Introduction to Text Mining for Social Scientists

Helge Marahrens
Indiana University Bloomington
Department of Sociology

Email correspondence to: hmarahre@iu.edu

The New York Times

Text Mining

- Deriving quantitative information from texts
 - from text to numbers
 - unstructured to structured

Male	Height	Religion	
1	5.8	Protestant	
0	6.0	Jewish	
0	5.5	None	
	••••	•••	

Statistical analyses

Text Mining

- Deriving quantitative information from texts
 - from text to numbers
 - unstructured to structured

- Python 3.X
 - data types
 - lists and dictionaries
 - function vs. method
 - indentation is key (4 spaces)
 - counting begins at zero

Example Codes
recoding strings
regular expressions
sentiment analysis
dimension reduction
advanced NLP

Weiss, S. M., Indurkhya, N., & Zhang, T. (2015). Fundamentals of predictive text mining. London, UK: Springer.

bag of words

	Word 1	Word 2	Word 2	Word 4
Document 1	3	0	0	0
Document 2	0	0	0	0
Document 3	0	0	0	1
		•••	••••	

basic text operations

• tokenization – breaking the stream of characters into "words" (tokens)

```
"How are you?" → ['How', 'are', 'you', '?']
```

basic text operations

- tokenization breaking the stream of characters into "words" (tokens)
- lower case "Hello" → "hello"
- stemming find root "computer", "computing" → "comput"
- stopword deletion

```
['the', 'a', 'i', 'me', 'my', ...]
```


basic_string_2020-02-14_hmarahre.py