THE OPTICAL POTENTIAL FOR 99 MeV 6Li SCATTERING
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With the recent availability of increased 61
beam intensities (of order 10-30 pnA) on target,
the 99 Mev oLi elastic-scattering angular distribu-
tions for 12c, 2851, 40ca, >8yi, 90zr ana 208pp
previously reportedl) have in most cases been
extended to c.m. scattering angles near 50-55°
(where the absolute cross section is of order 10
ub/sr for all targets heavier than 120). At the
same time, the previous measurements were partially
repeated to remove uncertainties and inconsis-
tencies traceable in part to the very low
(subnanoamp) beam intensities in the early experi-
ments. Reliable charge integration possible at
the present beam intensities allowed proper
absolute normalization of the cross sections for
all targets, while comparison of left-of-beam vs.
right-of-beam scattering at forward angles es-
tablished the 0° reference for all angular
distributions to + 0.1°. Zero-angle drifts in the
beam were monitored by a pair of fixed detectors
located at + 14°,

These angular distributions have been analyzed
in terms of a 6-parameter, complex, local optical-
model potential with Woods-Saxon formfactors. The
discrete potential-strength ambiguities commonly
encountered for moderately or strongly absorbed
projectiles at lower energies are still unresolved
by the present higher-energy data. Largely

equivalent fits are obtainable for real central
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well depth V, between about 100 and 250 MeV at
roughly 50 MeV intervals. We chose to fit all data
with V, = 95 MeV (corresponding to a half-maximum
radius of 1.30 AT1/3 fm). The quality of fit
generally obtained is represented by the example
611 + 58N1 in Fig. 1; the potential parameters

indicated in that figure are also typical of

those for most other targets.
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In view of the appreciable cluster probability
of 61i as a weakly-bound o + d system, we have also
attempted to describe the 6L1 elastic scattering
within the framework of a simple cluster potential
folding model. In terms of the well-known
a-particle and deuteron optical potentials U,, Uy
we define the SLi optical potential as
U6Li(R)=§}Uh(|§r% ?l)+ud(|§;§ ?l)}lxa_d<r)|2 dr
where X,_4 is the intercluster (a-d relative motion)
function. Ignoring possible distortion of the
cluster and its constituents in the nuclear
field, we generated reasonable S-state model
wavefunctions X, 4 from phenomenological o4d
potentials which were required to reproduce
correctly (1) the binding energy Ep = 1.472 MeV
of 6Li w.r.t. breakup into o+d, (2) the empirical
low-energy 381 o~d scattering phase shifts,z) and
(3) the charge formfactor of the 611 ground state
as determined from electron scattering.3)Further-
more, in order to account phenomenologically for
antisymmetrization effects at small o-d separation
distances r, we required X,-d to have the correct
radial quantum number (e.g., a 2S state) and/or
approach zero faster than r2 as r + 0 (e.g., by
introducing a repulsive core in the potential).

In Fig. 2, two such possible a-d bound state
formfactors are illustrated: (a) represents a

2S state (with a node at 1.6 fm) in a real Woods=—
Saxon plus Coulomb potential V _4(r) = V, {1+
exp(fggb}_l + Vo(r) with V= ~79.0 MeV, R = 1.83
fm, a = 0.70 fm, and Vc due to a uniformly

charged sphere of radius R; (b) is a 1S Eckart

function N(1-e™@%)3 %e'“r, with a = .714 and k2 = 2
uEB/hz, which is an eigenstate of the real potential
with repulsive core Vy_y4(r) = -44.4(eur-l)—1 +
47.5(e%T -1)72,

For U, and Uy we chose phenomenological
optical potentials 4) which fit elastic a and d

scattering data at the appropriate energies Ey =
58

wiN

E For ~ Ni, the resulting folded

Brgs Bq = 3 By
61 potential (real and imaginary central parts)
is compared to the best-fit, 6-parameter Woods-
Saxon potential in Fig. 3 (cf. Fig. 1 for the
parameter values of the best-fit potential). The
6L1 folded potential is seen to be fairly
insensitive to the particular choice of inter-~
cluster function Xy-q+ The generally good overall

agreement of the imaginary potentials is very
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likely fortuitous since absorption modes clearly

6

exist for "Li which cannot be accounted for by the

superposition of a-particle and deuteron absorption.

The real part of the folded br1 potential exhibits

a somewhat rounder knee-region, but otherwise

agrees remarkably well in shape with the phenom-

enological real potential.

However, it is clearly

too large in magnitude by about a factor of 2

everywhere, including the all-important surface

region 4 < R < 7 fm.

This unexpectedly large and

systematic overestimate of the real potential for

6

Li by the at+d cluster folding
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been found by Satchler and Loved) for a double-
folding model of the 6Li potential in terms of a
realistic effective 2~-nucleon interaction which
accounts reasonably well for heavier-ion scattering.
A likely cause of the required renormalization in
potential strength given by the two distinctly
different folding-model approaches is the neglect

611 in the field

of distortion and breakup of the
of the target nucleus, although it is a priori not
evident that such corrections should give a uniform

scaling of the folded potentials or even have the

correct sign (repulsive).
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The 99 MeV OLi + 58Ni elastic scattering data 4)
were fitted with the real folded potential, which
was allowed to be renormalized by a factor N, and 5)
using two forms of the imaginary potential: (1)
the folded imaginary formfactor with strength
adjusted for best 2-parameter fit, and (2) a Woods-
Saxon imaginary potential with adjustable parameters
(4-parameter fit). The results are illustrated in
Fig. 4. A good fit is obtained in this case with
N = 0.45 and a Woods-Saxon imaginary part (solid

2—value is about twice that for the

curve); the ¥

purely phenomenological 6-parameter Woods-Saxon

fit of Fig. 1. The fit obtained with the folded

imaginary potential (dashed curve) is considerably

worse (xzis 7 times larger than the best-fit value).
The conclusion we draw from this investigation

is that although the cluster-folding model appears

to produce the "correct" radial shape of the 6

Li
real potential (in the sense that scattering data
are well fit), the substantial, uniform renormal-
ization of strength required indicates that the
folding model in its present form (without

breakup and other corrections) is too simplistic to

provide a semi-microscopic basis for the

phenomenological 6Li potential,
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