INVESTIGATION OF CHARGE SYMMETRY IN THE 6 Li(p, $^{+}$) 7 Li(0.48) AND 6 Li(p, o) 7 Be(0.43) REACTIONS

R.E. Marrs, A.D. Bacher, G.T. Emery and P.P. Singh

Our understanding of the (p,π) reaction near threshold is complicated by several uncertainties, among which are the form of the pion production operator in nuclei, the importance of pion rescattering and other two-step contributions, and the optical potential to be used in computing pion distorted waves. One approach to resolving these ambiguities is the comparison of mirror (p,π) reactions. Such a comparison is insensitive to some aspects of the problem, such as the final state configurations, and selectively sensitive to other aspects, such as charge-dependent differences in the intermediate pion wavefunctions in a multistep process or Coulomb distortion of the outgoing pion wavefunctions.

We have made background measurements to determine the feasibility of comparing the $^6\text{Li}(p,\pi^+)$ and $^6\text{Li}(p,\pi^0)$ reactions to the $1/2^-$ first excited states in mass 7 by detecting the deexcitation γ rays. An enriched ^6Li target was bombarded with a pulse-selected 140-MeV proton beam, and γ rays were detected in a planar intrinsic-germanium detector situated at an angle of 160° . The γ -ray resolution at 400 keV was $\lesssim 1$ keV FWHM. The background rate was minimized by employing a low-mass aluminum target chamber and by timing with respect to the cyclotron RF. The observed background rate corresponds to a cross section of 7 µb in the region of $E_{\gamma} \sim 400$ keV. It is attributed primarily to the scattering of fast neutrons in

the germanium crystal and to the Compton scattering of 3.56-MeV γ rays produced in the $^6\text{Li}(p,p')$ reaction. The $^6\text{Li}(p,\pi)$ cross sections are estimated to be no more than a few hundred nanobarns, which is too small to measure without further improvements.