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One history of difference in differences…

1855
John Snow

1979
Cook and Campbell

1990
Moulton Problem 

Aggregate Regressors

1990-1995
Card – Marial Boatlift

Card and Krueger – Minimum Wage
Meyer et al – Workers Compensation

2004
Bertrand et al 

Clustering Problems

2018-2021
Staggered Adoption, TWFE Averaging

Goodman-Bacon
De Chaisemartin and d’Haultfoeuille

Sun and Abraham 
Callaway and Sant’Anna.

2018-2021
Stacked DID
Cengiz et al

Deshpande and Li



The Plan for Today

Fast review of 2x2 DID

Staggered Adoption DID
Toy Example
Analysis Using TWFE and New Problems

Stacked DID

Inference in Stacked DID

Discussion 



The Simple 2x2 DID



Simple 2 x 2 DID à Data and Estimation

Pre Post Differences

Treat 𝑌!,#$% 𝑌!,#&'( Δ! = 𝑌!,#&'( − 𝑌!,#$%
Control 𝑌),#$% 𝑌),#&'( Δ) = 𝑌),#&'( − 𝑌),#$%

𝜷𝑫𝑫 = 𝚫𝑻 − 𝚫𝑪

Outcomes measured for two groups 
in two periods.

Treatment status changes between 
periods for the “treatment group”

No change in treatment status 
between periods for the “control 
group”.Regression Form

𝑌'( = 𝛽- + 𝛽.𝑇𝑟𝑒𝑎𝑡' + 𝛽/𝑃𝑜𝑠𝑡( + 𝛽0 𝑇𝑟𝑒𝑎𝑡'×𝑃𝑜𝑠𝑡( + 𝜖'(

In the simple 2x2 setting, 𝜷𝑫𝑫 = 𝜷𝟑.

Table Form



The 2x2 DID nests two simpler research 
designs

Pre-Post Design: could be biased by “time trends” 
Unmeasured time varying factors that change along with treatment
History effects, Maturation effect

Non-equivalent Control Group Design: could be biased because group 
differences in treatment are confounded by other differences across groups.



Key Assumption: Common Trends

Y
DD à Treatment Effect

Pre Post

Control

Treatment

Counterfactual

Common trends assumption encapsulates 
two restrictions:

Time-varying confounders must affect 
outcomes in both groups in the same 
way.

Time fixed effects

Group-varying confounders must be 
time-invariant.

Group fixed effects.



Extensions to Multiple 
Groups and Multiple Periods



What about cases with more than two groups and 
more than two periods?

Old and Busted

“Generalized Difference in Differences”

Analyzed using a two-way fixed effect 
regression model.

Account for clustering using {some 
method}.

New Hotness

“Staggered Adoption Design” 

Analyzed using …{new method}.

Account for clustering using…{some 
method}.



Twoway Fixed Effects: The current workhorse

Suppose you have 𝑠 = 1…𝑆 𝑠𝑡𝑎𝑡𝑒𝑠 and	 𝑡 = 1…𝑇 𝑝𝑒𝑟𝑖𝑜𝑑𝑠.	

Treatment “turns on” at different times in different states.

𝒀𝒔𝒕 = 𝜷𝑭𝑬𝑫𝒔𝒕 + 𝒂𝒔 + 𝒃𝒕 + 𝝐𝒔𝒕
𝐷!" à Dummy variable set to 1 if the policy is in force in state s during period t. 

𝑎! à state fixed effect (time invariant factor)

𝑏" à time fixed effect (time varying common factor)



How is the TWFE model like a DID?
Time fixed effects: trends 
are flexible, but exactly the 
same across groups.

Group fixed effects: groups 
are different even before 
treatment. But group 
differences never change.
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But what about messier cases?

Multiple states adopt the treatment.

But they adopt at different times. No clear “pre” and “post”.

What if treatment effects are heterogeneous?
Across Units?
Over Time (phase in effects, interactions with calendar time)



Staggered Adoption Design

Panel Data Setting: collection of 𝑠 = 1…𝑆 units each observed at 𝑡 =
𝑇!…𝑇" calendar time periods.

𝑌#$ is a realized outcome for unit s in period t.

𝐴# is the policy adoption year in state s. 
If Indiana adopts a policy in 2005 then 𝐴!" = 2005
If New York has never adopted the policy, then think of 𝐴"# = ∞

𝐷#$ = 1(𝑡 ≥ 𝐴#) is an indicator that the policy is “active” in state s in period t. 
Policy adoption is an absorbing state. (State’s do not abandon the policy once they put it in place.)



Staggered Adoption Design 
Contains Many 2x2 DIDs



A simple staggered adoption design

Group ID 
(State)

Adoption 
Year

Calendar 
Years of 

Data

1 2001

2000-2006

2 2004

3 1999

4 NA

5 NA

Never Adopters (groups 4 and 5)

Early Adopter (group 1)
Late Adopter (group 2)

Always Adopter
(group 3)

0

1
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2000 2001 2002 2003 2004 2005 2006
Time



How many simple 2x2 DIDs are 
in this staggered adoption 

design?



Never Adopters (groups 4 and 5)

Early Adopter (group 1)
Late Adopter (group 2)

Always Adopter
(group 3)

0

1

Tr
ea

tm
en

t S
ta

tu
s

2000 2001 2002 2003 2004 2005 2006
Time

Comparison 2x2 DID

E vs N 𝛽.,2 = 𝑌.,/--. − 𝑌.,/--- − 𝑌2,/--. − 𝑌2,/---
L vs N 𝛽/,2 = 𝑌/,/--3 − 𝑌/,/--0 − 𝑌2,/--3 − 𝑌2,/--0
E vs L 𝛽.,/ = 𝑌.,/--. − 𝑌.,/--- − 𝑌/,/--. − 𝑌/,/---
L vs E 𝛽/,. = 𝑌/,/--3 − 𝑌/,/--0 − 𝑌.,/--3 − 𝑌2,/--0
E vs A 𝛽.,0 = 𝑌.,/--. − 𝑌.,/--- − 𝑌0,/--. − 𝑌0,/---
L vs A 𝛽/,0 = 𝑌.,/--3 − 𝑌.,/--0 − 𝑌0,/--3 − 𝑌0,/--0

Counting the pairwise DIDs

1. Find all of the “switchers”.

2. For each switcher: compute a simple 
pre-post change using the last pre-
period and the first post-period. 

3. Now swap in every possible control 
case where treatment status doesn’t 
change over those two periods.

Note: if we are slightly fancier, we could 
take averages over multiple periods 
instead of simple two-period 
comparisons. 



What happens to all of these underlying 2x2 DIDs? 
How do we turn them into a single effect estimate?
Goodman-Bacon (2021) asks how the TWFE regression coefficient is connected to underlying 2x2 
DID comparisons in a staggered adoption designs.

𝒀𝒔𝒕 = 𝜷𝑭𝑬𝑫𝒔𝒕 + 𝒂𝒔 + 𝒃𝒕 + 𝝐𝒔𝒕

Turns out that 𝜷𝑭𝑬 is a (somewhat complicated) variance weighted average of all pairwise 2x2 DIDs. 

A pairwise DID gets more weight if the policy change occurs close to the middle of the study 
window. 

A pairwise DID gets more weight if it includes more observations. 

CITATION: Goodman-Bacon, Andrew. "Difference-in-differences with variation in treatment 
timing." Journal of Econometrics (2021).



Strange weighted averaging is 
not such a big issue…

But time-varying treatment 
effects can create big problems.



Why might treatment effects vary over time?

Phase in effects: it might take some time for an intervention to produce 
measurable changes in behavior. 

Knowledge of a new tax might spread gradually. People might not change consumption 
or production behavior until they figure it out.
Marijuana might be legalized in one year, but it will take a few years for dispensaries to 
open.

Calendar Period x Treatment Effect Interactions: the same policy may have a 
different effect on behavior in some calendar periods than others. 

Expanded Unemployment Insurance benefits might have negligible effects on labor 
supply when the economy is depressed. But they could have larger effects on labor 
supply when the economy is booming.



Return to the staggered adoption design…

Group ID 
(State)

Adoption 
Year

Calendar 
Years of 

Data

1 2001

2000-2006

2 2004

3 1999

4 NA

5 NA

Never Adopters (groups 4 and 5)

Early Adopter (group 1)
Late Adopter (group 2)

Always Adopter
(group 3)

0

1
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2000 2001 2002 2003 2004 2005 2006
Time

Population Model

𝑌'( = 𝛽'(𝐷'( + 𝑎' + 𝑏( + 𝜖'(

Assume: 
𝑎' = 𝐺𝑟𝑜𝑢𝑝 𝐼𝐷
𝑏( = 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑌𝑒𝑎𝑟
𝜖'( = 0

Compare Two Versions of the treatment effect

Constant Treatment Effect: 𝛽'( = 𝛽 = 4 for all units 
and periods.

Phase In Effect: 𝛽'( = 1 𝑡 ≥ 𝐴' × (45!
3

× 4, where 
𝐴' is the adoption data in state s.



Try out the Constant Effects Model

Group 
ID

2000 2001 2002 2003 2004 2005 2006

1 1 + 2000  = 2001 1+2001 + 4 = 2006 2007 2008 2009 2010 2011

2 2 + 2000 = 2002 2003 2004 2005 2010 2011 2012

3 3 + 2000 + 4 = 2007 2008 2009 2010 2011 2012 2013

4 4 + 2000 = 2004 2005 2006 2007 2008 2009 2010

5 5 + 2000 = 2005 2006 2007 2008 2009 2010 2011

Constant Treatment Effects Model: 𝑎' = 𝑠, 𝑏( = 𝑡, 𝜖'( = 0, 𝛽'( = 4

Comparison 2x2 DID

E vs N 𝛽.,2 = 𝑌.,/--. − 𝑌.,/--- − 𝑌2,/--. − 𝑌2,/--- (2006 - 2001)-(2006-2005) = 4 

L vs N 𝛽/,2 = 𝑌/,/--3 − 𝑌/,/--0 − 𝑌2,/--3 − 𝑌2,/--0 (2010-2005)-(2009-2008) = 4

E vs L 𝛽.,/ = 𝑌.,/--. − 𝑌.,/--- − 𝑌/,/--. − 𝑌/,/--- (2006-2001)-(2003-2002) = 4

L vs E 𝛽/,. = 𝑌/,/--3 − 𝑌/,/--0 − 𝑌.,/--3 − 𝑌2,/--0 (2010-2005)-(2009-2008) = 4

E vs A 𝛽.,0 = 𝑌.,/--. − 𝑌.,/--- − 𝑌0,/--. − 𝑌0,/--- (2006-2001)-(2008-2007) = 4

L vs A 𝛽/,0 = 𝑌.,/--3 − 𝑌.,/--0 − 𝑌0,/--3 − 𝑌0,/--0 (2010-2005)-(2011-2010) = 4



Try out the Phase in Model

Group 
ID

2000 2001 2002 2003 2004 2005 2006

1 1 + 2000  = 2001 1+2001 + 0x4 = 2002 1+2002 + (¼)4 = 2004 2006 2008 2010 2012

2 2002 2003 2004 2005 2006 2008 2010

3 2003 + ¼ x 4 = 2004 2004+2/4 x 4 = 2006 2005 + 3 = 2008 2010 2012 2014 2016

4 2004 2005 2006 2007 2008 2009 2010
5 2005 2006 2007 2008 2009 2010 2011

Constant Treatment Effects Model: 𝑎' = 𝑠, 𝑏( = 𝑡, 𝜖'( = 0, 𝛽'( = 1 𝑡 ≥ 𝐴' × (45!
3

× 4

Comparison 2x2 DID

E vs N 𝛽.,2 = 𝑌.,/--. − 𝑌.,/--- − 𝑌2,/--. − 𝑌2,/--- (2002-2001)-(2006-2005) = 0

L vs N 𝛽/,2 = 𝑌/,/--3 − 𝑌/,/--0 − 𝑌2,/--3 − 𝑌2,/--0 (2006-2005)-(2009-2003) = 0

E vs L 𝛽.,/ = 𝑌.,/--. − 𝑌.,/--- − 𝑌/,/--. − 𝑌/,/--- (2002-2001)-(2003-2002) = 0

L vs E 𝛽/,. = 𝑌/,/--3 − 𝑌/,/--0 − 𝑌.,/--3 − 𝑌2,/--0 (2006-2005)-(2008-2006) = -1

E vs A 𝛽.,0 = 𝑌.,/--. − 𝑌.,/--- − 𝑌0,/--. − 𝑌0,/--- (2002-2001)-(2006-2004) = -1

L vs A 𝛽/,0 = 𝑌/,/--3 − 𝑌/,/--0 − 𝑌0,/--3 − 𝑌0,/--0 (2006-2005)-(2012-2010) = -1



Time varying treatment effects cause bias when you
use a TWFE regression to analyze data from a 
staggered adoption design

Some of the 2x2 DIDs are using “already treated” groups as control group.

This would be fine if the treatment effect is constant over time.

But if treatment effects change over time, then the already treated groups are 
not following the same trend as the treated group.

In essence: some of the 2x2 DIDs will violate the common trends assumption 
because of the phase in effect.



What should we do about this issue?

Thing 1: Notice that you have a staggered adoption design, and recognize 
that regression models will be pooling/averaging effects from multiple sub-
experiments.

Thing 2: Consider whether it is plausible to assume that effects are constant
across groups and over time. Be particularly concerned about the possibility 
that effects change over time.

Thing 3: Find some analytic strategy that avoids “problematic comparisons” 
in which already treated groups serve as controls, or at least measure how 
important these comparisons are in the overall average.



Stacked DID 
and 

Event Study 
(One of several possible approaches)



What is a stacked DID or stacked event study?
A stacked DID or stacked event study is a way to analyze data from a staggered adoption design.

The idea originally appears in two applied papers:

• Cengiz, Doruk, Arindrajit Dube, Attila Lindner, and Ben Zipperer. "The effect of minimum wages on low-wage 
jobs." The Quarterly Journal of Economics 134, no. 3 (2019): 1405-1454.

• Deshpande, Manasi, and Yue Li. "Who is screened out? Application costs and the targeting of disability 
programs." American Economic Journal: Economic Policy 11, no. 4 (2019): 213-48.

The scheme is not perfect. It doesn’t provide the perfect way to “weight and sum” event specific 
treatment effects.

But it ensures that you don’t have any problematic comparisons and so is robust to the biases those 
comparisons create



How do you stack your DID or Event Study?

Checklist: Start with a staggered adoption design and some data.

1. Define an Event Window

2. Enumerate Sub-Experiments

3. Define Inclusion Criteria

4. Stack The Data

5. Specify an Estimating Equation



Choose an Event Window for your study

Notation

𝜅! is the length of the pre-event window. (The number of years before the policy change that you will require for 
the analysis.)

𝜅" is the length of the post-event window. (The number of years after the policy change that you will require for 
the analysis.)

Example: Symmetric 4 year window: 𝜅% = 𝜅& = 4. 

This means that for every “policy event” in your study, you must have at least 4 years of pre-
treatment data and 4 years of post treatment data. Common window for the whole analysis.

Choosing 𝜅% and 𝜅& is a research design decision. A long window might seem nice, but it could 
mean that there are many policy changes that you can’t study. 



Take an inventory of the sub-experiments

𝑇' be the earliest calendar period in your data. 
𝑇( is the latest calendar year in your data.

Define Ω) to be the collection of all policy adoption years that comply with the event window.

Ω) = {𝐴*|𝑇' + 𝜅% ≤ 𝐴* ≤ 𝑇( − 𝜅&}

These are the policy changes that take place:
at least 𝜅6 periods after the earliest calendar date
at least 𝜅7 periods before the latest calendar data 

Note: some policy events may be “discarded” because they happen too recently or too early to be 
studied in the stacked DID framework.



Keep track of the compliant policy events…

Let 𝑑 = 1…𝐷 index the collection of sub-experiments in Ω3.

𝜔4 represents the policy adoption date of the d56 sub − experiment.
Example: 
𝜔' is the adoption date of the first sub-experiment. This is the earliest policy event that is 
compliant with the event window.

𝜔+ is the adoption date of the second event, etc.



Use inclusion criteria to build a data set for 
each sub-experiment

Inclusion Condition 1 (Valid Treated Units)
Within sub-experiment d all “treated units” have the same adoption date.

Implication: a unit may serve as a treated unit in at most 1 sub-experiment.

Inclusion Condition 2 (Clean Controls)
Only units with 𝐴" > 𝜔# + 𝜅$ are eligible to be included as controls in sub-experiment d.
Implications:

Clean controls may consist of never treated units or units that are treated far enough in the future to provide a clean post-period.

Implication: A unit may serve as a clean control in multiple sub-experiment.

Inclusion Condition 3 (Valid Time Periods)
All observations in sub-experiment d must come from time periods that fall inside the sub-experiment’s event window.

That is sub-experiment d only includes observations that satisfy 𝜔# − 𝜅% ≤ 𝑡 ≤ 𝜔# + 𝜅$



Inclusion Criteria in Practice: pseudo code

for d in ΩE {
Open the full data set

𝑇!(#) = 1(𝐴! = 𝜔#)à Make a dummy set to 1 if s is a treated unit for sub-experiment d

𝐶!(#) = 1(𝐴! > 𝜔# + 𝜅%)à Make a dummy set to if s is a clean control for sub-experiment d

𝑀&(#) = 1 𝜔# − 𝜅' ≤ 𝑡 ≤ 𝜔# + 𝜅% à Make a dummy set to 1 if the calendar date t belongs in sub-experiment d.

𝐼!&(#) = 𝑀&#(𝑇!# + 𝐶!#)à Make a dummy for inclusion; set to 1 if observation (s,t) belongs in sub-experiment d.

keep if 𝐼#$ % == 1

save sub_experiment_d
}



Make the stacked data set.

for d in Ω8 {

append using sub_experiment_d

}



Specify an estimating equation

Simplest Form is a regular old DID fitted to the stacked data.

𝑇94 → indicator that unit s is a treated unit in sub-experiment d.
𝑃:4 → indicator that period t is in the post period in sub-experiment d.

𝑌9:4 = 𝛽; + 𝛽<𝑇94 + 𝛽=𝑃:4 + 𝛽> 𝑇94×𝑃:4 + 𝜖9:4

Equivalent:
𝑌9:4 = 𝛽> 𝑇94×𝑃:4 + 𝜃94 + 𝛾:4 + 𝜖9:4



The stacked DID specification: pros and cons

The stacked DID specification will average all of the time-varying effects 
into a single averaged effect. 

It will be free from those strange new biases. 

But it still won’t actually “reveal” the time varying effects.



Building Up To The Stacked Event Study Form

Define 𝑌𝑆𝐸:4 = 𝑡 − 𝜔4 to be the “time since event” variable in sub-
experiment d.

By construction, 𝑌𝑆𝐸:4 = −𝜅8 , … , 1, … 0, 1, … , 𝜅? in every sub-
experiment.



Sub-Experiment Specific Event Study Form
Imagine we studied each sub-experiment separately using an event study approach. We’d fit models like:

𝑌*45 = A
6789&

9'

𝛽65×1 𝑇𝑆𝐸45 = 𝑗 + A
:789&

9'

𝛿65 𝑇*5×1 𝑇𝑆𝐸45 = 𝑗 + 𝜃*5 + 𝜖*45

Things to notice:
(1) Different set of event study coefficients in each sub-experiment. (That’s what we may want to average 

together in the stacked form.)
(2) Different set of state fixed effects in each sub-experiment. (Sometimes the same s will be in more than 

one of these regressions and that state will have a different fixed effect in each.)
(3) The event study main effects are mathematically equivalent to calendar time fixed effects for the clean 

control units in the sub-experiment. These two are allowed to differ across sub-experiments.



Stacked Event Study Form

𝑌FGH = $
IJKL4

L5

𝛽I×1 𝑇𝑆𝐸GH = 𝑗 + $
MJKL4

L5

𝛿I 𝑇FH×1 𝑇𝑆𝐸GH = 𝑗 + 𝜃FH + 𝜖FGH

Notes
(1) Fit this model to the stacked data.
(2) Cross-equation restrictions: there is one set of event study coefficients for each sub-

experiment. This is the averaging\pooling idea.
(3) Full set of state x sub-experiment fixed effects.
(4) We could augment the model to replace the event study main effects with a full set of 

time x sub-experiment fixed effects. (Not clear if this is helpful or not.)



Clustering in the Stacked DID



One history of difference in differences…

1855
John Snow

1979
Cook and Campbell

1990
Moulton Problem 

Aggregate Regressors

1990-1995
Card – Marial Boatlift

Card and Krueger – Minimum Wage
Meyer et al – Workers Compensation

2004
Bertrand et al 

Clustering Problems

2018-2021
Staggered Adoption, TWFE Averaging

Goodman-Bacon
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The stacked design will often include multiple
copies of the same observation.
Never treated units will be used as clean controls in every sub-experiment 
and the sub-experiments will often “overlap” in calendar time.

Late treated units may also be included multiple times if they are used as 
controls for some early events.

Duplicate observations mean that the observations in the stacked data set 
can’t really be considered “independent”

How should we account for that?



Clustered at the unit x sub-experiment 
level in stacked event studies.

Clustered at the unit level in stacked 
event studies.



Statistical Inference in 
Stacked Event Studies

Coady Wing, Seth Freedman, Laura Montenovo, Patrick Carlin



Data Generating Process

We generate data from a standard two way fixed effects model with 
clustering induced by state-specific AR(1) serial correlation.

𝑌#$ = 𝛽𝐷#$ + 𝑎# + 𝑏$ + 𝜖#$
𝜖#$ = 𝜌#×𝜖#,$,! + 𝑢#$

Today:
𝛽 = 10à constant treatment effect
𝑎!~𝑁 0,20 unit fixed effect which is correlated with treatment adoption
𝑏"~𝑁 0,5 àtime fixed effect.
𝑢!"~𝑁 0,20 àunit x time random effect. (error term)
𝜌!~𝐵𝑖𝑛(𝑘, 100)/100 (every state gets a 𝜌! between 0 and 1, with mean k).



Monte Carlo Experiments

50 States x 19 years
100 States x 19 years

In each simulation: 

40% of states will be treated; 60% never treated.
Treated states are split evenly across 10 timing groups.
Evenly distribute the 10 timing groups to 10 treatment adoption dates, chosen to satisfy five pre-periods and five 
post-periods.

Across simulations, we vary the mean of 𝜌* to control the level of clustering/serial correlation. 

We use mean 𝜌 = 0, .4, 𝑎𝑛𝑑 .8



Preliminary Results: Type I error rates across methods
50 States 100 States

Serial Correllationà 0 0.4 0.8 0 0.4 0.8

Twoway FE with Robust SEs 0.05 0.16 0.37 0.05 0.18 0.34

Twoway FE with Unit Clustered SEs 0.05 0.05 0.05 0.05 0.04 0.06

SDD with Robust SEs 0.06 0.19 0.35 0.07 0.19 0.34

SDD with Unit Clusters SEs 0.06 0.05 0.06 0.06 0.05 0.06

SDD with UnitXSub Experiment Clustered SEs 0.08 0.07 0.08 0.07 0.06 0.09

SDD with Sub Experiment Clustered SEs 0.05 0.05 0.06 0.05 0.05 0.07



Discussion

As expected, TWFE fares very badly if you don’t adjust for clustering 
but does fine if you cluster standard errors at the state level.

Stacked DID with clustering at the Unit x Design level over rejects the 
null hypothesis. This makes sense because it does not account for 
duplication.

Stacked DID with clustering at the Unit Level works pretty well. 

That’s our recommended approach, for now.



Stacking, Dependence, and Sample Size

Compared to the “regular” TWFE estimator, the stacked regressions will have a larger 
sample size. 

Additional Simulations To Compare:
Stacked estimator with no duplication

vs 
Stacked estimator with duplication

Holding total Sample Size Fixed.
Create a no-duplication sample: randomly assign each clean control to a single sub-
experiment, this reduces the total number of controls available.

Create a duplication sample using the same number of controls, but allow them to be 
reapeated.



Experiments to Compare:
Dependence vs Stacking, holding N constant

50 States 100 States
Serial Correllation 0 0.4 0.8 0 0.4 0.8
Twoway FE 0.05 0.05 0.05 0.05 0.04 0.06
SDD with All Never-Treated 0.06 0.05 0.06 0.06 0.05 0.06
SDD with Repeated Never-Treated 0.09 0.08 0.09 0.07 0.07 0.07
SDD with Partitioned Never-Treated 0.05 0.05 0.05 0.06 0.04 0.06

Results suggest that stacked DID with partitioned Never Treated Units (No duplication) does 
better than Stacked DID with Repeated Never Treated (Duplication).



Take Home Messages

Staggered Adoption Designs create conditions for bias when treatment effects are time varying, and
pose and aggregation/averaging puzzle.

Important Things

Use an estimation strategy based only on “clean controls”, such as stacked DID.

Cost: trim treated units that don’t have “clean controls” and time periods that fall outside the event window.

Use event study approaches to allow effects to vary over time.

In the stacked estimator, cluster standard errors at the Unit level to account for duplication.

Consider further methods to control aggregation. See work by Callaway and Sant’Anna (2020)

Callaway, Brantly, and Pedro HC Sant’Anna. "Difference-in-differences with multiple time periods." Journal of Econometrics (2020).


