One of the most exciting recent developments in the study of nuclear structure has been the appreciation of the isovector characteristics of nuclear excitation. A number of different experimental techniques have been developed to examine the separate roles played by neutrons and protons in the nuclear excitations. In inelastic scattering, the cross section for the transition to an excited state can be described in terms of separate matrix elements for proton and neutron excitations, M_p and M_n, respectively, or in terms of isoscalar and isovector matrix elements, $N_0 = M_n - M_p$ and $N_1 = M_n + M_p$. The cross

Figure 4. Measurements of X_2 and calculations of X_2 and A_{X2} using a microscopic model of Ref. 7 (solid curve) and an optical model with and without (dashed and dotted) the real T_R potential of Ref. 3.

MEASUREMENT OF THE RELATIVE SIGN OF NEUTRON (M_n) AND PROTON (M_p) TRANSITION MATRIX ELEMENTS FOR THE 2^+_2 STATE IN 30Si BY INELASTIC ALPHA-PARTICLE SCATTERING.

A. Saha, K.K. Seth and D. Barlow
Northwestern University, Evanston, Illinois 60201

H. Nann and W.W. Jacobs
Indiana University Cyclotron Facility, Bloomington, Indiana 47405

section can generally be written as

$$\sigma_{\text{exp}}(\theta) = \sigma_{\text{theory}}(\theta) \left[b_n M_n + b_p M_p \right]^2$$

where the reaction mechanism and kinematical information is contained in $\sigma_{\text{theory}}(\theta)$. b_n and b_p are measures of the interaction of the probing particle with the neutrons and protons involved in the excitations. For alpha particles as the probe, $b_n/b_p=1$ can be safely assumed. Thus, inelastic alpha scattering can be combined with electromagnetic transition probabilities in mirror nuclei to obtain the relative sign between M_n and M_p.

We have measured inelastic alpha-particle scattering to the ground and first two excited 2^+ states in 30Si using a 120 MeV alpha-particle beam at IUCF. The reaction products were detected with the QDDM magnetic spectrometer. Angular distributions were obtained for angles from 6° to 30°. The differential cross sections for these transitions are shown in Fig. 1.

A standard DWBA analysis was performed and deformation parameters, βR, of 1.09(3) fm and 0.35(1) fm for the 2^+_1, 2235 keV and the 2^+_2, 3499 keV states were obtained. Combining these results with lifetime measurements of the 2^+ levels in 30S and 30Si, we conclude unambiguously that the signs of M_n and M_p of the 2^+_2 state are the same as for the collective 2^+_1 state; i.e., they are both isoscalar in character.

This is consistent with recent lifetime measurements of 30P by Antilla and Keinonen, but is in contradiction with the predictions of recent shell-model calculations by Brown and Wildenthal.