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Abstract. A lattice-ordered group G is hyper-special valued if it lies in the largest torsion class
which is contained in the class of special-valued lattice-ordered groups. This is precisely the
class of lattice-ordered groups G such that for each g A G, every l-homomorphic image K of
the principal convex l-subgroup generated by g has the feature that each 0 < x A K is the su-
premum of pairwise disjoint special elements. It is shown in this article that if G is hyper-special
valued, then for each g A G, the space of values Y�g� of g is a compact scattered space. This
property naturally gives meaning to the notion of an a-special value of g: this is a value which
corresponds to an isolated point of the a-th remainder in the Cantor±Bendixson sequence of
Y �g�. It is shown that, for each ordinal a, the set of a-special values of G forms a disjoint union
of chains, which is at once an order ideal and a dual order ideal of the root system of all values
of G. If G is projectable, then in addition the set of special values of G is also a disjoint union of
chains which is an order ideal and a dual order ideal. An archimedean lattice-ordered group G

with weak order unit u > 0, given its Yosida representation, such that u1 1 is hyper-special
valued if and only if (a) G is projectable, (b) the Yosida space Y is scattered, and (c) for each
g A G the image of the function g has ®nitely many y's as well as ®nitely many accumulations
of 0.

1991 Mathematics Subject Classi®cation: 06F15, 54G12.

1 Introduction

The motivation for this work comes largely from the prominence of special valued
lattice-ordered groups, as well as that of the classes of lattice-ordered groups which
are closed under taking l-homomorphic images. As is the custom in this area of
mathematics, we abbreviate ``lattice-ordered group'' as l-group. In tandem, we use l-
subgroup for a subgroup which is at once a sublattice; l-homomorphism for a map
which preserves the group and the lattice structure; and the term convex l-subgroup

refers to an l-subgroup which is convex in the ordering of the group. For any other
unexplained terms of this sort, and as the general reference on the theory of l-groups,
we refer the reader to [D95], but also occasionally to [BKW77]. Certain references
from general topology will enter our discussion, and we shall cite the appropriate
ones as needed.



We proceed to the main de®nition; for openers, no assumption is made about the
l-groups under discussion. The notation is additive, following the Conrad tradition.

De®nition & Remarks 1.1. (a) In this discussion G stands for a l-group. C�G� denotes
the lattice of all convex l-subgroups of G; it is well known that C�G� is an algebraic
Brouwerian lattice ([D95], Proposition 7.10); in particular, it is a distributive lattice.

We say that N A C�G� is a value if it is maximal with respect to not containing
some a A G as an element. In the event, we call N a value of a. The set of all values of
a is denoted Y �a�. Observe that Y �a� is, by de®nition, a trivially ordered set rela-
tive to inclusion. When jY�a�j � 1, we say that both the element a and its value are
special.

It is well known that if N is a value of G then a5 b � 0 implies that a A N or
b A N. A convex l-subgroup with this feature is called a prime subgroup. There are
many ways to characterize prime subgroups of an l-group; the reader is referred to
Theorem 9.1 in [D95]. Let us summarize some of the most frequently used properties
of values and prime subgroups.

(b) Basic properties of values and prime subgroups:

(i) The set Specl�G� of all prime subgroups of G forms a root system under inclu-
sion; that is, no two incomparable prime subgroups contain a third. (Theorem
9.8, [D95]) In particular, this is true of the set Val�G� of all values of G.

Here is an application that comes up often in any discussion about values in an
l-group. If M A Val�G� and a A G is not in M then there is a unique value of a
which contains M.

(ii) For each value N of G, the set

fM A C�G� : N HMg

has a least element N �. (Proposition 10.2, [D95]) If N is normal in N �, then
N �=N is order-isomorphic to a subgroup of the additive group of real num-
bers, R, in its natural ordering. (The latter is due to HoÈlder's Theorem; [D95],
Theorem 24.16.)

(iii) Assuming a and b are positive, a5 b � 0 precisely when each M A Y�a� is in-
comparable to each N A Y�b�. (Proposition 11.7, [D95])

(c) If N is a special value then the convex l-subgroup N � mentioned in (b)(ii) is
referred to as the cover of N. If N is special then it is always normal in its cover.
(Theorem 40.8, [D95]) To motivate, in part, the de®nition of special valued l-groups,
let us ®rst brie¯y recall the more particular situation in which each Y�a� is ®nite. The
theorem we now quote is due to Conrad, and ®rst appeared in [Co65]. The reader
may also ®nd this material in [D95], § 46. We stress the ``local'' version of it in
[BKW77], Theorem 6.4.1.

Suppose that G is an l-group and 0 < a A G. Then the following are equivalent:
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(i) Y�a� is ®nite.

(ii) a can be expressed as a disjoint sum a � a1 � � � � � an of special elements ai.

(iii) Each value of a is special.

An l-group G which satis®es the preceding equivalent conditions for each of its ele-
ments is said to be ®nite valued.

If g � a � b in an l-group and jaj5 jbj � 0 we say that a is a component of g.
Now, an l-group G is said to be special valued if each positive g A G is a supremum of
special components. Theorem 45.6, [D95], states that

G is special valued if and only if (i) each g0 0 has a special value and (ii)
if N A Val�G� is special and M is a value containing N, then M too is
special.

In a special valued l-group every value is normal in its cover (Proposition 45.4,
[D95]). When this happens in an l-group G it is said that G is normal valued.

Finally we note, anticipating our central focus of discussion, that the class of spe-
cial valued l-groups is not closed under formation of l-homomorphic images, but if
f : G ! H is a surjective l-homomorphism which preserves all suprema, and G is
special valued, then H is also special valued. The reader is referred to Example 45.11
and Proposition 45.13 of [D95].

(d) As is common in commutative ring theory we may and do put a ``hull-kernel''
topology on Specl�G�. The basic open sets of the topology are the sets of the form

h�a� � fN A Specl�G� : a B Ng;

for all a A G. We shall be most interested in the subspace topology for Y�g�, where
g A G. We shall also abuse the notation just introduced and identify h�a� �a A G� with
the basic relatively open set h�a�XY �g� in Y�g�. It is an easy exercise to verify that
Y �g� is a compact Hausdor¨ space; we shall speak of Y�g� as the Yosida space of g.

The connection between special values and things topological is subject of the fol-
lowing lemma, for later use.

Lemma 1.2. Let G be an l-group and g > 0 in G. An element N of Y �g� is special
precisely when it is an isolated point of Y �g�.

Proof. If N A Y�g� is special, and a is a special element that witnesses that fact, then
h�a� � fNg, whence N is isolated.

Conversely, suppose that N is an isolated point in Y�g�. Then there exists an s > 0
in G such that h�s� � fNg; without loss of generality, one can replace s with s5 g

and assume sU g. Now Y �g�nfNg is also clopen, hence compact, and from a routine
open-cover-to-®nite-subcover argument, one can ®nd 0 < aU g such that h�a� �
Y �g�nfNg. Subtracting the meet, a5 s we may also assume that a and s are dis-
joint. Now, if M is a value of s, then g B M, whence it follows that M is contained
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in a value P A Y �g�. As a5 s � 0 we have that a A M JP, and we conclude that
M � P � N, proving that N is the only value of s. r

We conclude this introduction with a brief overview of radical and torsion classes
of l-groups. We refer the reader to §36 of [D95]. Torsion classes as such were intro-
duced in [M75] by Martinez. We also recommend the survey in [GH89], Chapter 6.

De®nition & Remarks 1.3. In this discussion we use the phrase ``class of l-groups'' to
mean a (proper) class which is closed under formation of l-isomorphic copies. Let R
be class of l-groups. It is called a radical class if it is closed under taking convex l-
subgroups, and whenever Ci A C�G� �i A I�, and each Ci A R, then C 14

i A I
Ci A R.

If R is also closed under formation of l-homomorphic images we say that it is a
torsion class. If R is a radical class, and G is an l-group, denote by R�G� the join of
all the convex l-subgroups of G belonging to R.

Examples of torsion classes abound in the theory; here are a few:

(i) The class FV of all ®nite valued l-groups.

(ii) The class of all hyper-archimedean l-groups. (Recall that G is archimedean

if 0U naU b, for each natural number n implies that a � 0; G is hyper-

archimedean if each l-homomorphic image of G is archimedean.)

(iii) The class O of all cardinal sums of totally ordered groups. (The term ``cardinal
sum'' refers to a direct sum of l-groups with coordinatewise partial ordering.)
Observe that if G A O then the Yosida space of every element is a ®nite, discrete
space.

As was observed in 1.1(c), the class of special valued l-groups is a radical class, which
is not a torsion class.

The following proposition sets the stage for our discussion the rest of the way. As is
the custom, if a A G, then G�a� denotes the convex l-subgroup of G generated by a.
The term ``l-ideal'' refers to a normal convex l-subgroup.

Proposition 1.4. Suppose that R is a radical class of l-groups. We denote by Hyp�R�
the class of all G for which G�a�=L A R, for each a A G and each l-ideal L of G�a�.
Then Hyp�R� is a torsion class, and, indeed, the largest torsion class contained in R.

Proof. That Hyp�R� is closed under formation of convex l-subgroups is easy, and we
leave it to the reader. Next, suppose that each Ci A C�G� �i A I� belongs to Hyp�R�,
and let C � 4

i
Ci. The reader will readily appreciate that it su½ces to verify that

quotients G�a�=L belong to R, for each positive a A C. So let a A C; then one may
write a � a1 � � � � � an, with 0U ak A Cik . If L is an l-ideal of G�a�, then

G�a�=L � 4
n

k�1

�G�ak�4L�=L;

and each �G�ak�4L�=L A R, by assumption. This implies that G�a�=L A R.
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Now suppose that f : G ! H is a surjective l-homomorphism, and G A Hyp�R�.
Pick b A H and an l-ideal L of H�b�. There is a preimage a A G of b under f such
that H�b� � f�K � G�a��, with K � ker�f�. Noting that

H�b� � f�K � G�a��G �K � G�a��=K GG�a�=K XG�a�;

we may conclude that H�b�=L is an l-homomorphic image of G�a�, and it is there-
fore in R. This proves that H A Hyp�R�, and that Hyp�R� is a torsion class.

If G A Hyp�R� then, for each a A G;G�a� A R, and hence G A R, because R is a
radical class. That it is the largest torsion class contained in R is routine to check,
and this is left to the reader. r

Remark 1.5. Suppose that R is a radical class in which every convex l-subgroup is
normal. For each G A R and a A G each l-ideal of G�a� is an l-ideal of G. Therefore,
if each l-homomorphic image of G lies in R, it follows that G A Hyp�R�. In this set-
ting then Proposition 1.4 may be stated this way:

G A Hyp�R� if and only if each l-homomorphic image of G lies in R:

This characterization is valid if R consists of abelian l-groups. However, in Example
6.11 we shall see that it does not work in general.

Finally, and formally, here is our central de®nition. Consideration of Hyp�R�-
groups, for di¨erent radical classes R of l-groups is left for another time and place.

De®nition 1.6. An l-group G is said to be hyper-special valued if it belongs to the class
Hyp�SV�, where SV stands for the class of all special valued l-groups. We point
out that if G is such that every l-homomorphic image of it is special valued, then G

need not be hyper-special valued; an example is given in §6, 6.11. In sum then, one
really needs the full strength of the de®nition of Hyp�R� in Proposition 1.4 to get it
to be a radical class.

2 Scattered spaces and higher grades of specialty

In a sense, what makes hyper-special valued l-groups tick is that each Yosida space
Y �g� is scattered. Let us ®rst lay the topological groundwork by giving a brief over-
view of scattered spaces. For the most part we discuss compact spaces. Our central
reference for this is [Ko89], §10.

De®nition & Remarks 2.1. Recall that a space X is scattered if every nonvoid closed
subspace Y of X contains an isolated point of Y. A compact scattered space is nec-
essarily zero-dimensional. (Recall that a space X is said to be zero-dimensional if
there is a base for the open sets consisting of clopen sets.) Under this circumstance we
are able to take advantage of Stone duality. The dual of a scattered compact space is
a superatomic boolean algebra: every nontrivial homomorphic image has an atom.
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Superatomic boolean algebras are characterized in [Ko89], Proposition 17.5. Dual-
izing the statement of that theorem we obtain, for compact space X, that the follow-
ing are equivalent.

(a) X is scattered.

(b) Every nonvoid closed subspace Y of X contains a dense set of isolated points.

(c) Every continuous image of X is scattered.

It should also be clear that any closed subspace of a scattered space is scattered. A
boolean algebra is superatomic precisely when it contains no in®nite free boolean
subalgebras. ([Ko89], Lemma 10.19) Dualizing, and recalling that the dual of a free
algebra on k free generators is the so-called Cantor space 2k of weight k (with the
product topology), we get that X, compact and zero-dimensional, is scattered if and
only if the Cantor set 2o is not a continuous image of X. More is true, however: if X

is compact and scattered then all its continuous real-valued functions are onto com-
pact scattered subspaces of the real line, which by a result of W. RudinÐ[Ru57]Ð
means that all such images are countable. With a little more work one gets the fol-
lowing bit of folklore, which appears as Lemma 1.5 in [MMy]:

Let X be a compact space: Then X is scattered if and only if the unit
interval I is not a continuous image of X :

More crucial to our purposes are the Cantor±Bendixson derivatives, associated to a
scattered space. We brie¯y review the de®nition.

De®nition & Remarks 2.2. Let X be a compact scattered space. We de®ne a nest of
closed subspaces, ordinally indexed. First, let Is�X� denote the set of all isolated
points of X, and put X1 1XnIs�X�. Suppose that, for an ordinal b the Xa have been
de®ned for all a < b. If b is a limit ordinal let

Xb 1
T

a<b

Xa:

Otherwise, if b � g � 1, let

Xb 1XgnIs�Xg�:

Xb is called the b-th Cantor±Bendixson derivative of X. It is shown in §17 of [Ko89]
that the last nontrivial Cantor±Bendixson derivative Xg is ®nite, whereas all the pre-
ceding ones are in®nite. The ordinal g is called the length of the sequence.

The starting point in this section is a result for a class which is slightly bigger than
Hyp�SV�. Let us lead in with a remark.

Remark 2.3. The class pSV of all l-groups G in which each 0 < g A G has a special
component was introduced in [M92]. The members of pSV are said to be pseudo-
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special valued. It should be evident that every special valued l-group is pseudospecial
valued. It was shown in [M92] that pseudospecial valued l-groups need not be special
valued. Before we get to Proposition 2.5, it is useful to record the following result,
which seems to be folklore. If G is any l-group and g A G, then Ng denotes the in-
tersection of all the values of g in G�g�. Note that M A C�G�g�� is a value of g in G�g�
if and only if it is a maximal convex l-subgroup of G�g�. It is a consequence of the
discussion in [BCD86] on above and below subgroups that Ng is always order-closed
in G�g�; this will be used in Proposition 6.6. G�g� is clearly normal in G�g�.

Proposition 2.4. Any pseudospecial valued l-group is normal valued.

Proof. Suppose that G is pseudospecial valued and g > 0 in G. It su½ces to show that
each maximal convex l-subgroup of G�g� is normal in G�g�. Now observe that to say
that G is pseudospecial valued is to say that for each g > 0 there is a maximal pair-
wise disjoint set in G�g� consisting of special components of g. Putting it another
way: G is pseudospecial valued if and only if Ng is the intersection of all the special
maximal convex l-subgroups of G�g�. On the other hand, as is well known (see 40.8,
[D95]), each special value is normal in its cover. This implies that G�g�=Ng is a sub-
direct product of subgroups of R, and, in particular, abelian. Thus, if M is any
maximal convex l-subgroup of G�g�, then M is normal in G�g� because M=Ng is
obviously normal in G�g�=Ng. It follows that G is normal valued. r

Now here is the proposition we are really after.

Proposition 2.5. Hyp�pSV� is the class of all l-groups G such that Y�g� is a scattered

space, for each 0 < g A G.

Proof. We use Lemma 1.2. Suppose ®rst that G A Hyp�pSV�; then in each l-
homomorphic image H of G�g�, each nonzero h A H has a special component. Now
let K be a closed subspace of Y �g� �g A G�. Since Y �g� carries the hull-kernel top-
ology, and since Y�g� is homeomorphic to the space of values of g in G�g�, where all
values are normal (per Proposition 2.4), there is an l-ideal L of G�g� such that
K � fN A Y �g� : LJNg. Since the values of L � g in G�g�=L are the subgroups
of the form M=L, where M is a value of g in G�g�, containing L, it follows that
Y �L � g� is homeomorphic to K. Since L � g has a special component, Lemma 1.2
gives us that K has an isolated point, and therefore Y�g� is scattered.

If, conversely, each Y�g� is scattered, and A is an l-ideal of G�g�, then, once again
Y �A � g� is homeomorphic to a closed subspace of Y �g�. Owing to Lemma 1.2,
A � g has a special value, which is of the form N=A, for suitable N A Y �g�. There is
an s A G such that N=A is the only value of A � s. Without loss of generality one may
choose s > 0, and by taking a su½ciently large multiple of s, A � �s5 g� is a com-
ponent of A � g. r

We wish to use Proposition 2.5 in two instances. The ®rst requires no preliminaries.

Corollary 2.6. If G is hyper-special valued then each Y�g� is scattered.
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Remark 2.7. Proposition 2.5 characterizes a radical class in terms of the Yosida
spaces of the elements of the l-groups belonging to that class. This kind of charac-
terization of radical classes will be explored in more depth in [DMy], where several
of the results of this paper are generalized.

There is another torsion class of l-groups to which we should like to apply Proposi-
tion 2.5.

De®nition & Remarks 2.8. (a) We have already brought up the class O of all cardinal
sums of totally ordered groups (1.3). We enlarge that class, using the ``completion''
idea from [M75]. The class O� consists of all l-groups G for which there exists a well
ordered chain of l-ideals

f0gHL1 H � � � HLa H � � �

for which Lb � Sa A b La for each limit ordinal b;Ld � G, for some ordinal d, and for
each a < d, La�1=La A O. It is well known (see [M75], Theorem 1.6) that O� is a
torsion class; indeed, it is the least torsion class containing all the cardinal sums of
totally ordered groups, which is closed under extensions. (Note: a radical class R is
closed under extensions if, for each G and each l-ideal L of G;G A R whenever L A R
and G=L A R.)

De®ne trans®nitely the sequence O1�G� � O�G�, the O-radical of G, and Oa�1 so
that

Oa�1�G�=Oa�G� � O�G=Oa�G��;

while Ob�G� � Sa<b O
a�G�, for each limit ordinal b. Then G A O� precisely when

G � Oa�G�, for a suitable ordinal a.

(b) Recall (p. 98, [D95]) that in an l-group G; 0 < b A G is basic if the set

fs : 0U sU bg

is a chain. G is said to have a basis if there is a maximal pairwise disjoint set con-
sisting of basic elements. It is well known that G has a basis if and only if each g > 0
exceeds a basic element (Theorem 19.11, [D95]). Now if G A O�, then O�G� is (order)
dense in G ([M75], Corollary 1.7.1), and it is then not hard to see that G has a basis.
Since O� is a torsion class, this means that every l-homomorphic image of G also has
a basis. Conversely, suppose that each l-homomorphic image of the l-group G has
a basis. By observing that O�G� contains any basis of G, arguing trans®nitely, one
obtains that G A O�. Let us summarize this; we emphasize that this result is not new.
One can easily ascribe it to folklore.

G A O� if and only if each l-homomorphic image of G has a basis:
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Recall as well, for later use, that any basic element is special, and note that each
a A O�G� is ®nite valued.

The point of the remarks in 2.8 is to explain the upcoming corollary (Corollary 2.10)
of Proposition 2.5. It will be convenient to precede it with some notational remarks.

Remarks 2.9. Let G be an l-group. Recall that for positive a and b one writes af b if
na < b for each positive integer n. Pick g A G; denote by Ng the intersection of all the
values of g in G�g�. The reader should re¯ect that the values of g in G�g� are precisely
the maximal convex l-subgroups of G�g�. Then it is clear that Ng is invariant under
all the l-automorphisms of G�g�, and therefore is normal in G�g�. It is also easy to
calculate that, if G is normal valued, then, for each g A G,

Ng � fx A G : jxjf gg:

Recall that the class N of all normal valued l-groups is (a torsion class which is)
closed under extensions ([HoM79], or else [GH89], Corollary 6.4.10). Then observe
that if G A O then it is ®nite valued and, necessarily, normal valued (1.1(c)). There-
fore, arguing trans®nitely, each O�-group must be normal valued.

Corollary 2.10. If G A O� then each Y �g� is a scattered space.

Proof. Suppose that G A O� and 0 < g A G. Since Y�g� is homeomorphic to the
Yosida space of g in G�g�, and O� is a torsion class, we assume without loss of gen-
erality that G � G�g�. There is a largest ordinal a for which Oa�G�JNg. In view of
the comments in 2.9, Y�g�GY�Oa�G� � g�, the latter computed in G=Oa�G�. We
may then, without loss of generality, assume that there is some 0 < a A O�G�nNg.
From the remarks in 2.8(b), we may assume that a is basic, and, therefore, special.
Applying Lemma 1.2, it follows that Y�g� contains an isolated point.

One notes again that each closed subspace K of Y �g� arises as the hull of an l-ideal
of G (see the proof of Proposition 2.5). Since O� is a torsion class, this implies that
Y �g� is scattered. r

Remark 2.11. O� and Hyp�SV� are related, but neither one contains the other. The
proof of Corollary 2.10 gives that O� consists of pseudospecial valued l-groups. As to
examples showing that O�-groups need not be hyper-special valued, and conversely,
we refer the reader to §6, 6.8. Indeed, §6 should be consulted for counterexamples to a
number of conjectures the reader might reasonably be expected to form.

Armed with Proposition 2.5 we have a reasonable context of discourse for the so-
called higher grades of specialty.

De®nition 2.12. Suppose that G is an l-group and g A G, with scattered Yosida space.
A value N of g is said to be a-special provided N is an isolated point in the a-th
Cantor±Bendixson derivative of Y�g�. As explained in 2.2, there is a largest ordinal
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d1 d�g� such that g has d-special values, and it has ®nitely many of them. For each
a < d; g has in®nitely many a-special values. As in earlier arguments, it follows that
there is an l-ideal L and ®nitely many positive g1; . . . ; gk so that

L � g �Pk
i�1

L � gi;

disjointly, with each L � gi special in G�g�=L.
We hasten to add that, in general, the a-specialty of a value N is a relative term;

there must be an element g witnessing that feature, and N could be b-special relative
to another element, for some b 0 a. The beauty of a hyper-special valued l-group is
that there the term ``a-special'' is unambiguous and universal.

For convenience, we shall sometimes refer to special values as 0-special values. If g

has exactly one a-special value we will say that g itself is a-special. When such a g is a
component of an h A G we call g an a-special component of h. Thus, summarizing,
the specialty of a value N is an ordinal a, witnessing the fact that N is a-special with
respect to a suitable g A G.

3 The root system of values of a hyper-special valued l-group

This section is devoted to the ®ne structure of the root system of values in a hyper-
special valued l-group, as determined by the various grades of specialty. We state the
goals of this section in one main theorem (Theorem 3.1) at the outset. The proofs are
mostly by trans®nite induction. Our plan is to ®rst establish each assertion of Theo-
rem 3.1 for the ordinal 1, and then proceed to the induction.

Theorem 3.1. Suppose that G is a hyper-special valued l-group. Suppose that b > 0 is

an ordinal. Then we have the following:

(a) Suppose that g; h A G. If M is a b-special value of h and g B M, then the value N of
g containing M is either special, or else a b-special value of g.

(b) Suppose that M;N and P are b-special values and M 4N JP. Then either

M JN or N JM.

(c) If M is a b-special value and N is a value contained in M, then N too is b-special.

For the rest of this section G will denote a hyper-special valued l-group, unless the

contrary is expressly indicated. We start on the proof of Theorem 3.1 with a general
observation.

Proposition 3.2. Suppose that 0 < g A G and that M is an a-special value of g. Then g

has an a-special component t of which M is the lone a-special value.

Proof. We induct on a. There is no loss of generality in assuming that G � G�g�. The
claim is well known for a � 0. So suppose that for each l < a and each l-special
value N of g, there is a l-special component of g having N as its only l-special value.
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Let L denote the l-ideal of G generated by all the l-special components of g. Then
M=L is special; so let L � x be a special component of L � g. Without loss of
generality one may assume that 0 < xU g; let y � g x. Since x5 y A L there are
ordinals l1; . . . ; ln and there is a li-special component gi of g such that x5 yU
g1 � � � � � gn. Let ĝ � g1 4 � � �4 gn; observe that ĝ too is a component of g. Then
t � x5 �g ĝ� is the component we are looking for; here is the reason why. First,
one has disjoint sums

x � �x5 ĝ� � �x5 �g ĝ�� and y � �y5 ĝ� � �y5 �g ĝ��;

and since x5 y5 ĝ � 0, the following is also a disjoint sum:

g � u � t � �y5 �g ĝ��;

where u1 a5 ĝ � b5 ĝ. Thus, t is indeed a component of g. Now, as tU x and x

lies in any value P of g whose grade of specialty exceeds a, and also in any value
P0M of specialty a; t must have these properties as well.

To ®nish the argument it then su½ces to prove two things: ®rst, that M is a value
of t; and second, that the specialty of M is still a relative to t. As to the ®rst, note that

L � t � L � x5 �L � g L � ĝ� � L � x;

since ĝ A L. Thus t B M which is enough to make M a value of t. As to the second
point, consider the topology of the scattered space Y �g�: h�t� is a clopen set in Y�g�;
if it is Y �g� then t � g and there is nothing to prove. Otherwise, as h�t� contains an
isolated point of each of the Cantor±Bendixson derivatives which it intersects, we
conclude that t has l-special values for each l < a, and so M is an a-special value
of t. r

Now that we have as many a-special components as we could want, we record an
observation for later.

Lemma 3.3. For each ordinal a such that 0 < g A G has a-special values, g is the

supremum of all its a-special components.

Proof. If a is an a-special component of g and s is a special component, then g4 s

is also an a-special component of g. Thus, each special component of g is bounded
by an a-special component, which su½ces to establish the claim, since G is special
valued. r

The upcoming sequence of results establish the claims of Theorem 3.1 for 1-specialty.

Lemma 3.4. Suppose that M is a 1-special value, and g B M. Then the value of g which

contains M is either special or a 1-special value of g.
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Proof. Let P stand for the value of g containing M. Suppose P is not special. Pick
0 < h A G 1-special, witnessed by M. We may replace h by h5 g and then use Prop-
osition 3.2 to produce a 1-special component of h5 g, whose lone 1-special value is
M. Thus, without loss of generality, hU g. In the same vein, we may assume that
G � G�g�.

Let L be the l-ideal of G generated by all the special components of g. Observe
that every special component of g is in M, whence LJM, and, in particular, h B L.
On the other hand, since P is not special, every special component of h is also in L,
and so it follows that M=L is a special value (of L � h), and then also P=L is special,
because G=L is hyper-special valued. By de®nition, P is a 1-special value of g. r

We state a corollary which settles for 1-specialty, that the concept is, for hyper-
special valued l-groups, independent of the element that exhibits it.

Corollary 3.5. If M is a 1-special value of h and also a value of g, then M is a 1-special

value of g.

The next lemma will be generalized later.

Lemma 3.6. Suppose that M JN are 1-special values, and 0 < gU h are 1-special

elements witnessing this at M and N, respectively. Then g and h have all but ®nitely

many of their special values in common.

Proof. Suppose ®rst that h has in®nitely many special values which are incomparable
to any special value of g. Let L be the l-ideal of G�h� generated by the special com-
ponents of h which do contain a special value of g. In G�h�=L; �M 4L�=L is special.
But then L � h has in®nitely many values, all special, which is impossible (see 1.1(c)).
We conclude that h has at most ®nitely many special values which do not contain a
special value of g.

To show that at most a ®nite number of special values of h contain one of g

properly, let A be the l-ideal of G�h� generated by all the special components of g.
Once again �M 4A�=A is special. But if there is an in®nite number of special values
of h properly containing one of g, then A � h has in®nitely many values, all special,
again a contradiction. r

Lemma 3.7. No 1-special value of G contains two incomparable 1-special values.

Proof. Suppose that M1;M2 and N are 1-special values of G, and that M1kM2, while
both are contained in N. Select positive g1; g2 and h, all 1-special, such that
g1 4 g2 U h and having their unique 1-special value at M1;M2 and N, respectively.
Without loss of generality, we may suppose that g1 5 g2 � 0. As none of these ele-
ments is special, each one has in®nitely many special values, and therefore both g1

and g2 have in®nitely many values which do not coincide with values of h. That
contradicts Lemma 3.6. r
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Lemma 3.8. If M is a 1-special value of G and it contains the value N, then N too is

1-special.

Proof. By way of contradiction, let us assume that the specialty of N is a > 1. Sup-
pose that h > 0 witnesses the 1-specialty of M, and that g > 0 does the same for the
a-specialty of N.

If all the special values of g lie below a ®nite number of special values of h, then for
a suitable sum h 0 of special components of h, there is a multiple nh 0 which exceeds all
the special components of g and hence g itself since G is special valued. This is im-
possible, because N JM. Thus, there are in®nitely many special components of h
which contain a special component of g.

Next, since a > 1; g has in®nitely many g-special values, for each g < a. This is
true, in particular, for g � 1. Now at most one 1-special value of g can be contained
in M, by Lemma 3.7, and so in®nitely many 1-special components of g lie under
special components of h. What is important about this is that there are in®nitely
many special values which contain values of g properly. Therefore, if we let L denote
the l-ideal of G�h� generated by all the components of g of specialty < a, we get that
L � g is special with value �N 4L�=L, while �M 4L�=L is not special. This cannot
happen since G�h�=L is special valued. r

As an intermediate result let us summarize the information in Lemmas 3.4, 3.7 and
3.8:

Proposition 3.9. The set Val1�G� of all 1-special values of G is a disjoint union of chains

which are order ideals in Val�G�. Only special values may contain a 1-special value.

Remark 3.10. We have veri®ed Theorem 3.1 for the case b � 1. We now assume that
b > 1 and that all three claims made there are true for all ordinals 1U l < b. In the
subsequent propositions we use this three-pronged hypothesis to verify one by one
that the claims of Theorem 3.1 hold for b.

Proposition 3.11. The claim in Theorem 3.1(a) holds for b.

Proof. Suppose that M is a b-special value of G and the value N properly contains M.
Assume that the specialty of N is gV 1 (for a suitable element). Then the inductive
hypothesis for Theorem 3.1(c) dictates that b U g. Suppose, by way of contradiction,
that b < g. Without loss of generality we may assume that g > h > 0, with g is g-
special, witnessed by N, while h is b-special, exhibited by M. If 1U a < b and P is an
a-special value of h, the value of g in which it is contained is special, or else a-special,
by the induction hypothesis for Theorem 3.1(a). This implies that any value of g of
specialty b or higher contains no values of h. As in earlier proofs, let L be the l-ideal
of G�g� generated by all the a-special components of h, for all a < b. In G�g�=L then,
L � h is special with value �M 4L�=L, while �N 4L�=L is not special. As before,
this is a contradiction. We are forced to conclude that b � g. r
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Proposition 3.12. The claim in Theorem 3.1(b) holds for b.

Proof. We set things up: by way of contradiction, suppose there are b-special values
M1;M2 and N, so that M1kM2 and both of these are contained in N. Pick positive
g1; g2 and h, witnessing a-specialty at M1;M2 and N, respectively, and such that
g1 4 g2 U h. From here the proof consists of a number of claims.

Every value of g1 5 g2 has specialty < b.
For suppose that P is a value of g1 5 g2. It is contained in values Q1 and Q2 of g1 and
g2, respectively. It should be clear that Mi 0Qi for both i � 1; 2. Thus the specialty
of Q1 and Q2 is < b. By the induction hypothesis of Theorem 3.1(c), it follows that
the specialty of P too is < b.

Without loss of generality g1 5 g2 � 0.
If not already so, then as explained in 2.12 there is a largest ordinal d < b such that
every value of g1 5 g2 has specialty not exceeding d, and g1 5 g2 has only a ®nite
number of d-special values. Thus, g1 5 g2 is a disjoint sum of d-special components
ai �i � 1; . . . ; n�. It is then not hard to see that each ai is a d-special component of g1

or g2, so that subtracting ai from the appropriate gj � j � 1; 2�, one obtains a pair of
elements with the same speci®cations as g1 and g2, now disjoint.

There are in®nitely many values of h of specialty < b which contain values of g1 (nec-
essarily of the same specialty, by the induction hypothesis regarding Theorem 3.1(c)),

and likewise for g2.
Suppose the contrary, that, say, all the values of g1 of specialty < b are contained in
a ®nite number of values of h of specialty < b. By Lemma 3.3, this means that there
is a component a, with no b-special values which exceeds g1. This contradicts that
M1 JN, and the claim is established.

Arguing now as in the proof of Lemma 3.8, we are able to deduce that there are in-
®nitely many values of h of specialty < b which properly contain values of g1 of equal
specialty. A similar statement is true for g2 as well. Now taking the l-ideal L of G�h�
generated by all the a-components of g1 for a < b, then L � g1 is special with value
�M1 4L�=L, while �N 4L�=L is not special. r

Proposition 3.13. The claim in Theorem 3.1(c) holds for b.

Proof. Suppose that N is a b-special value, which is exhibited by the b-special ele-
ment h > 0. Suppose that the value M is contained in N, and has specialty a. By what
we've done so far it follows that aV b. Let us assume, by way of contradiction, that
a > b. Pick a positive g, a-special, which witnesses the a-specialty of M. If P is any
value h;P0N, then any value of g contained in it must have the same specialty. This
means that if b U dU a, then every d-special value of g must be contained in N. On
the other hand (applying this to d � b), g has in®nitely many b-special values, but
only one may lie under N, because of Proposition 3.12. This is absurd, and so we
must conclude that a � b, thus proving this proposition. r
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With Propositions 3.11, 3.12 and 3.13, Theorem 3.1 is now proved. r

For emphasis, we note the following formulation of Theorem 3.1.

Corollary 3.14. For each ordinal aV 1, let Vala�G� denote the set of all a-special
values of G. Then Vala�G� is an order ideal and a disjoint union of chains, and only

special values may contain a value in Vala�G�.

To conclude the section, let us record an observation which, by now, is obvious from
Theorem 3.1(a).

Corollary 3.15. Suppose that M is a b-special value of h and also a value of g. Then M

is a b-special value of g.

4 Projectable hyper-special valued l-groups

In this section we consider the structure of projectable hyper-special valued l-groups,
and apply the main structure theorem (Theorem 4.2 below) to the Yosida repre-
sentation of archimedean l-groups with weak order unit.

Before proceeding, let us ®rst review some issues relating to polars and projectable
l-groups.

De®nition & Remarks 4.1. (a) Suppose that G is an arbitrary l-group. For any subset
X of G we denote

X? � fg A G : jgj5 jxj � 0 for all x A Xg:

It is well known that X? A C�G�, and if A A C�G�, then A? is the largest convex
l-subgroup of G such that AXA? � f0g. We call A A C�G� a polar of G if it is of the
form A � X?, for some X JG. Note that A is a polar if and only if A � A??. The
set P�G� of all polars of G is a complete boolean algebra under inclusion, which is
complete meet subsemilattice of C�G� (Theorem 13.7, [D95]). For each g A G; g?

stands for fgg?, and g?? for fgg??.

(b) The l-group G is projectable if G � g?? � g?, for each g A G. It is well known
that if G is projectable then the root system of prime subgroups of G is a disjoint
union of chains; equivalently, each prime subgroup contains a unique minimal prime
subgroup (Theorem 18.1, [D95]).

We characterize projectable hyper-special valued l-groups as follows. For each or-
dinal a (including 0), recall that Vala�G� stands for the set of all a-special values of G.

Theorem 4.2. Suppose that G is hyper-special valued. Then the following are equivalent.

(a) G has a basis, and for each basic element b > 0;G � b?? � b?.
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(b) Val0�G�, the set of special values of G, is an order ideal which is a disjoint union of

chains.

(c) G is projectable.

In particular, if G is hyper-special valued and projectable then it is hyper-projectable.

Proof. (a) ) (b) Since G � b?? � b? for each basic b > 0, and G has a basis, we get
that every special element is basic: for if s > 0 is special but not basic, then we may
choose 0 < a; b < s such that a5 b � 0, and, indeed, both a and b are basic. But then
s B a?? � a?, a contradiction. This shows that Val0�G� is a disjoint union of chains,
and, with a little more thought, that no special value can contain a non-special value.
We leave the veri®cation to the reader. (Note: this implication has nothing to do with
G being hyper-special valued.)

(b) ) (c) We take positive g and h and proceed to show that g A h?? � h?. We do
this by induction on the specialty of h. First, a few preliminary reductions. There is a
largest ordinal a such that h has a-special values, and it has ®nitely many of those
(2.12). So we may write h as a disjoint sum of its a-special components. If for each of
those components h 0; g A h 0?? � h 0?, then a routine bit of l-group arithmetic yields
that g A h?? � h?. Thus, we may assume that h is a-special; let Mh be its single
a-special value. Likewise, it is enough to assume that g is b-special, and we denote
its b-special value by Mg. Finally, we may also suppose that G � G�g�.

Suppose h is special. If g5 h � 0 there is nothing to prove. Thus g5 h > 0. Then
Mh is comparable to a value N of g, which by the assumption of (b) is unique and
special. Let a be the special component of g with value N. It is then an easy exercise
to check that a A h??, while g a is clearly disjoint to h. Thus g A h?? � h?, and this
proves the claim for a � 0.

Now assume that G � z?? � z? whenever every value of z has specialty < a. The
reader will readily convince himself that it su½ces to assume that hU g. Thus also,
aU b, by Theorem 3.1. There is a value of g containing Mh, say P, and it is neces-
sarily a-special. Pick an a-special component a of g with lone a-special value P. Let
us consider g a; none of its a-special values is comparable to Mh. This means that
x1h5 �g a� has no a-special values. By the inductive hypothesis, g a A x?? � x?;
that is,

g a � g1 � g2; with g1 A x?? J h?? and g2 5 x � 0:

But then g2 5 h � 0 as well, proving that g a A h?? � h?.
The above calculation demonstrates that it su½ces to consider the case in which

a � b, with Mh JMg (and g � a). Let L be the l-ideal of G generated by all the
components of h of specialty g < a. Then L � h is special with value Mh=L, which
means that Mg=L is special as well, since G is hyper-special valued. We choose a
special component L � s of L � g with value Mg=L. Without loss of generality we
may take hU sU g.

Suppose that Q is a value of s. If LJQ then Q � Mg. If LPQ, then some g-
special component h of h �g < a� fails to be in Q. But then Q is contained in some
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value of h, which, in view of hU s, means that Q is a value of h. The upshot is that
for each g < a, the g-special values of h and s are identical. This implies that s? � h?,
as the reader will readily verify. Next, consider u � s5 �g s�; u A L, so that u has
no a-special values. By the inductive hypothesis, g s A u?? � u?, which in turn im-
plies that g s � c � d, with

c A u?? J s?? � h??;

and 0 � d 5 u � d 5 s, whence d A h?. Conclusion: g s A h?? � h? and s A h??,
and hence g A h?? � h?. This proves that (b) implies (c).

That (c) implies (a) should be clear, as, if G is projectable, then Val�G� is a disjoint
union of chains. From this it readily follows that each special element is basic. This
su½ces for (a).

As to the ®nal claim of the theorem, if G is projectable and hyper-special valued,
and L is an l-ideal of some G�a�, then G�a�=L is again hyper-special valued, and (b)
of the theorem is also satis®ed. Thus, G is hyper-projectable. r

The following result is extracted from the proof of Theorem 4.2. It is technical and
yet, somehow, fascinating. In our view, it encapsulates the thinking of the preced-
ing proof. For a time it also seemed essential to proving Theorem 4.8, ahead in this
section.

Lemma 4.3. Suppose that G is a projectable, hyper-special valued l-group and 0 <
hU g, both a-special, with unique a-special value Mh JMg. Assume as well that

g? � h?. Let L be the l-ideal of G�g� generated by all the components of h of specialty

g < a. Then there exists hU sU g such that

(a) L � s is a special component of L � g with value Mg=L;

(b) for each g < a, the g-special value of h and s agree, and s? � h?;

(c) let u � s5 �g s�; then u A L, and u has no a-special values;

(d) �g s�? � u?.

Proof. (a), (b) and (c) were established in the foregoing proof. For (d), it su½ces to
show that u? J �g s�?. Note that since g? � h?, we also have g? � s?. Thus, if
x5 u � 0, then x5 g5 �g s� � 0; that is, x5 �g s� � 0. r

We immediately have the following corollary to Theorem 4.2.

Corollary 4.4. If G is archimedean and hyper-special valued then it is hyper-projectable.

Proof. Every special element of an archimedean l-group is basic (Proposition 53.16,
[D95]). Thus, if G is archimedean and special valued then it has a basis, and so (a) of
Theorem 4.2 holds (Theorem 19.16, [D95]). The claim then follows from Theorem
4.2. r
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Remark 4.5. In the class of hyper-projectable l-groups some of the features of hyper-
special valued l-groups which were set forth in some detail in §3 can be recovered.
This will discussed in [DMy].

Example 4.6. The converse of Corollary 4.4 is false, even for archimedean l-groups.
Any hyper-archimedean l-group is projectable, and therefore hyper-projectable. For
example, consider the l-group of all periodic real sequences. It is hyper-archimedean
but has no special elements.

For the next observation we return to the class O� of §2, for which we refer the reader
to 2.8(a). A converse of Corollary 4.7 turns up in Theorem 5.4, later on in the article.

Corollary 4.7. If G is projectable and hyper-special valued then it is also in O�.

Proof. As spelled out by Theorem 4.2, every special element of such a group is basic,
and, moreover, O�G� is precisely the subgroup generated by all the special elements.
In G=O�G� the special elements are the cosets represented by 1-special elements of G.
According to Theorem 3.1, these are all basic, whence O�G=O�G�� is the subgroup
generated by the special elements of G=O�G�. The reader may now easily complete
the trans®nite induction. r

In projectable l-groups, hyper-special valuedness implies more ®nely wrought struc-
ture. This is the subject of our next theorem.

Theorem 4.8. Suppose that G is a projectable, hyper-special valued l-group and 0 <
hU g, both a-special, with respective a-special values Mh JMg. Assume as well that
g? � h?. Then, if a > 1, g and h have all but ®nitely many of their g-special values (all

g < a) in common.

Proof. First observe that, since g? � h?, each value of g of specialty g < a must
contain a value of h (which, necessarily, is of the same specialty.) This uses project-
ability, which implies that Y�g� and Y �h� are homeomorphic via the map that
assigns to a value V of h the value of g which contains it.

Now suppose that there are in®nitely many values of g which contain a value of h
properly; they are all of specialty g < a. We may suppose that a is the least ordinal
for which this happens. Else, let b be the ®rst ordinal with the feature that there are
in®nitely many values of g of specialty less than b, containing a value of h properly.
Choose a b-special component go of g, and let ho be the projection of h on go. Then go

and ho satisfy the hypotheses of the theorem and we may proceed with them. Thus,
we suppress the subscripts and assume a is least, as explained here.

It will aid our exposition to denote by T the set of ordinals g with the property that
some g-special value of g properly contains a value of h. We claim that a � 4T . If
not, let d be this supremum. Let Z be the closure in Y �g� of the set of all g-special
values of g, over g A T . Let L be the l-ideal of G�g� generated by the all the com-
ponents of h of lesser specialty than a. Next, observe that Y�L � g� is canonically
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homeomorphic to the closed subspace K � Z W fMgg, and since we are supposing
that d < a, it follows that Mg is isolated in K. Since Z is scattered and d indexes the
last nontrivial member of its Cantor±Bendixson sequence, we have that there is a
d-special component g 0 of g, and by projection of h upon g 0, a d-special component
h 0 of h below it. Note now that g 0 and h 0 satisfy all the hypotheses of the theorem,
with d < a. This contradicts the minimality of a, and so our claim is established.

But now, returning to G�g�=L, we are able to conclude that Mg=L is not isolated in
Y �L � g�, and hence not special, whereas Mh=L (beneath it) is special, thus contra-
dicting the fact that G�g�=L is special valued. From this the conclusion of the theo-
rem follows. r

Theorem 4.8 has an important consequence for hyper-special valued archimedean
l-groups with a weak order unit, in terms of the Yosida representation of the group.
We discuss that and other aspects of archimedean hyper-special valued l-groups in
the next section.

5 Archimedean hyper-special valued l-groups

We begin by brie¯y recalling the elements of the Yosida representation. For ampli®-
cation we recommend [HR77].

De®nition & Remarks 5.1. Suppose that X is a compact Hausdor¨ space. We let
D�X� stand for the set of all continuous functions f on X with values in the extended
real numbers, so that f 1�R� is a dense (open) set. Taking pointwise suprema and
in®ma, D�X� becomes a distributive lattice. However, only under special circum-
stances is D�X � a group under pointwise addition. Observe though that, if f A D�X �
then f is as well. In any event, a subset H JD�X� is an l-group in D�X� if H
is an l-group so that for each f ; g A D�X �; � f � g��x� � f �x� � g�x�, whenever
x A f 1�R�X g 1�R�.

Suppose that G is an archimedean l-group with a weak order unit u > 0. Set
Y � Y�u�. It is convenient to follow the following convention: technically, a point
y A Y is a value of u; in practice, however, we carry a bijection y 7! Vy, signifying
that when we think of y as a point in a topological space in the context of a repre-
sentation, we shall use the lower case y; when thinking of it as a value of u, we shall
employ the subscripted Vy.

There is an l-isomorphism f : G ! G 0 onto an l-group G 0 in D�Y�, such that
1 A G 0 and f�u� � 1. Moreover, f separates points, in the sense that if g0 0 in G,
then g�y�0 0, for a suitable y A Y . Finally, Y is canonical, in the following sense: if
y : G ! H is an l-isomorphism onto an l-group in D�X �, with X compact and
Hausdor¨, which separates points, then there is a homeomorphism t : X ! Y such
that for each f A G,

f� f ��t�x�� � y� f ��x�;

for each x A X .
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Recall that if Y is scattered and G is represented on Y as described here, then each
f� f ��Y � is countable (see 2.1).

And now let us record some preliminaries for Theorem 5.3 below.

Remark 5.2. Suppose that f is an extended real valued continuous function on a
topological space X. Recall that Z� f � stands for the zeroset of f, that is,

Z� f � � fx A X : f �x� � 0g:

The complement, coz� f �, is the cozeroset of f. Now, we call p A Z� f � an accumulated

zero of f if p A cl�coz� f ��. As one might guess, if g is continuous on X, with values
in the extended real numbers, then p A X is an in®nity of g if g�p� � Gy.

The statement of Theorem 5.3 suppresses the l-isomorphism in the Yosida repre-
sentation.

Theorem 5.3. Suppose that G is a hyper-special valued archimedean l-group with des-
ignated weak order unit u > 0, and let Y � Y�u�. Then G is l-isomorphic to an l-group

in D�Y�, such that each f A G has ®nitely many in®nities and ®nitely many accumu-

lated zeroes.

Proof. Suppose that f A G; then p A Y is an in®nity of f if and only if p corresponds
to a value Vp of u for which f B V �

p . (Clearly such a Vp is not special.) Theorem 4.8
guarantees that there are at most a ®nite number of such points.

As to the accumulated zeroes, it su½ces to consider f > 0: there is an 0U f 0 A G
such that f 5 f 0 � 0 and f � f 0 is a weak order unit. To see this, use the project-
ability of G and let f 0 be the projection of u disjoint from f. Now, Theorem 4.8 in-
sures that in the Yosida representation (which identi®es u with 1), f � f 0 has ®nitely
many zeroes, as those points p correspond to values such that f � f 0 A Vp. They are
necessarily accumulated zeroes of f � f 0. We claim that every accumulated zero of f

is one of these.
For suppose the contrary; that is, suppose y A Y is an accumulated zero of f, yet

f 0�y� > 0. Then for a suitable neighborhood U of y, f 0�U� > 0, and so f �U� � f0g,
which contradicts the assumption that y A cl�coz� f ��. r

Next, in this section, we turn to the converse of Corollary 4.7, promised earlier.

Theorem 5.4. Suppose that G is a projectable l-group with weak order unit u > 0,

which is in O�, such that for each g A G all but ®nitely many values of g are also values

of u. Then G is hyper-special valued.

Proof. Observe at the outset that, by Corollary 2.10, every Yosida space is scattered.
We must show that, for each g A G and each l-ideal L of G�g�;G�g�=L is special

valued. In this we may assume, without loss of generality, that g > 0. Next, observe
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that we may write g as

g � g1 � � � � � gk; with gi 5 gj � 0 for i0 j;

so that only one value of gi di¨ers from a value of u. By reduction we have

G�g�=L � 4
k

i�1

�G�gi�4L�=L;

which makes it clear that it is su½cient to prove the claim for each component. Thus,
we may assume that only one value of g is not a value of u.

Here is another reduction: project u on g; we write u � u1 � u2, with u1 A g?? and
u2 5 g � 0. We have that G � u??

1 l u??
2 , and the same assumptions of the theorem

apply to u??
1 . As g A u??

1 , we may as well assume that g is a weak order unit too, and
then Y�g� � Y�u�. For the rest of the argument then, u � u1.

Suppose now, by way of contradiction, that G�g�=L is not special valued. Then
there exist 0 < x < y A G�g� having values Vx and, respectively, Vy, such that LJ
Vx HVy, with Vx=L special, but Vy=L not. Our standing assumption implies that
Y �y�nY�x� is ®nite. By taking suitable components, as in the preceding reductions,
we may assume that jY�y�nY �x�j � 1. Now, as Vx=L is special, it follows that each
component of x of lower specialty than that of Vx lies in L. The same is then true of
the components of lower specialty of y. But then Vy=L is special, a contradiction. r

Our ®nal major result spells out when the necessary conditions in Theorem 5.3 su½ce.
To set up this theorem (Theorem 5.7), it will behoove us to review the O�-groups
from the vantage point of the space of minimal prime subgroups. Several remarks are
in order.

De®nition & Remarks 5.5. In these comments G stands for an arbitrary l-group.

(a) An elementary Zorn's Lemma argument shows that every prime subgroup con-
tains a minimal prime subgroup (Theorem 9.6, [D95]). We let Min�G� denote the set
of minimal prime subgroups of G. When we refer to the minimal prime subgroup
space we mean Min�G� with the induced hull-kernel topology. Min�G� is always a
zero-dimensional space. As a reference for this and other remarks made here about
Min�G� we suggest [CM90]. According to Theorem 2.2 in [CM90], Min�G� is com-
pact if and only if G is complemented; that is, to each g A G there is an 0U h A G such
that jgj5 h � 0 and jgj � h is a weak order unit. In this situation, h is called a com-

plement of g.

(b) The reader will easily verify that a projectable l-group with a weak order unit is
complemented. If G has the feature that each prime subgroup contains a unique
minimal prime subgroup, we say that G has stranded primes. Note that the class of
l-groups with stranded primes is a torsion class. Also, every projectable l-group has
stranded primes (Corollary 18.2, [D95]). Conversely, if G is complemented and has
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stranded primes, then it is projectable. This is easy to prove, and we leave it to the
reader.

(c) We examine the topology of Min�G� a bit more closely. The closed sets are of the
form

V�A� � fP A Min�G� : AJPg;

and we may assume that A is an intersection of minimal prime subgroups. Recall that
if N is a prime subgroup, then N is minimal precisely when a A N implies that
a?? JN (Proposition 15.1, [D95]). A convex l-subgroup with this feature is called
a z-subgroup. (The reader is cautioned that some authors refer to such a convex
l-subgroup as a d-ideal.) It is clear that each A A C�G� which is an intersection
of minimal prime subgroups is a z-subgroup. When G is complemented the converse
is true (§ 3, [CM90]).

Here is a proposition which characterizes projectable O�-groups in terms of the mini-
mal prime subgroup space.

Proposition 5.6. Suppose G is a projectable l-group with weak unit. Then G A O� if and

only if Min�G� is scattered.

Proof. For use in this proof we introduce, for each ordinal a,

Ma 1 fP A Min�G� : Oa�G�JPg:

This is a closed subset of Min�G�.
The proof depends on establishing the following claim:

O�G� is a z-subgroup and G=O�G� is again complemented:

For if 0 < a A O�G� then a is a sum of pairwise disjoint basic elements ai �1U i U k�.
But then, as the reader will readily verify,

a?? � 4
k

i�1

a??
i ;

and since each a??
i is a totally ordered group (Theorem 19.1, [D95]), it follows that

a?? JO�G�.
Next, as is established in [CM90], §3, if A is a z-subgroup of G and P is a prime

subgroup, minimal with respect to containing A, then P A Min�G�. This means that
Min�G=O�G�� is canonically homeomorphic with M1. Being a closed subset of a
compact space, it follows that Min�G=O�G�� is compact, which means that G=O�G�
is complemented. This is obviously the ®rst leg of an induction argument.
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Continuing, suppose that b > 1 is an ordinal and that, for each a < b, Oa�G� is
a z-subgroup. If b is a limit ordinal then Ob�G� � Sa<b O

a�G�, and any union of a
chain of z-subgroups is a z-subgroup. Otherwise, if b � a � 1, then one may prove
that G=Oa�G� is complemented, as shown in the preceding paragraph. This insures
(see 5.5(b)) that G=Oa�G� is projectable. Now

Ob�G�=Oa�G� � O�G=Oa�G��;

which is an intersection of minimal prime subgroups Pi=O
a�G� �i A I� of G=Oa�G�.

As Oa�G� is a z-subgroup of G, each Pi is minimal among prime subgroups of G,
proving that Ob�G� is a z-subgroup.

For each basic element a; a? is the unique minimal prime subgroup not containing
a. Conversely, 2.6 of [CM90] tells us that an isolated point of Min�G� is the polar of a
basic element. This makes it clear that M1 is the ®rst Cantor±Bendixson derivative of
Min�G�. Now suppose that it has been shown for all a < b, with b > 1, that Ma is the
a-th Cantor±Bendixson derivative. If b is a limit ordinal then it should be clear that
Mb � Ta<b Ma, and so Mb is the b-th Cantor±Bendixson derivative, by de®nition. If
b is a successor ordinal, say b � a � 1, then the matter is settled by the fact that

Ob�G�=Oa�G� � O�G=Oa�G��;

and again by de®nition of the Cantor±Bendixson derivatives.
The proposition is now easily proved: G A O� precisely when G � Ob�G� for some

b, which happens if and only if Mb � j. r

We have what we need for the following result.

Theorem 5.7. Suppose that G is archimedean with weak order unit u > 0. If G is also

projectable, Y�u� is scattered, and, in the Yosida representation, each g A G has ®nitely
many in®nities and accumulated zeroes, then G is hyper-special valued.

Proof. We identify G with its image under the Yosida representation on Y � Y�u�.
The hypothesis about zeroes and in®nities implies that, for each g A G, there are only
®nitely many values of g which aren't values of u. All that's left to do is apply Prop-
osition 5.6 to conclude that G A O�, and then by Theorem 5.4 this theorem is proved.

To conclude that G A O� observe that, since G is projectable, Min�G� is homeo-
morphic to Y under the map which associates with a minimal prime subgroup P
the value of u that lies above it. Thus Min�G� is scattered and Proposition 5.6
applies. r

The remainder of this section consists of a few observations about particular archi-
medean hyper-special valued l-groups, and also about the torsion radical of
Hyp�SV�. Let us begin by applying Theorems 5.3 and 5.7 to integer valued con-
tinuous functions.
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De®nition & Remarks 5.8. We assume that X is a zero-dimensional space. C�X ;Z�
denotes the ring of all continuous integer valued functions de®ned on X. It is also
an l-group under pointwise operations. It is well known that C�X ;Z� is always
projectable. Min�C�X ;Z�� is homeomorphic to the so-called Banaschewski compac-

ti®cation of X, usually denoted b0X . (See § 4.7 of [PW89].) Like the Stone±CÏ ech
compacti®cation, b0X has a universal property, namely, that for each continuous
map f : X ! T , where T is any compact zero-dimensional Hausdor¨ space there is a
unique extension b0� f � : b0X ! T of f.

For X compact, C�X ;Z� is a Specker group; let us explain. An element s > 0 in an
l-group G is singular if x5 �s x� � 0, for each 0U xU s. G is a Specker group if it
is generated as an l-group by its singular elements. If this is so, then it can be shown
that G is, in fact, generated as a group by its singular elements (Proposition 55.11,
[D95]). Note that each Specker l-group is hyperarchimedean (Proposition 55.10,
[D95]), and that the Specker l-groups form a torsion class (Proposition 55.15, [D95]).
Now if G is a Specker l-group with a singular order unit u, then it can be shown that
G GC�Min�G�;Z�, so that we may legitimately view the class of Specker l-groups as
the class of l-groups C�X ;Z�, with X compact and zero-dimensional.

In the context of this section we have the following. Recall that a topological space X

is pseudocompact if each real valued continuous function from X is bounded.

Proposition 5.9. If C�X ;Z� is hyper-special valued, then b0X is a scattered space. This

implies that X is pseudocompact and that C�X ;Z� is a Specker l-group.

Proof. By Corollary 4.7, C�X ;Z� A O�, whence, from Proposition 5.6, Min�C�X ;Z��
G b0X is scattered. Now a compact scattered space cannot contain a copy of bo,
the Stone±CÏ ech compacti®cation of the discrete natural numbers. Thus, X must be
pseudocompact, otherwise, by Corollary 1.21, [GJ76], X contains a C-embedded
copy of o, and b0X therefore contains a copy of bo. (Also relevant here is 5G(4) of
[PW89].) Finally, since X is pseudocompact, every f A C�X ;Z� is bounded and,
therefore, C�X ;Z� is generated by its characteristic functions. Conclusion: C�X ;Z� is
Specker. r

For an arbitrary Hausdor¨ space X, we now investigate the analogue of Proposition
5.9 for C�X �, the ring of all continuous real valued functions on X. C�X � is an ar-
chimedean l-group with respect to the pointwise operations of sum, supremum and
in®mum. We begin with some preliminaries. Our general reference for rings of con-
tinuous functions is [GJ76]. All unexplained terminology may be found there.

De®nition & Remarks 5.10. (a) As explained in Chapter 3 of [GJ76], when dealing
with C�X� one may always assumeÐas we do hereÐthat the space X is Tychono¨:
that is to say, Hausdor¨, such that for each closed set K and each p B K there is an
f A C�X � such that f �p� � 0 and f �K� � f1g. Equivalently, X is Tychono¨ if it
is Hausdor¨ and the sets coz� f � � f A C�X�� form a base for the open sets of the
topology.
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When viewing C�X � as an archimedean l-group without speci®c mention of a
weak order unit, it will always be understood that the designated unit is the constant
function 1. Its Yosida space is canonically homeomorphic to bX , the Stone±CÏ ech
compacti®cation of X.

(b) Recall that a space X is basically disconnected if the closure of each cozeroset is
open. It is well known that X is basically disconnected if and only if bX is basically
disconnected (6M.1, [GJ76]). Also, as is well known, X is basically disconnected if
and only if C�X � is projectable.

X is an F-space if each cozeroset of X is C �-embedded. It is well known that each
basically disconnected space is an F-space ([GJ76], 14N.4), but the converse is false;
e.g., bono. Note as well that X is an F-space if and only if bX has this feature
([GJ76], Theorem 14.25). What we will need in this context is that each countable
subset of an F-space is C �-embedded ([GJ76], 14N.5). This implies that if X is a
compact F-space contains a copy of bo. Thus, a compact F-space which is scattered
is ®nite.

(c) Let us venture a little further a®eld. A space X is cozero-complemented if for
each cozeroset U there is one V, such that U XV � q and U WV is dense. It is
easy to see that X is cozero-complemented precisely when C�X � is a complemented
l-group.

Recall that a continuous surjection f : Y ! X between compact spaces is called
irreducible if whenever AJY is closed and f �A� � X , then A � Y . It is well known
that a continuous surjection f : Y ! X induces an l-embedding C� f � : C�X �! C�Y �
by C� f ��g� � g � f . Then f is irreducible if and only if C� f � is a dense embedding of
l-groups. For a primer on irreducible maps between spaces we refer the reader to
[H89].

For a given compact space X there is a minimum basically disconnected cover, in
the following sense. There are a compact basically disconnected space BX and an
irreducible surjection bX : BX ! X with the property that if g : Y ! X is any
irreducible surjection, with Y compact and basically disconnected, then there is
an irreducible surjection ĝ : Y ! BX such that g � b � ĝ. For completeness we note
that, if X is compact then C�BX � is canonically l-isomorphic to the Dedekind s-
completion of C�X�.
(d) Now, when X is compact and cozero-complemented then BX can be obtained
as follows. As already noted (5.5(a)), Min�C�X�� is compact, because C�X � is
complemented. Moreover, Min�C�X �� is basically disconnected and the map bX :
Min�C�X�� ! X , assigning to each minimal prime subgroup the maximal ideal
containing it, is irreducible (up to a canonical homeomorphism), and bX witnesses the
fact that Min�C�X�� is the basically disconnected cover of X. This can be pieced
together from material in [HVW87] and [HM93]. Without apology we skip the de-
tails and rely on the interested reader to check the references.

Armed with the above remarks it is easy to say when C�X� is hyper-special valued.
The result may disappoint, but should not surprise.
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Proposition 5.11. For any Tychono¨ space X ;C�X � is hyper-special valued if and only

if X is ®nite.

Proof. The su½ciency is clear, and so we move on to the necessity. If C�X� is hyper-
special valued, then, per Corollary 4.4, C�X� is projectable, whence X and bX are
basically disconnected. On the other hand, bX is scattered (Proposition 2.5), and so,
by the remarks in 5.10(b), bX and X are ®nite. r

With the assumption of cozero-complementation we can pinpoint the hyper-special
valued radical of C�X �.

Proposition 5.12. Suppose that X is Tychono¨ and cozero-complemented. Then the

following coincidence of radicals occurs:

O�C�X �� � Hyp�SV��C�X �� � O��C�X�� � f f A C�X � : jcoz� f �j <yg:

Proof. For brevity let us denote C � C�X�. We begin by observing that, for any
archimedean l-group, special elements are basic, and that f A C is basic precisely
when jcoz� f �j � 1; that is, f is zero except at an isolated point. This makes clear that

O�C� � f f A C : jcoz� f �j <yg:

Since OJHyp�SV�, it su½ces, to prove the claim, to show that

(i) for each g A Hyp�SV��C�; coz�g� is ®nite, and once this is done, that

(ii) C=O�C� has no basic elements.

Recall (5.10(d)) that Min�C� is compact and basically disconnected. Now, to show
(i), if g A Hyp�SV��C�, and coz�g� is in®nite, then C�g� A Hyp�SV�, whence it is
projectable and Y�g�, which is scattered, is also homeomorphic to a closed subspace
of Min�C�, a contradiction, according to the comments in 5.10(b).

As to (ii), recall that if f1; f2; . . . is any sequence of functions in C such that j fnjU 1
for each n < o, then, if we de®ne, for each x A X ,

f �x� � Py
n�1

j fn�x�j
2n

;

we obtain f A C�X�, and f ?? is the polar generated by f1; f2; . . . . Now suppose that
0 < g A C and coz�g� is in®nite. If O�C� � g is basic, then g has in®nitely many spe-
cial values, which means that there is a sequence �xn�n of isolated points of X such
that g�xn� > 0, for each n. Let wn be the characteristic function of the singleton fxng.
Now choose fo A C so that f ??

o is the polar generated by all the w2n�1, and fe A C so
that f ??

e is the polar generated by all the w2n. Then, without loss of generality, we
may also have fo; fe U g, and it is clear that fo 5 fe � 0, while neither one lies in
O�C�. This is a contradiction, showing that O�C� � g cannot be basic. This demon-
strates (ii), and completes the proof of the proposition. r
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Remark 5.13. Proposition 5.12 shows that the Hyp�SV�-radical need not be order-

closed; that is, closed under arbitrary suprema.

Remark 5.14. It would be nice to drop the requirement of cozero-complementation
from Proposition 5.12, but we do not know if this can be done. There is precedent in
a di¨erent context, of radicals in classical torsion theory of commutative rings (see
[MM99], § 4), which provides some evidence that this assumption may be needed.

We do not even know, under the assumption of Proposition 5.12, whether (ii) of
the proof can be strengthened to say that C=O�C� contains no special elements.

And to conclude this section we make the following observation.

Remark 5.15. It may occur to the reader that a projectable hyper-special valued
l-group is, in some sense, ``almost'' archimedean. This is so, in the following sense. In
any normal valued l-group G, and for each a A G, the factor G�a�=Na is archime-
dean, as has already been observed. If G is also hyper-special valued and projectable
then Na A O. We summarize:

If G is hyper-special valued and projectable, then for each a A G;G�a� is an extension
of a O-group by one which is archimedean and hyper-special valued.

6 Examples and comments

We round out the subject matter of this article with a number of observations and an
array of examples. The latter, especially, ought to lay to rest a number of questions
the reader might pose. Our exposition begins with some initial remarks on structural
features of hyper-special valued l-groups, and then compares a number of classes of
l-groups which have been mentioned in earlier sections to Hyp�SV�.

The ®rst observation is a proposition concerning abelian l-homomorphic images
of a hyper-special valued l-groups.

Proposition 6.1. Suppose that G is a hyper-special valued l-group. Then, for each

g; h A G, the commutator �g; h� lies in the l-ideal of G�jgj4 jhj� generated by the

special components of jgj4 jhj.

Proof. Since G is normal valued, j�g; h�jf jgj4 jhj (see [D95], Theorem 41.1), and so
every value of �g; h� is properly contained in a value of jgj4 jhj. Suppose, by way of
contradiction, that �g; h� has a 1-special value, say V, which is not contained in a
special value of jgj4 jhj. If W is the value of jgj4 jhj containing V then, according to
Lemma 3.4, W is 1-special. But then �g; h� and jgj4 jhj have 1-special components
which have in®nitely many special values in common (Lemma 3.6), which amounts
to a contradiction. r

We record some immediate corollaries of Proposition 6.1.
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Corollary 6.2. Suppose that G is hyper-special valued. If Val0�G�, the set of special

values of G, forms an order ideal, then G=FV�G� is abelian.

Corollary 6.3. Suppose that G is hyper-special valued. If G has a unique maximal ®nite
valued l-subgroup, then G=FV�G� is abelian.

Corollary 6.4. Suppose that G is hyper-special valued. If G is a subdirect product of

totally ordered groups, then G=O�G� is abelian.

Lemma 3.6 asserts that, in a hyper-special valued l-group, two 1-special elements
whose 1-special values are comparable must share all but ®nitely many of their spe-
cial values. This might lead one to think that the lengths of chains of a-special values
are ``severely'' restricted in a hyper-special valued l-group. One could also surmise
that the structure of such a chain might, likewise, be limited in complexity or density.
The ®rst example in this section suggests otherwise.

Example 6.5. A hyper-special valued l-subgroup of the group of all real sequences,

possessing a chain of 1-special values which is order-isomorphic to an h1-set.

We denote the l-group of all real sequences by Ro, and the l-subgroup of
the ®nitely nonzero sequences by S. In the sequel we consider the family A of all
l-subgroups of Ro which contain S as a prime convex l-subgroup. A is partially
ordered by inclusion. A routine application of Zorn's Lemma shows that A is in-
ductive; thus, A has a maximal element. We now proceed, in two steps, to show that
if A is such a maximal element, then A ful®lls the conditions stipulated here. That A

is hyper-special valued is a consequence of Theorem 4.2.
We remind the reader that an h1-set is a totally ordered set H such that for any two

countable subsets U and V, with U < V , there is an h A H such that U < h < V . In
the sequel Gd denotes the divisible hull of G.

(a) If G A A then so is Gd .

The proof is left as an exercise.

(b) Suppose G A A and 0 < b A Ro, such that for each g A G, either S � jgjfS � b or

else S � bfS � jgj. Then G lZb A A.

Proof. Suppose that m A Z, and g A G, and consider bm � �mb � g�4 0. Note that
S � bm � �m�S � b� � �S � g��4S. If gS � ggS � b, then S � bm � S � mb � g,
while if S ggS � b, then S � bm � S. Likewise, if S � jgjfS � b, and m is
positive, then S � bm � S � mb � g, while if m is negative, S � bm � S. All of this
means, since SJG that bm A G lZb; that is to say, G lZb is an l-subgroup of
Ro. It should be clear from the hypotheses that G lZb A A. r

(c) If A is a maximal element in A then Val�A=S� is an h1-set.

Proof. There are three parts to the argument.
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(i) Val�A=S� has no least and no greatest element. If Val�A=S� has a greatest element,
then there exists a positive x A A such that, for each a A A, there is a positive integer
k such that S � jaj < S � kx. Now de®ne b A Ro by b�n� � nx�n�. Then S � bg
S � x, whence S � bgS � jaj, for each a A A. But then, according to (b) above,
AlZb A A, which contradicts the maximality of A. A similar argument shows that
Val�A=S� cannot have a least element either.

(ii) Val�A=S� has no co®nal or coinitial countable sets. Suppose there is a countable
co®nal subset. Then, owing to (i), there is a strictly increasing countable co®nal se-
quence V1;V2; . . . . Pick real sequences fn > 0 such that S < S � fn and Vn=S is the
value of S � fn. Without loss of generality we may assume that 0 < f1 < f2 < � � �
in A.

Now since S � fi fS � fi�1, we have for each i and each positive integer k an
integer ni;k such that fi�1�n�V fi�n�, for each nV ni;k. Next, let b�n� � fn�n�; this
de®nes b A Ro. Observe that, whenever n > max�i; ni;kg,

b�n�V fi�1�n�V k fi�n�;

and so S � bgS � fi, for each i. This again implies that S � bgS � jaj, for each
a A A, which thanks to (b) once more leads to a contradiction. Thus, Val�A=S� has
no countable co®nal subset, and, in a similar fashion, no countable coinitial subset
either.

(iii) Val�A=S� is an h1-set. Suppose U and V are countable subsets of Val�A=S�, and
that U <V. Note that (ii) above takes care of the case in which either U or V is
empty. Enumerate U and V:

U � fMi=S : i < og and V � fNj=S : j < og:

Choose ui > 0 in A so that Mi=S is the value of S � ui, and vj > 0 in A so that Nj=S
is the value of S � vj. Consider

U 0 � fS�qui : q A Q� and i<og and V 0 � fS�qvj : q A Q� and j<og:

Note that U 0 and V 0 are countable subsets of A=S and that U 0 < V 0. Now U 0 has no
largest element, which implies that there is a co®nal increasing sequence in U 0;
S � u 0

1 < S � u 0
2 < � � � . Similarly, V 0 has a coinitial decreasing sequence S � v 0

1 >
S � v 0

2 > � � � . Without loss of generality one may assume that u 0
1 < u 0

2 < � � � < v 0
2 <

v 0
1 in A�. Next, de®ne b A Ro by b�n� � u 0

n�n�. Then, for all i and j,

S � u 0
i < S � b < S � v 0

j :

Observe as well that for each i and each positive integer k there is an io such that
S � u 0

io
> S � kui, which permits us to conclude that S � ui fS � b, for each i. By

an analogous argument, s � bfS � vj, for each j.

Lattice-ordered groups 505



Finally, suppose that there is no value strictly between U and V. Then if a A A we
must either have S � jaj < S � ui, for suitable i, so that S � jajfS � b, or else,
similarly, S � bfS � jaj. Employing (b) once more, we conclude that AlZb A A,
contradicting the maximality of A yet another time. Thus Val�A=S� is an h1-set, as
asserted.

The proof of (c) is complete. r

The following observation could have been made much earlier, but it doesn't really ®t
in any of the previous sections. Recall that an l-group is laterally (s-)complete if
every (countable) disjoint set has a supremum. It is well known that an archimedean
laterally s-complete l-group is projectable. (For a comprehensive discussion of
archimedean laterally s-complete l-groups and related matters, we refer the reader to
[HM96].) Projectability makes the argument in the proof which follows a bit crisper,
but it is not needed.

Proposition 6.6. Suppose that G is hyper-special valued and laterally s-complete. Then

G has a ®nite basis.

Proof. Suppose that b1; b2; . . . is a countable pairwise disjoint set of special elements.
Note that if no such in®nite set exists then G is necessarily ®nite valued. It is well
known that any ®nite valued laterally s-complete l-group has a ®nite basis.

Form b � 4
n

bn and a � 4
n

nbn. It is evident that a?? � b??. The reader will also
quickly verify that Na � Nb. Now pass to the archimedean l-group H � G�a�=Na; it
is hyper-special valued as well. Next, observe that the special values of a in G�a� are
the values of the bn �n < o�. Since Na is order-closed in G�a�, we are able to conclude
that the canonical l-homomorphism G�a� ! H preserves all suprema and in®ma
([D95], 21.2). It follows that H too is laterally s-complete.

In H take u � Na � b for the designated unit, then notice that Y�u�GY�b�. Owing
to the results of the preceding paragraph and 2.3(d) of [HM96] we conclude that
Y �u� is a basically disconnected space, and a compacti®cation of a countable discrete
set N. Using the remarks in 5.10(b) it turns out that Y�u� is, in fact the Stone±CÏ ech
compacti®cation of N. It is then evident that Y�u�nN is in®nite. Next, identifying u

with the constant 1 in the Yosida representation, the remarks in the preceding para-
graph imply that the identity function i is the coset of a in H, and that i has in®nitely
many in®nities. This contradicts Theorem 5.3.

It follows that G has a ®nite basis. r

Next, we present an example showing that Hyp�SV� is not closed under formation
of l-subgroups.

Example 6.7. A hyper-special valued archimedean l-group having an l-subgroup which

is not hyper-special valued.
G is the l-subgroup of Zo generated by S, the subgroup of ®nitely nonzero
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sequences, together with

e1 � �1; 0; 1; 0; . . .�; e2 � �0; 1; 0; 1; . . .�; x1 � �1; 0; 3; 0; 5; . . .� and

x2 � �0; 2; 0; 4; 0; 6; . . .�:

Let A be the l-subgroup of G generated by S; e1; e2 and x1 � x2. Note that G is an
O2-group which is hyper-special valued. However, the 1-special value in A of x1 � x2

contains the two incomparable values of e1 and e2. Thus, A is not hyper-special
valued.

At last, the example we promised in Remark 2.11.

Example 6.8. An archimedean l-group which is O2, special valued, but not hyper-

special valued.
Let G be the l-subgroup of Ro generated by S, the ®nitely nonzero sequences, the

constant 1 and b de®ned by b�n� � 0, if n is odd, and b�n� � 1=n, if n is even. G is O2,
as G=S is a totally ordered group. Since G is archimedean with basis, it is also special
valued. On the other hand, G has two 1-special elements, 1 and b, with comparable
1-special values, yet there are in®nitely many special values of 1 which are not shared
by b. This contradicts Lemma 3.6. Also, observe that G has scattered Yosida space,
namely the one-point compacti®cation of o, and only one accumulated zero, at in-
®nity. Thus, Theorem 5.7 fails here, the reason being that G is not projectable.

As we shall see, any l-group in O� is necessarily hyper-pseudospecial valued, but the
converse is not true, even for archimedean l-groups.

Example 6.9. An l-group in Hyp�pSV� which is not O�.
The l-group we are about to describe is similar in spirit to Example 5.5 in [CD96];

the di¨erence is that here we do not bother about making the example a group of

integer valued sequences. We begin with some notational items. Let q�n� � 1

n
, for

each n < o; for each positive integer n and each integer i, such that 1U iU 2n, let en; i

be the sequence de®ned by

en; i�m� � 1 if m1 i mod 2n

0 otherwise

�
:

Now, G is the subgroup of real valued sequences generated by S, the ®nitely nonzero
sequences, together with

q; q2e1;1; q
2e1;2; . . . ; q2 n

en;1; q
2 n

en;2; . . . ; q2 n

en;2 n ; . . . :

As is shown about Example 5.5, [CD96], G=S is a ®nite valued l-group whose root
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system of values is the binary tree. It is easily seen that, mod S,

q2n

en; i g q2 n�1

en�1; i & q2 n�1

en�1; i�2 n :

Thus, G is not in O�, as O�G=S� � f0g.
G is countably valuedÐmeaning that every element has countably many values;

this is easily checked. Else, we let the reader look at Example 5.5 of [CD96]. As is
demonstrated in [CD96], Proposition 2.3, the class of all countably valued l-groups is
a torsion class; since every countably valued l-group is pseudospecial valued ([D95],
Corollary 2.8) it follows that G A Hyp�pSV�.

A hyper-special valued l-group can fail to have basic elements. Indeed, we can do
worse:

Example 6.10. A hyper-special valued l-group G such that FV�G� � f0g.

The root system D is the o-ary tree pictured below. As in tree-theoretic language
we shall refer to ``levels'' of the root system. The ordering (and notation) in D is
de®ned recursively: d0 is the top element; each d1�n� in the 1-st level immediately
preceeds d0. Recursively, the immediate predecessors of dn�a�Ðwith a < onÐare the
nodes in the �n � 1�-st level, dn�1�ao � k�, for all 0U k < o.

d0� 0-th level������ � � � � � �

d1�0� � � � � � d1�4� � � � 1-st level

..

. ..
. ..

. ..
.

���� � � �
d2�o4� � � � � � 2-nd level

d2�o4 � 1�
..
.

G is the l-subgroup of V�D;R� generated by S, the ®nitely nonzero functions and,
for each node dm�a� at level m, the function ea;m which is the characteristic function
of Ea;m, the intersection of the �m � 1�-st level set with fd A D : d < dm�a�g. It is easily
veri®ed that the properties claimed for this group do, in fact, hold.

Example 6.11. An l-group G which is not hyper-special valued, yet every l-
homomorphic image is special valued.

Consider the root system D which is the disjoint union of countably many copies of
Z in its natural ordering, as pictured below.
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..

. ..
. ..

.

�1; 0� � � � � � � 1-st level���� ���� ����
�0; 0� � � � � � � 0-st level���� ���� ����
� 1; 0� � � � � � � � 1�-st level

..

. ..
. ..

.

Again we speak of levels, in the same sense as one does with trees. For each level n,
the node in the k-th copy of Z is denoted by the pair �n; k�; note that n ranges over Z,
while k is a nonnegative integer. The ordering in D is such that �n; k� < �m; l� pre-
cisely when k � l and n < m.

Now A stands for the l-subgroup of V�D;R� generated by S, the subgroup of
®nitely nonzero functions, and the characteristic functions of each level set. Now
form a splitting extension G � A � Z of A by Z so that

��0; m� � �a; 0� � �0;m���n; k� � �a; 0��n m; k�;
for each m; n A Z and each positive k, and each a A A; note that a is being identi®ed
with �a; 0�. For the record, the ordering on G is lexicographic: �a;m� is positive if
mV 0 and if m � 0 then a A A�. It should be clear that G is special valued.

Now suppose that L is an l-ideal of G. We may suppose that LHA � f0g: if not,
then either G � L, in which case there is nothing to prove, or else A � f0g � L, and
then G=LGZ, which is obviously special valued. From this point on there are a
number of cases:

(a) L is ®nite valued. Then L � Sb ABSb�Z;R�, where BJo.

(i) onB is ®nite. Then A=L is a ®nite cardinal sum of copies of V�Z;R�, which is
®nite valued, and hence it is clear that G=L is special valued.

(ii) onB is in®nite. Then

�A � f0g�=LGA;

and again G=L is special valued.

(b) L is not ®nite valued. Then if L contains the characteristic function of one co®nite
subset of a level set, it necessarily contains the characteristic function of the
corresponding co®nite subset of each level set. In fact, there exist ®nitely many
positive integers m1;m2; . . . ;mt such that

�a; 0� A L if and only if a�n;mi� � 0; for each i � 1; 2; . . . ; t:

In this event, �A � f0g�=L is once again a ®nite cardinal sum of copies of
V�Z;R�, and therefore special valued.

Lattice-ordered groups 509



This shows that every l-homomorphic image of G is special valued. On the other
hand, A A C�G� is not hyper-special valued, as Lemma 3.6 is violated.

Note, besides, that G A Loc�O��; refer to the remarks in 6.12 just ahead.

To conclude the article, we present some comments concerning a number of radical
classes of l-groups which are closely related to the hyper-special valued ones.

Remarks 6.12. (a) We have discussed at length the relationship between Hyp�SV�
and O�. Other classes that come to mind in this context are these:

(i) The torsion class FV of all ®nite valued l-groups.

(ii) The radical class SV of all special valued l-groups.

(iii) The radical class pSV of all pseudospecial valued l-groups.

As to the pseudospecial valued l-groups, we recall the notation of a locally con-

ditioned class, as de®ned in [M92]. We say that the radical class is locally conditioned
by the class T of l-groups if G A R precisely when G�x�=Nx A T, for all x A G.
When R is locally conditioned by T we write R � Loc�T�. The minimal require-
ments one puts on the class T needn't concern us here. We only point out that
pSV � Loc�B�, where B is the class of l-groups with a basis.

Incidentally, it is conjectured in [M92] that pSV is not a torsion class, and not
even closed under formation of l-homomorphic images which preserve all suprema.
Darnel has an example con®rming this; however, we do not feel that it should be
included in this exposition.

(b) In the proposition that follows we indicate the known relationships between the
classes discussed above. All implications are strict; a recounting of counterexamples
showing the arrows do not reverse precedes the statement of this proposition.

Example 6.8 shows that Hyp�SV� is properly contained in SVXLoc�O��, even
in the archimedean context. Example 6.9 shows that the ®rst arrow in (b) of Propo-
sition 6.13 does not reverse; since the example is archimedean we have that the sec-
ond implication in (c) is also strict. The example at the end of 3.1 in [M92] is in pSV
and O2, but is not special valued; since it is in Hyp�pSV�, by Proposition 6.13
below, it also demonstrates that Hyp�pSV� is properly contained in pSV. In any
case, referring to (c) of Proposition 6.13, the latter containment is proper even for
archimedean l-groups: C�o� has a basis; however, modulo the basis subgroup, there
are no special values whatsoever. For a suitably complicated root system D;V�D;R�
is not O�; it is always special valued ([D95], Proposition 51.4).

Proposition 6.13. The following implications are valid for arbitrary l-groups:

(a) Hyp�SV� ) SVXLoc�O�� ) SVkLoc�O��.
(b) Loc�O�� ) Hyp�pSV� ) pSV, and SV ) pSV.

For archimedean l-groups we have the implications

(c) Hyp�SV� ) O� ) Hyp�pSV� ) B � SV � pSV.
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Proof. For the ®rst inclusion, it is clear that every hyper-special valued l-group is
special valued; if G is hyper-special valued and x A G, then G�x�=Nx is hyper-special
valued and archimedean. Using Corollary 4.7, we conclude that G A Loc�O��.

The inclusion Loc�O��JHyp�pSV�: Suppose that G A Loc�O�� and x A G and
L is an l-ideal of G�x�. Since Loc�O�� is a torsion class (Proposition 2.9, [M92]) it
follows that H 1G�x�=L A Loc�O��. Thus, for each L � g A H;H�L � g�=NL�g A
O�, and so H�L � g�=NL�g has a basis. This shows that H is pseudospecial valued,
whence G A Hyp�pSV�.

Finally, recall that if T is a radical class and G is archimedean and in Loc�T�,
then, in fact, G A T, as Nx � f0g, for each x A G. This establishes the claim for
archimedean l-groups. r
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