The study of giant resonances (GR) populated in
\((p,p')\) reactions at \(E_p = 115\text{ MeV}\) on Si and \(^{92}\text{Zr}\) targets
reported earlier\(^1\) has been completed. The measurements
covered the angular ranges between 10° to 34° for Si
and 14° to 30° for \(^{92}\text{Zr}\) in 2° steps. The scattered
particles were detected using intrinsic germanium de-
tectors in a telescope configuration. The resolution
was 200 keV. Collective model DWBA calculations have
been performed for both the low-lying states as well as
the GR region in Si and \(^{92}\text{Zr}\). The proton optical model
parameters used in these calculations are listed in
Table I.

The experimental angular distribution data for Si
and the DWBA predictions for the various multipoles
are shown in Fig. 1. It is found that this region is well
described by contributions from \(L=1,2,3\) and 4 multipoles.
Similar analyses performed for \(^{92}\text{Zr}\) are shown
in Fig. 2. In this case, in addition to \(L=1,2\) and 4
multipoles, an \(L=0\) contribution is also required to
explain the data. The percentage energy-weighted sum
rule (EWSR) strengths determined from collective model
calculations are given in Table II.

The following conclusions emerge from the present
work:

1) As expected, the GR region is dominated by the
Giant Quadrupole Resonance (GQR). The EWSR strengths
extracted are generally in good accord with those

<table>
<thead>
<tr>
<th>A</th>
<th>(V_R)</th>
<th>(a_R)</th>
<th>(r_R)</th>
<th>(W_I)</th>
<th>(a_I)</th>
<th>(r_I)</th>
<th>(V_{SO})</th>
<th>(W_{SO})</th>
<th>(a_{SO})</th>
<th>(r_{SO})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{28}\text{Si})</td>
<td>-22.75</td>
<td>0.749</td>
<td>1.265</td>
<td>-6.00</td>
<td>0.644</td>
<td>1.409</td>
<td>-3.43</td>
<td>1.38</td>
<td>0.588</td>
<td>0.972</td>
</tr>
<tr>
<td>(^{92}\text{Zr})</td>
<td>-26.80</td>
<td>0.716</td>
<td>1.24</td>
<td>-8.85</td>
<td>0.643</td>
<td>1.35</td>
<td>-3.30</td>
<td>+1.51</td>
<td>0.594</td>
<td>1.052</td>
</tr>
</tbody>
</table>

Units are MeV and fm.
2) The Giant Dipole Resonance (GDR) cross sections calculated using both the phenomenological isovector potential and microscopic optical potential agree reasonably well with each other. It is found that the GDR contribution (with 50% and 100% strengths for 28Si and 92Zr) to the total GR cross sections is relatively small.

3) The present work has indicated the presence of measurable $l=4$ strength in the GR region consistent with other experimental data and theoretical calculations.

A detailed report of the present work has been prepared for publication.

2) K. Van der Borg, Thesis (1979), KVI, Groningen, the Netherlands.

Table II. Deformation parameters and energy-weighted sum rule strengths

<table>
<thead>
<tr>
<th>A</th>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>$(\beta R)_{opt}$ (fm)</th>
<th>S_u (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28Si</td>
<td>1.78</td>
<td>2^+</td>
<td>1.70</td>
<td>16.6 ±5.7</td>
</tr>
<tr>
<td></td>
<td>4.62</td>
<td>4^+</td>
<td>0.49</td>
<td>1.0 ±0.3</td>
</tr>
<tr>
<td></td>
<td>6.89</td>
<td>3^-</td>
<td>0.69</td>
<td>10.7 ±3.6</td>
</tr>
<tr>
<td></td>
<td>GR</td>
<td>2^+</td>
<td>0.83</td>
<td>44.0 ±1.0</td>
</tr>
<tr>
<td></td>
<td>(15.7-24.1)</td>
<td>4^+</td>
<td>0.96</td>
<td>3.0 ±0.9</td>
</tr>
<tr>
<td></td>
<td>4.98</td>
<td>0^+</td>
<td>0.35</td>
<td>4.0 ±2.0</td>
</tr>
<tr>
<td></td>
<td>2.35</td>
<td>3^-</td>
<td>0.66</td>
<td>16.3 ±4.9</td>
</tr>
<tr>
<td></td>
<td>LEOR</td>
<td>3^-</td>
<td>0.59</td>
<td>49.9 ±1.3</td>
</tr>
<tr>
<td></td>
<td>(5-10.5)</td>
<td>2^+</td>
<td>0.53</td>
<td>99.8 ±9.9</td>
</tr>
<tr>
<td></td>
<td>GR</td>
<td>4^+</td>
<td>0.61</td>
<td>16.7 ±0.4</td>
</tr>
</tbody>
</table>

a) Product of β and radius R obtained from DWBA analysis.

b) Percent EWSR using uniform mass distribution. Errors quoted are obtained from fitting the measurements with DWBA calculations.

c) Low energy octupole resonance.