THE OPTICAL POTENTIAL FOR MEDIUM-ENERGY PROTON SCATTERING

The IUCF program of proton elastic cross-section measurements from nuclei at energies between 80 and 180 MeV is essentially completed. The previously reported angular distributions for \(^{28}\text{Si},^{40}\text{Ca},^{90}\text{Zr}\) and \(^{208}\text{Pb}\) at several proton energies up to 160 MeV have recently been augmented by extension of the 135 MeV \(p + ^{90}\text{Zr}\) angular distribution to 126° and by measurements at 180 MeV for \(^{90}\text{Zr}\); an additional angular distribution for \(^{208}\text{Pb}\) at 180 MeV is scheduled to be measured.

Together with the Maryland measurements for \(^{58}\text{Ni},^{90}\text{Zr},^{120}\text{Sn}\) and \(^{208}\text{Pb}\) at 100 MeV, this new data set comprises 17 detailed and precise angular distributions, generally extending in angular range to 75–95° with angular intervals of 1–20°; relative errors are of order 3% and systematic errors do not exceed 10%. These measurements meet a need for high-quality proton elastic scattering data in this energy region which was only partially and inadequately met by older, less complete measurements at 155 and 185 MeV.

The extension of our cross-section measurements beyond 90° (to angles where the cross section is of the order of several nb/sr) and to 180 MeV proton energy was made possible by a simple change from the usual spectrograph focal-plane detection system which consists of a 50 cm wide helical wire chamber followed closely by two equally wide plastic scintillators. Replacing the second wide scintillator with a narrow (10 cm) unit spaced 40 cm from the first scintillator reduced the coincidence background rate (largely from neutron-induced recoil protons) by nearly a factor of 50 to a level corresponding to \(\approx\text{1 nb/sr}\) in cross section. The extended angular distribution obtained for \(^{90}\text{Zr}\) at 135 MeV, spanning over 9 orders of magnitude in cross section, is illustrated in Fig. 1. The 180 MeV angular distribution for \(^{90}\text{Zr}\) is shown in Fig. 2.

The IUCF data for \(^{40}\text{Ca},^{90}\text{Zr}\) and \(^{208}\text{Pb}\) were combined with existing ORNL data at 61.4 MeV, Maryland data at 100.4 MeV, and Uppsala data at 181 MeV in a global analysis of proton elastic cross sections from these nuclei between 60 and 180 MeV. Using the IUCF automatic parameter search code SNOOPY, the angular distributions were fit with a local, complex optical model potential

\[U(r) = U_{\text{Coul}}(r) - V_f(r) - i(\bar{W}_S - 4a_wA_d \frac{d}{dr}) \\
+ f_v(r) + 2(\bar{W}_{so} + i\bar{W}_{so}) \frac{d}{dr} f_{so}(r) L^2 \\
\]

with Woods-Saxon formfactors \(f_l(r,r_1,a_4)\). The analysis was carried out in a semi-relativistic framework, i.e., using relativistic kinematics and a relativistic modification of the potential in the (intrinsically non-relativistic) Schrödinger equation following the Goldberger-Watson prescription. The radial wave equation for the \(l\)th partial wave retains the conventional non-relativistic form (\(\hbar = c = 1\)):

\[\frac{d^2}{dr^2} + (1 - \frac{\gamma V(r)}{T_C} - \frac{L(L+1)}{\rho^2}) u_L(r) = 0 \]
with \(\rho = kr, \quad k = \frac{m_2}{\sqrt{s}} \sqrt{T_{1L}(T_{1L} + 2m_1)}, \quad T_c = T_{1c} + T_{2c}, \quad \gamma_c \equiv \frac{2(\sqrt{s}-m_2)}{(\sqrt{s}-m_2)^2-m_1^2} \) where \(\sqrt{s} = T_c + m_1 + m_2 \)
denotes the total energy of projectile (1) and target nucleus (2) w.r.t. the center of mass. The relativistic correction factor \(\gamma \) multiplies all potential terms in this analysis even though no such simple relativistic modification of the spin-dependent term can be formulated. In particular, the Sommerfeld parameter \(\eta = z_1 z_2 e^2 k/2T_c \) is also multiplied by \(\gamma \), consistent with the corresponding correction to the Coulomb potential. Since this latter modification is found to have a relatively small effect on calculated observables (even for \(^{208}\text{Pb} \)), the nuclear potential strengths reported

here (in the form of \(\gamma V \) etc.) may be used directly, to a good approximation, in a conventional non-relativistic optical-model or DW code provided relativistic kinematics are employed (i.e., if the relativistically correct values of \(k \) and \(T_c \) corresponding to projectile lab energy \(T_{1L} \) are entered into the program).

Although this type of relativistic approach is not strictly required to fit the present elastic scattering data (an equivalent but totally non-relativistic parametrization can be found), the use of relativistic kinematics, at the least, is deemed not only physically more realistic but advisable in view of the fact that distorted waves generated in the two approaches at these energies differ not
only in asymptotic phase (even in ρ-space) but can also differ markedly in radial dependence and magnitude in the nuclear surface and interior regions and hence can have sizeable effects on the results of reaction calculations in DWBA analyses (e.g., one finds nearly a factor 2 difference in a non-relativ. vs. relativ. calculation of the g.s. transition strength for the 40Ca(d,p) reaction at 160 MeV, using optical potentials which give the same elastic scattering in each case).

Very satisfactory fits to the cross section data were obtained over the whole angular range when all 10 parameters V, r_0, a_0, W, r_w, a_w, V_{so}, W_{so}, r_{so}, a_{so} of the potential model were varied. The curves shown in Figs. 1 and 2 are representative of the general quality of fit. Constrained-geometry 6-parameter searches (with r_0, a_0, r_w, a_w fixed) also yielded subjectively good (and objectively acceptable) fits with reduced scatter of the associated strength parameters V, W as function of energy. These fixed-geometry parameters are tabulated in Table 1, along with corresponding volume integrals per nucleon, J_R/A and J_I/A, of the real and imaginary central potentials, the total reaction

Table 1. Fixed-Geometry Parameters

\[
\begin{array}{cccccccccc}
\text{Target, Energy (MeV)} & \gamma V & \gamma W & \gamma W_d & (r_w) & (a_w) & \gamma V_{so} & \gamma W_{so} & r_{so} & a_{so} & \gamma J_R & \gamma J_I & \sigma R & \sigma I & N & \text{Data Ref.} \\
28Si & 79.9 & 28.45 & 5.38 & - & 1.51 & .42 & 2.90 & -2.32 & 0.978 & .495 & 303 & 84 & 399 & 26.2 & 1.039 & pres.expt. \\
& 135.1 & 18.74 & 6.98 & - & & & 3.76 & -1.69 & 1.031 & .571 & 199 & 109 & 397 & 17.6 & 1.065 & " \\
40Ca, 61.4 & 32.93 & 3.12 & 1.73 & 1.46 & .48 & 4.06 & -1.02 & 1.050 & .616 & 328 & 71 & 575 & 2.1 & 1.031 & 5 \\
& 80.2 & 30.74 & 7.16 & - & " & " & 3.38 & -1.86 & 1.019 & .489 & 306 & 102 & 615 & 10.5 & 1.040 & pres.expt. \\
& 135.1 & 20.64 & 8.22 & - & " & " & 3.80 & -0.76 & 1.088 & .550 & 206 & 120 & 577 & 14.6 & 1.066 & " \\
& 160.0 & 19.10 & 8.01 & - & " & " & 3.54 & -0.53 & 1.101 & .567 & 190 & 114 & 534 & 18.0 & 1.077 & " \\
& 181 & 17.50 & 7.22 & - & " & " & 3.70 & -0.56 & 1.096 & .580 & 174 & 103 & 479 & 11.6 & 1.086 & 4 \\
90Zr, 61.4 & 36.19 & 4.67 & 1.82 & 1.41 & .52 & 3.61 & -1.80 & 1.106 & .665 & 322 & 80 & 1122 & 4.1 & 1.031 & 5 \\
& 79.8 & 33.20 & 6.80 & - & " & " & 2.41 & -1.81 & 1.040 & .476 & 295 & 85 & 1029 & 22.3 & 1.040 & pres.expt. \\
& 100.4 & 28.93 & 7.05 & - & " & " & 2.91 & -1.75 & 1.051 & .536 & 257 & 88 & 977 & 3.4 & 1.050 & 2 \\
& 160.0 & 24.50 & 7.87 & - & " & " & 3.34 & -1.17 & 1.101 & .592 & 218 & 98 & 922 & 15.8 & 1.078 & " \\
208Pb, 61.4 & 38.28 & 1.80 & 5.61 & 1.39 & .57 & 5.84 & -0.29 & 1.013 & 1.127 & .316 & 74 & 2000 & 2.4 & 1.032 & 5 \\
& 100.4 & 32.18 & 6.37 & - & " & " & 4.23 & -0.21 & 1.072 & .778 & 266 & 75 & 1713 & 3.7 & 1.051 & 2 \\
& 121.2 & 29.94 & 7.58 & - & " & " & 3.64 & -1.27 & 1.092 & .677 & 248 & 89 & 1756 & 6.7 & 1.060 & pres.expt. \\
& 160.0 & 26.29 & 7.03 & - & " & " & 2.30 & -0.80 & 1.129 & .631 & 217 & 83 & 1618 & 14.4 & 1.078 & " \\
\end{array}
\]

(All potential strengths in MeV, geometry parameters in fm, volume integrals in MeV-fm3)

Note that values of all potential strengths and volume integrals quoted here include the relativistic correction factor γ.

-81-
cross section σ_R, the quality-of-fit criterion χ^2/N per datum point, and the relativistic potential correction factor γ. Over the range of bombarding energies $60 \leq E \leq 160$ MeV and for target mass nos. $40 \leq A \leq 208$, the particular (E,A)-dependence found here (by no means unique) can be sufficiently well represented (for convenience of interpolation) by the relations

$$\gamma_V = 91 (1 - 0.355 \log E) + 26 \frac{N-Z}{A} \pm 1 \text{ MeV}$$

$$r_0 = 1.21 \text{ fm}$$

$$a_0 = 0.77 \text{ fm}$$

$$\gamma_{Ws} = 7.5 \pm 1.5 \text{ MeV} \ (E \geq 80 \text{ MeV})$$

$$r_w = 1.37 + 3.5/A$$

$$a_w = 0.36 + 0.036 A^{1/3}$$

The logarithmic energy dependence indicated here for the real central well depth is only approximately valid; results of analyses covering a wider energy range ($40 \leq E \leq 180$ MeV) indicate a reduction in the rate of fall-off of the real volume integral J_R with increasing energy. This deviation from the log E dependence indicated by the older, less complete data at 155 and 185 MeV is illustrated for 90Zr in Fig. 3 (solid data and curve: present results; open circles and dashed line: previous data and trend).

No general systematic trend is perceived for the spin-orbit (S.O.) parameters, but the following characteristics are clearly established:

-- the S.O. radius parameter r_{SO} is significantly smaller than the real central radius parameter r_0, generally increasing with energy from 1.03 to 1.13 fm.

-- an appreciable imaginary part to the S.O. potential (with $\gamma_{Ws}^{SO} = -1.4 \pm 0.5$ MeV) is definitely required at energies $E \geq 80$ MeV in order to reproduce the pronounced damping of the diffractive oscillations in the cross section universally observed in the mid-angle region 35-70° (that this damping is a direct manifestation of the S.O. interaction can be clearly demonstrated and has been previously reported\(^1\)).

An imaginary component to the S.O. interaction of the sign and magnitude determined empirically in this analysis is entirely consistent with the expectation based on a simple impulse-approximation calculation of the first-order optical potential in terms of the free 2-nucleon forward-scattering amplitude which yields $\gamma_{VSO} + i\gamma_{WSO} = 3.4 - 1.11$ (MeV)
for 130-160 MeV proton scattering from 208Pb, in embarrassing good agreement with phenomenology (the validity of the impulse approximation for heavy nuclei at these energies is not all that good, even at low momentum transfer8).

The parametrization of the S.O. potential obtained by analyzing the new cross section data alone also provides a generally reasonable description of the existing polarization data3,4,9 near 160 and 180 MeV. Although simultaneous fits to both cross sections and polarizations altered the S.O. parameters (as well as the central well parameters) somewhat, the changes are well within the range of parameter uncertainties and parameter correlations. Inclusion of the polarization data in the analysis did not help to reduce substantially the present S.O. parameter ambiguities, largely because of the relatively large experimental errors associated with the polarization data (± 0.03 to ± 0.15). Fig. 4 illustrates the variation in predicted polarization for 90Zr at 135 MeV corresponding to a range of acceptable S.O. parameters (i.e., giving essentially equivalent cross sections). Significantly more accurate polarization measurements (to ± 0.02 - 0.05) must be made for a much better definition of the S.O. potential. Such measurements are planned to begin soon at IUCF (approved experiment # 66) utilizing the polarized proton beam from the IU polarized-ion source facility (cf. Section I). The insert in Fig. 4 shows, by means of contours of constant χ^2, the extent of the (V$_{so}$,W$_{so}$) uncertainty and correlation, for example; the projected values indicate the ranges in V$_{so}$,W$_{so}$ for which the polarization predictions were made. The predominantly positive character of the polarization (becoming more pronounced with increasing energy) is another direct consequence of the imaginary S.O. term.

Significant correlations among various parameter pairs also exist for the central potentials. The potential volume integrals, largely independent of these parameter correlations, appear to be reasonably well defined by the present data; J$_R$ is thought to be determined to ± 5% (with the main contribution to the uncertainty arising from the ± 10% cross-section normalization uncertainty). Parameter uncertainties are found to decrease steadily with increasing angular range of the data (typically by a factor 2-3 for θ_{max} between 60° and 120°). Deviation from the Woods-Saxon formfactor does not appear to be required by the data; relatively small changes in shape are tolerated by the
data through appropriate parameter readjustments. On the other hand, even small localized disturbances of the real central potential (notch perturbations) affect the fit significantly over a wide radial range (typically 2-7 fm); hence for proton scattering one does not find the kind of strong localization of the interaction (at any particular energy) one observes for more strongly absorbed projectiles.

A detailed report of this work is in preparation for publication.

Efforts are also underway to relate the principal features of the empirical optical-model potential (OMP) for proton-nucleus scattering obtained here to microscopically calculated OMP's based on realistic (strong) 2-nucleon interactions in multiple-scattering or Brueckner expansions.

**Present address: University of Illinois Dept. of Physics, Urbana, IL 61801

2) K. Kwiatkowski, Ph.D. thesis (Univ. of Maryland 1976); K. Kwiatkowski and N.S. Wall, Univ. of Maryland Report PP 78-062.

9) A. Willis et al., Journ. Physique 30, 13 (1968).