ANALYZING POWERS FOR THE 13C AND 208Pb(p,d) REACTIONS AT 123 MeV

J. R. Shepard and J. J. Kraushaar
University of Colorado, Boulder, Colorado 80309

D. W. Miller, D. W. Devins, W. Jacobs, and W. P. Jones
Indiana University Cyclotron Facility, Bloomington, Indiana 47405

We have measured differential cross sections and analyzing powers for the first two levels in the 13C (p,d) reaction and the first six levels in the 208Pb(p,d) reaction at 123 MeV bombarding energy. The experimental method was the same as that described in the preceding report. Several preliminary analyzing-power distributions for the 208Pb(p,d) reaction appear in Figures 1 through 4.

The 13C(p,d)12C analyzing powers for the transitions to the 0$^+$ ground state (p$^1/2$ pickup) and the 4.44-MeV 2$^+$ level (p$^3/2$ pickup) are quite similar to those observed at 65 MeV2 and 200 MeV.3 The DWBA description of them is quite poor. The failure is comparable to that reported4 for the 24Mg(p,d)23Mg (2.36-MeV 1$^+/2$ level) at 95 MeV.1

In contrast to the 13C(p,d)12C data, the 208Pb(p,d) analyzing powers show only slight $j>$ vs. $j<$ dependence based on comparisons of p$^1/2$ vs. p$^3/2$ and f$^5/2$ vs. f$^7/2$ angular distributions. All analyzing-power angular distributions show significant structure which becomes more pronounced for decreasing angular-momentum transfer.

Zero-range DWBA calculations were performed as described in Ref. 5 using optical potentials P7P and D3P of that reference. Some of these calculations appear as the solid curves of Figs. 1-4. Generally there is reasonably good agreement with the analyzing-power data in contrast with the very poor agreement observed for the lighter targets. Only for the 3.409-MeV 9/2$^+$ level data shown in Fig. 4 is the agreement qualitatively poor.

Further analysis of these data is in progress.

1) D. W. Miller et al., 5th International Symposium on Polarization Phenomena in Nuclear Physics, Santa Fe, 1980, and contribution to this Ann. Rept.

Figure 1. Analyzing power data for the 208Pb(p,d) reaction at $T_p = 123$ MeV leading to the 0.898-MeV $3/2^-$ level compared with zero range DWBA calculations.

Figure 2. Analyzing power results compared with zero-range DWBA calculations for the 1.633-MeV $13/2^+$ state.

Figure 3. Analyzing power result compared with zero-range DWBA calculations for the 2.34-MeV state.

Figure 4. Analyzing power results compared with zero-range DWBA calculations for the 3.409-MeV $9/2^-$ state.