, search costs follow a

log-normal distribution with standard deviation of log(3). The two different levels of

search costs are defined by two different means (log(5) and log(25)). Marginal costs of

production follow a uniform distribution on [0, 20] and [0, 60] for low and high marginal

cost markets, respectively.

Sales taxes and price ceilings enter naturally into our algorithm. We impose a $60

price ceiling by adjusting each firm’s price population prior to each tournament. If any

firm draws a price greater than $60 in a given tournament, this price is set at $60. Any

price below $60 is left alone. We also introduce an 8% proportional sales tax (separately

from the price ceiling) by adjusting each firm’s profit function to (pnt(0.92)− cn) qnt.
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For a general sense of how our algorithm works, the draws and the path of prices

for base markets (without taxes, price ceilings or advertising) are provided in Figure 1.

In the sub-figures, the two columns are based on low and high search costs respectively,

while the three rows represent 10, 100 and 500 consumers. For clarity, these graphs only

contain draws for the lowest and highest cost firms (the red and blue lines respectively)

as well as the average price across all firms (the black line). Note also that, at each

generation, there is not just one price for a given firm—there is a population of prices.

To condense the population to one price, we approximate the price distribution for each

firm and take the price associated with the most mass in this distribution. We estimate

each distribution using kernel density estimation with bandwidths computed through

Maximum-Likelihood Cross-Validation. Each price plotted in the figures is the price

associated with the highest mass from this distribution.9

Recall that convergence is achieved when all prices in each firm’s population are

identical. In an evolutionary sense, this means that one genetic string has overpowered

all others.10 From Figure 1, we see that all prices converge relatively quickly, which is

indicative of most of our models; however, it is difficult to notice any obvious trends

simply by these graphs. As such, we combine all of our simulated data and formally

study the effect of firms, buyers, search costs, etc. in Section 4 using regression analysis.

3.2 Advertising

Advertising enters our algorithm primarily as a mechanism to direct consumer search.

It does not directly affect firm profit functions except through the cost of advertisements

but can attract consumers depending on how much the firm advertises relative to its

rivals. We have in mind television commercials that offer little or no vital information

about the product. By advertising more intensely, however, consumers are in some

sense persuaded to visit that firm earlier in the search process. Specifically, we extend

the algorithm above in three important ways. One, each consumer draws a number of

commercials to watch. This comes from an exogenously specified distribution, and we

adjust the mean of this distribution to consider changes in tv-watching behavior. Two,
9We also include plots of price variances and welfare for each generation in Figure 2. For these

figures, the black line (left axis) represents welfare values, and the red line (right axis) represents price
variances.

10As noted by Dawid (1999), convergence to a uniform state does not necessarily mean we have found
an equilibrium and could be a byproduct of the coding used. However, we have run this model several
times with different coding mechanisms and find that convergence states are consistent across all models.
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we add a second strategic variable that firms must choose. This enters the algorithm the

same as price in that we consider a population of genetic strings representing different

numbers of commercials. In addition to price, each firm now draws several numbers of

commercials to compete against one another in a tournament. Note that payoffs in each

tournament depend on the (price, commercial) pair drawn by the firm. Three, given

the number of commercials each buyer watches and the number of commercials each

firm purchases, each consumer watches some number of commercials from each firm as

determined by a random draw.11

We can think of advertising as balls in an urn. If there are 100 total advertisements

and firm A buys 20, then they have purchased 20 of the 100 balls. Firms can all

purchase advertisements at the same cost per ad, and we consider two different marginal

costs ($3 per ad and $10 per ad). Each buyer then chooses some number of balls

from the urn, which represents their television watching intensity. Given this number,

determining the number of commercials consumers see from each firm is just a draw

from the hypergeometric distribution.

Buyers then rank the number of commercials viewed in descending order and search

firms in this order, so if consumer i sees the most commercials from firm B and the

second most commercials from firm A, they visit firm B first and firm A second. Note

that buyers still stop searching whenever they find a price below their reservation price,

so this consumer would only go to firm A if firm B’s price exceeded their reservation

price.

3.3 Summary Statistics

We present basic summary statistics in Tables 1 through 5. Table 1 shows the mean,

min, max and standard deviation for the 60 simulated markets with low production

and advertising costs, while Table 2 shows similar statistics for high production and

advertising costs. Some basic trends from these tables are: (1) prices generally increase

with higher search costs, (2) if firms can advertise, they tend to price less but the

range of prices tends to increase, and (3) with high search costs, the price ceiling is

binding for most all firms. (3) is particularly interesting as, despite sometimes large
11The structure of equation (2.1) remains unchanged. Since advertising does not affect buyers’

anticipation of lower prices, it also has no effect on reservation prices (i.e., each firm remains equally
likely to price below a given consumer’s reservation price).
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cost advantages, firms do not undercut their rivals. Buyers therefore do not search as

much in equilibrium and are more likely to purchase from whichever firm they randomly

select; however, this is not necessarily a welfare improvement since reservation prices

also decrease, and buyers receive less consumer surplus for each purchase.

From Table 3, we see that reservation prices behave somewhat as we would expect.

High search costs and high costs of production (yielding higher prices) each increase

mean reservation values. Finally, notice from Table 5 that in some cases, all firms

advertise with nearly identical intensities. This represents somewhat of an arms race

and is clearly a welfare loss as demand is dictated entirely by random search but firms

still spend money on advertising. In these cases, outright banning of advertising may

improve overall welfare.

4 Results

Although we notice some trends from the summary statistics, we need to be a little

more thorough to garner any definitive results. Especially with regard to advertising

and market size (e.g., numbers of consumers and numbers of firms), general impacts

on price and welfare are not clear. To study these effects in more detail, we combine

the 120 market scenarios consisting of 2400 different price and advertising equilibria

into one dataset, and we build another dataset consisting of the 120 welfare and price

dispersion values from each market setup. We take as our measure of welfare the average

sum of consumer and producer surpluses across the final tournament, at which point

all price populations have converged to a uniform state. Because populations have

converged, welfare values have also stabalized, save for the randomness inherent in the

search process. For every product sold (recall there is one product for every consumer),

the consumer surplus is the buyer’s reservation price minus the price they pay and

search costs they accrue, while the producer surplus is the price received minus costs of

production and cost of advertising if relevant.

Treating price, advertising intensity and average welfare as our dependent variables,

our independent variables are marginal costs of production and several dummy variables

indicating the general market setup. Specifically, we have a dummy variable for search

costs (0 for low, 1 for high), number of consumers (0 for low, 1 for middle, 2 for high),

number of firms (0 for low, 1 for high), consumer television behavior (0 for little time
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watching television, 1 for more time), cost of advertising (0 for low, 1 for high), as well

as dummy variables for whether sales taxes, price ceilings or advertising are present in

the market.

4.1 Comparative Statics

Column 1 of Table 6 presents results for basic OLS regressions of price on number of

consumers and firms, level of search costs, marginal cost and whether the market is

subject to a price ceiling or tax. We only look at the 1440 cases where advertising is

not an option. Results are generally not surprising, but note that the effect of marginal

cost on price, although positive, is statistically significantly less than one. This implies

that firms respond to a $1 increase in marginal cost with a less than $1 increase in price.

This differs from Carlson and McAfee (1983), who find that marginal cost increases

are completely passed on to buyers; however, in their analysis, firms had convex cost

functions while we consider constant marginal costs of production. A similar relationship

exists between price and sales taxes. Consistent with Carlson and McAfee, we find that

the expected price increases by less than 8% in response to an 8% sales tax.

To study advertising intensity, we restrict our sample only to the 48 markets (960

equilibrium advertising levels) where advertising is permitted and use instrumental vari-

ables in a regression of advertising level on price and the full set of dependent variables.

Since marginal production costs only affect advertising through price, we use marginal

costs as an instrument for price. Results from these regressions are included in column 2

of Table 6. We see that the number of firms has a significant negative effect on the num-

ber of advertisements. We also see that firms advertise higher prices with less intensity

and advertise with much more intensity if search costs are high.

Note also that reservation prices have a positive effect on the price variance, and

through this relationship, it follows that search costs have a positive effect on the vari-

ability of prices. This relationship between variance and search costs is also found in

the theoretical model developed by Reinganum (1979). Also, consistent with MacMinn

(1980) and Carlson and McAfee (1983), we find that an increase in the number of firms

leads to an increase in price variability.
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4.2 Welfare

We are particularly interested in the welfare effects of sales taxes, price ceilings and

advertising. Since these three mechanisms do not exist together in any one market, we

cannot study the full set of 120 market scenarios due to collinearity. Therefore, for sales

taxes and price ceilings, we restrict our analysis to the 72 markets with either price

ceilings, taxes or neither. Results are presented in column 4 of Table 6. We see that

the interaction between price ceilings and search cost levels has a significant positive

effect on welfare. This supports the theoretical findings in Rauh (2004), as discussed in

Section 1. Intuitively, high search costs allow for considerably higher equilibrium prices,

in which case a given price ceiling is more likely binding than if search costs were lower.

Price dispersion therefore diminishes as many firms (in some cases, all firms) price at

or near the ceiling. Search intensity then decreases as most consumers will find a price

below their reservation price on their first search.

For advertising, we consider only the 48 markets where advertising is allowed. We

also include interaction terms between advertising intensity and search cost levels (low

or high). Results are in column 3 of Table 6. The most important result here is that

advertising levels by themselves may have a negative effect on welfare, but for high

search costs, advertising can create a welfare gain. This supports the theoretical results

in McCarthy (2007). The intuition is that advertising can facilitate more efficient search

by attracting buyers to firms from which they are more likely to purchase. If search costs

are sufficiently high, this avoids significant welfare losses otherwise incurred through

costly search.

5 Discussion of Agent-based Simulations

Although simulation-based results are a growing trend in economics, the role of agent-

based simulations remains minimal. This has been attributed to two primary reasons:

One, it is difficult to interpret the dynamics of the model and to generalize results,

and two, the fitness functions and general simulation process have no clear statistical

properties.12 In this sense, support that our results are a valid equilibrium rather than

a highly unlikely realization of some random process is difficult to obtain. We address
12See Leombruni and Richiardi (2005) and Leombruni et al. (2006) for more detail.
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each of these issues in turn. Note, however, that in simpler cases where analytical results

are tractable, the standard GA has proven to work very well in estimating the analytical

equilibrium.13

5.1 Interpretation

In a purely mathematical sense, the GA’s equilibrium search method is a strong opti-

mization procedure. As Holland (1992) shows, the GA thoroughly explores both the set

of proven successful strategies as well as new strategies. But it remains unclear as to

what the resulting equilibrium, as well as the path to the equilibrium, actually represent.

Price (1997) terms the convergent equilibrium a “reflexive equilibrium,” the conver-

gence to which depends strongly on the percentage of the population replaced after every

generation.14 Through a comparison of analytical results, he finds that selecting more

than the top 20% for reproduction tends to force the algorithm into non-Nash equilib-

rium states. This can be interpreted as a firm that acts too whimsically in response

to temporarily good strategies, not allowing appropriate time to consider alternatives.

Conversely, selecting less than 12% for reproduction can yield cyclical strategies that

may not represent any equilibrium at all (e.g., indecisive firms constantly switching

between several different strategies).15

In interpreting the specific components of the GA, Dawid (1999) provides a clear

analysis. We can think of the population of strategies (i.e., all the genetic strings) as a

set of people all assigned a strategy and all competing against one another. Some of them

do poorly and therefore do not survive to the next round, while those that do survive

exchange information with the other survivors (e.g., through the crossover operation).16

Finally, the mutation operator introduces some slight mistakes or attempted innovations

by the agents.

In general, the dynamics of the GA represent a type of social learning through

interactions with other agents and allows us to study equilibrium behaviors without
13See Price (1997) for applications of GAs to Bertrand and Cournot competition and other simpler

market settings.
14Although there are a few forms of convergence, in our case this represents the point at which the

population has adapted to a uniform state.
15See Chattoe (1995) for extensions of the standard GA where this reproduction rate is endogenous.
16We acknowledge that, through crossover, some amount of information is taken from one strategy

and given to another, but as Dawid emphasizes, this does not mean that this information is lost. In his
words, “the information about the success of other actions is not preserved by the single individual but
by the whole population.”
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the strong rational expectations assumption. It also explicitly incorporates evolutionary

phenomena such as natural selection, spreading of genes throughout a population and

genetic mutations. In our case, the path to equilibrium represents the evolution of

strategies for a given firm, where each tournament consists of a series of hypothetical

strategies. Eventually, poor strategies are dismissed, the process by which depends on

all other strategies, and each firm chooses one strategy in particular.

Although this process is intuitively quite different than the common replicator dy-

namic, there are some important similarities.17 Both are driven by evolutionary pro-

cesses where weaker strategies have a lesser chance of survival. In fact, a GA with pro-

portional selection is defined by almost an identical difference equation as that which

defines the replicator dynamic. Further, Riechmann (2001a, 2001b) shows that GAs and

the replicator dynamics are structurally equivalent and provides a clear analogy of the

GA with an evolutionary game. One important difference, however, is the initial pop-

ulation, which is essentially infinite (i.e., a continuum) in replicator dynamics. While

in the GA, there is a finite set of strategies considered by each agent, although final

equilibrium strategies are not constrained to lie in this set of initial strategies. But as

Reichmann shows, agent-based models can provide good approximations for models too

complex to be treated analytically. More importantly, the standard replicator dynamic

cannot generate strategies outside of those considered in the original population. When

considering price ceilings, for example, this would be problematic as the price ceiling

would never be binding unless it was exogenously set below the upper limit of the initial

price population. This is not a problem in our evolutionary algorithm.

5.2 Validating Results

One important aspect of any simulation is the possibility of replication. Marks (2007)

discusses three specific aspects in this regard: “Numerical identity,” “distributional

equivalence” and “relational equivalence.” Numerical identity, the strongest measure of

replication, requires identical results across different simulations. Distributional equiv-

alence, a slightly weaker measure, exists when results do not differ in any statistically

significant way. Finally, relational equivalence, the weakest measure, holds when qual-

itative results match across simulations. Throughout several different simulations, our
17See Hofbauer and Sigmund (1988), Cressman (1992), Samuelson (1997) and Fudenberg and Levine

(1998) for good expositions of replicator dynamics.
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replications consistently satisfy distributional and relational equivalence. Relational

equivalence holds even for more drastic changes to our algorithm (e.g., completely dis-

missing crossover and using only selection and mutation to build new populations).

Unfortunately there are no rigorous tests that ensure validity. Appealing to one

measure given by Leombruni et al. (2006), program validity represents the validity of

the simulation relative to the model. Our simulation certainly satisfies this criterion.

We also stress that our results satisfy in large part perhaps the strongest supporting

argument of any simulation—replicability. In general, our simulation adopts consumer

behavior and firm profit functions identical to the standard theoretical search model. In

the absence of advertising, buyers’ search behaviors are dictated completely by random

sampling, and their purchasing rule is identical to that of the theoretical literature.

Moreover, our algorithm converges to a uniform state in all 120 settings. As such,

the resulting price and advertising strategies are, at the least, one of perhaps many

equilibrium results and, as an extension, so are our welfare results.

6 Conclusion

In this paper, we simulate equilibria for sequential consumer search models and show

how these equilibria change under different market settings. Although the computational

issue itself is of some relevance, the simulations here are particularly useful as they

provide a unified framework to study markets where analytical results have proven

difficult. More than anything, our simulations serve an exploratory purpose. We study

the general behavior of firms in different markets, their responses to external forces such

as taxes and price ceilings, their responses to more fundamental changes such as search

costs and their responses to more endogenous forces such as the ability to advertise.

Although we admit that, by use of simulations, we are excluding any possibility of

rigorous mathematical proofs of necessity, we also stress the usefulness of simulations in

providing general intuition for strategic behavior.

In particular, we find that advertising and price ceilings can improve welfare, con-

trolling for the market size, search costs, costs of production and costs of advertising.

The intuition is that advertising can facilitate more efficient search by attracting buyers

to firms from which they are more likely to purchase. If search costs are sufficiently

high, this avoids significant welfare losses otherwise incurred through costly search. The
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intuition for price ceilings is slightly different. In this case, price dispersion diminishes

substantially as many firms (in some cases, all firms) price at or near the ceiling. Search

intensity then decreases as most consumers immediately find a price below their reser-

vation price, again avoiding the welfare loss of costly search.
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Figure 1: Simulated Prices for Base Models (No Price Ceilings, Taxes or Advertising)
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Figure 2: Welfare and Price Variances for Base Models (No Taxes, Price Ceilings or
Advertising)
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Table 6: Regression Results

Dependent Variable

Price Advertising
Intensity

Average Welfare

Constant 30.275∗∗∗ 72.381∗∗∗ 7625.972 −29236.130∗∗∗

(0.888) (8.403) (11392.620) (6627.455)
Number of buyers −2.710∗∗∗ 24.181∗∗∗ 12710.300∗∗∗ 15650.180∗∗∗

(0.327) (1.746) (3388.878) (1708.242)
Number of firms −3.084∗∗∗ −24.045∗∗∗ −1662.124 2376.385

(0.621) (2.991) (3241.278) (2655.880)
Level of search costs 27.121∗∗∗ 93.463∗∗∗ −1579.179 −15066.340∗

(0.518) (10.169) (5853.812) (8775.012)
Price ceiling −7.800∗∗∗ −2420.271

(0.624) (4332.191)
Sales tax 1.869∗∗∗ −1763.784

(0.656) (3085.378)
TV intensity −1.309 −1428.421

(2.175) (2493.791)

Price −2.377∗∗∗

(0.318)
Marginal cost 0.751∗∗∗

(0.021)
Advertising cost −27.514∗∗∗ 983.658

(2.785) (3522.704)
Average marginal cost −613.628 −556.828∗∗

(901.895) (236.542)
Average advertising level −253.428

(223.667)
Average price −205.639 883.477∗∗∗

(191.210) (223.695)
Advertising×search costs 739.683∗∗∗

(173.522)
Price ceiling×search costs 10368.560∗

(6065.408)
Price dispersion 17.061 −40.155∗∗∗

(26.150) (13.261)

R2 0.787 0.808 0.693
N 1440 960 48 72
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