As the first portion of a study of the energy dependence of the \((p,t)\) reaction, the \(^{54}\text{Fe}(p,t)^{52}\text{Fe}\) and \(^{208}\text{Pb}(p,t)^{206}\text{Pb}\) reactions were observed at \(E_p=80\) MeV. The \(^{12}\text{C}(p,t)^{10}\text{C}\) reaction was also observed. Data for these reactions will also be acquired at about 160 MeV bombarding energy upon completion of an intrinsic germanium counter telescope presently under construction at the University of Colorado.

Data were acquired using the QDDM spectrometer and an 80 MeV proton beam from the Indiana University cyclotron. A typical spectrum for the \(^{54}\text{Fe}(p,t)\) reaction with about 100 keV (FWHM) resolution is shown in Fig. 1. Angular distributions for 3 of these levels are shown in Fig. 2. The solid curves are the results of DWBA calculations using proton parameters\(^1\) obtained at 61.4 MeV and an energy dependent \(^3\text{He}\) potential from ref. 2. Based on an \((f_{7/2})^2\) configuration and using a normalization \(D_0^2=22 \times 10^4\text{MeV}^3\text{-fm}^3\), the DWBA calculations reproduce the shapes of the angular distributions reasonably well. The magnitudes are less well predicted, however. Although an enhancement factor of 1.34 is obtained for the ground state, enhancements of 0.30 and 0.06 are obtained for the 0.81 and 3.56 MeV levels. Numerous other proton and \(^3\text{He}\) optical potentials were tried without changing the predicted enhancements by more than 50%. In all cases the shapes of the angular distributions were less well reproduced.

The sensitivity of the data to small changes in the other optical model parameters is gratifying.
since one of the aims of this work is to assess the applicability of the two families of mass-three optical potentials which are presently available. These two families of potentials are classed as "deep" or "shallow" potentials depending on the value of the volume integral. A deep potential has a volume integral $J \approx 440$ MeV-fm3 while a shallow potential has $J \approx 330$ MeV-fm3. The calculations shown in fig. 2 use a deep mass three potential. No calculations have as yet been attempted using a shallow potential.

*University of Colorado

**University of Pittsburgh
