EXCITATION OF GIANT SPIN-ISOSPIN MULTPOLE VIBRATIONS IN 54,56Fe AND 58,60Ni

J. Rapaport, T.N. Taddeucci, and T.P. Welch
Ohio University, Athens, Ohio 45701

D.J. Horen
Oak Ridge National Laboratory, Oak Ridge, TN 37830

C. Gaarde and J. Larsen
Niels Bohr Institute, Copenhagen, Denmark

E. Sugarbaker and P. Koncz
Ohio State University, Columbus, Ohio 43210

C.C. Foster and C.D. Goodman
Indiana University Cyclotron Facility, Bloomington, Indiana 47405

C.A. Goulding
EG&G, Los Alamos, New Mexico 87544

T. Masterson
University of Colorado, Boulder, Colorado 80309

The selectivity and the surprising simplicity of the (p,n) reaction at intermediate energies has been used to study the spin-isospin correlations in nuclei (see Ref. 1 and other references within). The zero degree spectra have been used to obtain the $\Delta L = 0$ response function of nuclei while the measured energy dependence of the effective nucleon-nucleus interaction resulting from the spin-isospin terms in the nucleon-nucleon force has been employed to identify the spin-isospin or Gamow-Teller strength. Other multipoles observed at higher excitation energies indicate a maximum differential cross section at slightly higher angles and have been interpreted as $(\Delta L = 1, \Delta S = 1)$ and $(\Delta L = 2, \Delta S = 1)$ excitations.¹

We have obtained 160 MeV (p,n) data on 54,56Fe and 58,60Ni and 120 MeV data for the 58Ni$(p,n)^{58}$Cu reaction in order to study the response function of 58,60Ni targets to spin-isospin transitions characterized with $\Delta L = 0, \Delta L = 1$ and $\Delta L = 2$ transfers and to study the

response function for spin-isospin transitions with $\Delta L = 0$ transfers for 54,56Fe targets. In the case of the Ni isotopes, a comparison may be made with the Ni spectra obtained from electro-excitation.²³⁴

The experimental results and analysis for the 58Ni$(p,n)^{58}$Cu reaction have been published³; the analysis for the other isotopes is in progress.

The double differential cross section of $L = 0$ strength observed at $\theta_L = 0^\circ$ for the 58Ni$(p,n)^{58}$Cu reaction is presented in Fig. 1b and is compared in Fig. 1c with the $B(M1)$ strength reported⁴ for the 58Ni(e,e') reaction. The locations of known 1^+ excited states in $A = 58$ nuclei are shown in Fig. 1a.

¹Permanent address: Central Research Institute for Physics, Budapest, Hungary.

Figure 1.
a) Locations of 1^+ states in $A = 58$ nuclei.

b) Double differential cross section of $L=0$ strength observed at $\theta_p = 0^\circ$ for the $^{58}\text{Ni}(p,n)^{58}\text{Cu}$ reaction at $E_p = 120$ MeV and $E_p = 160$ MeV. The abscissa represents excitation energy in ^{58}Cu.

c) $B(M1)$ strength reported in Ref. 4 for the $^{58}\text{Ni}(e,e')$ reaction.