

Open Source Collaboration in
Higher Education

GUIDELINES AND REPORT OF THE LICENSING AND POLICY
SUMMIT FOR SOFTWARE SHARING IN HIGHER EDUCATION

VERSION 1.0

MARCH 16, 2007

CONVENED BY:

DANIEL GREENSTEIN
ASSOC VICE PROVOST, SCHOLARLY INFORMATION
UNIVERSITY OF CALIFORNIA

BRAD WHEELER
CHIEF INFORMATION OFFICER
INDIANA UNIVERSITY

 © 2007 Trustees of Indiana University
Creative Commons Attribution License 3.0

Open Source Summit Educational Materials 1.0

 i

FOREWORD

Higher education has long valued the collaborative production and sharing of
knowledge. Thus, the rise of software communities powered by the near frictionless cost
of the Internet and open source software production techniques seems a natural fit for
colleges and universities. One vexing challenge, however, has been finding a common
legal and policy framework for software contributions, licensing, and distribution of
collaboratively developed work. In the absence of a common framework, heterogeneous
policies and licenses will remain an unhealthy drag on considerable economies that we
can harness when we benefit from others’ investments. Colleges and universities, as the
primary beneficiary of software sharing, must be proactive in creating, adopting, and
advocating for a common framework if we are to ever take full advantage of these
opportunities.

We are grateful that the Andrew W. Mellon Foundation recognizes this problem and
funded the October 2006 gathering of some thought leaders to work on these
challenges. Our distinguished attendees were drawn from university legal counsel,
technology transfer offices, open source projects, governmental funding agencies, and
foundations, with representatives from multiple continents. We worked hard via
electronic communication before the summit, during two days of intensive face-to-face
discussions, and through much follow up afterward. The electronic communications were
open to all at http://collabtools.org.
This document is one of the work products of the summit, and it includes a set of
educational materials for an institution’s engagement with open source application
software. Action and implementation will be the key arbiter of value, and we urge
institutions, projects, and funding agencies to engage in the ongoing work of refining and
implementing the work started here. We are thankful to all who took their time to
participate and to Tina Howard, who carried the real work of writing and editing these
materials.

Sincerely,

Daniel Greenstein
University of California Office of the President

Brad Wheeler
Indiana University

Open Source Summit Educational Materials 1.0

 ii

TOPICS
 Foreword ... i
1.0 Introduction .. 1
2.0 Summit Recommendations and Licensing Roadmap 2
3.0 Benefits of Open Source Software To Higher Education 3
4.0 General Questions ... 3
5.0 Agreements and Licenses ... 5
6.0 Patents and Third-Party Patent Licenses ... 12
7.0 Developer Issues ... 12
8.0 Patents and Copyrights Outside of the United States 15
 Appendix A. Summit Participants ... 19

Open Source Summit Educational Materials 1.0

 1

1.0 INTRODUCTION

Open source projects are becoming more common in the higher education
community and have shown promise as a cost-effective means of supplying
software that enhances the community’s ability to serve its educational mission.
Projects such as Sakai, Kuali, Chandler, Open Source Portfolio, Fedora and
DSpace are examples of how institutions can leverage the considerable
investments they make in essential enterprise-wide systems. These shared
investments can lower institutional life cycle costs while improving system fit and
quality.

Even with continued recognition of the benefits of open source licensing, there
are still questions to be answered about how the higher education community
can facilitate collaborative open source projects that serve community interests.
Policies and infrastructure regarding the licensing of intellectual property created
by the universities differ by institution, and are still evolving. But at the same time
it is critical that users and the community as a whole be able to expect all
contributors to grant the same set of rights with respect to their contributions.

The state of open source software among institutions of higher education is
characterized by:

• The lack of a uniform license (or contributor agreement) that will apply to all
contributions to open source projects by and for the higher education
community,

• The need to minimize the number and variety of open source licenses that
institutions wishing to adopt open source software created for the community
need to review and understand, and

• The need to avoid repeated and potentially time-consuming negotiations
among institutions in the context of each new project.

• Although the Educational Community License (ECL) was created for higher
education, it can be improved to better serve the needs of the community.

To address these issues, a representative group of delegates came together in
October 2006 for a summit titled “Licensing and Policy Summit for Software
Sharing in Higher Education.”1 Although the group was tasked with addressing
several topics, most of the discussion over the course of the Summit centered
around licensing issues, specifically:

• Creating or recommending a common form of open source license that
addresses both copyrights and patents, and

1A list of Summit participants is in Appendix A.

Open Source Summit Educational Materials 1.0

 2

• Working toward a uniform agreement among contributors that will address
both copyright and patents and the unique issues faced by universities in
connection with funded research, as well as balance the rights of individual
inventors within the institution with the desire of the institution to make
licensing decisions that will advance higher education generally.

While some issues remain outstanding and the discussion continues, the group
did come to agreement on some important points.

This document is intended to provide answers to some basic questions regarding
these issues, as well as explore the questions that remain to be answered. The
information included in this document is specific to higher education but may
provide a useful starting point for those in other sectors who are or wish to
become involved in collaborative inter-institutional open source projects.2

The next section summarizes the Summit recommendations, with more detail on
the discussion provided throughout the document. The remainder of the
document explains the benefits of open source to higher education followed by
an overview and list of questions related to legal issues, specifically licensing and
patents. The final section addresses laws outside of the United States.

2.0 SUMMIT RECOMMENDATIONS AND LICENSING ROADMAP

The consensus of the Summit group was to create a new version of the ECL in
the short-term and to work with the Apache Software Foundation to incorporate
desired features into its next license release (see Figure 1). The primary points of
consensus among the Summit group were:

1. A common licensing framework is preferred.

2. A simple license is preferred, but it must have a patent clause to meet the
needs of institutions that grant third-party patent licenses. We decided on a
license that has a patent clause. We want a common licensing
framework.

2For a definition of Open Source http://www.opensource.org/docs/definition.php.

Open Source Summit Educational Materials 1.0

 3

Figure 1. Licensing roadmap after Summit recommendations

3. The ECL 2.0 created as a product of the Summit is an evolution of the Apache
license, not the original ECL. There was considerable interest in the Apache
licenses to further consistency among open source projects, but it could not be
fully supported for universities because its patent license was considered too
broad (some universities could not by policy agree to such broad language).
One question asked was whether there is value in having a separate license
for higher education. The answer was no at this time, but that any existing
license must meet the needs of higher education for broad adoption to occur.

4. The new ECL contains Apache 2.1 language with necessary modifications for
colleges and universities. The hope is that the ECL 2.0 and Apache 2.1 can
ultimately be merged.

3.0 BENEFITS OF OPEN SOURCE SOFTWARE TO HIGHER
EDUCATION

The higher education community can benefit from open source software in many
ways.

• Share resources - When multiple institutions are involved in developing a
product, they share resources that no single institution could provide. Multiple
inputs and approaches also result in an improved product.

• Faster repairs and high code quality - Open source products -- even
commercial ones -- are often more reliable than products with closed source
code because everything is continually peer-reviewed through use of the
software. If something doesn’t work, it is fixed immediately and distributed
rather than being fixed in the next release.
Further, broad adoption across the community increases code quality because
more people are involved in using the code.

• Build a lasting community through broad sharing of ideas and resources - We
have the opportunity to create a framework for sharing software within the
community, while at the same time avoiding unnecessary transaction and legal
costs with a single form of license.

• Realize a total cost advantage by utilizing shared resources for development
and maintenance. Collaborative products also are more sustainable over time.

• Motivate commercial support - With the rise of open source software, the
number of sources of commercial support has also grown. Help is generally
easy to find and less costly than support and maintenance fees paid to
software vendors.

• Empower adopters/users to gain the benefits of using shared software while
also allowing them to easily make modifications to meet their unique needs.

Open Source Summit Educational Materials 1.0

 4

4.0 GENERAL QUESTIONS

Aren’t off-the-shelf software packages better than collaborative open
source software projects?

With any software package, the quality depends upon several factors. Both open
and closed source products can be either good or bad. The quality of an open
source product often depends on the size and quality of the developer
community involved. Large, collaborative open source products have proven
themselves to be equally or more reliable than off-the-shelf products. Further,
one advantage of open source is that when there is a problem, it can be fixed
and redistributed immediately.

How does the cost of open source software collaboration compare with the
cost of custom software packages?

The up-front cost of collaboration on a large software system may seem high, but
the benefits in the end can make it a better proposal in many cases. When
universities work together to meet a common need, several benefits are realized.

• The software is created with the needs of higher education institutions already
understood. This is true especially when the community has longstanding
experience with these applications, and problems or areas for improvement of
existing applications are used as a starting point.

• Shared resources spread the cost over many universities instead of multiple
universities paying the same cost for the same functionality.

• Institutions can leverage their relationships and their strengths to create a
common system.

• Updates and customization can be done in-house when they’re needed.

• When the source code is open, there are frequent updates available, and
applying these updates costs far less than purchasing new versions of
commercial software that frequently involve only minor improvements.

• The availability of a shared code base can lower the barrier to entry of
commercial vendors who wish to build new products, or add new features,
using that code base.

The benefits are even greater for smaller institutions or institutions with relatively
lower levels of resources because they are able to scale their contribution to their
resources and still use the final product or package.

Are there specific foundations or organizations I should be aware of if I’m
interested in open source software projects?

There are several organizations that either support or create open source
products. However two organizations have been created by joint efforts to
directly support the higher education community with multiple open source

Open Source Summit Educational Materials 1.0

 5

projects: Kuali and Sakai. Both are funded by several universities (among other
organizations) and are run by boards of directors.

• Kuali Foundation (www.kuali.org) supports the development and maintenance
of open source administrative software for Carnegie Class institutions. Its first
project was a financial system and it has now launched a research
administration system project. Kuali products are developed using the
Community Source development model, an open source model with more
clearly defined roles and financial commitments.

• Sakai Foundation (www.sakaiproject.org) supports development of an online
collaboration and learning environment used to support teaching and group
collaboration, including such tools as schedule, chat rooms, message center,
and wiki. The Open Source Portfolio Initiative (www.osportfolio.org) is also part
of the Sakai project. Sakai is a free and open source product built and
maintained by its users and other members of the Sakai community.

Outside of the United States, open source projects are supported by a
combination of university, government and community organizations. Many
universities have established offices that specifically handle open source projects
and issues.

Who is responsible for general open source decisions?

In the United States, the Open Source Initiative (www.opensource.org) promotes
open source technologies and offers certification for open source licenses and
software. Although not legally required, this certification indicates that a license
or product complies with OSI’s definition of open source
(www.opensource.org/docs/definition.html).

On an institutional level, a technology office can provide resources and
guidelines. University counsel may also be involved in reviewing, negotiating and
approving licenses and agreements. Chief Technology Officers and Chief
Financial Officers also play an important role in influencing university policy and
advocating for open source collaborations.

5.0 AGREEMENTS AND LICENSES

Some of the questions that typically arise in connection with open source projects
relate to the legal issues: What are my responsibilities as a developer or an
institution that has staff members who are contributing code? What form of open
source license should be used? Can software that is subject to other forms of
open source licenses be used in connection with a project?

There are several key points to consider, and they are addressed in this section.
First we will discuss the contribution agreements by which contributors provide
permission for their code to be used in connection with a project, and the various
forms of open source license that can be granted to users as a result. Second,

Open Source Summit Educational Materials 1.0

 6

we will discuss the role of software patents in open source licensing. Finally, we
will address some questions specific to developers.

General Overview

The software licenses granted by those holding rights in software describe and
define how their code may be used by others.

A general principle is that there must be no incompatibility between the terms of
the rights granted by contributors in their contribution agreements and the rights
that can be granted to users (outbound license). Another principle is that
licensing should be as friction-free as possible, and for that reason, well-known
open source licenses and uniform forms of contribution agreement should be
used as much as possible.

Two of the main goals of the Summit were to identify an open source
license that could be used consistently across the higher education
community and to establish a uniform contribution agreement that
would be compatible with the open source license. Another major goal
of the Summit was to make sure that the forms of agreement would
address patents, and not just the copyright in the software.

What is different about open source licenses?

Open source software generally refers to software that is made available in the
form of source code that is readable and modifiable by users, and under a
license that allows users to:

• access, install and run the software for any purpose at no cost,

• modify the original software, and

• redistribute either the original or modified software.

By contrast, commercially developed software usually -- but not always --
maintains closed code, requires a licensing fee and either does not allow
modifications or does not support modified software.

What licenses are available?

While there are a large number of free and open source licenses that can be
used to publish open source code, there are three primary categories of open
source licenses.

• Licenses that give permission to use, copy, modify and share code for any
purpose, but require that the same license terms be applied in the event of any
modification or redistribution of the original code (often called “copyleft”
licenses). These licenses may be incompatible with other forms of open source
licenses that allow more freedom with respect to how modifications of the

Open Source Summit Educational Materials 1.0

 7

original code can be distributed, or with use of the software in conjunction with
proprietary software.

• Licenses that are intended to allow the software to be used in connection with
projects that may use a different open source license, or to be used in
connection with proprietary software, but that are also intended to maintain the
user’s freedom to use, copy, modify and share the original open source library
or other software. This type of license, often called “weak copyleft,” is
frequently used where the open source software is a library that is intended to
be used by several types of programs.

• Licenses which impose no significant restrictions on redistribution or the
license under which software may be redistributed other than maintaining the
copyright notice and disclaimer. These are often called “permissive” or
“academic” licenses.

The first type of license is referred to as a “GPL-type” license, for the popular
General Public License. The second includes the LGPL (“library” or “lesser” GPL)
and the Mozilla license, named after the project that published the mostly
commonly used version of this type of license. The third is often referred to in
educational circles as a “BSD-type” license for the Berkeley Software
Development license. In many cases, open source project will adopt these
licenses without any changes, but there are variations of all of the types.

One of the most commonly used licenses is known as the Apache 2.0 license,
used by the Apache Software Foundation. The Apache 2.0 license can be
viewed as an evolved form of the BSD-type license. It provides more detail and
clarity than previous BSD-type licenses, which tended to be extremely brief, and
it includes a patent license as well as a copyright license.

The Educational Community License (ECL) is a license that has been developed
specifically for the higher education community. One of the outcomes of the
Summit was a new version of the ECL, the ECL 2.0, which is recommended for
the higher education community. It is currently being OSI certified and will be
released when the process is completed.

Historically, universities developed their own software distribution
licenses. The original ECL was created to provide consistency. Although
the philosophical intent of ECL was to be a BSD-type license, the brevity
of the BSD-type licenses also may leave room for ambiguity, and the
ECL did not include a patent license.

The consensus of the Summit group was to create a new version of the
ECL by adding a patent clause. This was done to address the concerns
of universities that often grant patent licenses to third parties. Although
Apache 2.0 (not the original ECL) was the basis for the new ECL, the
group believed that a separate license was necessary to ensure that the
unique needs of the higher education community continue to be met. The
Apache Software Foundation works with various industries and groups

Open Source Summit Educational Materials 1.0

 8

worldwide. A group of higher education representatives will work with
Apache, which was represented at the Summit, to inform the work on the
next version of the Apache license and the hope is that the license that
emerges will be well-suited to the needs of higher education.

What are contributor agreements and “inbound” and “outbound” licenses?

There are three types of agreements in the licensing framework of a typical open
source project: contributor agreements, inbound licenses and outbound licenses.

Contributor agreements refer to the agreements that institutions and individual
contributors must sign to contribute code to an open source project. They may
assign ownership of the copyright in the contribution to the project, with or
without a license back to the original developer for use in other projects, or they
may grant a license to use, modify and redistribute the contribution. Contributor
agreements are, in practice, a form of inbound license.

Figure 2. Standard open source project licensing framework

“Inbound” license refers to the license that applies to software that is coming in to
the project. This may include software that is contributed directly to a project, but
it may also include open source software from other sources that is to be
included in the distribution.

“Outbound” license refers to the license granted to users in connection with the
release of a product. Note that a single distribution may include software from a
variety of sources, some of which was developed specifically for the project and
some of which was created independently. While the project as a whole may be
bundled under a particular outbound license, software that was created
independently that is included within the distribution will typically remain subject
to the terms of the outbound license under which it was originally released.

Open Source Summit Educational Materials 1.0

 9

Who signs and what terms typically govern Contributor Agreements?

Contributor Agreements typically are required when becoming involved in an
open source software project. Both individual developers/contributors, and the
institutions with whom these individual developers/contributors are affiliated will
typically be asked to sign a contributor agreement, because otherwise the open
source project would need to know the policy at each contributor institution
regarding whether individuals or the institution controls the rights to the
intellectual property developed by those individuals.

A contributor agreement will typically include a permanent, non-exclusive license
to the contributed software, representations that the contributor is the author of
the contributed software, and has identified any software written by others that is
being contributed, and disclaimers of liability to protect the contributor in the
event the contributed software does not function as intended.

In some cases, a contributor agreement will provide for an assignment of
ownership of the copyright in the contribution (perhaps with a license back to the
original contributor if the contribution is not intended to be used exclusively by the
open source project). The reason for this is that it can be difficult for an open
source organization that has received only non-exclusive licenses to
contributions to enforce restrictions contained in the outbound open source
license. So, for example, the Free Software Foundation, the organization that
created the GPL, will frequently request assignments of copyright so that it can
more readily take legal action against parties that do not abide by the restrictions
on use of GPL software in ways that limit user freedom.

What are some primary concerns about Contributor Agreements?

As the open source software movement has matured, contributor agreements
have become increasingly important as a tool to permanently document the
contributor’s intent that their contributions be shared with the community. The
primary concern with contributor agreements is that they be obtained promptly
from all contributors. However, as these agreements have grown in
sophistication, they have also begun to address other important issues.

One area in which contribution agreements have evolved is that most modern
forms of contribution agreement will expressly deal with patent rights, and will
state that the contributor is granting a license with respect to any patents held by
the contributor that may be implemented by the software. The purpose of the
patent license is to provide assurances that the contributor has not submitted
software that infringes his own patent. The inclusion of patent licenses raises
additional questions, however. What is the breadth of the patent license? Does it
cover the project as it exists at a certain point in time, or would it also cover
future versions or functionality of the software? Should a patent holder be
allowed to assert their patent defensively against someone who has sued them
for patent infringement?

Open Source Summit Educational Materials 1.0

 10

Many contribution agreements that include a patent license state that the patent
license will terminate if you ever sue a contributor for patent infringement. The
idea is that it is only fair to allow a contributor to use his or her patent defensively.
Some contribution agreements are also being updated to expressly deal with so-
called “moral rights,” the rights of an artist or author, separate from any copyright,
to protect their work from misattribution or editing that would destroy the integrity
of their work.

There was little disagreement on these issues, except for the terms of the
patent license that could be offered by institutional contributors, which
consumed most of the Summit time. The key issues were (1) whether
institutions such as research universities can give a patent license to all
the patents they may have some sort of interest in, or whether the patent
license should only apply to patents where the contributor is also the
inventor with respect to that patent, and (2) the need to clarify that any
license is subject to the terms of any funding agreement that
accompanies the governmental patents held by institutions involved in
the open source software project.or private grant. One output of the
Summit was CCLA 1.1, a new form of contribution agreement that
attempts to address these concerns. The new contribution agreement will
be implemented by both Kuali and Sakai.

See also Patents and Third-Party Patent Licenses

What should I know about “outbound” licenses?

When software is released, it comes subject to an outbound license that specifies
the terms and conditions under which the code may be used. Outbound licenses
have traditionally been chosen by institutions based on institutional familiarity and
sometimes philosophy. Not all licenses are the same, especially when it comes
to the terms on which redistribution of the software is permitted.

For example, the GPL generally obligated people who wish to use software that
is subject to the GPL in a project of their own to distribute the software they
create only under the same GPL terms. This effectively prevents the software
from being incorporated into closed, proprietary software. Other licenses, such as
the BSD or Apache, are more permissive, enabling open source software
projects to include the software in larger works that are distributed under a
different license -- including re-distribution with closed code. Indeed, it is
generally believed that there is BSD code in many proprietary software
packages.

The Summit group generally preferred an Apache-type of license that
does not require that a user who makes modifications release his
modifications under the same form of license. However, the group
wanted a license that would meet the unique needs of the higher

Open Source Summit Educational Materials 1.0

 11

education community, particularly in regard to patents. The outcome of
the Summit was the ECL 2.0.

See also Developer Issues

What should I know about “inbound” licenses?

There is a tremendous amount of open source software available that provides
standard functions (calendars, communications, authentication, databases, etc.)
in the form of software “libraries.” Using this code allows the project to avoid re-
inventing the wheel by taking advantage of the huge amount of open source
code available to the community.

The authors of this third-party software distribute it under a free or open source
license of their choice.

It is important to review the license under which third- party software is made
available, however, in order to make sure it is compatible with the project’s
intended form of outbound license. For example, if an inbound license says “all
redistributions must be under the GPL,” then the project’s outbound license must
be the GPL. If it is not, the library cannot be included in the project’s release.

What if the licenses on existing components are incompatible?

If software libraries are subject to a form of inbound license that is incompatible
with the form of outbound license chosen by the project, either the software
libraries may not be used, resulting in additional work to re-create the necessary
functionality, or permission must be sought from the author.

License incompatibility can result in unnecessary costs and delay, making it
essential to review the inbound license for compatibility with the intended
outbound license at a very early stage.

The consensus of the Summit group was that the licensing process
should be streamlined as much as possible to avoid license
incompatibility and make it as easy as possible to determine if a license
is compatible with the project’s intended outbound license. A major point
of discussion was whether to recommend a small number of “standard”
recognized open source licenses such as Apache or BSD, whose
compatibilities are well-known, and avoid the use of third-party software
that is subject to a less-standard license that would require additional
review and analysis.

What are the best practices to streamline the incorporation of software in a
way that ensures license compatibility?

Both Sakai and Kuali projects have built-in quality processes.

Open Source Summit Educational Materials 1.0

 12

Sakai has a “pre-emptive” license review process for inbound code. The code
undergoes a license review before incorporating it into the project software and it
is checked against lists of acceptable forms of inbound license. Specific
individuals have been designated with responsibility for quality control to assure
license compliance.

Kuali has taken the additional step of using proprietary software tools, which are
available from intellectual property management companies such as Palimida
and Black Duck, to scan its code as a base way of verifying that their efforts had
identified all of the third-party software used in the project. This work can also be
outsourced to service providers such as law firms to conduct an assessment to
ensure the “cleanliness” of the code, but the costs of outsourcing this work can
be prohibitive for an open source initiative. While asking developers to pay
attention to inbound license before relying on third-party software requires a little
additional effort from the developers, and formal code review processes can be
time-consuming or expensive, they are well worth it in order to minimize risk and
protect a project’s reputation. The adoption of strong quality control processes
across various initiatives will also lead to efficiencies as these initiatives will be
able to share code between projects more readily.

What license should be used for higher education projects?

ECL 2.0 has been created to meet the needs of higher education and broad
adoption will ensure consistency.

What contributor agreements should be used for higher education
projects?

Kuali and Sakai use a form of contribution agreement for individuals that is
identical in all substantive respects to the form of contribution agreement used by
Apache. A new form of contribution agreement based on the Apache model that
will be used for institutions that have staff contributing to projects was created at
the Summit.

6.0 PATENTS AND THIRD-PARTY PATENT LICENSES

Discussion of how patents should be addressed in connection with
collaborative open source projects consumed about half of the Summit
time. The key issue was whether institutions can give a wide patent grant
that would cover all the patents they have an interest in - including
patents that may have arisen out of the work of individuals who are not
contributors to the open source project, or that may have arisen out of
work funded by third parties.

The belief among some institutions was that the commonly used Apache
form of contribution agreement required a patent license that was too
broad, because it did not take into account the possibility that a

Open Source Summit Educational Materials 1.0

 13

contributor institution would have previous commitments to third parties
to whom the patent had already been licensed, or who may have funded
or participated in the relevant research. For some of the larger research
universities, simply determining the relevant patents and agreements can
be a daunting logistical task.

Two outputs of the Summit addressed these concerns: the ECL 2.0
outbound license and the new form of institutional contribution
agreement. These revisions were designed to accommodate concerns
about the reach of the patent license provisions in the contributor
agreement. The patent license provision was modified so that no license
would be granted to patents developed by anyone other than the author
of the contribution, and also to recognize the possibility that there may be
funding agreements or other prior commitments that limit the institution’s
flexibility to grant a license.

While these licenses represent progress, they also reflect some policy
decisions by participating institutions that bear long-term thought. For
example, a license to patents that arise only out of the work of
contributors to the project does not cover patents that arise out of other
work at the university, reflecting a choice to protect the ability of
individual inventors at the university, and the ability of the university itself,
to benefit from the commercialization of the patent, where licensing these
patents in connection with community projects may be beneficial to the
community as a whole.

7.0 DEVELOPER ISSUES
Individual developers who may become contributors to an open source project
often have their own concerns that differ from institutional concerns. The status
of individual developers differs based on their working arrangement with an
institution. At many institutions, the software developed by IT staff and
contractors is deemed “work for hire” and all rights are held by the university.
Faculty members, however, will typically have more rights in the intellectual
property they create, such as royalty-sharing policies.

Part of the Summit discussion was related to how to balance faculty
rights with the desire of the universities to support the efforts of open
source in higher education. The new patent language in the institutional
collaboration agreement is intended to reflect the fact that at many
universities, the royalty-sharing policy does not contemplate non-
commercial uses of the patent, and therefore leaves uncertainty as to the
universities’ ability to permit such non-commercial uses.

Open Source Summit Educational Materials 1.0

 14

What is my responsibility as a developer related to contributor
agreements?

There are two issues, depending on what you are contributing to the project. If
the software is your original creation, you must read and sign a contribution
agreement. If you are including someone else’s software, you should be aware of
and document the type of inbound license under which source code is available.
What does the license require? What does it allow you to do with the code you
are using? Is it compatible with the project license? Even if you identify a
compatibility problem, it may be possible to contact the original author and
request an additional - compatible - license.

See also What are contributor agreements and “inbound” and “outbound”
licenses?, Who signs and what terms typically govern Contributor Agreements? ,
and What are some primary concerns about Contributor Agreements?

When I am using open source code, what is my responsibility for
determining whether the intended use complies with its license?
Projects assess code in different ways. Sometimes individual developers are
responsible for checking the licenses governing code they wish to use in the
project. This is common for non-institutional open source projects. Other projects
have more established processes. Check with your project manager to know how
your project assesses code, but at a minimum it is important to realize that you
are responsible for identifying any third party code you have incorporated into
your contribution, and it is also important to recognize the possibility for wasted
development time if attention is not paid to compatibility issues early.

See also What are the best practices to streamline the incorporation of software
in a way that ensures license compatibility?

What is my responsibility as a developer related to outbound agreements?

If you are participating in an open source project, whether directly as a project
developer or indirectly as contributor, it is essential to be aware of the type of
agreement under which the source code is being released - the outbound
license. This sets limits on which code can be incorporated in the development.

See also What should I know about “outbound” licenses?

What if my institution’s policy conflicts with a license?

If institutional policy prevents code from being contributed, you should work with
the open source project to see if license adjustments are possible that will be
mutually acceptable to both your institution and the project.

The changes in the ECL were written to address most major institutional
issues and to make it easier to collaborate on open source software

Open Source Summit Educational Materials 1.0

 15

projects, in hopes that institutions should have no conflicts with
participation.

What is the risk to individual code contributors?

There is no risk of liability for copyright infringement if individuals contribute only
software they have written themselves, and to which they hold the copyright, and
if they clearly disclose when they are contributing software that others have
written. The contribution agreement provides an opportunity for the project to ask
contributors to represent that they are contributing your own work, and have
identified the source of any software that is not their own work. It also includes an
express disclaimer of liability if the software does not work as intended.

Who owns a collaborative software project?

The copyright to software written by university faculty or staff may reside with
either the individual author of the software or the institution, depending on the
terms of their employment agreement and the policies of the institution. At many
institutions, the default rule is that faculty will own anything they author, while
software developed by IT staff will be owned by the institution.

See also What are contributor agreements and “inbound” and “outbound”
licenses? and Who signs and what terms typically govern Contributor
Agreements?

What if the software is modified?

Whether modifications are permitted will be governed by the terms of the inbound
license under which the software is used. In some cases, the ability to make
modifications is subject to conditions, for example, that the changes made to the
code be clearly documented.

See also What should I know about “outbound” licenses?

Can the software code that I have contributed be used commercially?

The terms of the outbound license determine whether any commercial use must
remain open source or is allowed to be incorporated into a closed, proprietary
system. The ECL 2.0 allows any use.

See also What should I know about “outbound” licenses?

8.0 PATENTS AND COPYRIGHTS OUTSIDE OF THE UNITED
STATES

Many developers and institutions involved in open source projects are from
outside of the United States. This means there are software contributions both
from and to the US, as Americans contribute to European or Japanese or

Open Source Summit Educational Materials 1.0

 16

Australian projects and developers in these countries send code to US projects.
Although the most commonly used open source licenses were drafted within the
United States, there is now a worldwide community of developers and
contributors, introducing the potential for greater complexity and requiring
licenses and contributor agreements to reflect this new reality.

How does copyright law differ outside of the United States?

The main legal basis for protecting software programs is substantially
harmonized on a global basis and copyright protection arises automatically: no
registration requirement for protection, no requirement that a sample of the work
be deposited in a central repository, no fees, etc. A series of international treaties
signed by most of the nations of the world ensure that works created in one
country will be protected by laws in another. Countries have basically agreed to
provide foreign authors the same degree of protection as they do to local
authors, without requiring any registration or other procedure. Therefore, code is
protected wherever it goes, and rights holders have equivalent rights to protect
their code “here” or “there.” Although there are minor differences, (i.e., what is
called a “distribution” in the US may be considered a “communication to the
public” in Europe), in the end, permission for the way the software will be used
and shared must be granted by the licenses. It is important to draft licenses and
contributor agreements that are as clear and “generic” as possible, so that a
judge interpreting and enforcing them in another jurisdiction has less difficulty
determining what rights are intended to be granted.

How does patent law differ outside of the United States?

There are substantial differences between the US and other countries (or areas,
such as Europe) with regard to patent protection. Patents create difficulty in the
open source context, as the community is generally opposed to applying patents
to software. While in the copyright context, numerous international agreements
provide relatively worldwide protection, in the patent field, what can be protected
and the degree of protection is much more territorial: national (or regional) patent
offices grant patent protection for a specific nation or region. European law
(based on the Munich “European Patent Convention”) is unclear about whether
software processes or products may have patents applied to them. Textually,
“computer programs” are excluded from patentability BUT this exclusion is
subject to a proviso that says only “software as such” is excluded. This has
allowed the European Patent Office to issue software patents that have “a
technical effect beyond interaction with the computer.” As a result, several
software companies have been able to apply for, and obtain, software patents.
However there is a trend against this, both at the European level, where it
appears that the EC may have given up trying to gain patent protection for
software) and the national level (e.g., England is reviewing its patent law related
to software, and a string of recent cases has questioned the concept, while not
necessarily being determinate about it). This means that patents that are

Open Source Summit Educational Materials 1.0

 17

recognized in the US may not be granted in Europe, and if they are, the courts
may be more likely to strike them down.

With that said, it is important to consider the patent situation in the US and other
major markets even for projects that do not originate in the US because open
source software is typically distributed worldwide via the Internet.

How are warranties and indemnities different outside of the United States?

Another area of difference, though again not major, is related to warranties and
indeminities – or, in the case of open source software, disclaimers and limitations
on warranties and liability. The European legal framework, at least, imposes
certain warranties, (e.g., title) on software distributors, that may, arguably, be
excluded in the US. This is because mandatory law protects weaker parties
(consumers, in particular) from unfair unilateral licensing practices. While these
differences may not be so great in a professional context, it is important to
consider this when dealing with consumers – especially when a project
distributes code around the world. Again, this may influence the project license
(as these exclusions are contained here) and management of responsibilities
within projects, which is one of the reasons for setting up foundations and other
institutions to manage the code.

Which law applies?

Some licenses leave the decision of which law applies when interpreting and
enforcing the contract up to the underlying “conflict of laws” law (or “private
international law,” as it is called on the European Continent), which has evolved
several principles to help courts decide if they are competent to hear a case and,
if so, which law to apply. If a developer does not want to rely on these principles,
a license may specify that the law of the software provider will apply (and its
courts have jurisdiction) while others specify a specific jurisdiction. Even so, there
is enough uniformity in copyright law generally for open source projects to thrive
with many participants from many jurisdictions, all working under standard US-
style contribution agreements and licenses.

What if international developers join in a collaboration with US foundations
on open source projects?
When international developers work with US open source initiatives, US law
treats them as rights holders whose rights will be protected under copyright law.
The risk of this code infringing third party rights (patent or copyright) is as high or
low as that of any other contribution. As rights holders, international developers
will be required to enter into a contribution agreement with the open source
project – and agree to any patent license – so that the project will have the
freedom to redistribute the code. One of the goals in drafting contribution
agreements is to draft them in simple enough terms that they will be easily
interpreted and considered valid in any country that an author may reside in.

Open Source Summit Educational Materials 1.0

 18

Even though contributions will generally be governed in the same way as US
contributions, open source projects should still carefully consider the international
legal dimensions of any collaborative project.

Open Source Summit Educational Materials 1.0

 19

 APPENDIX A. SUMMIT PARTICIPANTS
Co-Chairs

• Daniel Greenstein, Associate Vice Provost, Scholarly Information, University of California
Office of the President

• Brad Wheeler, Chief Information Officer, Indiana University

Organization Representative(s)

Apache Software Foundation Cliff Schmidt, Director and Vice President, Legal Affairs

Australian National University Robin Stanton, Chief Information Officer

Cambridge University (UK) John Norman, Director - Centre for Applied Research in Educational
Technologies

Cornell University Sandy Payette, Co-Director, Fedora Project and Researcher, Cornell
Information Science

DSpace McKenzie Smith, Associate Director for Technology, MIT Libraries

IBM David Shields, Program Management, Linux Technology Center

Ithaka • D. Barnaby Gibson, General Counsel, Treasurer and Secretary
• Matthew Rascoff, Analyst, Strategic Services

Indiana University • Beth Cate, Associate University Counsel
• Jack Pincus, Vice President of Technology Transfer at the Indiana

University Research and Technology Corporation

Joint Information Systems
Committee (JISC)

• Ralph Weedon, Director , JISC Legal Information Service,
University of Strathclyde (UK)

• Naomi Korn, JISC IPR consultant

Kuali Foundation Barry Walsh, Senior Director, eBusiness Services, Indiana University

LegisTICs, Barcelona, Spain Malcolm Bain, Partner

The Andrew W. Mellon Foundation • Jacqueline D. Ewenstein, Assistant General Counsel
• Ira Fuchs, Vice President of Research in Information Technology

Don Waters, Program Officer, Scholarly Communications

University of Michigan Paul Courant, University Librarian and Dean of Libraries

MIT Karin Rivard,Assistant Director and Counsel, Technology Licensing
Office

OSS Watch Randy Metcalfe, Manager, OSS Watch, University of Oxford (UK)

Pennsylvania State University Jim Leous, Manager UNIX Systems and Technical Solutions Group

the rSmart Group Chris Coppola, rSmart President and director, Sakai Foundation and
Kuali projects

Open Source Summit Educational Materials 1.0

 20

Sakai Foundation Joseph Hardin, Director of the Collaborative Technologies Laboratory,
University of Michigan

University of British Columbia
(CAN)

Randy Smith, Technology Transfer Manager

Univeristy of California Office of the
President

• Stephen Benedict, Director IT Strategic Sourcing, Information
Resources and Communications

• Charles Drucker, Technology Transfer Officer
• Mary MacDonald, Counsel

The Summit was sponsored by the Andrew W. Mellon Foundation.

Tina Howard produced this document.

