GAMMA DECAY STUDIES OF 194 Pb(9.2m), 195 m+8 Pb (15.0m + <1m) AND 196 Pb(36.4 m)

K. Hicks, M. Bickel, J. Czechanski, T. Ward, and J. Wiggins Indiana University Cyclotron Facility, Bloomington, Indiana 47405

Initially we studied the ¹⁹⁷Au(⁶Li,xn)^{203-xn}Pb reaction in conjunction with Exp. #69, "Investigation of the Decay Modes of High-Spin Compound Nuclei in ⁶Li Induced Fusion Reactions," by measuring the Pb activation yields using Ge(Li) γ-ray spectroscopy. The excitation functions for the production of ¹⁹⁴⁻¹⁹⁹Pb isotopes were measured in the energy range of 55-95 MeV. Those results were in good agreement with the yields measured in-beam by H. Karwowski (IUCF Thesis, 1980). In our study we observed the ¹⁹⁷8Pb ground state as part of the ¹⁹⁷mpb(42m) isomeric decay. Subsequently in further measurements we determined the half-life of ¹⁹⁷8Pb to be 6.2m and detailed the decay schemes of the isomeric pair. Results of that study were recently published. ¹)

A new experiment was proposed (Exp. #137) which was motivated in part as a search for an analogous low-spin isomer of 195 Pb. The experiment involved a detailed γ -ray singles and γ - γ coincidence study of 194 Pb, 195 Pb and 196 Pb produced in the 197 Au(6 Li,xn) 203 -xnPb reactions at 95 MeV. Singles γ -ray spectra were accumulated from multiple

bombardments of ~50mg/cm2 197Au targets for short periods of time during the first 15 minutes to search for short-lived activities $(T_{1/2} \sim 1-5 \text{ min})$. Longer bombardment times were used to study the long-lived products. The γ-γ coincidence study required accumulating results from 30 bombardments of the Au targets. Eleven new y-rays were found in the decays of 194Pb and 195Pb. In addition, the half-lives of the isotopes were measured to a nominal 15% uncertainty. Previous²) decay schemes were confirmed and some decay ambiguities were resolved. The 195 gPb ground state decay was studied in detail but only a limit could be set on its half-life. The isomeric decay of 195mPb(15.0m) was deduced to be 17% which is to be compared with 35% for 197mPb(42 m). In Figure 1 are shown the results of the 195 m+gpb isomer study.

A manuscript of this study is currently being prepared for submission to Nuclear Physics.

- 1) K. Hicks and T. Ward, Nucl. Phys. A349, 29 (1980).
- "Table of Isotopes," ed. by C.M. Lederer and V.S. Shirley, 7th ed., 1978, John Wiley and Sons, N.Y.

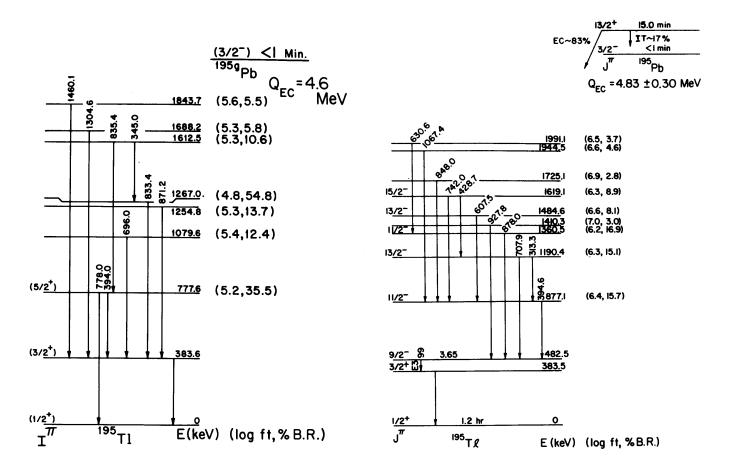


Figure 1. Decay schemes of the 195 _{m+g}Pb isomer deduced in the present study.