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A striking feature of the (p,n) reaction in the than VuT for Ep -200 MeV. 

IUCF energy range is that the O0 neutron spectra are so In interpreting the data on GT strength 

strongly dominated by GamorTeller (GT) transitions distributions it is useful to think in terms of how a 

that these spectra provide an instant snapshot of GT nucleus with a neutron excess responds to the 

strength distributions. This feature of the (p,n) transformation of a neutron to a proton. This is 

reaction is understood1) on the grounds that at 0°, easily representable in an independent-particle model. 

where there is no transverse momentum transfer and the Each nuclear state is represented as an occupancy 

longitudinal momentum transfer is small, most terms in pattern of a set of single-particle states appropriate 

the projectile-nucleus interaction do not contribute, to the specific model. The neutrons, of course, are 

and the only important terms are V,(rp*ri) and indistinguishable from each other, so that the 

Var(ap*~~)(fp*ri), where a and T are spin and isospin transformation of a neutron into a proton implies a 

operators, the subscript p refers to the projectile summation over all neutrons. The relevant operator is 

proton and the subscript i refers to the ith nucleon in rp+ri-(up*ui). The result of operating on the target 

the nucleus. A summation over nucleons is implied. ground state yields a fictitious state that we may call 

The (p,n) results also show that V, is much smaller the collective Gamow-Teller (CGT) state. The Gamow- 



Teller strength distribution may then be though of as 

the expansion of the CGT in terms of the set of actual 

eigenstates of the final nucleus. The expansion coef- 

ficients are the GT matrix elements for the indivi- 

dual states. 

We can define a similar fictitious state, the 

collective Fermi state (CF), with respect to the 

V,(T~-T~) interaction term. We know that the CF state 

corresponds to the isobaric-analog state (US) and is 

narrow. 

In the extreme case of a nuclear Hamiltonian that 

depends only on the spatial coordinates of the 

nucleons, a supermultiplet symmetry would hold and the 

CF and CGT states would be sharp and degenerate. The 

spin-orbit force breaks this symmetry. It had long 

been conjectured , , 3, however, that a degree of 

supermultiplet symmetry would persist. Experimental 

data were not available to support the calculations. 

The present (p,n) data provide a picture of the GT 

strength distributions, as illustrated in Figs. 1 and 

2. In heavy nuclei the GT strength lies in a broad but 

well-defined resonance at about the same energy as the 

IAS. In medium-weight nuclei the resonance is still 

well defined but some fragmentation is apparent. In 

light nuclei varying degrees of fragmentation are 

observed. In 26~g(p,n)26~ the fragmentation is most 

pronounced, but even there it is worth noting that the 
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Figure 1. 13~(p,n), 26Mg(p,n), and 42~a(p,n) spectra 
largest single component of GT strength is in the peak obtained at 81ab = 0°, Ep = 160 MeV. The IAS peaks in 

each spectrum are positioned at Ex - EMS = 0. 
closest to the IAS which may be considered a vestige of 

supetmultiplet symmetry. 
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Figure 2. 115~n(p,n), 165~o(p,n), and 208~b(p,n) 
spectra obtained at elab = 0°, Ep = 160 MeV. The IAS 
peaks are positioned at Ex - EIAS = 0. 

HIGH-SPIN "STRETCHED" STATES EXCITED IN (p,n) REACTIONS 
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The excitation of unnatural parity states of high excitations are especially interesting because of their 

angular momentum is an area of strong current strong sensitivity to the isovector-tensor part of the 

interest 1'6) in medium-energy physics. Isovector nucleon-nucleon force. In the momentum-transfer region 


