A STUDY OF THE $^7\text{Li}(p,n)^7\text{Be}$ EXCITATION FUNCTION AT INTERMEDIATE ENERGIES USING RESIDUAL ACTIVITY

The objective of this experiment is to measure the excitation function of the $^7\text{Li}(p,n)^7\text{Be}$ reaction in the proton energy range of $E_p = 60$-200 MeV. Such a measurement is needed to determine the total reaction cross section which in the course of other ^7Li studies can be used for calibration purposes.

The total cross sections are determined using standard off-line γ-ray detection techniques to measure the residual $^7\text{Be}(53d)$ activity. This method has been used at lower energies\(^1\)) and at 120 MeV\(^2\)) to calibrate large volume neutron detectors.

Typically at each energy a 10-20 mg/cm\(^2\) enriched ^7Bi target will be irradiated with 20-100 na-hr of protons. After bombardment the irradiated target will be counted in a prescribed counting geometry with known γ-ray efficiency. The ^7Be is identified by its (10%) electron capture branch to the 477.4 keV level in ^7Li. The samples will be counted over several months to insure the 477.4 keV γ-ray decays with the ^7Be half-life of 53.3d.

*Florida A&M University, Tallahassee, Florida 32307
**Ohio University, Athens, Ohio 45701
***Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
