
CONSTRAINT MICROKANREN IN THE CLP
SCHEME

Jason Hemann

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of School of Informatics, Computing, and Engineering
Indiana University

January 2020

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

Daniel P. Friedman, Ph.D.

Amr Sabry, Ph.D.

Sam Tobin-Hochstadt, Ph.D.

Lawrence Moss, Ph.D.

December 20, 2019

ii

Copyright 2020
Jason Hemann

ALL RIGHTS RESERVED

iii

To Mom and Dad.

iv

Acknowledgements

I want to thank all my housemates and friends from 1017 over the years for their care and

support. I’m so glad to have you all, and to have you all over the world. Who would have

thought that an old house in Bloomington could beget so many great memories. While I’m

thinking of it, thanks to Lisa Kamen and Bryan Rental for helping to keep a roof over our

head for so many years.

Me encantan mis salseros y salseras. I know what happens in the rueda stays in the

rueda, so let me just say there’s nothing better for taking a break from right-brain activity.

Thanks to Kosta Papanicolau for his early inspiration in math, critical thinking, and

research, and to Profs. Mary Flagg and Michael Larsen for subsequent inspiration and

training that helped prepare me for this work. Learning, eh?—who knew? I want to thank

also my astounding undergraduate mentors including Profs. Mark Lewis, Berna Massingill,

Paul Myers for their early and continued support, a gentle push when I needed it, and

for their willingness to answer my questions. Likewise, I want to thank the people of my

summer REU in Oakland University including Profs. Fatma Mili, Debasis Debnath, and

Mohahmed Zody—and a special shout-out to T-313—for an educational, inspiring, and

interesting summer.

Thank you Lynne Mikolon and Laura Reed. Without you I don’t know what I would

have done. But whatever it was, odds are it would have taken four times as long or that I

would still be trying to figure out the coffee machine. Thanks also to Regina and Patty and

Sherry and of the IU SICE staff who helped me jump through all manner of hoops when,

left to my own devices, I would have instead garroted myself with red tape. Likewise thanks
v

to the Wells librarians. Their inter-library loan jiu-jitsu saved me countless hours and made

the otherwise impossible possible. Thank you also to the IU Graduate School staff for their

help in preparing this manuscript.

I’m grateful to the entire 311 and 304 staff: Zach, Robert, Cam, Tim, Suzanne, Brittany,

Kyle, Ken, Andy, Andre, Ed, Kristyn, Erik, Josh, Carl, Russell, Ryan, Taylor, K, Mozzy,

Mark, Anna, Lalo, Weixi, Jack, Coleman, Adam, David, Hao, Alyssa, and Lewis. Without

you all I’d still be in the middle of grading. I could not have hoped for a better set of

colleagues and friends. I need to thank all of my 311 and 521 students, for allowing me to

guinea pig much of this material to/at them. Your comments, suggestions, corrections and

improvements helped make this dissertation what it is. And I need to also thank Adam

Foltzer, my predecessor and 311 AI, for his early help and getting me sucked into all of this.

Thank you Fiora Pizzo and Kaitlin Kertesz for keeping me on track, and thanks also to

CITL and my writing posses and group leaders—especially Tara. I need to also thank Haley,

Rin, Praveen, Kaitlin Guidarelli, Emily Larson, and all of my other accountabilibuddies

and ersatz writing groups for sitting and working with me. To Ben Lerner, thanks for both

sharing your space and time, and thanks for keeping me on track. I want to shout out Kyle

and Vince for their support and for providing much needed R & R back home. We’ll have

to find a holiday to celebrate this—Dis-mas?

Many thanks also to my coauthors and collaborators, including Matt Might, Daniel

Brady, Will Byrd, Oleg Kiselyov, and Erik Holk. I want to thank Chung-chieh Shan, and

again thank Will Byrd and Oleg Kiselyov, for early discussions of constraints in miniKanren.

I want to thank Ryan Culpepper, Leif Anderson, and Alex Knauth for their improvements to

the framework macros, Josh Cox for his initial work on miniKanren constraints, and Andre

Kuhlenschmidt and Michael Ballantyne for their semantics help specifically and general

help generally. I also want to thank all of my anonymous reviewers for all their suggestions

vi

and improvements. I need to thank Will Byrd, for paving my way practically, technically,

academically, and socially. I would not have been to half as many conferences and talks

without his initial prodding. I would not have known what this research could be. His

larger-than-life presence and visions inspire a wider view of the current project and then

some. I need to thank also the IU PL wonks for allowing me to dry-run so much of this

dissertation by them. And I want to thank also the Northeastern University PL group and

my Rose-Hulman posse for their advice and suggestions. Thanks to Dr. Spencer and his

mantra for helping to coax me through the trickier bits, and thanks also to my good friend,

caffeine.

Special thanks to Lindsey Kuiper, for being so in my corner when I’ve needed it. Lindsey,

you’ve been more supportive and inspirational than I think you know. Thank you Memo

Dalkilic, for lending an outside ear and a comforting shoulder. Thanks also to Charles Pope,

for his continued assistance in helping me staff courses, Funda Ergun for her well-timed

prodding, and both for being an ear when I needed one. Matthias Felleisen, thank you so,

so much for not just earlier foundational work, but also for the mentoring, older-brothering,

inspirational talks, practical advice, proofreading, the best whip-cracking this side of Gen.

Patton, and so much more. I’m so lucky to be under your wing.

I of course want to thank my wonderful, loving family. Momma, thanks for all the

fruit and coffee and cookies that were the fuel that made this possible. Dad, thanks for the

frequent talks and even more frequent flier miles. Thank you Tyler and Jana, your wonderful

spouses Aly and Ross, and little Ady, Andy, and Brett. And Larry for such wonderful talks.

And Jill, not least of all for the never-ending snacks. Having more time to spend with

everyone in the whole, extended family is another great reason to have this finished.

vii

I give my heartfelt thanks to my entire committee for their suggestions, support, and

shoulders. I could not have accomplished this without your guidance. Amr and Larry, I

hope I can pay forward the support and mentoring that you’ve given me. Sam, I don’t know

how I’ll manage life’s great mysteries without barging into your office to ask about them.

Thank you to the Friedmans. To work with Dan is to get to know the whole Friedman

clan. Thank you so much for so graciously welcoming me into your home and your lives. Dan

and Mary, I’ll forever treasure your friendship. To my advisor and mentor Dan specifically,

what can I possibly say here? Thank you for being a wonderful mentor, partner, raconteur,

hacking buddy, the better part of the “Friedman-and-Hemann” standup duo, and my dear,

dear friend. Dan introduced me to the joys of Scheming before we even met, and he has not

let up since then. You’ve taught me so much about computing, navigating the academic

world, and life in general. One would think I’d be used to it by now, but I am still surprised

anew by the depth of his wisdom. It may take a while to realize it, but in the large Dan

usually ends up being correct. My office is lined with books and stacks upon stacks of papers

as I write this, and I have my irons in several fires; it’s the image of a “little Dan”. I continue

to put to use all the wisdom you’ve imparted.

Financial Support. My dissertation has been financed by a teaching assistantship

from the Indiana University Department of Computer Science and faculty positions at the

Rose-Hulman Institute of Technology and Northeastern University. I am grateful for all this

kindness and support.

viii

Abstract

Programmers in related constraint-logic languages should have language semantics that

span different implementations and enable reasoning generally about the shared parts of

languages’ behaviors while reflecting their differences. A wide class of miniKanren languages

are syntactic extensions over a small kernel logic programming language with interrelated

semantics parameterized by their constraint systems. This thesis characterizes succinctly a

set of miniKanren CLP languages parameterized by their constraints, for pure, relational

programming by instantiating, for each, portions of the constraint domain. This set of

languages carry related components of their declarative and operational semantics that

are independent of a particular host language or their particular constraint sets. This

characterization bolsters the development of useful tools and aids in solving important

tasks with pure relational programming.

Prerequisites and Mathematics

We presume the reader has formal logic background sufficient to complete an introduc-

tory logic course, and is familiar with the subject matter from a first course in programming

languages for graduate or advanced undergraduate students such as is taught at Indiana Uni-

versity, including the programming language Racket, a dialect of Scheme. Some familiarity

with miniKanren, Prolog, or constraint logic programming would be helpful.

In several key places the terminology of the miniKanren community diverges from that

of Prolog or the larger logic programming community. Beyond just a divergence, there are

naming collisions in which a single word means different but related notions to the different

groups. Throughout our work we will use terminology and notation standard in the broader

logic programming community. When there are relevant differences and especially at possible

points of confusion, we will explain and compare the differences.
ix

Contents

List of Figures xiii

List of Tables xiv

List of Listings xv

Chapter 1. Aims & Motivation 1

1.1. A Brief Description and History of Logic Languages 3

1.2. Constraint and Constraint-Logic Programming 8

1.3. The CLP Scheme 12

1.4. Domain-specific Programming Languages 14

1.5. Situating miniKanrens in Context 16

1.6. The Terrain 17

1.7. Dissertation Outline 20

Chapter 2. Prolegomena, Programming, & Prolog 22

2.1. Preliminaries 22

2.2. Terms and Term Algebras 23

2.3. Substitutions, Equations, and Unification 25

2.4. Interpretation 25

2.5. Elementary Logic 26

2.6. The Constraint-Logic Programming Scheme 29

2.7. miniKanren Constraint Domains 31

2.8. Negative Constraints 33

Chapter 3. Semantics of microKanren Constraints 37
x

3.1. Making a Domain 37

3.2. microKanren Constraint Systems 51

3.3. miniKanren Constraints over this Term Algebra 53

3.4. Potential future improvements, enhancements, and alternative designs 73

3.5. The microKanren Language 75

3.6. Finite, Depth-first Search microKanren Implementation 78

3.7. Depth-first search with infinite branches 83

3.8. Interleaving, Complete Search 88

3.9. Impure Extensions 93

3.10. Recovering miniKanren 94

3.11. miniKanren Implementation 94

3.12. Impure miniKanren extensions 97

Chapter 4. Examples, Uses and Techniques 99

4.1. Quine and quine-like program generation 100

4.2. Imperative Language Interpreters and Program Inversion 108

4.3. Relational type-checking and inference 111

4.4. Relational Implementations of Natural Logics 114

Chapter 5. Related Work 121

5.1. Functional Embeddings of Logic Programming 121

5.2. Functional Logic Programming 124

5.3. CLP and the CLP Scheme 125

5.4. Negation in Logic Programming 131

Chapter 6. Summary and Future Work 134

6.1. Summary 134

6.2. Future Work 136

6.3. Conclusion 140

Appendix A. microKanren Implementations 141
xi

A.1. microKanren Implementations with Equality Constraints 141

A.2. Constraint microKanren Framework Implementation 142

Appendix B. miniKanren Implementation 147

Appendix C. CLP Examples 148

C.1. Equality constraint Relational Interpreter 148

C.2. Quines, Twines 149

C.3. Program Cycles 149

C.4. Mirrored-language Interpreter 150

C.5. Relational miniProlog Interpreter 151

C.6. Traverse Graph 157

C.7. Relational Type-checking and Inference 157

C.8. Natural Logic R∗† 160

Curriculum Vitae

xii

List of Figures

3.1 Recursive predicate definitions for exemplary solver 69

3.2 Negative constraint definitions for exemplary solver 69

xiii

List of Tables

3.1 The Kanren Term Language 52

3.2 MicroKanren Datatypes 77

xiv

List of Listings

1.1 An example invocation of the append relation 18

1.2 An example constraint from an exemplary constraint domain. 18

3.1 Parameterized implementation of subst for solver 54

3.2 Parameterized implementation of subst-all for solver 55

3.3 Parameterized implementation of occurs? for solver 56

3.4 Parameterized implementation of ext-s for solver 56

3.5 Parameterized implementation of make-unify for solver 57

3.6 Building execution of failure rules for solver via make-fail-check 58

3.7 Building execution of rewrite rules for solver via make-normlzr 60

3.8 Implementation of make-solver 61

3.9 Pattern for implementation of make-constraint-system. 61

3.10 Syntax classes for failure rules and rewrite rules. 62

3.11 make-constraint-system template’s implementation of invalid?. 63

3.12 Implementation of make-pattern function 64

3.13 Remaining pattern for make-constraint-system’s implementation 64

3.14 Racket definition of a solver for equality and disequality constraints 66

3.15 Racket implementation of an invalid? for a solver of == and =/= constraints 67

3.16 Racket definition of a solver with a left-leaning list constraint, and others 68

3.17 Racket definition of a solver with unorthodox recursive predicates 72

3.18 Definitions of (succeed) and (fail) goals 79
xv

3.19 Definition of make-constraint-goal-constructor 80

3.20 An expansion of the append invocation of Listing 1.1 96

4.1 The lengtho relation 100

4.2 A use of the lengtho relation 101

4.3 Functional interpreter for a Scheme-like language that expresses quines. 102

4.4 A relational miniKanren interpreter 103

4.5 Definition of the help relation eval 104

4.6 Querying for quines 104

4.7 A purely-equational relational interpreter in miniKanren 106

4.8 An unequal-variables relation for the interpreter of Listing 4.7 107

4.9 A value relation for the interpreter of Listing 4.7 107

4.10 Preorder tree traversal program in MP 109

4.11 Tree traversals of the traverse program of Listing 4.10 in the MP interpreter 109

4.12 Uses of a stateful graph traversal program to both traverse graphs and to generate

parts of graphs from the state after traversal 110

4.13 Application case in a miniKanren-based implementation of a type-checker 112

4.14 A miniKanren-based type-checker polymorphically typing a let-bound λ expression112

4.15 Implementation of a not-in-envo relation for a type environment 112

4.16 Implementing a not-in-envo constraint and its interactions 113

4.17 A matche-based miniKanren implementation of A 114

4.18 Faux constraint implementation with miniKanren constraints 116

4.19 Translation function for faux miniKanren constraints of Listing 4.18 116

4.20 Execution and reification of faux-constraint literals 116

4.21 cKanren constraint definitions with violations, interactions, and satisfaction

conditions 117
xvi

4.22 Execution and reification of cKanren-constraint literals 117

4.23 Alternate construction of the faux miniKanren constraints from Listing 4.18 118

4.24 A third construction of relational logic constraints 119

4.25 A subset of the interactions required for the basic sets of constraints 119

C.1 Relational Interpreter using only equality constraints 148

C.2 Help relation matching unary naturals 148

C.3 Help relation matching well-formed environments 149

C.4 Quine and Twine Query Examples 149

C.5 Query for program cycles 150

C.6 The fo-lavo evaluation relation with a split environment 151

C.7 Relations for environments and initial program execution 152

C.8 Relations to evaluate blocks and modify environments 153

C.9 Relations for evaluating commands and environment lookup 154

C.10 Relation for evaluating an MP expression 155

C.11 Small MP help relations 156

C.12 The MP language traverse-graph program 157

C.13 The relational type inferencer with polymorphic let 158

C.14 An environment restricting relation and relational type environment lookup 159

C.15 A set of constructor functions and basic relations for implementing the R∗† 160

C.16 Relations for constructing higher-level components of the R∗† implementation 161

C.17 The relations for membership and general negation of R∗† sentences 162

C.18 Part one of the implementation of proof search for the R∗† logic 163

C.19 Part two of the implementation of proof search for the R∗† logic 164

C.20 Part three of the implementation of proof search for the R∗† logic 165

xvii

Chapter 1 Aims & Motivation

The declarative programming approach is helping meet a growing demand for program-

ming. The broad trajectory of computer hardware performance over the past 50 years is

a dramatic increase in overall computing capacity, of increasingly powerful computers,

and decreasing cost for comparable performance [22]. In many domains, this change has

rendered approaches that were deemed heretofore infeasible or hampered by unacceptably

poor performance now tractable or acceptable. However, increasingly sophisticated and

often difficult-to-program computing platforms necessitate a better way to harness this raw

power.

While the term is not entirely rigorously defined and there is no universally agreed-upon

definition [82], the promise of declarative programming languages is that they should let the

user say what to compute, instead of how to perform the computation. Broadly speaking

both functional and logic programming languages have been described as declarative, and

we intend this term to be used in opposition to the low-level languages that Perlis [172]

describes:

8. A programming language is low level when its programs require

attention to the irrelevant.

So called declarative programming languages are attractive in part for their promise to make

programming easier. This, in turn would help us better address the programming workload,

and better distribute it among all parties. Declarative programming is not a panacea for the

raft of problems stemming from complexity. But declarative programming—and associated

languages, tooling, and frameworks—are arrows in the quiver, or arms in the armory, to

meet this challenge.
1

Declarative programming has seen uptake in industry. Even as venerable an industrial

language as C++ now has λ expressions and its designers are considering first-class control

structures [105, 125]. Excel’s spreadsheet formulas are one of the most common uses of

functional programming [90]. This is chiefly the domain of end-user programmers. Recent

editions of the tool have made practical use of program synthesis techniques [76]. Moreover,

embedded declarative languages are frequently hidden in plain sight in common approaches

to design [186]. These are but a few examples of a continuing broader trend.

Another recent trend in programming toward the declarative has been the uptake of

domain-specific languages (DSLs): languages custom-built to address particular problems

or particular problem areas. DSLs tend to be declarative in that they let the programmer

code directly in the intended domain. This is an alternative to the more traditional option

of selecting a general-purpose programming language (GPL), and its associated tooling and

technology, “off the shelf”. The domain-specific language designer fashions a custom “right

tool for the job” and perhaps distributes it for others. As a result the group of programming

language designers and implementers has also grown in tandem with the trend in DSLs.

As a part of this uptake in declarative programming, logic languages are making a

resurgence. We present a short history of logic languages in Section 1.1 and in Chapter 2

provide a more formal treatment of logic languages’ background. For now, though, it suffices

to say that one of the more recent entries in the long history of logic languages is the

miniKanren family. This family is also both the subject of and substrate in which we make

the contributions of this dissertation. miniKanren is an up-and-coming language family [206]

that has been used effectively in education [65], as well as academic research and industrial

applications. Some form of miniKanren is available in more than 50 host languages, typically

implemented as an internal DSL. miniKanren could be well poised to help address problems

in the areas mentioned above.

Consequently, we should want a formal specification and characterization of a miniKan-

ren language and describe its model of constraints. In the rest of this chapter, we historically

and analytically explore logic languages, constraint-logic languages, and domain-specific

languages. Our presentation is informal, but assumes the reader has background in formal

2

logic and the background from a first course in programming languages for graduate or

advanced undergraduate students. In the penultimate section we formulate and characterize

the problem statement, and in the final section we outline the remainder of this dissertation.

1.1. A Brief Description and History of Logic Languages

The purpose of this brief history is to contextualize the sub-domain in which we place our

results, and consequently to help contextualize our work itself. This non-technical, historical

introduction to many aspects of this dissertation’s topics is an alternative to the more formal

background in Chapter 2. Our history of logic programming briefly introduces predecessors

to Prolog, before moving on to the birth of Prolog itself. We carry this sketch through to

logic programming’s semi-quiescence and renaissance.

Logic programming (LP) is a programming paradigm that casts predicate logic, or some

limited fragments thereof, as a computational formalism. This style of programming can

allow a programmer to reason in terms of a program’s logical meaning. In the traditional,

older, paradigmatic view of programming languages [130], LP is often listed as one of the ma-

jor computing paradigms, alongside imperative programming and functional programming.

Kowalski et al. [128] summarize the essence of traditional logic programming thusly:

Ordinary LP solves problems by representing problem-solving procedures by

means of clauses of the form

H ← L1 ∧ . . . ∧ Lm

with m ≥ 0, H an atom and each Li a literal. Variables H and Li are

implicitly universally quantified with scope of the entire clause. H is called

the head and L1 ∧ . . . ∧ Lm is called the body of the clause. Clauses of this

form are used backwards to unfold atoms in goals (existentially quantified

conjunctions of literals).
3

LP emerged as a byproduct of related work in automated theorem proving. Theorem

proving mechanisms of the 1950s and 1960s were designed for human reasoning patterns (e.g.

natural deduction [171]) and were not especially well-suited as computational formalisms.

Robinson’s [177] 1965 development of the resolution principle was a key breakthrough. In a

sense the history of automated reasoning systems mirrors the history of computer arithmetic

systems: just as early computers used, stored, and computed in the natural-for-humans base

10, initial approaches to automated reasoning were rendering human-reasoning systems

digitally. From this point of view the analogue to binary for computer reasoning systems is

Robinson’s resolution rule. The principle generally states that, for sets of literals Γ1 and Γ2

whose variables are disjoint, and literals L1 and L2:

Γ1 ∪ {L1} Γ2 ∪ {L2}

(Γ1 ∪ Γ2)ϕ
ϕ

where ϕ is the most general unifier (MGU) of L1 and L2. In the course of developing

resolution Robinson rediscovered unification, a kind of two-way pattern matching used to im-

plement resolution. We will return to the concept of an MGU and unification in Section 2.3.

We say rediscovered unification, because Robinson independently developed an approach

previously known, at least for special cases, to Post [see 210], Herbrand [89], and Prawitz

[173]. Robinson certainly introduced the name “unification” for this process and singled it

out for study, and it was through Robinson that unification became widely recognized as a

powerful tool for automated reasoning. Unification is broadly applicable to a number of fields

and areas of study, including theorem proving, term-rewriting systems, machine learning,

natural-language processing, and logic programming among many others [122]. This broad

applicability is also evident from the various generalizations that enable unification in more

expressive algebras. These include E-unification [109] (solving equalities of sets of terms

modulo a typically more powerful equational theory), and nominal unification [209], among

many others. Unification is so important and broadly applicable because we can implement

it efficiently in so many of these cases. Both Martelli and Montanari [153] and Paterson

4

and Wegman [170] are responsible for first-order unification algorithms over term algebras

that have proven linear time bounds, and subsequent improvements have introduced more

practically efficient versions (see Siekmann [198, §3.1.1]).

While Robinson’s original resolution rule was a vast leap forward for automated theorem

proving, guiding the proof search was still difficult. Subsequent theoretical advancements

showed how to better employ particular instances of the general resolution principle in

ways that simplify theorem provers’ implementations and guide search to reduce the search

space while maintaining completeness. These later refinements led to a version termed SLD-

resolution [176] that provides a reasonably efficient complete search technique for a fragment

of first-order logic large enough to practically program in. Taken together, these pieces

enabled logic programming. The key insight of the logic languages’ original designers was

that the programmer could code directly in an expressive, executable subset of formal logic.

LP languages aim to unite the language in which the programmer or project manager

specifies the behaviors of the program (traditionally not executable), and the language in

which the programmer actually writes code. The shift from automatic theorem proving and

LP is partly attitudinal, a question of viewpoint. One of the things that logic can be used

to express are computable functions and procedures. One of the things proof procedures

can do is perform deductions that execute programs.

LP languages differ from λ-calculus based formalisms, quoth Kowalski [127], in that

they are derived “from the normative study of human logic, rather than from investigations

into the mathematical logic of functions.” LP languages broadly distinguish themselves

from earlier Planner-style systems by their operational behavior. Planner-style languages

are “bottom-up” in that they use assertions to generate new assertions [127], whereas logic

programming languages are goal-directed reasoning systems that, from old goals, produce

new goals; these are called “top down”. One of the first (although not actually the first [53,

54]) and certainly the most widely known of these logic languages is Prolog [72]. “Prolog”

is at least in part a portmanteau of the French words programation and logique.

5

Prolog was first born as a library or tool for natural-language processing but grew into

a language [42]. Early Prologs all implemented unification with an occurs-check, but this

was soon removed for efficiency considerations [38]. Colmerauer [40] showed the resulting

unification procedure could be reasonably interpreted as unification on infinite trees, and

this work of Colmerauer’s exhibits one early strain of research connecting logic programming

and general constraint solving. The theoretical improvements were matched by technological

and engineering developments and insights. Between both, Prolog quickly spread out from

the Marseille group to Edinburgh and elsewhere through conferences, workshops, summer

schools and publications, and an early “sneaker net” that distributed implementations from

group to group. People expressed intense interest in the paradigm, and experimented with

it in various ways and with different motivations. Through the 1970s researchers continued

to revisit and extend logic based language design and to push the boundaries.

The announcement of the new Japanese Fifth Generation Computing System Project

punctuated the end of the 1970s and beginning of the 1980s. Announced in 1981, its main

goal was to revolutionize computing by developing massively parallel machines tailored

toward AI. However, logic programming emerged as the favored language paradigm for

implementing software, and soon became another of the FGCP’s central efforts. They hoped

to make simultaneous leaps forward in programming in parallel logic languages, as well as

major advances in hardware. In combination, these goals proved overly ambitious. Alternate

emerging technologies (e.g. object-oriented languages, x86 hardware) proved to out-compete

their efforts in these directions.

While the FGCP is not synonymous with logic programming’s progress in the 1980s,

it is emblematic. During this decade concerns with Prolog’s control’s inefficiency led to a

proliferation of designs for new or enhanced control features. This led to a splintering of

logic programming into various specific application-tailored dialects. In addition, there were

limitations of a single, uniform proof procedure, making it tough to be efficient to execute

for medium-large domains, and conversion to clausal form and resolution proof hides some

of the underlying structure of the problem and the proof of the solution. Disappointment

6

with the progress of logic programming and artificial intelligence during this period and

the successes of other subfields and technologies led to an “AI winter” that cooled overall

interest in the technology.

1.1.1. Resurgence of logic programming and beyond. With fundamental re-

search, there is often a time lapse between the research and its application to more practical

or commercial efforts. There is evidence to suggest that the LP boom of the 1980s was

partly just ahead of its time. Other classes of logic languages that exist have emerged

some from Prolog’s shadow. Datalog, for instance, is one notable result. Datalog is a

decidable language in which the terms to be computed do not allow function symbols. The

development of answer set programming and tabling also served to make logic programming

more declarative. As another data point, in just 2016 the Picat programming language, a

multi-paradigm constraint solving and planning language won first place and a cash prize at

a major New York-based media lab summit. Media summit awards rarely go to programming

languages. The miniKanren family of embedded logic programming languages is also a

member of this next generation of logic languages and is reaching more common use.

There is of course much more to say about the history and the current state of the art in

logic programming. In addition to some of the personal and historical accounts referenced in

this section, the interested reader could consult volumes of the Handbook of Logic in Artificial

Intelligence and Logic Programming series for the vast amount of information they contain as

well as their exhaustive bibliographies, and consider Hewitt’s [91] “Middle History of Logic

Programming Resolution, Planner, Prolog, and the Japanese Fifth Generation Project” for

an alternative view connecting Prolog to the earlier Planner. For the development of and

the subsequent rebirth of datalog, see Huang et al. [102]. The interested reader should

also consult Balbin and Lecot’s [12] older logic programming bibliography. While the field

has advanced since this bibliography’s publication in 1985, this author knows no other

publication that so well categorizes such an exhaustive listing of important early results,

most of which are still relevant.
7

1.2. Constraint and Constraint-Logic Programming

In this section we revisit a middle era in the history of logic programming when

constraint-logic programming emerged. The constraint-logic programming paradigm com-

bines logic programming with constraint programming. Constraint solving serves as a

declarative paradigm in its own right [204], astride functional and logic programming. In

constraint programming, computation proceeds by satisfying a collection of constraints that

describe the contours of the final answer.

Programming with constraints was investigated at least as early 1964 [205], well before

the emergence of widespread interest in constraint logic programming. Researchers combined

constraint programming with aspects of other programming paradigms. Even these mixed

paradigms are themselves broad areas of programming language research. Many of these

mixtures benefit from connections with yet other areas of work in artificial intelligence,

language design, and operations research, while at the same time inspiring new approaches

to addressing problems in those same application areas. As we noted before, scholars [106]

use the term constraint-logic programming (CLP) for the combination of constraint- and

logic programming; it is to this combination that our research primarily speaks.

1.2.1. The Constraint-Logic Programming Paradigm. Constraint logic program-

ming more than merely kludges constraint solving into logic programming. CLP should be

properly understood as itself an independent general declarative paradigm. As Maher [148]

writes,

Indeed, in some sense both constraint programming and logic program-

ming can be considered part of an umbrella relational programming par-

adigm.

By the mid 1980s, several groups were working to extend logic programming languages

with constraints. These include research emerging from the logic programming community

itself such as the groups in Marseille and Edinburgh, but also included operations research-

based work such as that undertaken at the ECRC. Through this lens traditional logic
8

programming emerges a special case [110]. Much of the following discussion is adapted

from Maher [147, 148], Cohen [39], Kriwaczek [131], and Wallace [219]—any of which the

interested reader should consult.

Constraint logic programming [40, 106], in the sense we use in this dissertation, extends

the bare-bones sense of logic programming from Kowalski of Section 1.1 by including in

CLP languages a collection of special primitive relations called “constraints”, and a means

by which to solve them. The programmer does not define these constraints by clauses for the

implementation to evaluate through backwards reasoning by unfolding, as is the case with

predicates in traditional LP. Instead, the CLP language implementer builds these constraints

into the language’s implementation itself. A language implementation solves constraints by

one or more dedicated constraint solvers. Lassez [135], in “From LP to LP: Programming

with Constraints”, describes the chief requirements thusly (emphasis in the original):

Let us review the three main points, for a given domain:

A set of constraints is viewed as an implicit representation of the

set of all constraints that it entails.

There is a query system such that an answer to a query Q(x,y) is

a relationship that is satisfied if and only if the query is entailed

by the system.

And most importantly:

There exists a SINGLE algorithm to answer all queries (an oracle).

We distinguish CLP in the sense of Colmerauer, Jaffar and Lassez and this dissertation,

from a separate, related, contemporaneously-developed approach. This second style comes

from research into constraint propagation that emerged out of operations research and

work in artificial intelligence [88, 219]; research in the CHIP language at the ECRC in the

1980s typifies this style of CLP. This second approach, instead of adding new, additional

features, extends the behaviors of existing LP language features. These two CLP paradigms

are orthogonal, and compatible [140]. When we subsequently discuss CLP, we will refer to

constraint logic programming in the first sense.
9

There are many reasons that a language designer might provide some facility as a

constraint, rather than leaving the logic programmer to implement it, say, as a library of

a standard LP language. Firstly, it might be that the pure logic programming predicate

implementation of whatever facility the constraint provides would be insufficiently expres-

sive or too inefficient to benefit end users (see, e.g. Jaffar and Maher [110, §1.2]). Secondly,

when designing program idioms to represent negative information, programmers may find

it more natural to represent this information negatively [107, 137]. Thirdly, constraints

provide many of the benefits of structure-sharing. The programmer may deem some number

of a term’s instances “similar enough” that he would like to compress these many terms

into one overarching representation limited to those instances fulfilling some constraint.1

Furthermore—and perhaps more importantly—the addition of constraints can add expres-

sivity in surprising ways. Constraints can represent information implicitly, as opposed to

explicitly and exhaustively representing that same information [117, 134]. When almost

every (all but a finite few) possibility solves some problem, equations alone cannot finitely

express infinitely many solutions. However, auxiliary constraints can permit a single finite

construction to represent the solution set. For instance, when there is no way to positively,

finitely enumerate infinitely many possible values for a term, a disequality constraint can

instead explicitly represent some finite quantity of disallowed terms. An equation between

two terms and a disequality between variables of each term can finitely schematize what

otherwise require an infinite number of plain equalities. Constraints frequently provide more

expressive conditions than just syntactic equality or disequality over first-order terms.

Much of the work that has led to interest in CLP as a paradigm emerged from research

in logic programming, specifically Prolog. The developers of logic programming languages

have explored constraints beyond equality since at least the earliest versions of Prolog. An

early Prolog implementation from the Marseille group in 1972 contains the dif/2 predicate

that implements syntactic disequality constraints [42]. Curiously, the disequality constraints

of this early implementation are well-behaved as regards non-ground terms, and these

1With our system we will find that we cannot express finite constraints or constraints with finite domains.

However, this is not a limitation of constraint systems generally.

10

Prolog systems could emit these disequalities as part of the final answer—capabilities often

forgone in future implementations [38]. Colmerauer and the Marseille group reintroduced

a less capable form of disequality constraints over a term language of rational trees in

Prolog II [41], and implementers continued to experimentally blend a variety of constraints

with logic programming languages [41].

A variety of Prolog extensions have been built that have added constraints enhancing

the expressiveness of the language. CLP(R) [113] added inequality constraints (i.e. ≤ and ≥)

over the real numbers. Other typical examples are set membership and subset relationships

and Boolean satisfiability [110]. These are but a few among a variety of extensions that

one could rightly group together as CLP languages. This diversity of systems demonstrates

that there is a wide design space in which to construct a CLP language. Choices such

as whether to allow constraints that modify a program’s control flow, whether constraints

can be dynamically generated, a particular choice or choices of constraint domain, and the

nature of the precise constraint solving algorithm create a whole raft of possibilities.

In this proliferation, it came to be that many CLP languages included specialized

dedicated solvers and additional control mechanisms (e.g. arc consistency to restrict domains

and check domain restrictions, freezing and thawing constraints to delay or force their

evaluation). These constraints were typically implemented as a fixed group of primitive

operators in a fixed language and intended to operate over a precise, well-known constraint

domain. Usually programmers could not mix the constraints from different domains, even

if designers implemented multiple collections of these constraints inside the same language.

For a time there was some concern that these various extensions sacrifice the unique

semantic properties of logic programming [106, 143]. Individual extensions of LP languages

by constraints often came equipped with their own unique semantics. It wasn’t clear that

the important properties of LP languages would carry over with these extensions. It was

certainly cumbersome to reason at this level about the behavior of each individual extension

or blend of extensions when constructing a new CLP system.

11

1.3. The CLP Scheme

The CLP Scheme2 emerged from research to characterize collectively some different

extensions of Prolog-like languages that each supply additional constraints. Jaffar and

Lassez’s CLP Scheme [106] separates the semantics of constraint solving from the semantics

of the search [111, 213]. In separating the particulars of a languages’ constraint system from

its control, the Scheme enables reasoning generically about constraint systems. In a way one

can view the CLP Scheme as expanding Kowalski’s thesis (“Algorithm = Logic + Control”)

to the context of constraint-logic programming.3

Logic programming languages are special in part for the existence of equivalent opera-

tional, logical, and functional (i.e. denotational, fix-point) semantics. Somewhat surprising

to researchers at the time, constraint logic programming languages retain this property.

Moreover, since CLP programs compute over some particular domain of computation, such

programs also carry “algebraic” semantics: a semantics which we can define directly on the

algebraic structure of that domain.

In earlier research, Jaffar et al. [109] showed with their “Logic Programming Scheme”

that those key semantic results hold for more general notions of equality than the typical

syntactic equality of Prolog. This provided a firmly-grounded theoretical foundation for

programming in logic languages with equational theories of the sort that, for instance, make

programming with arithmetic expressions more natural. With the CLP Scheme, Jaffar &

Lassez show the semantic results of ordinary logic programming generalize still further to

hold for a wide class of general constraint logic languages as well. Critically, Jaffar et al.

[111] write,

2Though it has “Scheme” in the name, the CLP scheme has nothing to do with the Scheme programming

language. This similarity is just a fortuitous happenstance.
3In “Programming with Constraints: An Introduction”, Marriott and Stuckey [152, p. 151] include the

requirement for a constraint simplifier. We do not follow them in requiring this component.

12

The key insight of the CLP Scheme is that for these languages the op-

erational semantics, declarative semantics, and the relationship between

them can be parameterized by a choice of constraints, solver, and an

algebraic and logical semantics for the constraints.

Constraint logic programming replaces unification over terms (itself a kind of constraint

solving) by some other constraint solving in a solution-compact domain with a satisfaction-

complete theory subject to certain additional requirements. We defer a detailed explanation

to Chapter 2; we include this to say that it is a “scheme” in that a schematized lan-

guage CLP(X) describes a family of languages that share certain common properties [147].

The CLP Scheme parameterizes a CLP language’s operational, declarative, and algebraic

semantics—as well as the relationships between them—by the computational domain.

A language designer instantiates X with an appropriate choice of signature, mathemati-

cal structure, a class of closed formulae that form the constraints, a first-order theory, and a

constraint solver. Together these define the constraint domain. We give the set of constraints

an operational meaning via the solver, a logical meaning via the constraint theory, and an

algebraic meaning via the model that is the constraints’ intended interpretation (we discuss

this in detail in Chapter 2). Thus when provided a particular constraint domain, the scheme

defines an entire particular constraint logic programming language of that family for an end-

user to write programs and also a mechanism for evaluating programs and queries written in

that language. As constraint logic programming generalizes traditional logic programming,

one can view traditional LP as constraint logic programming with equations in the domain

of finite trees. CLP also generalizes the characterization of an answer. In an LP language, an

answer is a substitution; in CLP, an answer is a constraint. As we have discussed, constraints

can sometimes represent intensionally in one answer the information of many—in some cases

infinitely many—substitutions.
13

Beyond just checking for the consistency of a logical statement (equivalently, beyond

just executing the program), fully featured CLP systems almost always include tests for:

implication, or the entailment of some constraint by another; projection of constraints, that

is, presenting answers restricted to constraints over the variables of interest; and determinacy

detection, recognizing when we can replace a set of constraints with equalities [110].

1.4. Domain-specific Programming Languages

In this section, we describe the history of DSLs. “Domain specific” languages are often

contrasted with “general purpose” programming languages (GPLs). The notions of “domain-

specific” and “general-purpose”, as they’re generally used, are not rigorously defined. Nec-

essarily, certain language design choices will bias a language toward one class of tasks

and consequently away from some others. This is true even for languages envisioned with

the broadest of use-cases. In this sense, it’s difficult to view any language as truly “general

purpose”. Nor is a language’s status as “domain-specific” or “general” necessarily fixed. Each

of COBOL, Fortran, and Lisp—three of the most venerable general-purpose programming

languages—arguably began life as a domain-specific language. One can still detect hints

of their earlier life in their names, which are abbreviations for, respectively, “common

business-oriented language”, “Formula Translation”, and “LISt Processor”. Furthermore, as

computing platforms and the spectrum of computing tasks has grown and diversified, what

heretofore seemed to be the general task of computation (e.g. numerical calculations) has

come to be just one of many specific domains. Generally though, domain-specific languages

are languages that, as the name suggests, target narrowly-defined problems or problem areas.

The promise of DSLs [16] is that we can more quickly and correctly map a solution to code

in a language specifically tailored to the problem than we could in a more general-purpose

language. In a GPL, it may require a lot of programming to construct a set of bespoke

program fragments that adequately express the concepts for programming in a particular

domain. Or, to quote Perlis once again,

26. There will always be things we wish to say in our programs that in

all known languages can only be said poorly.
14

As such it often makes sense to craft a special-purpose language for the job. In a sense

the apogee of this approach is language-oriented programming [224], of which the Racket

language, for instance, represents one viewpoint [57]. In a nutshell, this approach means

solving a particular problem by designing a language specifically for that problem.

Designing and using DSLs—building as needed “the right tool for the job”—is now a

more common trend. As these languages are custom-built and sometimes even single-use,

we will often collapse the distinction between the language and its implementation, and

frequently the lone implementation defines the language.

There are a smattering of reasonable ways to classify DSLs. One such distinction is

whether the language is a standalone or an embedded DSL. We can view a standalone DSL

as a language built using the typical approach of a general purpose language, with its own

syntax and semantics, using the usual techniques for constructing a programming language.

These are also known as external DSLs [62, 63]. For these, the language under construction

just coincidentally targets a particular purpose. Developing and maintaining infrastructure

for such languages can be costly and time-consuming, as these will often require full tool-

chains for the programmer and may require re-implementing in the DSL at least some

features common to many existing languages (e.g. conditional structures).

Languages of the latter sort under this first distinction, embedded DSLs, are languages

whose programs are source code in some existing programming language, known as the

embedding language or host. By contrast with the former, these are also known as internal

DSLs. Retaining the host language’s surface syntax for the DSL’s programs lets some of

the host language tooling and infrastructure bleed through to the DSL. For instance, if a

putative program in an internal DSL is invalid syntax in the host language, host language

tooling can indicate this failure. Other niceties like debugging tools and IDE integration can

also carry over, at least in part. The cost this carrying over this tooling is the perhaps onerous

restrictions of the host language’s surface syntax. If that price is acceptable though, the

language designer avoids much wheel-reinvention by “piggybacking” on the host language.

We can further subdivide these embedded domain specific languages.

15

In a deep embedding, programs of the DSL are abstract syntax trees built as data

in the host language. Here, the implementer defines language constructs of the DSL as

host-language data constructors. In a deep embedding, there is some host-language value

representation for each program in the embedded language. This representation must be

faithful in the sense that, for each action we provide on embedded-language programs (e.g.

eval) we can write some host-language code that operates on such a value and performs the

desired operation. We implement execution, optimizations, or other such operations over

embedded language programs as host traversals over the terms of that specified datatype.

In a shallow embedding, the DSL language implementer directly defines the language

constructs of the embedded language by translation to their semantics in the host language.4

Gibbons and Wu [73] discuss connections between the deep and shallow styles of DSL

implementation and cleanly and concisely explains the conceptual background. This makes

their paper a reasonable entry point for the interested reader.

We could compare DSLs along several other distinct axes as well. However, will not linger

here describing the trade-offs between these approaches in DSL design. We describe some

major decisions in DSL language design primarily to help situate miniKanren languages,

(typically implemented as shallowly-embedded domain-specific programming languages) and

our work generally, in the relevant context.

1.5. Situating miniKanrens in Context

miniKanren is a family of related languages with an overlapping set of operators and

a common design philosophy. The seminal implementation, also named “miniKanren”,

was first presented in The Reasoned Schemer, and since then there has been a profusion

of miniKanren languages. These have included both additional constraints and control

operators.

4Gibbons and Wu date the terms “deep” and “shallow” to Boulton et al.’s [19] work embedding hardware

description languages.

16

miniKanrens distinguish themselves from earlier logic languages by their interleaving

depth-first search, their growing variety of primitive constraints beyond first-order syntactic

equality, and their community’s emphasis on pure relational programming. Different aims

and emphases led to the languages’ different design decisions, and consequently lead us

to revisit traditional trade-offs. The completeness of this acceptably-efficient search, for

instance, makes miniKanrens in some respects “more declarative”. miniKanren programmers

rely on these unique properties to create theorem provers that double as proof assistants,

type checkers that double as type inhabiters, and interpreters that perform interesting pro-

gram synthesis tasks such as generating quines [25, 26, 27, 164]. miniKanren languages are

increasingly important and seeing some real use in industry [23, 75, 189, 206]. Canonically,

miniKanrens are internal, (shallowly)-embedded DSLs that permit rapid prototyping and

design of constraints and CLP systems. Shallow embeddings provide an easily-modified

interface. There are now a large number of implementations; as they are simple, concise,

customizable, and highly portable language implementations, miniKanren is now even a

substrate through which researchers investigate other logic programming questions [25].

To summarize, the widely-embedded constraint-logic programming language miniKanren,

which guarantees a fair search and provides intuitive explanation for functional program-

mers, could play some part in the declarative programming’s future.

1.6. The Terrain

This section surveys some of the topics we subsequently consider in detail to give a rough

feel for these languages by example. These examples demonstrate exemplary constraints

and programs in CLP languages over exemplary constraint domains and have enough

complexity to convey the interesting facets. This more intuitively and directly motivates

this dissertation’s work, and we necessarily omit some of the technical details here.

The example of Listing 1.1 demonstrates a recursive miniKanren relation and the use

of an equality constraint, ==. This use is the miniKanren equivalent of a Prolog query with

append/3. Consider the constraint infrastructure as separate from the search and control

architecture. Imagine wanting to design an enhanced constraint domain with constraints
17

beyond equality. Further still, imagine having already defined constraints over a domain

X , and then wanting to add more. The constraint writer must consider the envisioned

extension to the existing constraint system—and the constraint writer may have difficulty

foreseeing if they all “play nicely”.

> (run 3 (q)
(fresh (l s)

(== `(,l ,s) q)
(append l s '(t u v w x))))

Listing 1.1. An example invocation of the append relation

Example Listing 1.2 exhibits a query involving constraints from one such more complex

domain. Intuitively, the query asks for a q such that, with regard to three other auxiliary

variables, a, b, and c, q is a list not containing c that equals a pair of a and b, when b is

not itself a pair. Then, finally, we assert that c is the empty list. It may not be immediately

clear to the reader if such a q exists, and if so, how to find it. Nor is it obvious how many

different such q there will be or the relationships between those values.

> (run 1 (q)
(fresh (a b c)
(listo q)
(absento c q)
(not-pairo b)
(== q (cons a b))
(absento b a)
(nullo c)))

Listing 1.2. An example constraint from an exemplary constraint domain.

Aside from first-order syntactic equality constraints and all the examples of Listing 1.2,

what more “kinds” of constraints should a constraint writer be able to add? We want to

generalize from the fixed, specific constraint classes of these examples and the kinds of

things that we miniKanreners already do to a useful midpoint still short of the full, general

CLP-Scheme constraint domains. For instance, we will exclude finite domain constraints.

Solving constraints of such domains can be computationally expensive. Assuming we can
18

find such a midpoint, we should hope to capture this class with a good description beyond

just “the class of constraints of our system”. An independent characterization of this class of

constraints leads to more examples and a better understanding of these constraint domains.

Given the definition specifying such a constraint domain X , we will automatically generate

a shallowly embedded implementation of a CLP(X) language. We will want to know why

the class of constraints that we capture permits such implementations.

At present, the source code of a miniKanren language’s implementation is often unkind

to the intrigued but puzzled novice reader. Implementations’ size and complexity grows by

orders of magnitude with the ad-hoc addition of just a handful of new constraints. Moreover,

these additions vastly complicate constraint solving. Host-language macros that provide sur-

face syntax have obscured the details of its search. These many language’s implementations

have provided no other semantics than their source code. This is increasingly untenable.

What is it that these implementations are in common implementing?

The community wants for a more formal specification of at least some of the common

behaviors of some of these languages’ implementations. These will enable comparisons of

design decisions at an abstract level rather than code-level. This will help explain differences

among these miniKanrens, and between them and other logic languages. Equipped with this

background, we can now proceed to our problem statement.

There is a need to make declarative programming more widely available, and specifically

relational, or pure logic, programming available and accessible to more people and within

their own current favorite language. This dissertation aims to advance that goal. We will use

the tools of formal semantics to impose order on the miniKanren language family’s organic

growth by situating these languages in a design space by their term languages, and their

constraint sets, within the CLP Scheme. The main task of this dissertation is to show that:
19

a wide class of miniKanren languages are syntactic extensions over a small

kernel logic programming language with interrelated semantics parame-

terized by their constraint systems, and this characterization bolsters the

development of useful tools and aids in solving important tasks with pure

relational programming.

We argue this thesis by separately demonstrating various pieces:

- a small kernel logic programming language: We exhibit microKanren, a small

(constraint) logic language amenable to direct embedding in any eager functional

host.

- miniKanren languages are syntactic extensions: We then demonstrate via host-

language macros a reduction from miniKanren programs with first-order equality

over a sufficiently expressive term language to microKanren programs.

- parameterized by their constraint systems: We situate microKanren constraints

within the CLP Scheme that provides logical, algebraic, and operational semantics

for constraint systems.

- interrelated semantics: We lift these constraint systems’ semantics into the tradi-

tional semantics for logic programming languages.

- bolsters the development of useful tools and aids in solving important tasks: We

exhibit example applications enabled by the above results, including novel miniKan-

ren constraints and their applications.

Some of the content of this dissertation has been published previously. Our embed-

ding, and the development of our search strategy, impure extensions, and recovery of pure

miniKanren have been described in Hemann et al. [86] and Hemann and Friedman [83], and

we described our classes of Herbrand constraints in Hemann and Friedman [85] and Hemann

and Friedman [84]. Some of the programming techniques and examples we describe were

previously discussed in Hemann, Swords, and Moss [87], and we previously described some

of the tooling and teaching methods we suggest in Brady et al. [20].
20

1.7. Dissertation Outline

We develop the remainder of this dissertation in roughly three parts. Chapter 2 gives

the basic notional background and introduces generally the technical aspects of logic and

constraint-logic programming. These include some fundamentals and foundations of logic

and constraint logic programming. In Chapter 2 we also introduce the CLP Scheme, within

which we formulate our results.

Chapter 3 contains the main results of our approach. We give operational, logical,

and algebraic semantics for microKanren constraint systems. In Section 3.2 we construct

particular constraint systems using the results from the previous chapter, and also exhibit

counter-examples and possible pitfalls. Sections 3.5 to 3.9 describe the syntax of the core

microKanren languages, and Sections 3.10 to 3.12 describe the syntax of the miniKanren

languages and the implementation of their embeddings.

Chapter 4 contains a collection of novel examples and uses of the constraint logic pro-

gramming languages for which our framework generates embedded implementations. These

examples include novel applications in program synthesis that our constraints framework

facilitates and new miniKanren-specific relational programming techniques. Chapter 5 de-

scribes some of the ample related work surrounding this dissertation. Chapter 6 summarizes

our results, discusses a number of remaining open problems related to the work of this

dissertation, suggests other directions for future research, and concludes.

21

Chapter 2 Prolegomena, Programming, & Prolog

This chapter explains some preliminaries essential for characterizing our results. We first

define terms and then describe first-order languages with constraints. We next describe the

underpinnings of constraint systems and the CLP Scheme. We incidentally define constraint

systems, constraint domains, and constraint solvers in the process. We then describe our

class of constraints, and then the behavior of our constraint systems; we remark on important

collections of expressions as they arise.

We assume the reader is familiar with fundamental results in first order logic and logic

programming, and we will not recapitulate that background here. Instead, we refer the

reader to Enderton [55] or Mendelson [155] for general background, and to Lloyd [144], Doets

[51], or Downward [52] for introductions tailored to logic programming applications. Many

of the concepts we use here are foundational and common among elementary logic texts;

others are particular to specialized use within our subarea. We will occasionally comment

on some of the latter. Authors use varying notational conventions and have some slight

differences in how they develop certain technical terminology. This diversity of treatments

provides a range of notational choices. We mainly adopt our conventions from Jaffar et

al. [111], Jouannaud and Kirchner [114], and Lassez et al. [137] for this chapter and the

remainder this dissertation.

2.1. Preliminaries

To elide some important but tangential aspects from formal computability, let us say

simply that a set Y ⊆ X is recursive if it has a total computable characteristic function 1Y

on X. Under some fixed encoding scheme, if we index a partition P of X by a set I so that

each i ∈ I codes for the characteristic function of 1Pi on X, we say that I exhibits a partition
22

on X. We will use #· or ⌈·⌉ to talk about the program that codes for the given function.

We will find of principle interest those sets I that exhibit a finite computable partition on

an underlying set X. As another notational convention, we will sometimes write |X| < ω to

say that X is finite, and |X| = ω to say that X is countably infinite. For a given countably

infinite set X, let [X]ω ([X]<ω) denote the set of all subsets of X of cardinality ω (less than

ω). P finitely partitions X if P is a partition of X and |P | ≤ ω. We sometimes use blocks

to refer to the sets in a partition. If a set X is drawn from some fixed universe U , then the

term “relative complement” is used to describe the set X. This is also typeset as Xc.

2.2. Terms and Term Algebras

We define an algebra by a pair of disjoint sets (V ,F) with carrier V and a set of

finitary ranked operators F—that is, a set equipped with a total function ar from F to N.

We say f ∈ F has an arity of ar(f).

For a given algebra (V ,F) with F and V denumerable, disjoint, and each with decid-

able membership, and ar appropriately defined, we write T (F ,V) for the first-order terms

of F over V By viewing, the construction of a term from given terms in T (F ,V) and an

operation symbol, as itself an operation, we can view the set T (F ,V) as an algebra. This

algebra has carrier T (F ,V), and we call this the “free term algebra” on V of T (F ,V).

In logic programming, this algebra is sometimes instead referred to as a pre-interpretation

J (e.g. Lloyd [144]), and we will better understand this characterization in Section 2.4 on

page 25.

Given such a term algebra, we call V the set of variables and F the set of function

symbols. As a notational convention, we denote variables with v and w, function symbols

with f and g, and terms with the letters t and u—each possibly subscripted. We will use
−→nt for the sequence of terms t1 . . . tn, or simply −→t when the reader can infer n from

context or when the precise arity is unimportant. We will not concern ourselves with

malformed, insufficiently saturated, or over-saturated terms; unless stated otherwise, the

reader should assume we construct all terms correctly and with appropriate arities. We use

the following conventions to describe function symbols. We call constant, or nullary those
23

function symbols of arity 0. We use the term unary for function symbols of arity 1, and

reserve polyadic to mean function symbols of a fixed arity at least two. We describe those

function symbols with a fixed, positive arity (unary and polyadic functions collectively) as

posary. We will extend these conventions to functions in the obvious manner.

For any choice of a countably infinite set V disjoint from F , the operators generate an

isomorphic term algebra. Thus the particular variable set we choose does not matter. Within

the context of a known, fixed set V , we can identify a term algebra with its signature, and call

the elements of T (F ,V) simply F -terms. When the particular set F is also unimportant

or the reader can infer F and V from context, we refer to the set T (F ,V) as T and its

elements simply as terms. The term algebra is uniquely generated by the set of variables

V . For a given term algebra, its term algebra signature is the set of the algebra’s function

symbols, together with the arity function for that set. We also describe the set of terms over

an algebraic signature. We will call the set of all ground terms over operators F , denoted

T (F , ∅), the Herbrand universe for F .1

This dissertation concerns exclusively infinite term algebras, and we raise this distinction

because some of our results hold only in infinite Herbrand universes. Our signatures will be

at most countably infinite. A “finitary signature” simply means that all the function and

relation symbols are of finite arity. For a signature to generate an infinite term algebra it

suffices either to have infinitely-many nullary constructors, or instead to have at least one

nullary constructor and at least one unary constructor. We follow Kunen’s [133] “Signed

Data Dependencies in Logic Programs” in requiring an infinite “universal language” in

which all programs and queries are executed, and we define the term language against

which we write programs in Section 3.2.1. Since there is no scope for confusion, we will

use “term algebra” to mean a term algebra with infinitely many constants generating an

infinite Herbrand universe, and we will henceforth take “term” to mean an element of such

an algebra.

1Davis [47, p. 10] suggests that “Herbrand universe” should perhaps instead be the “Skolem universe”,

as Herbrand first published his work two years after Skolem.

24

2.3. Substitutions, Equations, and Unification

A valuation, or state (over some domain), is a mapping from a set of variables to a set

of domain elements. Given a state σ, we can denote its restriction to a set of variables X

by σ|X . For a finite X , this restriction is a substitution. A substitution into T maps each

variable to a term. By expanding substitutions’ domains to terms in the obvious way, we can

also describe a T -substitution σ as an endomorphism on the term algebra T . Conceptually,

a substitution is a mapping from variables to domain elements that is almost everywhere

the identity mapping, so we can finitely represent a substitution by its non-identity bindings.

We will use σ or θ (often omitting the domain restriction) to represent a generic substitution,

again possibly subscripted or primed, and we also use ρ and µ for substitutions in particular

classes. We use σ ≤ σ′ for the instantiation preorder on substitutions.

Unification is the general mechanism for determining, in some abstract algebra, “can

we find an object z that fits two given descriptions x and y?”2 Generally we want not

just to determine if a solution exists, but also to construct one. Syntactic unification is a

process for constructing an assignment for a set of terms’ variables that will make those

terms syntactically identical. We use syntactic unification to solve finite sets of first-order

term equations modulo a theory of syntactic equality, and we will henceforth use simply

“equations” as a shorthand, since there is no scope for ambiguity.

2.4. Interpretation

We ascribe meaning to syntax by mapping into a structure. A structure S is a triple of a

set S, called the domain of the structure (or universe), a signature of the structure, and an

interpretation function I mapping each non-logical symbol in the language to that symbol’s

meaning in the structure.

2Lassez et al. [137], for instance, investigate unification and the solution of equations in degenerate cases,

such as the case of a fixed, finite number of constants, or variables, or function symbols. Our term languages

exclude these atypical cases, and so we can omit further discussion of them.

25

We assign meanings to the signature’s function symbols with a pre-interpretation J

that maps each n-ary symbol to an n-ary function on the domain. The Herbrand pre-

interpretation assigns each symbol f to the free syntactic constructor for f . An interpre-

tation I is a pre-interpretation J (a mapping from the term algebra into functions on the

domain S) extended by an assignment to each n-ary relation symbol p in L . For uniformity

we denote the mapping fJ by fI . An Herbrand interpretation is an interpretation I based

on the Herbrand pre-interpretation. We say the, because J fixes the interpretations of the

function symbols. In an Herbrand interpretation, we identify the interpretation of pI with a

subset of n-tuples of the domain. We call a term interpretation substitution-closed if A ∈ I

implies that for inst(A), the set of instantiations of A, inst(A) ⊆ I.

2.5. Elementary Logic

We separate a first-order language L ’s non-logical syntax from the logical syntax. We

inductively build formulae over programmed atoms and primitive constraints using the

standard propositional connectives, and we also fix the non-logical syntax to the standard

logical symbols of first-order logic.3 We treat quantifiers in the standard fashion, and we

will take Qx1, . . . , xn.ϕ, Q−→x .ϕ, or simply Q.ϕ as shorthand for Qx1.Qxn.ϕ. We will

usually omit mention of the particular logic language L . We use metavariables ϕ and ψ to

connote arbitrary formulae, again possibly subscripted. We construct a language signature

Σ by extending a constraint domain signature ΣC with a programmed relation signature Π,

provided the symbols of Π are disjoint from those of ΣC and that the arity function is also

properly extended.

Because we fix the logical syntax of L for all of the languages we will define, a non-

logical signature Σ uniquely specifies a first-order language L consisting of all well-formed

formulae built from Σ ∪L ∪ V . For simplicity, we henceforth assume that each of the sets

of symbols so far described are all pairwise disjoint. With respect to a term algebra T , we

3We will sometimes feel encumbered by the standard first-order language syntax; we will introduce to

alternate notations, e.g. that better suggest computation, when we deem suitable.

26

will also let L T denote the first order language with equality based on the same set of

symbols on which T is written. We let L T [f ; p] denote the extension of L T that includes

the new function symbols of f and predicate symbols of p.

2.5.1. Special Formulae and Sentences. A formula in prenex form has the shape

Q1x1 . . . Qnxn.ϕ, for a quantifier-free formula ϕ, with variables x1 . . . xn distinct and each

Qi ∈ {∀,∃}. In this case, we call Q1x1 . . . Qnxn the prefix of the formula, and ϕ the matrix.

We say a sentence of the form ∃x1, . . . , xn.(ϕ1 ∧ . . . ∧ ϕk), with ϕi all positive literals, is

a primitive positive sentence. The definitions [101] of Horn clause, Horn sentence, Horn

theory, etc, are by now standard in the literature, e.g. Hodges [97], and we will not belabor

them here. We will abbreviate a clause of the form ∀x1, . . . , xn.l1 ∨ . . . ∨ lm by its matrix

l1∨. . .∨lm, where l1 . . . lm are literals with free variables {x1, . . . , xn}. Following Shepherdson

[194, p. 363], we logically regard a query as a positive, existentially-closed sentence. Queries

are often written in the computational syntax ? − L1 . . . Ln. The negation of a query is a

goal.

2.5.2. (Constraint) Logic Programs. Traditionally, a (constraint)-logic program in

L is any finite set of definite L -clauses P . Following the usual naming convention, we say

a definite constraint logic program is a program with no negative programmed literals in

any clause—the difference between the two is the addition of constraints in the bodies of

clauses. We say P defines a programmed atom p if p(−→nt) is the head of a definite clause in

P , and that P uses an atom p if ¬p(−→nt) is a disjunct in the body of some clause of P . We

say the definition of p(−→nt) in P , written defP (p(
−→
t)), is the set of clauses in P with head

p(−→u) for terms −→u . Clark defines a logic program’s completion in order to explicitly group

clauses together this way.4 This concept is similar to Deransart and Małuszyński’s [48, p 103]

IF (p, P), representing the syntactic translation of def(p). For each p of arity n defined in P ,

Deransart and Małuszyński [48] construct IF(p, P) with respect to variables −→nx where for

all xi, xi ̸∈
∪

c ∈ defP (p(
−→
t))

vars(matrix(c)). The construction proceeds as follows. First, for

4We restrict well formed programs to those where every atom used in the program must be either a

primitive constraint, or a programmed relation defined in the program.

27

each clause c ∈ defP (p(t1, . . . , tn)), define E(c) as ∀−→y ¬(x1 ≡? t1) ∨ . . . ∨ ¬(xn ≡? tn) ∨ b,

where b is the body and −→y are the variables of the original clause c. We say IF(p, P) is

∀̃(p(x1, . . . , xn) ∨ E(c1) ∨ . . . ∨ E(cn)), and that IF(P) is the set of sentences IF(p, P)5

for all p defined in P . The completion of a definite program is written IFF (P) and just

means the syntactic result of replacing ← with ↔ in IF (P). Deransart and Małuszyński

are concerned exclusively with normal logic programs; we call a completed constraint-logic

program a completed program from clauses that permit constraints.

Fitting [59] and Naish and Søndergaard [159, 163] assume, as we do, that the program

contains a single clause per predicate from the outset. Quoth Naish and Søndergaard,

The :- in a single-clause definition thus tells us about both the truth and

falsehood of instances of the head. Exactly how :- is best viewed has been

the topic of much debate. . ..

We coin relational constraint-logic program as the name for how we write miniKanren

programs—as universally closed bi-implications between a formula in the closure of atoms

and constraints under conjunction, disjunction, and existential quantification, and an atom

defining the relation, whose arguments include all and only free variables of the former.

Every completed constraint-logic program is classically propositionally equivalent to a

relational constraint-logic program.6

5This is different from Hogger [99, p 191], who uses IF(P,R) to describe the set of queries that “fail

infinitely” for a given program under a given computation rule.
6We might instead concern ourselves also with clauses’ order and multiplicity in each predicate, and

treat the program as equivalent to a list of clauses. Notions beyond each clause’s mere existence matter

in the general study of constructing miniKanren programs (e.g. Lu et al. [146]). However, we can solely

consider clauses’ existence or absence when defining relations for constraints, and for the limited purpose of

this dissertation we can and will ignore these additional concerns entirely. We leave a precise miniKanren

mechanism for the ordering and multiplicity of answers, and a formal characterization of the fairness of its

search future work, (see Section 6.2 on page 136).

28

2.6. The Constraint-Logic Programming Scheme

We have not yet described constraints. These external CLP(C) languages must agree

with C on the set V of variables, and must have the same pre-intepretation for F . Sets

of constraints differ from CLP language to CLP language. The designer for each language

decides which formulae are constraints. A key benefit of CLP languages is that they share the

same strong, tight connection between their logical, operational, and fix-point semantics as

do standard LP languages.7. It would be tedious, however, to prove these interrelationships

for each new language produced by instantiating the constraint domain. Instead, we should

want to parameterize the proofs of these properties so that instantiating by a constraint

domain of a certain form effectively instantiates the proofs of those interrelationships. By

parameterizing out particulars of the constraint set, the CLP Scheme provides a way to

reason generically about the languages’ constraint systems. We should need at most to

prove certain properties about the particular domain’s constituent components. Jaffar and

Lassez showed that if the domain components satisfy three properties (correspondence,

satisfaction completeness of the theory, and solution compactness of the model) then almost

all the fundamental theorems of LP can be extended to CLP using either the theory or the

model. Much of the following recapitulates definitions from Jaffar and Lassez [106] and

Jaffar et al.’s [111] “The Semantics of Constraint Logic Programs”.

2.6.1. Constraint Domains. A constraint domain C is a 5-tuple of elements; we

describe each element in turn as well as their required interrelationships.

• A constraint domain signature ΣC contains the alphabets of the function symbols

F and atomic constraint relation symbols P (with the symbols of P are disjoint

from F) together with function providing the arities of the elements from both

sets.

7Even though typical logic programming syntax suppresses the equalities, Standard Prolog is itself an

instance of the CLP scheme, and permits constraint logic programming in CLP(Tree) (see Marriott and

Stuckey [152]).

29

• The constraints LC are some designated subset of L-formulae built over the set of

primitive constraints CC . These are the constraints over which we use constraint-

logic programming in this particular CLP language. The CLP Scheme requires

that P contain a nullary primitive constraint relation symbol succeed interpreted

as an always-satisfied constraint, a nullary primitive constraint relation symbol

fail interpreted as a never-satisfied constraint, and the binary constraint relation

symbol == interpreted as equality. A CLP language’s constraints must include all

primitive constraints and will often include some formulae built with propositional

connectives and quantifiers. However, for some choices LC is just equivalent to

all subsets of CC , those atomic constraints over terms. The CLP Scheme requires

closure of LC under variable renamings ρ, conjunction, and existential quantifica-

tion.

• A computation domain DC consists of the actual universe of values and an inter-

pretation of the constraint predicate symbols P based on a pre-interpretation for

the symbols of F . The domain of computation—the carrier and the interpretation,

is the intended model that gives the constraints an algebraic semantics.

• The constraint theory TC is the Σ-theory TC that describes the logical semantics

of the constraints—TC axiomatizes some properties of DC —so, that is, the theory

has to describe the domain. This is where, for instance, == ∈ ΣC gets interpreted

as identity in DC . At a minimum TC contains Clark’s equality theory for this

constraint domain.

• The solver solvC checks the satisfiability of constraints of C . Maher [148] points

out that “solver” is generally a misnomer; such languages only actually solve the

constraint in a limited sense. In particular, we do not define constraints’ solved

forms, nor do we reduce constraints to such a solved form.

The CLP Scheme requires the solver not take variable names into account;

for all renamings ρ, solvC (c) = solvC (ρ(c)). A complete solver is a total function

from sets of admissible constraints to {true,false} that answers a constraint

30

satisfaction decision problem over the structure that is the domain of computation—

that is, given an input constraint, check if the domain satisfies that constraint. In

a corresponding domain, a complete solver is also satisfaction complete—that is,

for every constraint c, the theory either entails that c is satisfiable, or entails that

it is not satisfiable.

The theory TC , solver solvC , and domain DC , must correspond. First, they must be

defined for the same language. Secondly, the ΣC -theory must model the domain. Finally,

for any constraint c in the language of constraints, if the solver answers false then the

theory entails the negation of its existential closure, and if the solver answers true, then the

theory entails its existential closure. This last requirement says the solver must be no more

powerful than the theory. When a solver is exactly as powerful as the theory, the solver is

called theory complete: solvC (c) = false iff TC ⊨ ¬∃̄c, and solvC (c) = true iff TC ⊨ ∃̄c.

Solution compactness is a requirement on the domain so that the negation of each con-

straint be represented by a possibly infinite set of constraints. That is, DC ⊨ ∀̄(¬c↔
∨
C),

where C is some set of constraints in LC . When evaluating a canonical logic program in with

a complete solver, a solution compact domain guarantees that the finite failure set of the pro-

gram agrees with the greatest fix point of the (CLP equivalent of the) van Emden-Kowalski

immediate consequence function T. Jaffar and Lassez [106, Fig. 2] concisely describes the

relationships between CLP programs’ operational, logical, and algebraic semantics with

respect to successful queries, and the additional requirements for these semantics to agree

on finitely failing queries. We will not generally concern ourselves here with queries’ finite

failure.

2.7. miniKanren Constraint Domains

This section describes the schematized class of our miniKanren constraint languages.

Our constraint microKanren framework in fact borrows a great deal conceptually from

the CLP Scheme. We mirror Jaffar and Lassez by defining collections of CLP languages

CLP(C), with fixed logical syntax, in reference to a constraint domain C . We parameterize

the definition of families of constraint miniKanren languages by a constraint domain, and
31

we parameterize the expressions’ meanings’ over an ascription of meaning to the primitive

constraints. We give such an ascription and show how these languages satisfy the CLP

Scheme’s requirements. We also separate predicates into the user-defined predicates and

built-in constraints, and our languages employ built-in constraint solvers for the latter. These

built-in predicates correspond to the constraints of CLP; the set always includes equality, for

instance. These built-in predicates have fixed definitions that the CLP programmer cannot

change, modify, or extend.

The differences, however, between constraint programming in Prolog-like CLP languages

and these miniKanrens with constraints go beyond differences in concrete or abstract

syntaxes. Unlike most logic programming languages, miniKanren languages do not pro-

vide general negation over atoms. Instead, a specified set of provided constraints, meeting

certain criteria, form the class of specifically-permitted negated atoms. A more general CLP

language like CLP(R) must separately provide the solver, theory and domain (the theory

of real closed fields is a theory for the domain R and the a CLP(R) solver uses the simplex

algorithm and Gauss-Jordan elimination [110]). We instead describe all three components

at once, since our constraints are essentially negated logic programming predicates and

these three parts of a constraint domain line up with independent but interrelated ways

to define a logic [154]. Our class of constraint domains’ intended models are algebras of

finite trees, subjected to certain relational restrictions. The user provides an executable

axiomatization of the theory of the domain, and from that we extract an implementation of

a specialized solver. For all miniKanren constraint languages, a constraint is an existentially-

closed conjunction of primitive admissible constraints from Π. Beyond the CLP scheme’s

requirements signature on the signature and interpretation (succeed, fail, ==), miniKanren

constraint systems also demand a symbol =/= to interpret as syntactic disequality, a negated

form of ==.

2.7.1. miniKanren Constraint Signatures. Our miniKanren constraints should

have the following properties:

• Constraints must be decided by a complete solver.
32

• Constraints must be applicable over the entirety of the term language.

• Constraints must be “all intermixable”—always applicable in combination.

• Constraints have to hold modulo some background equality theory TC of first-order

syntactic equality.

• We need the constraint domains to be “cumulative”—adding new forms of primitive

constraints to the language “works”.

Each constraint domain that we construct is a term algebra, possibly extended by a few

function symbols with fixed non-term interpretations, and our constraints are the existential

closure of conjunctions of a designated set of primitive constraints.

2.8. Negative Constraints

This section explores an important concept for our constraint systems: the independence

of negated constraints [136, 139]. We choose to view the constraints’ definitions and their

interactions as fixed parts of a distinct CLP language. Under this view, the primitive

constraints are a set of special primitives, and constraints are the closure of this set under

conjunction and existential quantification. This is, however, just one point of view.

We can instead view constraint microKanren programs as programs written in a single,

flat LP language but written in two different phases and in which it is only valid to use

these “constraint” things in negative literals. Since we will not have any recursion through

the negative portions of our negative clauses, what we have are equivalent to stratified

logic programs. In this view these are not just stratified programs, but staged program

definitions.

The independence of negative constraints is a commonly recurring property in logic

programming [138] and language implementers have made important use of this property

in constructing solvers (e.g. [40, 139]). This property in some sense generalizes the strong

compactness over equations (see Lassez [135, §6] and Lassez et al. [137, pg 80]) to constraints

more generally. The general independence of negative constraints describes a property of

some set p ∈ P we deem the “atomic positive constraints”, and some “negatable constraints”

q ∈ Q whose negations we denote q′, under some consequence relation ⊨. We take the
33

sequent {p1, . . . , pn} ⊨ {q1, . . . , qm} to mean that the finite conjunction p1 ∧ . . .∧ pn implies

the finite disjunction q1 ∧ . . . ∧ qm. The (un-)negation of a negatable constraint permits it

to be moved from one side of the sequent to the other. Maher [Definition 10 148, p 316]

describes the negative constraints as independent if {p1, . . . , pn} ⊨ {q1, . . . , qm} implies

{p1, . . . , pn} ⊨ {qi} for some 0 ≤ i ≤ m. As a consequence of the previous two facts,

we can know a set {p1, . . . , pn, q′1, . . . , q′m} is consistent provided each set {p1, . . . , pn, q′i} is

consistent, once again for 0 ≤ i ≤ m. Full independence is not a common property—equality

constraints for instance, are not independent. Maher’s [147] “A Logic Programming View

of CLP”, § 4 describes this property and connects it to earlier generalizations.

General miniKanren constraints are not themselves independent, even modulo the prim-

itive equality constraints. Each constraint “bucket”—an homogeneous set in a family of sets

of negative atomic constraints—is independent. There are only finitely many buckets, so

after solving the equalities and applying the substitution, checking the satisfiability of a

constraint only requires checking groups of at most n constraints at a time. Each set of

the indexed family is n-constraint bucket-wise independent in the presence of the “full

equational implication”. That means that, viz. all the equations and implied equations, we

can test the consistency of admissible primitive constraints by testing each possible (up-to)-

n tuple independently. Because we need check at most only n primitive constraint atoms

at a time, we can call these nearly independent, or n-independent constraints.

Internally, we write each constraint relation by a list of definite Horn clauses; the

constraints we express are negated atoms defined with these predicates. Our n-independence

results in part from the properties of Horn clause theories. Strict Horn clause theories are

necessarily consistent; if constraint definitions came as strict Horn clauses, we would know

that the resulting theory is consistent. Further, by a well-known fact (see e.g. Hodges [96,

§ 5]) consistent Horn clause theories always have an initial model. This is a frequently

sought-after benefit [166]:

34

Initial algebra semantics [GTW 78] is, probably, the most popular method

for giving semantics to algebraic specifications. Several reasons justify

this popularity, among them the methodological appeal of the “closed

world assumption” [GoMe 83], the simplicity and power of the technical

constructions used and the power of the associated methods and tools

[HuOp 80].

These properties will prove important for our solvers.

Each homogeneous bucket of negative constraints needs to have the independence prop-

erty. Our constraint domains’ theories are close to, but not necessarily, strict Horn clause

theories. By Makowsky [151, Thm. 5.9], every theory that admits an initial model is

equivalent to a ∀∃-Horn theory, and furthermore, any finite theory T that admits an initial

model is equivalent to a finite ∀∃-Horn theory.

Not every ∀∃-Horn theory, however, admits an initial model. Furthermore, we do not

present our constraint theories by ∀∃ Horn theories explicitly. We do present the constraint

relations themselves by strict Horn clause definitions. Instead of explicitly writing the

∀∃ Horn sentences, we introduce a finite number of computable functions for the defi-

nitions of the constraint relations. These interpreted functions kind of “Skolemize” away

the ∃ quantifiers, and this class fits precisely with the theories admitting initial models.

Makowsky [151, Thm. 5.9] characterizes the theories admitting initial models as precisely

the partially-functional ∀∃-Horn theories. By Makowsky’s [151, §6] result, elements in sets of

negated atomic formulae—such as =/= formulae—are independent with respect to a partially-

functional ∀∃ Horn theory.

This suggests how we can combine the different classes of atomic negative constraints.

What remain are the heterogeneous constraint set failures; these describe the conditions,

modulo equality, for which the domains fail to be initial, even with the addition of inter-

preted functions.
35

Much of this chapter’s general background comes from Doets [51], Downward [52], and

Lloyd [143]. For our discussion of logic programming and its semantics, we consulted Apt

and Van Emden [10], Lloyd [143], and van Emden and Kowalski [211]. We consulted Clark

[34] as well as Lloyd’s [143] Foundations of Logic Programming for the material on program

completion. For a history of negation and LP, see also Apt and Bol [9], Kunen [132],

and Naish and Søndergaard [163]. See Clark [33] for an historical development of logic

programming schemes extending from Kowalski’s [127] approach that culminates in the

CLP Scheme. For more background and related literature, see also Hogger [99, Themes 2-4].

We suggest Kriwaczek [131], Lassez [134], and Wallace [219] for introductions to constraint

logic programming. The CLP Scheme has since been generalized in different directions; these

include Höhfeld and Smolka’s [100] and those approaches described by Van Hentenryck [212].

Jaffar and Maher [110] survey the state of constraint logic programming in 1994, and Rossi

[184] gives a later survey focused on its applications. The reader could consult Gabbay et

al’s recent volume Computational Logic in the Handbook of the History of Logic series [197]

for a more recent work surveying some of the breadth of the field.

36

Chapter 3 Semantics of microKanren Constraints

In this chapter, we describe the specification and construction of miniKanren constraint

domains. Constraint microKanren generates CLP languages whose constraints range over

the particular domain of microKanren terms. We saw in Section 2.7 that the differences

between constraint programming in Prolog-like CLP languages and miniKanrens with con-

straints go beyond differences in their syntaxes. Rather than providing general negation

over atoms like most logic programming languages, each constraint miniKanren language

instead permits a particular, specific, class of negated atoms; this class is the set of atomic

constraints built into that particular language. These classes include the symbolic con-

straints used in miniKanren programming. The constraint language specification picks out

the particular class, and the specification language ensures that every collection of allowed

constraints meets certain correctness criteria.

First, we extract from a part of the specification an underlying, basic constraint domain.

This domain has an intended model that defines the elements, the operations, and the

relations on that structure. This intended model is an algebraic semantics, and from this

intended model we also extract a corresponding theory. Furthermore, we require that the

specification for this domain also provides an implementation of a solver. We defer the

construction of such constraint systems to Section 3.2, and we exhibit programs that use

constraint systems built from this infrastructure in Chapter 4.

3.1. Making a Domain

A specification begins with an effective encoding #. By #, we mean to say fixing a

computable function, called the encoding function, that maps from a set of host language

programs to µ-recursive functions and from a set of host language data structures into
37

N, so that the translation respects the behavior of the host’s execution of programs on

its data. An embedded constraint domain specification describes an embedding into some

programming language, but our specifications are otherwise agnostic to the particular

embedding language.

3.1.1. #-based term-partition specification. The specification begins in earnest

with TP#, a #-based term-partition specification. The #-based term-partition specification

TP# is a 4-tuple comprised of elements we explain in turn. When S is a set of elements from

the encoding’s domain, we will use #[S] as shorthand for {n ∈ N | (∃s ∈ S)[#(s) = n]}, the

image of S under the encoding. We will not explicitly #-encode sets themselves as objects,

so this notation is unambiguous. We use χN for the characteristic function of N , for N ⊆ N.

With two sets S ⊆ T of elements from the encoding’s domain, we use χ#[S] ↾#[T] for the

characteristic function on #[S], restricted to #[T]. We use χ−#
S : T as shorthand for a

#-program that implements that characteristic function. To emphasize the set S rather

than the function χ, we may use Sp:T when #(p) = χ#[S] ↾#[T].

We write T (Σ, X) for the Σ-terms freely generated over X, and we say X are the

generators of T (Σ, X). When the precise contents of Σ (and perhaps X) are unimportant

or the reader can infer them from context, we will use T for T (Σ, X) and G for T (Σ, ∅),

referring to the latter as the set of ground terms. For given Σ, we define the X-parameterized

partial function pfsX : T (Σ, X) ↛ Σ that determines the primary function symbol of a term

in T (Σ, X). We define pfsX(σ(t0, . . . , tn)) = σ for σ ∈ Σ and t0 through tn in T (Σ, X).

#-based Term-Partition Specification

TP# = ⟨var?, F+, P=, P<⟩

where:

• var? ≜ χ−#
X : T (Σ, X)

• F+ ≜ {⟨f, n⟩ | f ∈ F ⊂ Σ ∧ n ∈ N+}

• P= ≜ {p ∈ P | |pfs−1
X [Σp]| = ω}

• P< ≜ {p ∈ P | |pfs−1
X [Σp]| < ω}

38

and subject to the requirements:

• The family of sets of constructors (Σp)p∈P indexed by the set of programs

P ≜ P= ∪ P< partitions Σ.

• |G | = ω (which implies C ̸= ∅, and if |C | < ω, further implies F ̸= ∅).

The first element of TP# is a #-program that codes for a function (with its domain

restricted to the #-encodings of T (Σ, X)) characterizing the #-encodings of a set X. The

remaining three components of this specification must all be finite sets, since we finitely

enumerate their elements. The set pfs−1
∅ [Σp] = Gp, and the set pfs−1

X [Σp] = Tp. The family

(Gp)p∈P partitions G , and the family of sets (Tp)p∈P partitions T \X. These two partitions

correspond to one another.

We call F the posary (positive arity) operators. We call the remainder C ≜ Σ \F the

nullary operators, or constants. This description doesn’t fully specify a particular set C .

Instead, it leaves open lots and lots of possible choices for infinite sets C (and thus Σ). Any

of those choices would be correct so long as they contain all the constants of the constraint

or constraints for which we’re using this domain/solver. There are certainly largest sets for

which we can define them, the largest C that respects the encoding. Making a particular

choice isn’t necessarily more correct than remaining generic to any acceptable choice (e.g.

any infinite set of Racket symbols that contains all the symbols used in the program, and

so forth for strings.). But if there is a best choice, then the maximal sets accepted by the

#-programs is that choice. From this description we construct the function arity as follows:

arity(σ)

n if ⟨σ, n⟩ ∈ F+

0 σ ∈ C

We subscript the subset of programs P= (resp. P<) as such because each member of

that subset accepts a countably infinite (finite) term-partition block, that is, of cardinality

equal to (less than) ω. Since the infinite set of ground terms is freely generated, and since

the term-partition blocks together all terms of the same primary function symbol, any finite

term-partition block must consist entirely of constants.
39

The elementary specification TP# suggests a particular topological space on G ,

(G , τ). The topology τ is the collection of all co-finite sets formed from elements of G :

(G , {A | A = ∅ ∨ |G \A| < ω}). The co-finite sets, together with ∅, are the open sets of the

topology (these are possible domains of variables “open” to the CLP programmer). An

infinite G guarantees all co-finite sets are infinite.

Let # be the “Racket encoding”, and we can discuss an example with Racket con-

structors, Racket data, and Racket programs. This encoding is usually implicit in actual

embedded miniKanren implementations.

A typical miniKanren instance of a 4-tuple TPRacket would be:

<natural?, (<cons,2>), (boolean? null?), (symbol? string? pair?)>

We could represent these data in Racket, but it’s not necessary to do so just because we use

the Racket encoding. This information should be language independent in that, under some

other encoding with corresponding data-types (an embedding into some other programming

language) this tuple should specify a term language and some primitive programs over that

term language, too.

Typical for miniKanrens including this example, the first element of TP# is natural?,

used as var? in the implementation. We take the set of Racket natural numerals, ⌈N⌉ as

the generators X. These are distinct from the set N, the co-domain of the encoding # and

the setting against which we define characteristic functions and later discuss computability.

We must actually fix a bijection var : N→ X enumerating the set X accepted by var?.

The Racket programs null?, boolean?, symbol?, string?, and pair? code to charac-

teristic functions.1 Continuing this example, F = {cons} and C = {()} ∪ {#t, #f} ∪

Racket symbols ∪ Racket strings. We treat both the Racket symbols and Racket strings as

atomic constants.2

1Special versions of those above programs built to error on any input not in our particular term language

over ⌈N⌉ would perhaps instead be better implementations of the restricted characteristic functions.
2One should not confuse Racket’s strings with the traditional automata theory definition of strings as

the set Σ∗ over an alphabet Σ. This will not be our convention, and we will not use Σ in this way.

40

3.1.2. Combinatoric Complexity Interlude. When solving a constraint for a vari-

able with a domain restricted to some finite set, we may find through an exhaustive analysis

by cases that the constraint is unsatisfiable. Exhaustive satisfiability testing across finite

domains can be complex. Much constraint systems research stemming from operations

research focuses on finding efficient, specialized solutions for certain classes of these problems.

However, constraint problems of this sort are intractable in the general case. An overarching

design goal for our constraint systems was to preclude such complex search techniques in

the solver. To avoid this kind of search, we exclude constraints for which any variables’

values come from a non-trivially finite domain.3

The predicates on the above structures come from an arbitrary partition. These pred-

icates may or may not have the desired domain property in these structures. There are

infinitely-many natural numbers, for instance, and only two booleans. Furthermore, there

will be some sets that are not in and of themselves a block of a partition, but for which we

will still permit treating membership as a constraint.

In the following, we construct larger, more complex constraint domains based on such

a small structure as described in the preceding. In doing so, we will extend the constraint

domain’s signature and its other corresponding components. When designing such an exten-

sion, the constraint language designer must select certain families of sets that we guarantee

avoid any combinatoric explosion during solving. We will see this in Section 3.1.6 on page 45.

3.1.3. TP#-based Primitive Predicate Specification. The TP#-based primitive

predicate specification is a special kind of family of sets S over the particular set of programs

P given from TP#. This family of sets of programs relates to an extension of τ , and will

also closely relate to the elementary predicates that—along with the equality predicate—

the constraint writer uses for defining relations. We use S ∪ for the union closure of S ,

and we will use Sc for the P -complement of a set S ⊆ P . By convention, we will use S for

3This is an instance of the Zero one infinity rule wikipedia.org/wiki/Zero_one_infinity_rule.

41

wikipedia.org/wiki/Zero_one_infinity_rule

an element of S and SS for an element of S ∪. For each S, let Ṡ be the name of a new

predicate (the primitive predicates) that holds for exactly those terms for which a p ∈ S

accepts.

TP#-based Primitive Predicate Specification

PPTP#
= S

such that:

• For each SS ∈ S ∪, P= ̸⊆ SS.

The family S is the “generator” for the union closure S ∪. The above restriction

guarantees that {t ∈ T | Ṡ(t)} is co-infinite. Indeed, this guarantees the stronger condition

that
∪

(Gp)p∈SS is co-infinite for all SS ∈ S ∪. Together with τ , the collection of sets

{
∪
(Gp)p∈SSc | SS ∈ S ∪} form the basis for an extension τ ′ of τ . In our system, the

constraint writer defines a constraint via membership in the complement of some computable

set of terms or tuples of terms. We will say more about these in Section 3.1.4.

To continue the Racket example of Section 3.1.1, we select the following family of sets

over the programs P from Section 3.1.1. One can verify the above requirement holds for this

set. For merely building the structure, the precise names are unimportant and the Ṡ suffice.

For a programmer however, names matter, and so in comments we include suggestive names

that we might instead provide (that we will in fact use in subsequent sections).

{ {boolean?, null?, pair?, string?} ;; non-symbol?
{boolean?, symbol?, string?} ;; non-list-constant?
{boolean?, null?, symbol?, string?} ;; non-pair?
{pair?} ;; pairr?
{boolean?, null?, pair?, symbol?} } ;; non-string?

Together with the binary term-equality predicate and the special trivially-true value

true our system always includes, these primitive predicates—as named and defined above—

underlie the definitions of constraint predicates.

3.1.4. PPTP#-based Predicate Definitions. We specify the general predicates via a

set of Horn clauses in implicational form. Rather than the more general extended clauses, we

restrict the input to definite Horn clauses and allow only positive atoms in clauses’ bodies.
42

The relation symbols at the heads of these clauses are new symbols. The clauses in the

specification whose heads have the same relation symbol define collectively the behavior of

a predicate. The set of all these clauses then define all general predicates for the system.

Clauses’ bodies may refer to the predicate it defines or to some other predicate (via relation

symbols at the heads), and may also include atoms with over the provided primitives, as

well as binary equal? and the atomic true. The resulting predicates need to be total over

queries, and must possess Shepherdson’s finite tree property for all atomic queries; the class

of such programs is sufficiently expressive.

More precisely, define the k-set of PrPPTP#
of clauses with respect to the previously-

defined PPTP# as follows:

PPTP#-based Predicate Specification

PrPPTP#
= {c0, . . . , ck}

where:

• Each clause ci has the form hi ← bi1 , . . . , bim .

• Each hi is some ri(t+i1 , . . . , t
+
in
).

• Each t+ij ∈ T (Σ, Zi), and Zi the least such required generating set.

• The set R =
∪

i∈0...k{ri}, where R and each of (Zi){0...k} are finite, mutually disjoint

sets distinct from any aforementioned sets.

• And finally then, each bij is either true, or (equal? t+ik1
t+ik2

) or pij (t+ij1 , . . . , t
+
ijn

)

with each t+ikj
∈ T (Σ, Zi), and pij ∈ R or pij is one of the primitive predicate

symbols from PPTP# .

We continue the example from Section 3.1.3, defining a singleton predicate set and with

R = {mem?}. To avoid confusion between the constants C and the elements of each Zi, we

choose single capital letters and “_” as the elements of each Zi. The constraint writer needn’t

consider full unification, the set X, or indeed T \ G when defining these relations’ heads.

Instead he need only write clauses to match against the ground terms of G . We define the

mem? relation on the domain with a recursive Racket implementation.
43

(mem? X X) ← true
(mem? X (cons _ Z)) ← (mem? X Z)
(mem? X (cons Y _)) ← (mem? X Y)

3.1.5. TP#-based Term Function Specification. Here, we here introduce some

new, special function symbols with non-trivial (non-term-model) interpretations. As such

here we are no longer interpreting into an initial model. However, we don’t ever use functions

inside the above Horn clause-based predicate definitions, nor will the constraint programmer

have direct access to them. Further, when we use these auxiliary, interpreted function

symbols in the following sections, we use them only around terms (or other such function

calls) in negative atomic constraint definitions and in specifying rules for the solver. Such

usages transport portions of this entire enterprise back into a term model.

Furthermore, we fix a syntax for defining such a function against a term language. There

is a fixed grammar through which we write them, roughly speaking, against the signature

of the F -algebra. We list what to do on the terms of the posary function symbols, and we

use the primitive predicates to match all of the constants4.

Each such function f̂ we write will describe a structure homomorphism on G defined in

TP#. In our system we express a structure homomorphism via some function f̂ , computable

and totally defined on G , into some analogous substructure on G (that is, f̂ [G] ⊆ G). Such

a function describes the structure homomorphism. Since the mapping needs to preserve

the relations defined by TP#-predicate structures, extend each relation exactly as far as

the image of the domain under the given function. Since the function f̂ will represent a

morphism from the ground term structure G , f̂ will extend to a comparable total function

f̂ ′ on T (Σ, X) by subsequently describing the intended behavior on X.5

4If some primitive predicate p matches only terms with posary function symbols, then matching the

posary function symbols one-by-one makes this primitive predicate p redundant.
5In point of fact, in our system f̂ ′ will always behave like the identity on X. We will discuss the

implementation of this behavior in Section 3.2.

44

TP#-based Term Function Specification

TFTP#
= {f̂ | f̂ [G] ⊆ G }

We continue the example from Section 3.1.3 by defining one such function: cdr* returns

the rightmost leaf of each term, for each term viewed as a tree. The function cdr* of this

example maps from every element of the F -algebra to a member of its generating set.

cdr∗(X)

X if (non-pair? X)

cdr∗(Z) if (pairr? X) and X = (cons _ Z)

As we will see, we will only write a function invocation like cdr*(·) around a term,

and only in either the body of a negative constraint definition or in the conditions of solver

rules. With this collection of functions in hand, we next specify a grammatical structure

for the full definitions of atomic independent negative constraints, based on the previously

defined general predicates and these function definitions.

3.1.6. (PrPPTP#
,TFTP#

)-based Negative Atomic Constraint Definitions. We

specify the independent negative atomic constraints over the aforementioned set of gen-

eral relations over the term algebras and the set of structural functions. Members of the

constraint Kanren language family are parameterized by classes of atomic constraints. All

the solver-internal infrastructure we have built thus far in this chapter is opaque to the

constraint logic programmer. These atomic constraints (along with the two atomic goals)

are the smallest program units against which a programmer can execute queries. The CLP

literature refers to these as negative constraints those constraints defined as the negation of

some atom.

Every negative atomic constraint definition defines a class of negative atomic constraints

constructed with a new n-place programming-language relation symbol r and an n-tuple

of the terms in T (Σ, X). Each negative atomic constraint definition defines the meaning

of its family of r-constraints as the negation of some relation r ∈ R over n tuples of

f̂i0(. . . (f̂ik(ti))), with each f̂ij coming from the set defined in Section 3.1.5. These definitions
45

connect the internal infrastructure of the particular to the precise constraint logic program-

ming language with which the solver is associated. We use the term r-atomic constraints to

refer to the set of negative atomic constraints with relation symbol r, and we will also use

this terminology for subsets thereof. We will also call any subset of such a set a homogeneous

set of negative atomic constraints. In addition to the provided negative atomic constraint

definitions, all of our constraint systems will, per force, include disequality constraints via

the equivalent of (=/= A D) ≜ ¬(equal? A D) for some new symbol =/=. The family of sets

of r-atomic constraints, for each new relation symbol r, forms a family of negative atomic

constraints indexed by the set of constraint relation symbols R; this family partitions the

entire set of negative atomic constraints.

We have been so particular about constructing the constraint domain to ensure homo-

geneous sets of negative atomic constraints have the independence of negated constraints

property. This terminology can be somewhat confusing in our context, since we have called

the constraint logic programming language’s (positive literal) atomic constraints “negative

atomic constraints”. We named them such because they take their meaning as the negation

of some positively-specified clausal property internal to the solver.

In our particular case, we take ⊨ as logical consequence. For every r, every finite

homogeneous set of atomic r-constraints Q, every r-atomic constraint has the independence

property. This means that given any other set of atomic positive constraints P of our system,

P ∪{q′1, . . . , q′m} is consistent iff for each 0 ≤ i ≤ m, P ̸⊨ {qi}. These include the disequality

constraints introduced by the system. Makowsky [151, §6], Colmerauer [40], and Lassez et al.

[137, §6] each gave special study to the independence of disequality constraints.

(PrPPTP#
,TFTP#

)-based Negative Atomic Constraint Definitions

AC(PrPPTP#
,TFTP#

) = {(r . . . vi . . .) ≜ ¬r(. . . , f̂i0(. . . (f̂ik(vi))), . . .), . . .}

Here we exhibit a collection of atomic constraint formulae definitions in terms of nega-

tions of relations as defined earlier in this example. The reader can verify that sets of

constraints from each class below, as well as disequality constraints, have the independence

property when evaluated in the T (Σ, X).

46

The absento constraint found in several miniKanren implementations is the negation of

a subterm relation. We implement this via a preorder given by the subterm ordering like

that described by, e.g. Tulipani [208] and Venkataraman [216]. The first implementations of

negated subterm constraints in miniKanren come from the author and Dan Friedman and

first published by Byrd et al. [27]. Several recent miniKanren implementations contain a

listo and/or not-pairo constraint, such as that of Hemann and Friedman [85].

(listo X) ≜ ¬(non-list-constant? (cdr* X))
(symbolo Y) ≜ ¬(non-symbol? Y)
(stringo Y) ≜ ¬(non-string? Y)
(not-pairo NP) ≜ ¬(pairr? NP)
(absento A D) ≜ ¬(mem? A D)

Most sets of negative atomic constraints we encounter during the execution of a logic

program are, however, heterogeneous. Even though members of the family of atomic con-

straints are r-independent, a pair of atomic constraints ⟨ϕ, ψ⟩ from different indexes can still

imply something more than the sum of the implications of constraints ϕ and ψ separately.

We call this situation “inter-family interaction”. In the next section, we will introduce

one consequence of inter-family interaction among heterogeneous sets of negative atomic

constraints.

3.1.7. AC(PrPPTP#
,TFTP#

)-based Constraint Interaction Definitions. Homoge-

neous sets of atomic r-constraints are independent. However, negative atomic constraints

from heterogeneous sets can interact. The only interesting or meaningful interactions are

subsets of inconsistent finite sets, for which the homogeneous sets of atomic r-constraints

are not separately subsets of inconsistent finite sets.

Importantly, even (finite collections of conjunctions of constraints) conjunctions of

constraints from different indices cannot induce a non-trivial finite domain for any variable.

By the requirement we placed on S as the basis for an appropriate topology extension.

The complement of the sets of terms described by conjunctions of primitive predicates

must remain infinite, and no matter how many (finitely-many) elements we exclude, there
47

remains an infinite set. So the interactions can occur significantly in only one of the two

trivially-finite domain forms, and these are all and only the situations we must further

consider.

Applying that substitution s across terms reduces equality to syntactic equality in a

term algebra. The independence of negative constraints means here that every inconsistent

finite set of constraints, heterogeneous or otherwise, has an inconsistent subset with at most

one element of any r.We ensure this approach to solving constraints works by forbidding

any non-trivial finite domain constraints in the constraint language.

• constraints of a heterogeneous collection interact to cause failure (where some

variable has 0 possible values)

• constraints of a heterogeneous collection interact to define a domain element (where

some variable has exactly 1 possible value)

We know that in the special induced equalities above, since one side will always be a

constant, the order of application of these rules cannot matter. Thus, there is no danger

that some rule will fail to fire on a constant, or that we would need a fix-point algorithm

to “catch” it.

AC(PrPPTP#
,TFTP#

)-based Constraint Interaction Specification

CIAC(PrPPTP#
,TFTP#

)

⟨conditional equalities, failure rules⟩

We format them as constrained rewrite rules a la Kirchner et al. [117], or like propagation

forms of constraint-handling rules (CHR). The → should suggest CHR-like behavior, and

we intend ⇒ as assignment. From left to right, we read these rules to say: “for all of

the antecedents, produce the consequent, when the conditions hold”. These are, however,

restricted versions of the general forms of such rules. These failure conditions we write here

capture failures “at the limit” that aren’t yet failed for finite approximations.

(stringo st), (symbolo y) → ⊥ | (equal? st y)
(listo l), (symbolo y) → ⊥ | (equal? (cdr* l) y)

(listo l), (stringo st) → ⊥ | (equal? (cdr* l) st)
(listo l), (absento p r) → ⊥ | (nulll? p), (mem? (cdr* l) r)
(listo l), (not-pairo np) → np⇒ '() | (equal? (cdr* l) np)

48

At most |R|-many constraints are ever required to check at once for a failure. We never

need two atomic constraints of the same set in there, because the homogeneous sets are

independent.

3.1.8. Equality Constraints. Atomic equality constraints (be they written explicitly

or implicit in the language’s syntax) are critical for logic programming, and constraint

logic programming does not differ in this respect. However, unlike our negative atomic

constraints, these atomic equality constraints are not independent of one another. The

inherited recursive structural equality on terms is alone insufficient for atomic equality

constraints, because of the presence of variables in terms of T (Σ, X). Instead we solve

collections of these constraints using unification, and by quotienting under the result.

If collectively the equations are mutually compatible, we can treat those equations as

axioms. There will be no real universal equalities here, because the term-variables are just

other constants. If collectively the equations are mutually compatible, we can treat the

equivalent set in solved form as rewrite rules. By substitution, which is to say rewriting

under those rules, we bring everything into a question of syntactic equality.

All of our constraint systems will, per force, include binary atomic equality constraints

over terms for some new symbol ==. We implement these constraints over T with first order

syntactic unification.

3.1.9. CIAC(PrPPTP#
,TFTP#

)-based Constraints, and Solver. Our full language of

CIAC(PrPPTP#
,TFTP#

)

-based constraints is determined by the R ∪ {==}-indexed family of

atomic negative constraints plus equations. A constraint is an R ∪ {==}-indexed family

of homogeneous sets each from the family of sets over (r-atomic constraints)r∈R∪{==}. We

will call this class of constraints CC .

Provided the negative atomic constraints of each primitive constraint identifier in the

signature are independent of each other, and that the negative atomic constraints (that

is, excluding equality constraints) of different identifiers are n-independent of one another.
49

Logically, the class LC of constraints for this miniKanren constraint language is the set of

all existentially-closed conjunctions of atoms with either == as the predicate symbol or a

negated atom with == or one of the other added predicate symbols.

We now describe a non-deterministic algorithm for solving a constraint C. First solve the

class of atomic == constraints (in any order), and generating a substitution if possible. Then

check every possibly instance in the constraint of any defining formulae (in any order),

substituting through and extending the substitution, if possible. Then, in any order and

potentially in parallel, check if any instance of any of the failure formulae hold. Our solver’s

“motto” would be: if it’s not known to be impossible, then it must be possible. We provide

this algorithm in Algorithm 1.

Algorithm 1 Solving constraints in independent negative constraint domains

Precondition: I are conditional equalities
Precondition: F are failure rules

function Solve(C) ▷ C ∈ CC is a R ∪ {==}-indexed family of sets
if σ ← Unify(C.==) then ▷ if Unify succeeds, σ is the mgu of C.==

for all πj0(dj0) · · ·πjk(djk)→ rr | t? ∈ I do
▷ πji(dji) a constraint atom pattern

▷ ∀(ji, ji+1)ji ̸= ji+1

▷ 0 ≤ ji < |I|
for all ⟨c0, . . . , ck⟩ ∈ ⟨C.πj0 , . . . , C.πjk⟩ do

θ ← Match(⟨πj0(dj0), . . . , πjk(djk)⟩, ⟨c0, . . . , ck⟩)
if ((t?)θ)σ then

if σ ← σ ◦ (rr)θ then ▷ The composition can fail

else return false
else

for all πj0(dj0) · · ·πjk(djk)→ ⊥ | t? ∈ F do
θ ← Match(⟨πj0(dj0), . . . , πjk(djk)⟩, ⟨c0, . . . , ck⟩)
if ((t?)θ)σ then return false
else

return true
else return false

50

The following family of sets is an example constraint of the constraint language from this

chapter. This constraint is one of those built during the execution of the example from Chap-

ter 1. This family of sets is indexed by the set {listo, absento, not-pairo, ==, nullo}.

{ {(listo 0)},
{(nullo 3)}
{(not-pairo 2)},
{(== 0 (cons 1 2))},
{(absento 3 0), (absento 2 1)}, }

In the following, we demonstrate both that this description captures constraint mi-

croKanren languages—including those used in practice—and that this class excludes ones

we wanted to exclude—suggesting that this class is precisely the class of languages we

wanted to capture.

3.2. microKanren Constraint Systems

In this section we construct and instantiate constraint domains like those of Section 3.2

for miniKanren constraints of the form required by the CLP Scheme. We first remark on the

term language over which our microKanren CLP languages will compute and the primitive

programs that partition the primary function symbols.

3.2.1. Term Language and Primitive Predicates. This constraint language and

framework permits constraints over any term language matching the requirements we de-

scribed. For the remainder of this section, though, we will keep to the same particular, fixed

term language of the previous example because we are describing the behavior of an existing

language family.

As noted in Chapter 1, few if any miniKanren implementations explicitly specify which

host-language values constitute the embeddings’ terms or how programmers ought to con-

struct them. However, miniKanren term languages are usually languages of binary trees,

built of a single binary functor, cons—like Prolog’s cons/2—over some countably infinite

number of constants. Then cons is the only non-constant function symbol. We note such a

term language is not unique among miniKanrens or other logic programming implementa-

tions in Lisp-like languages [221]. Table 3.1 presents a grammar for these term languages.
51

Term Language
t ::= Terms
| x Term Variables
| c Constants (as specified)
| t :: t′ Pairs

Table 3.1. The Kanren Term Language

Specifying this structured tuple of

• Racket programs for recognizing variables,

• finite sets of posary constructors with their arities,

• finite sets of Racket programs for recognizing finite sets of ground terms and,

• finite sets of Racket programs for recognizing infinite sets of ground terms

defines a specific, particular language of terms over which our miniKanren programmers

write constraints. The domain of computation is then the set of ground terms generated

by the set of constructors for which one of the programs accepts terms with that primary

function symbol. For each constraint system, the computation domain’s (DC) carrier is the

set of finite cons-labeled binary trees with the Racket symbols, strings, booleans, or the

empty list at their leaves. To keep our presentation concise, we will sometimes use host-

language operators besides cons to construct terms. In principle though, all of our terms

are built with cons.

We now describe the construction of actual constraint systems. In the course of doing so,

we present several more exemplary miniKanren constraint systems defined over the term

language of Table 3.1. For each example, we will describe the domain of the constraint

computation, the constraint theory, and the function that is its solver. We can know from

the results of Chapter 2 that each of these example constraint systems bear the required

relationships will hold between the solver, theory, and domain.
52

3.3. miniKanren Constraints over this Term Algebra

This section and the remainder of the chapter rely on Racket’s macro system [45, 60]

to instantiate the solver of the domain. Although we specify all of the constraint domain’s

components, we macro-generate only the solver and leave implicit the construction of the

domain’s other components. Even so, we can read off portions of the theory and of the

domain because of their dual interpretation as logic and program. Further, we define DC as

some privileged model we induce from the theory TC .

In describing the macro that constructs a constraint system, we will present and discuss

the make-constraint-system macro in pieces, marking where we have omitted aspects of

the definition. We use the Unicode glyph “…” to mark elisions, and this should not be

confused with the “...” post-fix operator of Kohlbecker [123] as used in Racket macro

pattern languages. The constraint system macros also introduce constraint goal constructors

for each member of the constraint domain index set. We construct these goal constructors

here, but we will defer their explanation to Section 3.5.

3.3.1. Variables, Substitutions, Unification, etc. As we saw earlier in Chapter 3,

we parameterized our notion of term equality by the particular posary constructors of the

term language and the constants described by the primitive predicates. We will similarly

parameterize our first-order unification algorithm to unify over our particular term lan-

guage. In this section, from the perspective of implementing constraint systems, we will

use “variables” as a shorthand for the “logic variables” of the implemented language, or the

generators of the relevant term algebra. When we mean lexical variables of the implementing

language, we’ll say so explicitly.

One common operation on terms is to “substitute through” a given term, uniformly

and simultaneously, each occurrence of a particular variable, replacing each by the same

specified term. This operation is called substituting (or simply subst for short). In formal

term-rewriting systems, the operation is often written [t/x]t′, replacing each occurrence of

variable x with term t throughout t′6.

6This is at least one of the more common notations. See Steele for longer discussion [203].

53

(define-syntax-rule (make-subst var? (con d ...) ...)
(rec (sub x v t)

(match t
[(? var?) (if (equal? x t) v t)]
[(con d ...) (con (sub x v d) ...)]
...
[else t])))

Listing 3.1. Parameterized implementation of subst for solver

We define make-subst in Listing 3.1 with define-syntax-rule. The define-syntax-rule

form is an easy way to construct simple syntax-rewrite rule macros in Racket. The first

argument is a pattern that specifies how to invoke the macro. The pattern’s first element,

make-subst, is the name of the macro we are defining. Its second argument is a template

to be filled in with the appropriate pieces from the pattern. Provided with a function for

var? and match patterns for each of the constructors, the make-subst macro generates an

anonymous function that performs the desired substitution operation on a triple of variable,

term-replacing-variable, term.7

In contrast with its use as a verb, as a noun “substitution” refers to a data structure

carrying variable assignments. We use these logic variables differently than we use the

standard lexical variables of functional programming. Unlike an environment, a substitution

may associate variables with almost any other term—including other unassociated variables.

A substitution we consider may, for instance, associate a variable x with a term containing an

unassociated variable y. Therefore, subsequently giving an association to y may also impact

the meaning of x. Adding an association of a term and a previously unassociated variable

can impact the values of an unbounded quantity of other variables. We uniformly represent

the substitution data structure as an association list between variables (as represented in

the embedding), with variable-laiden terms (as represented in the embedding). We use an

association list for its simplicity and ease of implementation.

7This implementation assumes Racket already implements match patterns for each of the term languages’

constructors; if not, the constraint language implementer would need to add them, using something like the

~struct or define-match-bind of the Racket generic-bind library.

54

(define-syntax-rule (make-subst-all var? (con d ...) ...)
(rec (w* t s)

(match t
[(? var?)
(cond

[(assoc t s) => cdr]
[else t])]

[(con d ...) (con (w* d s) ...)]
...
[else t])))

Listing 3.2. Parameterized implementation of subst-all for solver

We rely on the primitive host-language function assoc to check if u is the first element of

a pair in substitution s. If so, assoc returns the pair; if not, #f. When, rather than replacing

a single variable by another, we instead wish to uniformly and simultaneously replace

occurrences of any of a list of variables by corresponding values, we use this similarly-derived

subst-all method. When substituting in parallel like this, we say that we substitute across

a substitution and through the term. Structurally it is very similar to Listing 3.1. Unlike

many other languages, Racket’s (Scheme’s) cond accepts any value as its first argument, and

any value except #f is considered true enough (or “truthy”). The cond-block in Listing 3.2

takes advantage of this, using the => (“arrow syntax”) to send any non-false value to the

one-argument function cdr.

Not just any association of variables to terms qualifies as a substitution. To ensure

certain well-formedness conditions (e.g. that all terms represent only finite structures), we

must ensure that no variable is associated to a term that occurs within it. The macro

of Listing 3.3 defines a function that checks if a given variable occurs in a term.

With these pieces in hand, we can macro-generate a method that, given a substitution

and a pair of a variable and a term with which to possibly extend that substitution, return

an extended substitution if possible, and false if those two terms do not appropriately

extend the substitution. The use sites of the resulting function ensure that the term t is

up-to-date with respect to the present substitution s.
55

(define-syntax-rule (make-occurs? var? (con d ...) ...)
(rec (o? x v)

(match v
[(? var?) (equal? x v)]
[(con d ...) (or (o? x d) ...)]
...
[else false])))

Listing 3.3. Parameterized implementation of occurs? for solver

(define-syntax-rule (make-ext-s var? diag ...)
(let ([occurs? (make-occurs? var? diag ...)]

[subst (make-subst var? diag ...)])
(λ (x t s)

(cond
[(occurs? x t) false]
[else
(cons `(,x . ,t)
(~for/list ([($: a d) s])

(cons a (subst x t d))))]))))

Listing 3.4. Parameterized implementation of ext-s for solver

These pieces help construct a concrete implementation of unification for the term

language of Listing 3.5. This implementation follows the general unification algorithm

alluded to in Algorithm 1. We parameterized the implementation of unification by the

term language. Instantiating these parameters gives a concrete implementation from the

parameterized implementation of the general unification algorithm. This macro generates a

unify similar to microKanren’s, but operating over the idempotent substitutions discussed

above. Because unification is a two-way pattern matching, the macro constructs two different

patterns for each posary constructor. For this reason the macro takes in as parameters pairs

of pattern variables for each constructor.

The resulting anonymous function (hereafter unify) is a fairly pedestrian unification

implementation. If both terms are the same, return the substitution parameter. If not, but

one’s a variable, attempt to return an extended substitution, and similarly in the opposite

case. If neither term is a variable, then both terms have a primary function symbol. If, for any
56

(define-syntax-rule (make-unify var? subst-all (c p1 p2) ...)
(let ([ext-s (make-ext-s var? (c . p1) ...)])

(rec (unify u v s)
(let ([u (subst-all u s)] [v (subst-all v s)])

(match* (u v)
[(u v) #:when (equal? u v) s]
[((? var?) v) (ext-s u v s)]
[(u (? var?)) (ext-s v u s)]
[((c . p1) (c . p2))
(for/fold ([s s])

([t1 (list . p1)]
[t2 (list . p2)])

#:break (not s)
(unify t1 t2 s))]

...
[(_ _) false])))))

Listing 3.5. Parameterized implementation of make-unify for solver

of the term language’s posary function symbols both terms begin with that function symbol,

then fold unify across the immediate subterms. If none of those situations manifest, then

the two terms are not unifiable, and fail. This generated unify is not especially performant.

Under a deep embedding, we could guarantee a uniform structure and instant access to

the primary function symbol of non-variable terms. We required only a shallow embedding

of the term language; by contrast, this shallow embedding forces us to match against and

destruct pairs of terms to access their subterms.

The unify generated for miniKanren’s term language is an unusual special case. For a

term language with no more than one posary constructor, this macro’s unify performs no

superfluous matching for posary terms. Such languages are a sort of “base case” for which

both unification over deep and shallow term embeddings has at most a single recursive

case for compound terms. The unify of a language with n posary constructors requires

n matches before failing on two posary terms of different primary function symbols. Our

term construction betrays an unfortunate reliance on the direct representation of terms.

This reflects a contingent decision to maintain some continuity with the typical miniKanren

implementation, not a necessary limitation of macro-generating constraint solvers. We could,
57

(define-syntax-rule
(make-fail-check subst-all ([(b x ...) ...] [(p? fa ...) ...]))
(λ (s)

(~for*/or ([($list x ...) b] ...)
(and (p? (subst-all fa s) ...) ...))))

Listing 3.6. Building execution of failure rules for solver via make-fail-check

for instance, mix a shallow embedding of a constraint system with a deep embedding of

the underlying term language. Even in the best of cases, however, our system generates

a deficient implementation of unification: idempotent substitutions can cause exponential

blow-up in the size of terms over more compact representations. We discuss ameliorating

some of these problems in Section 3.4.

Supposing that for the constraint in question we have constructed a substitution (like

from unify) that reduces every T -term of the constraint into some canonical form. Say

that we can use it to “wring out” all of the equality information of the constraint. Suppose

further that we have access to members of the constraint’s family of sets via the index set.

With such a substitution and access to the constraints’ elements, we could use one of the

failure rules of the specification to look for a particular kind of failure.

The make-fail-check macro takes a failure rule: a sequence of negative atomic constraint

patterns over which the failure is defined and a templated sequence of conditions that

must be met to cause failure. The macro generates a function from a term-normalizing

substitution to a boolean. This boolean reflects if the constraint violates that particular

rule. The ~for*/or operation operates across each tuple from r1×· · ·× rk in the constraint,

and returns the value #t if for any such tuple all of the condition for failure hold. We can

subst-all across all terms in the failure condition test.

It takes more than an implementation of unify to construct a normalizing substitution.

Even after using unify to solve the atomic equality constraints, the resulting substitution

may not be a normalizing substitution due to rewrite rules. Rewrite rules also have a syntax

of negative atomic constraint patterns and condition templates. In between those two pieces,
58

rewrite rules also have a sequence of rewrites. These rewrites are two equal-length lists, the

first of pattern variables and the second of terms in G —i.e. finite functions from pattern

variables to constants.

We only require a pattern-match to set-up one of these rules to prepare to execute the

checks. The result of a rewrite is either failure (because of a clash), or a similar substitution

with some variable uniformly replaced with a constant. When the atomic equality constraints

are consistent, and where θ is an mgu for those atomic equality constraints, then the rewrite

system of these rewrite rules on the set of terms θ[T (Σ, X)] satisfies the strong Church-

Rosser property. As such, the rules can be executed in any order, and in fact any instance

of any rule can be executed in any order. No matter the order, each instance of each rule

needs testing only once, and any resulting substitution will be equivalent modulo variable

renaming. Because these rules only ever introduce new equalities, no assignment of a variable

to a ground constant can cause a rule to “fire” when it would not have otherwise, and because

unification produces a most general unifier, all resulting substitutions under any ordering

will be equivalent up to variable renaming. Further, if any one ordering causes failure, all

other orderings must as well. These rules describe defining formulae for constants—at most

assigning a constant to a variable—as sequences of negative atomic constraints.

The more general atomic equality constraints can merge equivalence classes of variables

without grounding them to some particular ground term. Because of these limited kinds of

rewrites that defining formulae express, we can eschew a fix-point algorithm for executing

these rules.

In practice, the solver applies a rewrite rule across each instance in the constraint, one

after another, of the rule’s pattern. Our system will execute each instance of each rule

in the order listed. As mentioned, such a system need not even test all a rule’s instances

together; this behavior in our systems is merely a contingent design decision. Internally,

the system describes the behavior of equality constraints as an unconditional rewrite rule

whose instances must all be executed first. The make-normlzr macro takes in both definitions

of subst-all and unify, along with the internal representation of rewrite rules. In this

representation, the assignments are listed as sequences of variables and the constants to

59

(define-syntax-rule (make-normlzr subst-all unify
([(b x ...) ...] [vs cs] [(p? fa ...) ...]))

(λ (s)
(~for*/fold ([s s])

([($list x ...) b] ...)
#:break (not s)
(if (and (p? (subst-all fa s) ...) ...)

(for/fold ([s s])
([t1 (list . vs)]
[t2 (list . cs)])

(unify t1 t2 s))
s))))

Listing 3.7. Building execution of rewrite rules for solver via make-normlzr

which they are assigned. For each r-rule listed, the system tests in turn every negative

atomic r-constraint of the general constraint being tested. This amounts to trying all tuples

of appropriate r-constraints and accumulating up, from the initial substitution input, the

augmented substutition that results. If the substitution ever becomes #f, indicating the

equality constraints themselves are already unsatisfiable, the execution of this rule short

circuits with failure as the result. By combining these two pieces together we construct

the full solver for a constraint. Internally, constraints are represented by a hash-map from

identifiers in R ∪ {==} to lists of n-tuples of terms, where n is appropriate for the r in

question.

The make-solver macro once again takes in both definitions of subst-all and unify; it

must have the definitions in order to pass them along to subsidiary macros. The make-solver

macro constructs a function that accepts a constraint, and introduces the names r into scope

for each list of tuples under that name in the constraint. The solver first executes each rewrite

rule in sequence. If this sequence fails to generate a substitution, then the function returns

#t, indicating the set is inconsistent. If this sequence produces a valid substitution, then

the solver uses that substitution to check if any of the failure tests indeed fail.

The actual implementation of make-constraint-system is the only technically sophis-

ticated macro in the implementation, and not particularly so. The pattern accepts all of

the pieces that define a constraint system, including two identifiers for the names of the
60

(define-syntax-rule
(make-solver subst-all unify (cid ...) (rr ...) (p ...))
(λ (S)

(let ([cid (hash-ref S 'cid)] ...)
(cond

[((compose (make-normlzr subst-all unify rr) ...) '())
=> (or/c (make-fail-check subst-all p) ...)]
[else #t]))))

Listing 3.8. Implementation of make-solver

(define-syntax-parser make-constraint-system
[(_ #:var? var?

#:posary-constructors ((c:id . n:nat) ...)
#:infinite-types (ip:id ...)
#:finite-types (fp:id ...+)
#:== ==
#:=/= =/=
#:primitive-predicates ((ppn:id ((~datum one-of) fp/ip ...+)) ...)
#:term-structural-functions ((sfn:id sfcls ...+) ...)
#:recursive-predicates ((rpn:id [(t ...) body] ...+) ...)
#:constraints (((rcn:id x ...) nrp) ...)
#:rewrite-rules (rr:rewrite-rule ...)
#:failure-rules (fr:fail-rule ...)
#:sugar-constraints (((sugn:id suga:id ...) b) ...))

…])

Listing 3.9. Pattern for implementation of make-constraint-system.

binary constraints representing equality and disequality constraints in the generated CLP

language. The recursive predicate definitions use a homogenized, IFF syntax as described

in Section 2.5.2 and Shepherdson [194].

The two syntax classes of Listing 3.10 provide surface syntax for failure rules and rewrite

rules, respectively. Each de-sugar to their own respective internal form introduced as a

syntax attribute for the class. These remove the sugar, and in the case of the rewrite-rule,

replace the pairs separated by => with a list of variables and a list of constants.

We separate the definition of the template into two pieces to discuss separately. The

actual internal definition of the predicate on constraints, invalid?, is the most sophisticated

part of the template, and we discuss it on its own. It lexically introduces the primitive
61

(begin-for-syntax
(define-syntax-class fail-rule

#:attributes (norm)
(pattern ((~literal for-all)

[(cid:id x:id ...+) ...+]
(~datum #:fail-when) [gpapp ...+])
#:with norm #'([(cid x ...) ...] [gpapp ...])))

(define-syntax-class rewrite-rule
#:attributes (norm)
(pattern ((~literal for-all)

[(cid:id x:id ...+) ...+]
#:rewrite
[(v (~datum =>) c) ...+]
#:when
[gpapp ...+])
#:with norm #'([(cid x ...) ...]

[(v ...) (c ...)]
[gpapp ...]))))

Listing 3.10. Syntax classes for failure rules and rewrite rules.

predicates formed from the programs of respectively finite or infinite co-domain of the

partition terms provided in the pattern. Within that scope it defines each recursive predicate

by the sum of the clauses with that relation symbol as head and the appropriate number

of arguments. It attempts to match each clause against the head and subsequently attempt

the body. Failing in the alternate case ensures that each clause results in a boolean value,

and the surrounding (or …) provides disjunction here covering all of the cases. This is

precisely where we introduce the closed world assumption in the constraint system. In that

same scope it also introduces the functions describing morphisms, possibly constructed

using one or more of the functions ppn. We introduce in each the special case of acting as

identity on variables. Within these defined, it then locally introduces subst-all and unify,

and finally proceeds to invoke make-solver, with the names of the equality constraints

and all of the negative constraints, the rewrite rules together with the added internal rule

for unconditionally rewriting equality constraints, and finally the list of failure rules in
62

(define-syntax-parser make-constraint-system
[…
(with-syntax
([(p1 ...) (stx-map make-pattern #'(n ...))]
[(p2 ...) (stx-map make-pattern #'(n ...))]
…)
#'(…

(define invalid?
(let ([ppn (or/c fp/ip ...)] ...)

(letrec ([rpn (λ args
(or (match args

[(list t ...) body]
[else false])

...))]
...
[sfn (match-lambda**

[((? var? X)) X]
sfcls ...)]

...)
(let* ([subst-all (make-subst-all var? (c . p1) ...)]

[unify
(make-unify var? subst-all (c p1 p2) ...)])

(make-solver subst-all unify (== =/= rcn ...)
[rr.norm ... ([(== t1 t2)] [(t1) (t2)] [])]
[([(=/= a d)] [(equal? a d)])
([(rcn x ...)] [nrp]) ... fr.norm ...])))))

…))])

Listing 3.11. make-constraint-system template’s implementation of invalid?.

normalized form, together with the definitions of the negative constraints themselves (which

are a kind of failure rule of their own), and the automatically supplied failure rule for

disequality constraints.

The system constructs match patterns for each of the constructors using the given

number input, and constructing a list of that many unique identifiers via generate-temporary.

Because this is an effectful operation, we actually execute it twice to make two distinct match

patterns when constructing unify.
63

(define-for-syntax (make-pattern ns)
(build-list (syntax->datum ns) generate-temporary))

Listing 3.12. Implementation of make-pattern function

(define-syntax-parser make-constraint-system
[…
(with-syntax
(…
[S0 (syntax-local-introduce #'S0)])
#'(begin

…
(define S0

(make-immutable-hash eqv '((==) (=/=) (rcn) ...)))
(define == (make-constraint-goal-constructor invalid? '==))
(define =/= (make-constraint-goal-constructor invalid? '=/=))
(define rcn (make-constraint-goal-constructor invalid? 'rcn))
...
(define (sugn suga ...) b) ...))])

Listing 3.13. Remaining pattern for make-constraint-system’s implementation

The remainder of the template introduces an identifier S0 into scope to use as the initial,

empty constraint. We also introduce host-language level functions that act as implementa-

tions of each constraint as a goal constructor in the shallow embedding of the language’s

implementation. These take the definition of invalid?; this identifier is otherwise unavailable

to the CLP language user. Finally, we introduce the “sugar constraints” that are just shallow

wrappers around a function producing specialized versions of some set of constraints from

the constraint family.

This make-constraint-goal-constructor introduces the shallowly embedded CLP lan-

guage’s goals; these make up the language’s interface to the constraint solver. The imple-

mentation partially instantiates a heavily curried function once for each member of the index

set. The invalid? identifier gives each access to the solver. The element of the index set will

also serve here as a hash key. We discuss the macro’s implementation in Listing 3.19 and
64

explain the rest of its behavior in context in Section 3.5. In Section 3.3.1.1, we demonstrate

further examples of some generated constraint systems beyond the example constructed

thus far in this chapter.

3.3.1.1. A constraint system of {==, =/=}. We first begin with a simple example—in fact

the simplest constraint system our macros can construct. We use a system with just equality

and disequality8 constraints to exhibit constructed miniKanren constraint systems. As such,

there are good amounts of technical machinery we do not actively use in this example. We

describe this constraint system as a useful starting point, and as a point of comparison when

moving forward to more complicated examples. One of our disequality constraints fails not

merely when the terms of the constraint are syntactically distinguishable, but when terms

fail to unify viz. the present substitution. This is to say disequality constraints, as we define

them, behave soundly like that of Comon and Rémy [43], and unlike those of Prolog II.

Barták [13] terms CLP over finite trees with syntactic equality and disequality constraints

CLP(H).

We exhibit the solver for constraints of this domain generated by our constraint system

in Listing 3.14. Any primitive constraint in this miniKanren constraint system will be one

of those two kinds. The framework through which we build the solver, and the rest of

the constraint system, includes as given a routine for unification (with occurs-check) of two

terms in a valid substitution that produces a most general unifier of all equality-constrained

pairs terms. We will introduce no additional Horn-clause predicates over the underlying

structure. We also export no negative constraints beyond =/=, which our constraint systems

include per force. Since we introduced no additional structural predicates over terms, we

need no additional failure checks. Since we have no additional negative constraints in the

constraint domain, all equalities expressed in any constraint will be explicitly written with

8Some authors (e.g. Colmerauer [40], Lassez et al. [137], and Makowsky [151]) refer to our disequality

constraints as inequality constraints. We refer specifically to the ̸= relation “not-equal-to”, and of more

general inequalities (≤, ≥, etc.) we will say no more.

65

==. This is to say that every equality the constraint implies comes solely from the ==-literal

portion of that constraint. Furthermore, in this specification we will introduce no sugar

constraints over this basic constraint domain.

(make-constraint-system
#:var? number?
#:posary-constructors ((cons . 2))
#:infinite-types (symbol? string? pair?)
#:finite-types (boolean? null?)
#:== ==
#:=/= =/=

#:primitive-predicates ()
#:term-structural-functions ()
#:recursive-predicates ()
#:constraints ()
#:rewrite-rules ()
#:failure-rules ()
#:sugar-constraints ())

Listing 3.14. Racket definition of a solver for equality and disequality
constraints

In Listing 3.14 we provide most of the definition of a solver for equality and disequality

constraints. Since the term language remains fixed, and we will in this section continue to

use == and =/= for our equality and disequality constraints, we will elide these elements

in the subsequent descriptions. Furthermore, as the implementations of unify and other

functions essential to unification are both large and consistent throughout, we will omit

their expansions in the following. When possible, we have eliminated empty binding forms

and hand-substituted through redexes to aid the presentation.

Even accepting these hand-simplifications, the generated function quickly becomes un-

wieldy to read and digest. This exhibits on its own the benefits of the parameterized imple-

mentation of constraint systems. The user can provide a high-level, logical characterization

of the constraints and their implementations, and avoid the details of the implementation

and actual execution. We take advantage of the benefits of this approach in describing the

subsequent and increasingly more complicated constraint systems. In Sections 3.1.3 to 3.1.9,
66

(define invalid?
(let* ([subst-all …]

[unify …])
(λ (S)

(let ([== (hash-ref S '==)] [=/= (hash-ref S '=/=)])
(cond
[(~for*/fold ([s '()])

([($list t1 t2) ==])
#:break (not s)
(for/fold ([s s])

([t1 (list t1)]
[t2 (list t2)])

(unify t1 t2 s)))
=> (λ (s)

(~for*/or (([$list a d] =/=))
(and (equal? (subst-all a s) (subst-all d s)))))]

[else #t])))))

Listing 3.15. Racket implementation of an invalid? for a solver of == and
=/= constraints

we implemented the full complement of standard “constraint miniKanren” constraints. In

the next section, we add constraints beyond those usually used for quines and many of the

other standard examples.

3.3.1.2. Additional Exemplary Constraints. Unlike the constraint domains we have so

far constructed, when building the following constraints and constraint domains, we intend

to demonstrate some newly expressible constraints (some of dubious merit) as well as some

recently added to miniKanren constraint systems. Some of the latter inspired this work. The

constraint domain(s) will share the basic structure in common with those discussed above.

One example we can build is a system with a left-leaning list constraint. By a “left-

leaning list” we mean treating the left-side of the tree as the “spine” rather than the usual

right side. The following tree is an example of such a list: '(() . (b . (c . (d . e)))).

We need an auxiliary, non-term function in the constraint system’s domain. This function’s

interpretation in the domain is that of the following Racket function:
67

car∗(X)

X if (non-pair? X)

car∗(Z) if (pairr? X) and X = (cons Z _)

We can also straightforwardly implement pair and non-boolean constraints. The former

are not especially useful, because unification with two fresh variables would indicate this

just as well. However, they do suggest both some of the versatility of our system, and this

near duplication of functionality is perhaps unexpected. It is interesting to compare this

latter kind of constraint with the failed booleano constraints example of Section 3.3.2.

Two other interesting kinds of constraints in this example are the succeed and fail

constraints. They require no auxiliary constraint relation symbols, and we build them with

primitive predicates any-term? and no-term? recognizing respectively all terms and no terms

in the term language.

(make-constraint-system
…
#:primitive-predicates
((no-term? (one-of))
(any-term? (one-of boolean? null? pair? symbol? string?))
(booleann? (one-of boolean?))
(non-pair? (one-of boolean? null? symbol? string?))
(non-list-constant? (one-of boolean? symbol? string?)))
#:term-structural-functions
(((car* [((? non-pair? X)) X]

[((cons Z _)) (car* Z)])))
#:recursive-predicates ()
#:constraints
([(fail? t) (any-term? t)]
[(succeed t) (no-term? t)]
[(lllisto l) (non-list-constant? (car* l))]
[(pairo l) (non-pair? l)]
[(non-booleano x) (booleann? x)])
#:rewrite-rules ()
#:failure-rules ()
#:sugar-constraints ())

Listing 3.16. Racket definition of a solver with a left-leaning list constraint,
and others

68

(has-null? X) ← (nulll? X)
(has-null? (cons _ Z)) ← (has-null? Z)
(has-null? (cons Y _)) ← (has-null? Y)
(has-symbol? X) ← (symbol? X)
(has-symbol? (cons _ Z)) ← (has-symbol? Z)
(has-symbol? (cons Y _)) ← (has-symbol? Y)
(one-of? X X _ _) ← true
(one-of? X _ X _) ← true
(one-of? X _ _ X) ← true
(revH? '() X X) ← true
(revH? (cons X Y) Z W) ← (revH? Y (cons X Z) W)

Figure 3.1. Recursive predicate definitions for exemplary solver

(improper-listo X) ≜ ¬(nulll? (rac X))
(nrevHo X Y Z) ≜ ¬(revH? X Y Z)
(non-nullo X) ≜ ¬(equal? X '())
(all-but-symbol-or-booleano x) ≜ ¬(sym-or-bool? x)
(devoid-of-nullo T) ≜ ¬(has-null? T)

Figure 3.2. Negative constraint definitions for exemplary solver

It follows logically that some term being both list and a non-pair imply that term’s dise-

quality with '(), but nowhere do our systems rewrite or capture this knowledge. Indeed this

is by design, since that is incidental to the question of consistency. We can distinguish the

implementations of succeed and fail constraints from the implementations in Section 3.6.1

of primitive succeed and fail goals. We will consider next a second example constraint

system. Rather than odd primitive predicates or term-structural functions, this second

example explores unorthodox recursive predicates.

The has-null? predicate recurs like mem? over a tree-structure, but rather than compar-

ing one term against another (sub-)term, it tests the (sub-)structure against a predicate.

The one-of? predicate tests for membership in a tuple of subsequent arguments, and does so

with n clauses for n+ 1 many arguments. This could instead have been written recursively

with a list-membership operation, but this isn’t wrong and while less general is perfectly

correct for our intended use case. It is curious that clauses’ heads’ terms are all just at most

one-level of term-structure over C ∪ Zi.
69

We write the negative constraints in the now-standard fashion. We discuss in Sec-

tion 3.3.2 that booleano is disallowed; note however that symbol-or-booleano is permitted—

in this constraint system. This property exemplifies a key feature of our design criteria: since

this system lacks primitive predicate or predicates to exclude the symbols, and since our

language of writing recursive predicates doesn’t permit any computable function to describe

all of the symbols (as symbols are non-structural constants), there is no way to induce any

finite constraint from these combinations of booleans and symbols. When implementing

non-nullo, we relied on the underlying equal? method and a constant, rather than the

primitive predicate. This too demonstrates another duplication of functionality one might

not expect in the most parsimonious system.

There are, in addition, interactions that we needed to consider, and sugar constraints

we might choose to add. In Listing 3.17 on page 72 we exhibit the full specification of

the constraint system described for this example. We implemented non-palindrome and

non-mirror-image constraints as sugar constraints over the included nrevHo.

Users will notice some redundancy when writing specifications; experienced functional

programmers may yearn here for higher-order constructions. The constraint specification

language is indeed less expressive than many existing, more fully-featured languages. How-

ever, there is something to be said for a syntax and languages that expresses precisely the

expressivity needed to capture all and only the constraint systems of interest.

3.3.2. Non-examples. Some of the important properties we described and relied upon

earlier in this chapter fail to hold for the following illustrative non-examples. We include

them partly as warnings. The booleans are one of the simplest non-trivial finite domains.

As such, many of these failed examples make use of the booleans, or attempt to permit

boolean constraints. Boolean constraints themselves most simply exhibit the problem.

Attempting to include a primitive predicate non-boolean? via (a syntactically valid but

inadmissible) definition like (non-boolean? (one-of null? pair? symbol? string?)) is the

first step in exhibiting this specification bug. This predicate is dangerously and impermissi-

bly co-finite. Similarly, attempting to use non-boolean? not as a constraint itself, but as the
70

building block, say for, some predicate ends-in-non-bool?, and then using that as the basis

for a negative constraint. That putative ends-in-a-booleano constraint is by itself fine, but

when combined with not-pairo causes a real problem. The constraint designer should be

able to add a new constraint without having to reconsider the whole architecture—that is

one of our design goals. At most he should need to consider how this newly-added constraint

interacts with others “at the limit”. This error/non-example comes from and corrects one

of my early mistakes in Hemann and Friedman [85].

We cannot write a predicate expressing “a is non-member of b” with finitely many clausal

formulae and without negation. This means that although we have absento, our constraint

systems cannot express a “presento” (equiv. “membero”). Expressing such a predicate in the

clausal language of this chapter would require another, second level of negation. We know

this via the syntactic characterization from either Makowsky [151], Volger’s “crisp theory”

paper [217], or Vel [215].

By similar reasoning and argumentation, we cannot express a general predicate

tail-does-not-end-in?, which makes impossible an ends-ino constraint. This seems like

a straightforward generalization of the listo and improper-listo constraints. However

these two opposites are permitted because they are similar extensions of mutually exclusive

primitive predicates.

71

(make-constraint-system
…
#:primitive-predicates
((non-sym-non-bool? (one-of null? pair? string?))
(nulll? (one-of null?))
(non-list-constant? (one-of boolean? symbol? string?)))
#:term-structural-functions
((rac [((? non-pair? X)) X]

[((cons _ Z)) (rac Z)]))
#:recursive-predicates
((one-of? [(W W _ _) true]

[(W _ W _) true]
[(W _ _ W) true])

(one-of-mem? [(T W _ _) (mem? W T)]
[(T _ W _) (mem? W T)]
[(T _ _ W) (mem? W T)])

(mem? [(X X) true]
[(X (cons _ Z)) (mem? X Z)]
[(X (cons Y _)) (mem? X Y)])

(improper-list? [(X) (non-list-constant? (rac X))])
(has-null? [(X) (nulll? X)]

[((cons _ Z)) (has-null? X Z)]
[((cons Y _)) (has-null? X Y)])

(revH? [('() X X) true]
[((cons X Y) Z W) (revH? Y (cons X Z) W)]))

#:constraints
([(improper-listo X) (nulll? (rac X))]
[(nrevHo X Y Z) (revH? X Y Z)]
[(non-nullo X) (nulll? X)]
[(symbol-or-booleano x) (non-sym-non-bool? x)]
[(devoid-of-nullo t) (has-null? t)])
#:rewrite-rules
()
#:failure-rules
([for-all ([improper-listo i] [nrevHo a b c])

#:fail-when [(one-of? i (rac a) (rac b) (rac c))]]
[for-all ([nrevHo a b c] [symbol-or-booleano sb])

#:fail-when [(one-of? sb (rac a) (rac b) (rac c))]]
[for-all ([nrevHo a b c] [devoid-of-nullo t])

#:fail-when [(one-of-mem? t (rac a) (rac b) (rac c))]]
#:sugar-constraints
([(non-mirror-imageo X Y) (nrevHo X '() Y)]
[(non-palo X) (non-mirror-imageo X X)]))

Listing 3.17. Racket definition of a solver with unorthodox recursive predicates

72

3.4. Potential future improvements, enhancements, and alternative designs

Here, we suggest a number of different improvements or alternate approaches to the

design described above. Some of these are merely more complex and thus less obviously

correct than the more straightforward approach to specifying correct constraint systems

we followed above. Others extensions add functionality, and are independent of our design

decisions.

Iterated Unification Problems At present, each execution of a constraint begins anew.

We do not accumulate any substitution information, even though for each “branch”

of the computation the constraint grows monotonically. One improvement would be

treating equality constraints as instances of an iterated unification problem, rather than

repeated instances of the general unification problems—meaning keep around a thus-far

accumulated substitution.

Triangular Substitution The unify function of Listing 3.5 uses direct representations

of terms in the substitutions it constructs. So-called “triangular” substitutions [11] are

an analogous but generally more efficient data structure. Here, a given variable x that

we have now solved for may occur in previously-bound terms and we do nothing to

remove indirections that result from extensions to the substitution. Such definitions

of substitution are especially amenable to structure-sharing and implementation with

persistent data structures. This decision necessitates changes in the other functions that

modify or access the substitution data structure. There are other, more efficient persistent

structures than association lists we could also use here [44].

Linear-time Unification Implementation These triangular substitutions relate closely

to vastly improved, linear time unification algorithms. For instance, the algorithm of Pa-

terson and Wegman [170] or the modified algorithm of Martelli and Montanari [153] are

both linear time. In practice, these may be inferior to more complex and finely-tuned
73

structures; see Siekmann [198, §3.1.1] or Albert et al. [3, 4] for more information. Several

authors have already implemented such advanced unification algorithms for miniKanrens9

based on this, or possibly improved versions that are better in practice.

Optional Automatic Constraint Name Generation At present, the user is required

to include, both for hygiene in implementation and for some sanity in construction, the

precise names for the negative constraints. This is useful for providing non-obvious names

to the negative constraints; things like absento spring to mind. Often, however, the user

manually gives some variation of the obvious name to the negative constraint. It would

be great to allow automatically naming with the obvious names for negative constraints.

Automatic Partition-based Constraint Failure Definitions Constraints like symbol

and not-symbol are negative constraints defined in terms of a primitive predicate built

from the program-based partition have an obvious failure case. Whenever the constraints

on a single term (say a variable x ∈ X) describe the total set of primitive predicates, this

must cause a failure. These can be automatically calculated, so in principle the system’s

user should not need to manually provide these. Performing this calculation would either

necessitate some more complexity for user input (to determine which constraints are nega-

tions of primitive predicates), complicate the implementation macros for the additional

computation, or possibly both.

Staged specifications Our system’s macro interface currently demands the whole spec-

ification all at once. We should want to pass in the minimial, initial part that then

generates a macro that takes in the next part, that then generates a macro that takes

in the next part, and so forth. We could use the specification’s prior parts in macro-

generating checks of the latter. This design also permits an architect to partially specify

an implementation—say, defining a term language and primitive relations, but allowing

a downstream constraint writer to specify the remaining parts of the constraint domain,

who then passes the complete language off to a programmer.

9See github.com/cbrooks90/martelli-montanari or github.com/mvcccccc/C311Pub/blob/master/mk.rkt for

two such implementations.

74

3.5. The microKanren Language

Modern state of the art CLP languages (for instance many Prologs) come equipped

with decades of features and tools. In addition to negation (not), they also carry assert

and retract, that allow the dynamic introduction and removal of facts and rules from

the database, cuts (!) that prune the search space, as well as I/O operations, printing,

and other such “utility features”. Our languages are significantly less featured. The main

facilities of this constraint-independent portion are introducing variables, structuring larger

programs, and controlling their execution (i.e., search). Each of these facilities’ behavior

is independent of the particular constraint domain. Separating the control flow and vari-

able introduction from the constraint management fixes the logic programming language’s

structure (a language “spine”) against which to add and explore constraints via specifying

constraint domains. In this section, we describe this constraint-independent portion of the

system for building a miniKanren CLP language and develop an implementation. Since we

parameterized this segment by the exact constraint domain this portion of the language

and its implementation is common to all of the constraint domain-generated constraint

miniKanren languages. The language designer instantiates the constraint domain C to

complete the constraint logic programming language’s definition. For many languages, the

implementation of the constraints themselves and the constraint failure-check predicates

dwarf the remaining part of the microKanren framework.

We emphasize this section’s portion of the languages’ implementation is not an inter-

preter, but a shallow embedding into some functional host language—as is each member

of the class of full language implementations we generate. We develop here compositional

embeddings of logic programming; this portion of each logic programming language embed-

ding amounts to a compositional, executable semantics for our programs as host language

expressions. The pure, relational programming languages this system constructs include the

language of the append example of Section 1.6 on page 17. We note the choice of whether

to shallowly (deeply) embed the control of the language is independent of the choice to

shallowly (deeply) embed the terms. Although our language implementations do not include

75

this facility, we take the liberty of using the constraint simplification of typical Kanren

implementations, and restrict our examples’ constraints to a set typical of implementations

with well behaved simplifiers. To benefit the reader, we include types as comments. These

types resemble those of, e.g. Spivey and Seres [202]. We label some of them more precisely,

because we take particular concern for and more precisely control termination that Haskell

demands of them.

3.5.1. Preamble on Search. Typically CLP languages’ implementations default to

some particular, search strategy (e.g. depth-first search, breadth-first search, or iterated

deepening depth-first-search). More complex languages’ implementations may give the pro-

grammer some fine-tuned control for selecting, modifying, or switching between search

strategies. Implementers can build complex, “blended” strategies in shallow embeddings via

layering monad transformers over basic search monads, a la Schrijvers et al. [188]. Other

applications of search techniques use added heuristics, either explicitly provided by the user,

or internally set or generated, to augment the search behavior.

We do not have a similar approach for varying the selection rule. microKanren achieves

weak independence of the selection rule, as described in Jaffar et al. [111], but we do not

achieve full independence of the selection rule, because we implement a left-to-right literal

selection strategy. All of our implementations rely on a left-to-right selection rule that has

been the standard choice since the earliest implementations of Prolog [42].

The implementations we construct do not search with some particular, precise search

strategy. Nor does the implementation expose any search guidance heuristic to the

programmer—directly. The program structure of the particular miniKanren program and

query to execute are also inputs in determining a concrete search behavior. The control

embedded in the implementation deterministically derives the precise search behavior from

these inputs though. So, we rather say that these languages implement a search meta-

strategy, and all the languages we implement will share the same search meta-strategy.

We will describe the operational behavior of the implementation-specific portions that
76

MicroKanren Datatypes
Goal :: State → Stream

State :: Constraint × Nat
Stream :: Mature | Immature
Mature :: () | State × Stream

Immature :: Unit → Stream

Table 3.2. MicroKanren Datatypes

determine search beginning in Section 3.6. In short, we show how to implement complete

search strategies that avoid much of the overhead associated with a breadth-first search or

other traditional complete search techniques.

3.5.2. microKanren terminology. We first explain some terminology fundamental

to describing our implementations. Table 3.2 summarizes this information.

Goals. We implement goals as functions that take a state and return a stream of

states. They consist of primitive constraints like (== x y), relation invocations like

(append 'x q '(x b c)), and their closure under operators that perform conjunction,

disjunction, and variable introduction.

Relation. A miniKanren relation has a different logical meaning than a collection of Horn

clauses, closer instead to a completed predicate.

State. We execute a program p by attempting an initial goal in the context of zero or

more relations. The program proceeds by executing a goal in a state, which holds all

the information accumulated in the execution of p. Most importantly, the state contains

a constraint as a data structure that holds the accumulated primitive constraints. The

state also contains a counter for assigning unique identifiers to fresh variables. Every

program’s execution begins with an initial state devoid of any constraint information and

a new variable count.

Streams. Executing a goal in a state S/c (connoting a pair of a state and a counter) yields

a stream. A stream may take one of three shapes:

empty: The stream may be empty, indicating that the goal is unachievable in S/c.
77

answer-bearing: A stream may contain one or more resultant states. In this case,

each element of the stream is a different way to achieve that goal from S/c. Here,

we mean “different” in terms of control flow (i.e., disjunctions); the same state may

occur many times in a single stream. Our streams are not necessarily infinite; there

may be finitely many ways to achieve a goal in a given state. We call these first

two shapes mature.

immature: An immature stream is a delayed computation that will return a stream

when forced.

The final step of running a program is to continually force the resultant stream until it

yields a list of answers. microKanren programs however, are not guaranteed to terminate.

Invoking the initial goal may create an unproductive stream [199]: repeated applications of

force will never produce an answer. This is the one and only source of non-termination; all

other operations in our implementation are total. This property exemplifies Kleene’s normal

form theorem [121].

3.5.3. microKanren Syntax. We eschew here an abstract syntax parameterized for

this portion of these languages. Instead, we directly express programs in the particular,

slightly more cumbersome concrete syntax of our translation to the embedded Racket

implementation. We implement language constructs one at a time and we also provide

interstitial examples. We believe this code to be sufficiently similar to Prolog for the prac-

ticed logic programmer and we could nearly compile programs in this example’s language’s

concrete syntax to pure Prolog programs, although with important differences in behavior.

We discuss the particular implemented search behavior in parallel with our development of

the implementation.

3.6. Finite, Depth-first Search microKanren Implementation

Our initial embedding is similar to Kiselyov’s [118], in that it implements a depth-first

search that only works for finite search trees. We proceed to define and describe five basic

components of our embedding. These are: two basic goals succeed and fail that respectively
78

(define ((succeed) S/c) (list S/c))
(define ((fail) S/c) '())

Listing 3.18. Definitions of (succeed) and (fail) goals

succeed and always fail; the binary goal constructors disj and conj that represent the

disjunction and conjunction of two predicates, and the goal constructor call/fresh that

implements the existential closure of a single variable.

3.6.1. (succeed) and (fail) goals. Our language includes two atomic goals (succeed)

and (fail), that unconditionally succeed and fail, respectively. The former is logically

equivalent to an empty clause in Prolog, and we treat the latter as a canonical unsatisfiable

goal. We distinguish between the primitive (succeed) and (fail) goals of Listing 3.18, and

succeed and fail the atomic constraints of Section 3.3.1.2. Both sets can coexist, provided

we implement them with distinct names.

The Racket #hasheqv(…) value denotes a hash map; here the accumulated constraint.

We once again use the Unicode “…” to note an elision.

> ((fail) `(,S0 . 0))
'()
> ((succeed) `(,S0 . 0))
'((#hasheqv((== . ()) …) . 0))

3.6.2. Constraint goal constructors. In Listing 3.19 we present the definition of

make-constraint-goal-constructor, a function that defines the atomic constraints’ shallow

embeddings. The function takes a definition of the solver, invalid?, and the field of the

constraint store to implement. This function returns the goal constructor implementing

that class of atomic constraints. A goal constructor is a function that accepts (one assumes

the appropriate number of) term arguments as a tuple. Being a goal constructor, the return

value of this function is a goal. A goal accepts a state, and this state package contains

an indexed constraint store that’s of primary interest here. To make this discussion more

concrete, we will discuss in particular the implementation of the goal constructor ==.
79

(define (((make-constraint-goal-constructor invalid? key) . ts) S/c)
(let ([S (hash-update (car S/c) key ((curry cons) ts))])

(if (invalid? S) '() (list `(,S . ,(cdr S/c))))))

Listing 3.19. Definition of make-constraint-goal-constructor

Given say, two terms u and v, the goal constructor == then returns a function expecting

S/c. This function is a goal. When executed, this goal extracts the state S (the first element

of the pair S/c) and updates the state’s field for == by adding the pair of the two terms u and

v. The remainder of ==’s definition relies on the underlying solver. If the solver succeeds on

the augmented constraint, we create a new state by adding the current counter, and make

a stream with only that state. We use list to construct singleton streams, and quasiquote

and unquote to construct states. If unify returns #f, we return (), the empty stream.

We will see that call/fresh, conj, and disj are also goal constructors. The last mi-

croKanren operator, call/initial-state, is not a goal constructor. Instead, it executes a

goal and may yield a list of states. For the time being though, we can explicitly invoke our

goals in the initial state.

With only the goal constructor == (or with just atomic constraint goal constructors),

the result of invoking any goal with the initial state is a mature stream. In fact, the result

is a mature stream of length zero or one. Either the stream is empty, indicating for instance

that the two terms are not equivalent, or the stream is non-empty and indicates the terms

are equivalent.

> ((== '#t 'z) `(,S0 . 0))
'()
> ((== '#t '#t) `(,S0 . 0))
'((#hasheqv((== . ((#t #t))) …) . 0))
> ((== '(#t . #f) '(#t . #f)) `(,S0 . 0))
'((#hasheqv((== . (((#t . #f) (#t . #f)))) …) . 0))

For the moment, no matter what terms we unify, the constraint represents only the cumu-

lative success or failure. For more expressive answers our logic language needs variables.
80

3.6.3. call/fresh. The syntax of Prolog implicitly introduces new logic variables be-

fore unifying with clauses’ heads. Unlike Prolog, our languages demand the user introduce

new logic variables explicitly, in an action separate from unification. The call/fresh goal

constructor scopes a new logic variable over a goal. Our embedding uses the host language’s

lexical binding structure to introduce the variable scope and its function application to

associate the new host lexical variable with the (representation of) the new logic variable.

To this end, call/fresh takes as its argument a λ abstraction over a goal10. This λ expression

f binds a logic variable to the goal-scoped lexical variable. The host’s variable shadowing

ensures variables’ names are unambiguous in context. Without this shadowing, an embed-

ding would have to explicitly represent freshness and uniqueness and maintain invariants

on logic variables.

#| (Var → Goal) → Goal |#
(define ((call/fresh f) S/c)
…)

As we know, the logic variables are an enumerable set X away from the ground terms G .

The function var enumerates X. The state’s counter is the next index into the enumeration

of X. Invoking var creates the next variable from c. The expression (f (var c)) evaluates

to a goal. The resultant goal is then invoked in a newly created state with the present

constraint store and an incremented index.

#| (Var → Goal) → Goal |#
(define ((call/fresh f) S/c)
(let ((c (cdr S/c)))

((f (var c)) `(,(car S/c) . ,(+ c 1)))))

The next example demonstrates that programs’ terms can now contain logic variables.

> ((call/fresh (λ (x) (== x 'a))) `(,S0 . 0))
'((#hasheqv((== . ((0 a))) …) . 1))

10The call/fresh operator’s argument should specifically always be a λ expression. Its body is either a

goal expression, or nearly so but for free variables.

81

3.6.4. conj and disj. All programs in the language developed thus far have at most

one atomic constraint. The binary goal combinators disj and conj permit composite goals

that express the disjunction or conjunction of their arguments.

#| Goal × Goal → Goal |#
(define ((disj g1 g2) S/c) ($append (g1 S/c) (g2 S/c)))

#| Goal × Goal → Goal |#
(define ((conj g1 g2) S/c) ($append-map g2 (g1 S/c)))

We define disj and conj in terms of two other functions, $append and $append-map, that we

define in Section 3.7.1. The following examples demonstrate disj and conj in combination

with the goal constructors from before.

> ((disj
(call/fresh (λ (x) (== 'z x)))
(call/fresh (λ (x) (== '(s z) x))))

`(,S0 . 0))
'((#hasheqv((== . ((z 0))) …) . 1)

(#hasheqv((== . (((s z) 0))) …) . 1))
> ((call/fresh

(λ (x)
(call/fresh

(λ (y)
(conj

(== y x)
(== 'z x))))))

`(,S0 . 0))
'((#hasheqv((== . ((z 0) (1 0))) …) . 2))

The streams computed by all programs in the language developed thus far will always

be empty or answer-bearing; in fact, the streams will be fully computed. The result of an

atomic constraint goal must be a finite list of length 0 or 1. If both of disj’s arguments are

goals that produce finite lists, then the result of invoking $append on those lists is itself a

finite list. If both of conj’s arguments are goals that produce finite lists, then the result of

invoking $append-map with a goal and a finite list must itself be a finite list. If call/fresh’s

argument f is a function whose body is a goal, and that goal produces a finite list, then

(call/fresh f) evaluates to such a goal.
82

Invoking a goal constructed from these operators in the initial state returns a list of

all successful computations, computed in a depth-first, preorder traversal of the search tree

generated by the program. The list monad underlies this implementation. $append-map is

bind, $append is mplus, and the calls to list and the primitive goals (succeed) and (fail)

are return and mzero.

3.7. Depth-first search with infinite branches

In this second phase of implementing our embedding, we define two additional

operators—define-relation that closes recursive definitions, and call/initial-state that

runs a program. We will solve a problem of host language non-termination in conjunctions

and disjunctions, and we redefine $append and $append-map to accommodate this solution.

This second embedded implementation resembles those of Seres [190], Spivey and Seres [202],

and Seres et al. [191] with several modifications and additions to guarantee termination in

a call-by-value host.

3.7.1. Recursion and define-relation. We will enrich our implementation to allow

recursive relations. Much of logic programming’s power comes from writing relations that

refer in their definitions to themselves (e.g. append) or to one another. At present there are

several obstacles. Suppose we used define to build a function peano that purports to be the

embedding of a relation that holds for a particular encoding of Peano numbers.

(define (peano n)
(disj

(== n 'z)
(call/fresh
(λ (r)

(conj
(== n `(s ,r))
(peano r))))))

What happens when we use the peano relation in the program below? One would hope to

generate some Peano numbers.

83

> ((call/fresh
(λ (n)

(peano n)))
`(,S0 . 0))

We invoke (call/fresh …) with an initial state. Invoking that goal creates and lexically

binds a new fresh variable over the body. The body, (peano n), evaluates to a goal that we

pass the state (#hasheqv() . 0). This goal is the disjunction of two subgoals. To evaluate the

disj, we evaluate its two subgoals, and then call $append on the result. The first evaluates

to ((#hasheqv((== . ((0 z))) …) . 1)), a list of one state.

Invoking the second of the disj’s subgoals however is troublesome. We again lexi-

cally scope a new variable, and invoke the goal in the body with a new state, this time

(##hasheqv() . 2). The conj goal has two subgoals. To evaluate these, we run the first goal

in the current state, which results in a stream. We then run the second of conj’s goals over

each element of the resulting stream and return the result. Running this second goal begins

the whole process over again. In a call-by-value host, this execution won’t terminate. Simply

using define in this manner will not suffice to implement relations.

We instead introduce the define-relation operator. This operator permits recursive

relations, and with multiple uses of define-relation we can create mutually recursive

relations11. Unlike other operators of Section 3.5, define-relation is a macro. We do

implement define-relation in terms of Racket’s define.

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) S/c) (delay/name (g S/c))))

This macro expands a name, arguments, and a goal expression into a define expression

with the same name and number of arguments and whose body is a goal: it takes a state and

returns a stream. Unlike the other goals we’ve seen before, this goal returns an immature

11For predicates undefined with define-relation, our embedding behaves like Prolog’s with the unknown

flag set to its default value, error. In our embedding this error comes from the host language.

84

stream. When given a state S/c, this goal returns a promise that evaluates the original goal

g in the state S/c when forced, returning a stream. A promise that returns a stream is itself

an immature stream.

define-relation does two useful things for us: it adds the relation name to the current

namespace, and it ensures that the function implementing our relation is total. It turns

out that we will never re-evaluate an immature stream. Unlike delay, delay/name doesn’t

memoize the result of forcing the promise, so it is like a “by name” variant of delay12. How-

ever, like the promises delay creates, our promises are evaluated at most once. The garbage

collector can then consume used, discarded promises. This is a property of microKanren

rather than something built into delay/name.

We are forced to implement define-relation as a macro so the expression g is not be

evaluated prematurely: the objective is to delay the invocation of g in S/c. In a call-by-

value language, a function would (prematurely) evaluate its argument and will not delay

the computation. We revisit the peano example, this time using define-relation. Relation

invocations must now terminate. Instead, the goal (peano n), when invoked, immediately

returns an immature stream.

(define-relation (peano n)
(disj

(== n 'z)
(call/fresh
(λ (r)

(conj
(== n `(s ,r))
(peano r))))))

We can also write recursive relations whose goals quite clearly will never produce answers.

12We could have used (λ () …), procedure invocation, and procedure? rather than delay/name, force, and

promise?. Constructing a procedure with λ delays evaluation, and then testing procedure? suffices. We prefer

Racket’s special-purpose primitives because we shouldn’t be testing for just any procedure. Without adding

and checking for a tag, we cannot know if a given procedure represents a delay. However, implementers

targeting other languages can use anonymous procedures if these more precise primitives aren’t available.

85

(define-relation (unproductive n)
(unproductive n))

We now introduce $append and $append-map. Their definitions are like those of append and

append-map, standard list functions in many languages (e.g. Scheme [196]) but augmented

with support for immature streams.

(define ($append $1 $2)
(cond

((null? $1) $2)
((promise? $1) (delay/name ($append (force $1) $2)))
(else (cons (car $1) ($append (cdr $1) $2)))))

If the recursive argument to $append is an immature stream, we return an immature

stream, which, when forced, continues appending the second to the first. Likewise, in

$append-map, when $ is an immature stream, we return an immature stream that will

continue the computation but still forcing the immature stream13.

#| Goal × Stream → Stream |#
(define ($append-map g $)
(cond

((null? $) '())
((promise? $) (delay/name ($append-map g (force $))))
(else ($append (g (car $)) ($append-map g (cdr $))))))

After these changes, it’s possible to execute a program and produce neither the empty

stream nor an answer-bearing one. We might produce instead an immature stream.

> ((call/fresh
(λ (n)

(peano n)))
`(,S0 . 0))

#<promise>

13In languages without macros, the programmer could explicitly add a delay at the top of each relation.

This has the unfortunate consequence of exposing streams’ implementation.

86

3.7.2. call/initial-state. When invoking the first goal from the initial state, we must

do something special to resolve this. At a bare minimum, we expect to get at least one answer

if our program expresses a satisfiable statement, and we can hope to get the empty list if

there are no answers. The call/initial-state operator ensures that if we return, we return

with a list of answers.

#| Maybe Nat⁺ × Goal ↛ Mature |#
(define (call/initial-state n g)
(take n (pull (g `(,S0 . 0)))))

call/initial-state takes an argument n for the number of answers to retrieve. n may just be

a positive natural number, in which case we return at most that many answers. Otherwise, it

is #f, indicating microKanren should return all answers. The call/initial-state operator

takes a goal as its second argument. The function pull consumes a stream and returns

a mature stream, if pull in fact terminates. pull is a partial function; some streams are

unproductive and cannot be matured. pull brings microKanren streams into the delay

monad [29, 71]. Whereas before we always returned a list (representing a non-deterministic

choice of answers), under this new model we have either no values, a value (possibly more

than one) now, or we have something we can search later for a value. Since pull forces an

actual value out of a promise if possible, it is akin to run in the delay monad.

#| Stream ↛ Mature |#
(define (pull $) (if (promise? $) (pull (force $)) $))

take consumes both the mature stream from pull and n, that argument dictating whether

to return all, or just the first n elements of the stream. We can see take as the fusion of

an operation to mature (if possible) a stream up to a prefix of length n, and an operation

to take the first n elements off of such a prefix, if possible. take resembles run in the list

monad. We can also see this operation as the unfold of some pull-like operation.

87

#| Maybe Nat⁺ × Mature ↛ List |#
(define (take n $)

(cond
((null? $) '())
((and n (zero? (- n 1))) (list (car $)))
(else (cons (car $)

(take (and n (- n 1)) (pull (cdr $)))))))

Our microKanren is now capable of creating, combining, and searching for answers in infinite

streams. take and call/initial-state are also partial functions since they rely on pull.

These are the only non-total functions in the microKanren implementation.

> (call/initial-state 2
(call/fresh

(λ (n)
(peano n))))

'((#hasheqv (== . ((0 z))) …) . 1)
(#hasheqv((== . ((1 z) (0 (s 1)))) …) . 2))

3.8. Interleaving, Complete Search

Although microKanren is now capable of creating and managing infinite streams, it

doesn’t manage them as well as one might hope. Consider executing the following program:

> (call/initial-state 1
(call/fresh

(λ (n)
(disj
(unproductive n)
(peano n)))))

We should like the program to return a stream containing the ns for which unproductive

holds, and in addition, the ns for which peano holds. We know from Section 3.7.1 that

there are no ns for which unproductive holds, but infinitely many for peano. The stream

should contain only ns for which peano holds. It’s perhaps surprising, then, to learn that

this program loops infinitely.
88

Streams that result from using unproductive will always be, as the name suggests,

unproductive. When executing the program above, such an unproductive stream will be

the recursive argument $1 to $append. Unproductive streams are necessarily immature.

According to our definition of $append, we always return the immature stream. When we

force this immature stream, it calls $append on the forced stream value of (the delayed) $1

and $2. Since unproductive is unproductive, this process continues without ever returning

any of the results from peano. Such surprising results are not solely the consequence of goals

with unproductive streams. Consider the definition of church.

(define-relation (church n)
(call/fresh

(λ (b)
(conj

(== n `(λ (s) (λ (z) ,b)))
(peano b)))))

The relation church holds for Church numerals. Using a newly created variable b, it con-

structs a list resembling a λ-calculus expression whose body is the variable b. It uses peano

to generate the body of the numeral. We can thus use it to generate Church numerals in

a manner analogous to our use of peano. Although the resulting stream from the program

below is productive, it only contains those elements for which peano holds.

> (call/initial-state 3
(call/fresh

(λ (n)
(disj
(peano n)
(church n)))))

Our implementation of $append in Section 3.7.1 induces a depth-first search. Depth-first

search is the traditional search strategy of Prolog and can be implemented quite efficiently.

Depth-first search is however an incomplete search strategy, and in our implementation

some streams can reflect this by burying some answers infinitely deeply. The stream that

results from a disj goal produces elements of the stream from the second goal only after

exhausting the elements of the stream from the first.
89

As a result, even if answers exist microKanren may fail to produce them. We will remedy

this weakness in $append, and provide microKanren with a simple complete search. We want

microKanren to guarantee each and every answer should occur at a finite position in the

stream. Fortunately, this doesn’t require a significant change.

#| Stream × Stream → Stream |#
(define ($append $1 $2)
(cond

((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else ($append (g (car $)) ($append-map g (cdr $))))))

This one change to the promise? line of $append is sufficient to make disj fair and

to transform our search from an incomplete, depth-first search to a complete one. When

the recursive argument to $append is an immature stream, we return an immature stream

which, when forced, continues with the other stream first. The stream $2 may also be

partially computed. If so, then $append will process $2 until it reaches the immature stream

at $2’s tail. The function $append will process this immature stream in the same way.

Our streams are either (potentially empty) lists of states in the case of a fully computed

stream, or (potentially empty) improper lists of states with a promise in the final cdr, in

the case of partially computed streams.

In the case that $1 is fully computed, $append appends $2 to $1. Fully computed streams

are finite, so after producing the finite quantity of elements from $1, we can then produce

elements from $2, if they exist.

In the second case, if $1 is only partially computed, then it has some potentially-empty

finite prefix. We append those elements to a promise that, when forced, will continue by

$appending $2 to the result of forcing the promise that was previously the last cdr of $1.

The result of forcing this newly created promise, if $2 is immature, will be another promise,

this time with a waiting call to $append on the stream that results from forcing the original

last cdr of $1 and the stream that results from forcing $2. If $2 is productive, it will mature
90

in a finite number of invocations (possibly 0, if it was mature to begin with). So if $2 is

productive, there can be only a finite number of finite prefixes of $1 produced before $2

matures.

Of course, the stream that results from $appending $2 to $1 may itself be an argument

to a call to $append. The stream that results from the execution of a program is created

by successively $appending smaller streams, either in evaluating a disj, or as used in

the implementation of conj. The reasoning we use above holds for arbitrary streams, so

taking answers from the returned stream amounts to a complete search for the program, as

Rozplokhas et al. [185] also show.

> (call/initial-state 3
(call/fresh

(λ (n)
(disj

(peano n)
(church n)))))

'((#hasheqv((== . ((0 z))) …) . 1)
(#hasheqv((== . ((1 z) (0 (s 1)))) …) . 2)
(#hasheqv((== . ((1 z) (0 (λ (s) (λ (z) 1))))) …) . 2))

This last change completes the definition of a constraint microKanren language. The

complete search technique describes a kind of interleaving depth-first search [120]14. Inter-

estingly, we haven’t reconstructed some particular, fixed, complete search strategy. Instead,

the search strategy of microKanren programs is program- and query-specific. The particular

definitions of a program’s relations, together with the goal from which it’s executed, both

generate and dictate the order in which we explore the search tree. In other similar em-

beddings (e.g. Hinze [95], Kiselyov et al. [120], and Spivey and Seres [202]) relying on

non-strict evaluation simplifies the implementation task. The standard, straightforward

translation of their embeddings to a call-by-value host sacrifices some of the elegance of

their implementations. Wadler et al.’s [218] standard “turn-crank” transformation to add

lazy streams in an eager host adds more delays than necessary to retain completeness.

14Though similarly named, this is different from Meseguer’s [156] “Interleaved Depth-first Search”.

91

Spivey and Seres implement a breadth-first search—also a complete search—but this im-

plementation requires a somewhat more sophisticated transformation than does ours and

constrains the search beyond what is strictly necessary to achieve completeness. We achieve a

simpler implementation of a complete search by using the delays as markers for interleaving

our streams. As advertised, we can use microKanren to write real programs. The below

expansion of the basic append relation into a microKanren program.

(define (append l s o)
(λ (S/c)

(delay/name
((disj

(conj
(== l '())
(== s o))

(call/fresh
(λ (a)

(call/fresh
(λ (d)

(conj
(== l `(,a . ,d))
(call/fresh

(λ (r)
(conj

(== o `(,a . ,r))
(append d s r))))))))))

S/c))))

At first blush it seems like simplifying the language so much places a burden on the

language user both in writing programs and interpreting their results. microKanren may

not be especially convenient or friendly for the working logic programmer, but it is a

serviceable logic programming language implementable in a call-by-value language and

requiring only a minimal group of features from its host. We will see in Section 3.10 a

handful of straightforward macros that both provide a nicer surface syntax in which to

write programs, and also recover the pre-existing surface syntax of programs in miniKanrens

with constraints. The push to more pure relational programming is one force driving the

need for new constraints. We close this chapter, however, by introducing helpful auxiliary

non-logical and extra-logical extensions to the core language.
92

3.9. Impure Extensions

The microKanren presented in Section 3.10 is a complete purely declarative logic pro-

gramming language. In this section we add some of Prolog’s impure operators for additional

control mechanisms.

Naish shows that Prolog’s cut (!) is a combination of a deterministic if-then-else and

don’t-care nondeterminism [162]. We implement these as separate operators, ifte and

once, inspired by Kiselyov et al. [120]; ifte is also similar to the cond/3 found in several

Prologs [18].

The operator ifte takes three goals as arguments: if the first succeeds, then we execute

the second against the result of the first and discard the third. If the first fails, then we

execute the third and discard the second. Providing the identifier loop makes the body of

the let recursively scoped. let scopes this name over the let’s body. If (g0 S/c) returns

a promise, we don’t want to immediately continue forcing it. That might make our search

incomplete again—$ might not be productive. So instead, we return a promise, which, when

forced, itself forces $ and then tests the value against our three cases.

(define ((ifte g0 g1 g2) S/c)
(let loop (($ (g0 S/c)))

(cond
((null? $) (g2 S/c))
((promise? $) (delay/name (loop (force $))))
(else ($append-map $ g1)))))

> (call/initial-state #f
(call/fresh

(λ (q)
(ifte (== 'a 'b) (== q 'a) (== q 'b)))))

'((#hasheqv((== . ((0 b))) …) . 1))

once takes a goal g as an argument and returns a new goal as its result. This resulting goal

behaves like g except that, where g would succeed with a stream of more than one element,

this new goal returns a stream of only the first.

93

(define ((once g) S/c)
(let loop (($ (g S/c)))

(cond
((null? $) '())
((promise? $) (delay/name (loop (force $))))
(else (list (car $))))))

For the same reasons as ifte’s definition, once’s definition creates a function named loop

and uses it in the second clause of the cond.

> (call/initial-state #f
(call/fresh

(λ (q)
(once (peano q)))))

'((((0 . z)) . 1))

Together, these two operators provide the power of Prolog’s cut. Use of these operators

can increase the efficiency of our programs. These operators, however, can mangle the

connection between logic programming and logic, ultimately costing us some of the flexibility

of logic programs that append demonstrates.

3.10. Recovering miniKanren

In this section, we describe how to in fact recover the initial miniKanren language. The

microKanren implementation of append in Section 3.8 exemplifies why users might want

a set of higher-level and more sophisticated operators with which to write programs and

view the results. miniKanren programs are often composed of multiple relations much larger

and more complicated than append. We layer the higher-level syntax of miniKanren (fresh,

conde, run, conda, and condu) over microKanren via some straightforward macros. Goal

constructors like == and the define-relation macro transfer directly.
94

3.11. miniKanren Implementation

As a first step to reconstructing miniKanren, we create operators disj+ and conj+ that

allow us to write more than just the binary disjunction and conjunction of goals. The disj+

(conj+) of a single goal is just the goal itself. For more than one goal, we recursively disj

(conj) the first goal onto the result of the recursion. We use define-syntax and syntax-rules

to implement recursive macros.

(define-syntax disj+
(syntax-rules ()

((_ g) g)
((_ g0 g ...) (disj g0 (disj+ g ...)))))

(define-syntax conj+
(syntax-rules ()

((_ g) g)
((_ g0 g ...) (conj g0 (conj+ g ...)))))

3.11.1. conde and fresh. With disj+ and conj+, we are able to construct miniKanren’s

conde as a macro that merely rearranges its arguments. miniKanren’s conde is the disj+ of

a sequence of conj+s:

(define-syntax-rule (conde (g0 g ...) (g0* g* ...) ...)
(disj+ (conj+ g0 g ...) (conj+ g0* g* ...) ...))

We build the fresh of miniKanren, which introduces zero or more fresh variables, as a

recursive macro using call/fresh and conj+:

(define-syntax fresh
(syntax-rules ()

((_ () g0 g ...) (conj+ g0 g ...))
((_ (x0 x ...) g0 g ...)
(call/fresh (λ (x0) (fresh (x ...) g0 g ...))))))

95

3.11.2. run. The last pure miniKanren form we reconstruct is run, the external interface

that allows us to execute a miniKanren program. The run operator takes as arguments a

positive natural number n or #f, indicating the number of answers to return (similar to

call/initial-state); a query variable q (in parentheses); and a non-empty sequence of goal

expressions.

miniKanren programs, like microKanren programs, may not terminate. Traditionally

though, if the program does terminate, miniKanrens will format the returned answers in

terms of the query variable and return them in a list. In constraint logic programming,

answers are a collection of constraints called the “answer constraint”. miniKanren simplifies

answers and presents them with respect to the query variable. Our constraint logic programs

can introduce a large number of auxiliary variables in the course of their execution. Rather

than returning the values of all of these variables, the user will prefer to see the value of the

query variable (and variables associated with it). This process is called answer projection [61,

112]. Our implementations, however, will not implement answer projection, subsumption,

or a number of other nice features in presenting the simplified result. To implement these

features across a family of languages parameterized by their constraint domain, we would

need to describe these mechanisms generically, rather than just the specific, particular

instances implementers have constructed in the past. Instead, we simply return the answer

constraint, which is in fact a multi-set of the collected constraints. Eschewing this additional

feature, though, makes implementing a run interface especially straightforward.

(define-syntax-rule (run n (q) g0 g ...)
(call/initial-state n (fresh (q) g0 g ...)))

In fact, we can expand a miniKanren run expression into calls to the microKanren

primitives and helper functions in terms of which they are defined. Listing 3.20 shows the

expansion of Listing 1.1.

One imagines adding even more succinct syntax. Perhaps some define-relation/conde

and define-relation/matche (see Keep et al. [116]) forms that would take a homogenized

head and a sequence of clause bodies and expand to their obvious respective underlying
96

> (call/initial-state #f
(call/fresh

(λ (q)
(call/fresh
(λ (l)

(call/fresh
(λ (s)

(conj
(== `(,l ,s) q)
(append l s '(t u v w x))))))))))

Listing 3.20. An expansion of the append invocation of Listing 1.1

structures. One imagines perhaps a special form of equality constraints that permit embed-

ded term-structural (primitive) constraints. Such an extended equality constraint might then

expand to sequences of primitive constraints. We could embed these and other additional

syntactic forms similarly.

97

3.12. Impure miniKanren extensions

We introduce here the language of full miniKanren programs, with additional impure

operators. We recover the impure miniKanren operators conda and condu, which provide

committed choice and committed choice with a “don’t-care” nondeterminism, respectively.

When we add the impure miniKanren extensions conda and condu to our model of these

negated literals, it looks like we get something like extended logic programs with constraints.

As a first step we implement ifte*, which nests ifte expressions. It takes a sequence of

lists containing two goal expressions each, followed by a single goal expression at the end

and transforms these into a sequence of nested ifte expressions, using the last goal as the

final ifte’s else clause.

(define-syntax ifte*
(syntax-rules ()

((_ g) g)
((_ (g0 g1) (g0* g1*) ... g)
(ifte g0 g1 (ifte* (g0* g1*) ... g)))))

With this, we can implement conda and condu as macros. conda takes a sequence of

sequences of two or more goal expressions each, except the last which is a sequence of one

or more goals. With conj+, we transform this syntax into an ifte* expression:

(define-syntax-rule (conda (g0 g1 g ...) ... (gn0 gn ...))
(ifte* (g0 (conj+ g1 g ...)) ... (conj+ gn0 gn ...)))

We implement condu by adding once to each first element of each sequence, and building a

conda from the result:

(define-syntax-rule (condu (g0 g1 g ...) ... (gn0 gn ...))
(conda ((once g0) g ...) ... ((once gn0) gn ...)))

98

In the next chapter we will see some of the example use-cases facilitated by these

constraint miniKanren languages, as well as demonstrating some steps forward and improve-

ments in relational programming techniques in miniKanren. In doing so, we will clarify some

heretofore nebulous aspects of common programming practices with constraint miniKanren

languages.

99

Chapter 4 Examples, Uses and Techniques

In describing the constraint systems of Chapter 3, we have exhibited some typical

use cases. Constraints such as those defined in Chapter 3, when used in concert with the

constraint-independent portion of the language implementation described in Section 3.10,

enable solutions of novel programming exercises while clarifying and simplifying the solu-

tions to some previously solved problems.

In this chapter we present and explain several larger uses of such constraints in miniKan-

ren logic programs for novel or interesting problems. In several cases we contrast our present

solutions to a less desirable recourse in the absence of readily-definable constraints. We do

not suggest that in the absence of our novel constraints, these problems are not amenable

to (constraint) logic programming. Nor, by “readily-definable”, we do not mean to say

that such constraints were impossible absent our work. Instead, we suggest just that the

engineering effort otherwise required in implementing such constraints makes each less likely

to be implemented and made available to the programmer. In the course of these examples,

we will indicate constraints that were rarely if ever implemented in miniKanrens prior to

the work of this thesis or otherwise uncommon to CLP languages. Many examples of this

chapter use miniKanren’s advanced pattern-matching syntax extension matche from Keep

et al. [116].

100

4.1. Quine and quine-like program generation

Quine generating is one of the most frequently-demonstrated miniKanren programming

examples. A quine [98], or “self-replicating program” is a program whose output is its own

listings. Such a program is a fixed point of its evaluator (or its execution environment)

when taken as a function from programs to outputs. The “quine” entry in the New Hacker’s

Dictionary (Jargon File) [174] mentions the following as a classic:

((lambda (x)
(list x (list (quote quote) x)))
(quote

(lambda (x)
(list x (list (quote quote) x)))))

A constraint logic programmer can implement a languages’ interpreter as a computable

relation between expressions and their values. With this definition at hand, the programmer

writes a relatively short query for a fixed point of the relation, and the answer quickly

returns. We describe in this section how constraints aid a programmer in implementing

quine generators and related programs.

Querying a relation for its fixed point is useful well beyond generating quines. Indeed,

we first demonstrate this general technique using the lengtho relation of Listing 4.1. We use

this as a preliminary example before moving to the more complicated interpreter program.

The binary lengtho relationship holds between a list and its length in little-endian binary.

We modified this example from Chapter 7 of The Reasoned Schemer, 2nd Ed [65] and it

uses the miniKanren arithmetic suite also seen in Kiselyov et al. [119].

(define-relation (lengtho l n)
(conde

((nullo l) (== '() n))
((fresh (a d)

(== l `(,a . ,d))
(fresh (res)

(pluso '(1) res n)
(lengtho d res))))))

Listing 4.1. The lengtho relation

101

We query this relation in Listing 4.2 for three lists that are backwards-binary number

encodings of their own length.

> (run 3 (q) (lengtho q q))
(() (1) (0 1))

Listing 4.2. A use of the lengtho relation

The evaluation relationship is more sophisticated than the list-length relationship. Con-

sider the Racket implementation of a functional interpreter for a Scheme-like language capa-

ble of expressing quines. We will not recapitulate here background in designing interpreters,

but there is very little here out of the ordinary. We modified this functional implementation

from Indiana University’s C311/B521 course.

Programmers implementing relational interpreters benefit from logic languages with

auxillary constraints because the programmer can write directly in the domain of discourse—

here the interpreted programming language—and in doing so the relational version can

closely resemble the functional version.

We do not dwell on the particulars of translating a functional program to a miniKanren

relational program or the particular considerations for relational interpreters; a reader

interested in the latter should consult Byrd et al. [25, 27]. For our purposes it is sufficient

to see the miniKanren interpreter for this same language closely resembles the functional

implementation, with the addition of several constraints that constrict the domain of the

function. Instead, we highlight the benefits of constraints like those enabled by our constraint

systems provide when building relational interpreters.

Under a straightforward encoding of a small Scheme-like language’s interpreter, equa-

tions alone are insufficient to restrict the interpreted languages’ variables to particular

subsets of terms (e.g. restricting a λ expression’s binding to the set of the symbols). We

necessarily use a first-order representation of closures and environments for interpreters

written in miniKanren. We implement closures as lists with tags, to distinguish them
102

(define (lookup vars vals y)
(match-let ((`(,x . ,vars^) vars)

(`(,v . ,vals^) vals))
(cond

((equal? x y) v)
((not (equal? x y)) (lookup vars^ vals^ y)))))

(define (valsof args vars vals)
(cond
((equal? args '()) '())
(else (let ((v (valof (car args) vars vals))

(vs (valsof (cdr args) vars vals)))
`(,v . ,vs)))))

(define (eval exp)
(valof exp '() '()))

(define (valof exp vars vals)
(match exp

[`,exp #:when (symbol? exp) (lookup vars vals exp)]
[`(λ (,x) ,b) #:when (symbol? x)
`(closure ,x ,b ,vars ,vals)]
[`(quote ,v) v]
[`(list . ,args) (valsof args vars vals)]
[`(,rator ,rand)
(match-let ((`(closure ,x ,b ,vars^ ,vals^) (valof rator vars vals))

(a (valof rand vars vals)))
(valof b `(,x . ,vars^) `(,a . ,vals^)))]))

Listing 4.3. Functional interpreter for a Scheme-like language that ex-
presses quines.

from the values of actual list expressions values. Here, absento constraints exclude raw

closures from the evaluation relation. The absento constraints are also critical to preventing

λ expressions from capturing primitives of the language.

We express the binary eval relation as a specialized version of a more general quartery

relation valof. These auxiliary parameters of valof are environments, initially empty. The

quaternary relation valof describes the relationship between programs in an empty environ-

ment and those programs’ values. We often use the specialized eval relation when writing

queries.
103

(define-relation (lookup x vars vals o)
(fresh (y vars^ v vals^)

(== `(,y . ,vars^) vars)
(== `(,v . ,vals^) vals)
(conde

[(== x y) (== v o) (listo vars^) (listo vals^)]
[(=/= x y) (lookup x vars^ vals^ o)])))

(define-relation (valof exp vars vals o)
(conde

[(symbolo exp) (lookup exp vars vals o)]
[(fresh (x b)

(== `(λ (,x) ,b) exp)
(absento 'λ vars)
(symbolo x)
(== `(closure ,x ,b ,vars ,vals) o))]

[(== `(quote ,o) exp)
(absento 'quote vars)
(absento 'closure o)]
[(fresh (es)

(== `(list . ,es) exp)
(absento 'list vars)
(valsof es vars vals o))]

[(fresh (rator rand)
(== `(,rator ,rand) exp)
(=/= rator 'quote) (=/= rator 'list)
(fresh (x b vars^ vals^ a)

(valof rator vars vals `(closure ,x ,b ,vars^ ,vals^))
(valof rand vars vals a)
(valof b `(,x . ,vars^) `(,a . ,vals^) o)))]))

(define-relation (valsof es vars vals o)
(conde

[(== `() es) (== '() o)]
[(fresh (e es^)

(== `(,e . ,es^) es)
(fresh (v vs)

(== `(,v . ,vs) o)
(valof e vars vals v)
(valsof es^ vars vals vs)))]))

Listing 4.4. A relational miniKanren interpreter

104

(define-relation (eval exp o)
(valof exp '() '() o))

Listing 4.5. Definition of the help relation eval

> (run 3 (q) (eval q q))

Listing 4.6. Querying for quines

With this relational interpreter, we can also ask and answer more sophisticated questions

about program relationships beyond quines. The disequality constraints in some of the next

several queries describe disequalities between programs of the interpreted language. For the

first of these examples, we generate twines. A twine, or “twin quine” is a program that,

when evaluated, produces a program that, when evaluated, produces the original program.

By including this disequality, we query specifically for twines that are not themselves quines.

> (run 1 (p) (fresh (q) (=/= p q) (eval p q) (eval q p)))

Such cycles of evaluation generalize to thrines and beyond in a natural way. As a second

class of related examples, consider the below query for a 3-cycle of programs p, q, and r for

which evaluating the current program on the next program, yields the prior program.

> (run 1 (p q r)
(eval `(,p ,q) r) (eval `(,q ,r) p) (eval `(,r ,p) q))

This query is trivially satisfiable; (quote quote) evaluates in Scheme to quote. To achieve

a more interesting result, we once again include disequality constraints between interpreted-

language programs, as in the twines example.

> (run 1 (p q r) (=/= p q) (=/= q r) (=/= r p)
(eval `(,p ,q) r) (eval `(,q ,r) p) (eval `(,r ,p) q))

This query responds with results, which we omit here for space but include in Appen-

dix C. What is important here is not the queries’ precise answers, but that such answers

exist and our ability to readily express and modify queries to find them. As far as we know,
105

there is no canonical name for such program cycles with this property. We did not know

that such a cycle existed until we experimented and queried for one. The ability to rapidly

prototype and test new constraints begets platforms for experimenting with such queries.

We consider here a third example querying and finding “mirror-image” programs. We

wrote a relational interpreter almost identical to that of Listing 4.4, but with the language’s

syntax reversed. That is, the program ((λ (arg) (list arg)) (quote cat)), in this reversed

language we write ((cat etouq) ((arg tsil) (arg) adbmal)) for that same function. Nat-

urally enough, we named this relation lave, which calls to folav. The one interesting

difference is that testing for tsil expressions now requires a relation tsil-reporpo, a

mirrored “proper list” relation. The mirrored interpreter’s definition is also in Appendix C.

With both of these relational interpreters together, we can query for programs that are

well-formed in both languages.

> (run 3 (q) (fresh (a b) (eval q a) (lave q b)))
('etouq
((λ (_0) adbmal) (sym _0))
((λ (adbmal) adbmal) (λ (λ) adbmal)))

One can write a quine-generating relational interpreter in miniKanren using only equal-

ity constraints. Such an interpreter, however, does not carry that superficial resemblance

to the functional version as does lengtho to length. The purely-equational definition of

Listing 4.7 is due to Nada Amin and Tiark Rompf [7].

The interpreter itself and the environment lookup mechanisms seem superficially similar

to the relational interpreter of Listing 4.4. Subtle differences here, however, betray the

additional complexities hefted upon the implementation in a language with so spartan a

constraint set. Firstly, consider the use of =/= in lookup. Without primitive disequality

constraints, the interpreter writer must implement disequalities relationally. This relation

cannot implement recursively the general miniKanren disequality constraints, as in many

cases this would fail to terminate. Since this particular interpreter uses disequalities to
106

constrain only variables of the interpreted language, it suffices to implement disequalities

over such variables. We encode these variables as Peano numbers as in Section 3.7.1 on

page 83.

(define-relation (lookup e i v)
(fresh (j vj er)

(== e `((,j . ,vj) . ,er))
(conde
((== i j) (== v vj))
((=/= i j) (lookup er i v)))))

(define-relation (valof e t v)
(conde

((fresh (idx)
(== t `(x . ,idx))
(lookup e x v)))

((fresh (idx t0)
(== t `(λ (x . ,idx) ,t0))
(== v `(closure ,e ,idx ,t0))))

((fresh (t0)
(== t `(quote ,t0))
(== v `(code ,t0))))

((fresh (t₁ t₂ e0 idx0 t0 v₂)
(== t `(,t₁ ,t₂))
(valof e t₁ `(closure ,e0 ,idx0 ,t0))
(valof e t₂ v₂)
(valof `((,idx0 . ,v₂) . ,e0) t0 v)))

((fresh (t₁ t₂ c₁ c₂)
(== t `(list₂ ,t₁ ,t₂))
(valof e t₁ `(code ,c₁))
(valof e t₂ `(code ,c₂))
(== v `(code (,c₁ ,c₂)))))))

Listing 4.7. A purely-equational relational interpreter in miniKanren

Without absento to prevent the interpreter from generating closures in the initial

program, we must instead resort to tagging all terms and values of the language; in order to

distinguish a term from a value, we implement special relations for each set. In Listing 4.9

we present the implementation of val?. val? relies on env?, nat?, and expr?. We include

these with the full implementation in Appendix C, but the implementation as expressed so
107

(define-relation (=/= n₁ n₂)
(conde

[(fresh (pn₂)
(== n₂ `(s . ,pn₂))
(== n₁ '()))]

[(fresh (pn₁)
(== n₁ `(s . ,pn₁))
(== n₂ '()))]

[(fresh (pn₁ pn₂)
(== n₁ `(s . ,pn₁))
(== n₂ `(s . ,pn₂))
(=/= pn₁ pn₂))]))

Listing 4.8. An unequal-variables relation for the interpreter of Listing 4.7

far sufficiently demonstrates the disconnect between the functional host language’s imple-

mentation and the encumberances of the relational language with only equality constraint

primitives.

(define-relation (val? o)
(conde

((fresh (e idx t)
(== `(closure ,e ,idx ,t) o)
(env? e)
(nat? idx)
(expr? t)))

((fresh (t)
(== `(code ,t) o)
(expr? t)))))

Listing 4.9. A value relation for the interpreter of Listing 4.7

Moreover, these design requirements we impose on the interpreter of Listing 4.7 restrict

its language to 2-lists. 2-lists are sufficient for implementing quines, but this is a more

limited language than that of Listing 4.4 and we cannot extend its lists to lists of arbitrary

length without further complicating the language.
108

4.2. Imperative Language Interpreters and Program Inversion

Our implementation technique for languages’ interpreters also accommodates languages

with imperative control features and mutable state. We exhibit in this section how con-

straints also aid the programmer in implementing interpreters for languages with these

features. The examples of this section, chiefly based around a relational interpreter for a

Flowchart [74] implementation of the MP (miniPascal) language [192], come from unpub-

lished work with Dan Friedman & Robert Glück in 2013. We defer the full implementation

of this interpreter to Appendix C and present here a few illustrative components. This first

series of example queries to this interpreter are tree traversals. The model of relational

language implementation admits reversible programming; that is, we can execute standard

MP programs both forwards and backwards. These examples too make heavy use of the

miniKanren constraints we can readily define in constraint microKanren.

The program preorder-traverse performs a preorder traversal over a binary tree with

data on internal nodes and collects those data as the result. The program executes by first

initializing the program’s local variables: the current traversal and the todo stack are set

to empty, and the incomplete? flag is set to '(true). The program executes through a single

main loop. While the tree traversal is still incomplete, if the current node is a non-leaf, then

proceed down the left branch, and push the center and right nodes onto the todo stack. If

the current node is a leaf node and the todo stack is non-empty, then add the center node

of top entry in the to-do stack to the traversal, set the current tree to the right-hand side,

and loop to continue. This program considers an interior node without a right and left child

bad data, and in that case the program reports an error. When the tree is empty, we set

the incomplete? flag to false, which terminates the loop.

Behaviorally, our relational implementation of the MP interpreter differs from the

corresponding functional implementation in that, upon a state change, we cdr to the variable

in question and then rebuild the front of the environment. The relational implementation

maintains the ordering of variables in the environment. We could also have split the en-

vironment to begin with and mandated that globals begin bound. This may aid program

109

(define preorder-traverse
'((:= incomplete? '(true))

(:= traversal '())
(:= todo '())
(while flag
((if tr

((:= todo (cons (cdr tr) todo))
(:= tr (car t)))
((:= traversal (cons tr traversal))
(if todo

((if (car todo)
((:= traversal (cons (car (car todo)) traversal))
(:= tr (cdr (car todo)))
(:= todo (cdr todo)))
((:= incomplete? '())
(:= traversal (cons 'Error traversal)))))

((:= tr '())
(:= incomplete? '())))))))))

Listing 4.10. Preorder tree traversal program in MP

generation when running queries with all fresh variables. We demonstrate these programs

executing in an inverse, non-standard mode, but they can also be executed as expected in

the usual forward mode.

> (run 5 (q)
(run-programo
'(tr)
'(todo traversal incomplete)
preorder-traverse
q
'((todo ()) (traversal (7 6 5 4 3 2 1)) (incomplete? ()) (tr ()))))

(((1 2 3 4 5 6 . 7))
((1 2 (3 4 . 5) 6 . 7))
(((1 2 . 3) 4 5 6 . 7))
(((1 2 3 4 . 5) 6 . 7))
((((1 2 . 3) 4 . 5) 6 . 7)))

Listing 4.11. Tree traversals of the traverse program of Listing 4.10 in the
MP interpreter

110

We leave the implementation of the traverse-graph program to Appendix C, as this

imperative program is comparatively large. To use the program, we initialize sets of global

and local variables, and traverse a directed graph, represented as an association list of nodes

to neighbors. If the graph contains disconnected components or cycles, our program instead

reports those errors. From the first query of Listing 4.12, we see that we can produce a

graph traversal given a graph. From the second we see also that, given part of a graph and

a termination state, we can create completions of that graph so the entire graph terminates

at that final state.

> (run 1 (q)
(run-programo '(w g) '(c cc pw x cont badflag)
traverse-graph
'((A) ((A B C) (B D) (C) (D A C)))
q))

(((c A)
(cc (B C))
(pw (A))
(x ((A B C) (B D) (C) (D A C)))
(cont ())
(badflag ())
(w ())
(g ((A B C) (B D) (C) (D A C)))))

> (run 5 (a d)
(run-programo '(w g) '(c cc pw x cont badflag)
`((,a ,d) ((A B C) (B D) (C) (D A C)))
'((c ())

(cc ())
(pw ())
(x ())
(cont ())
(badflag success)
(w ())
(g ()))))

((A B) (A C) (B D) (D A) (D C))

Listing 4.12. Uses of a stateful graph traversal program to both traverse
graphs and to generate parts of graphs from the state after traversal

111

Relational interpreters for languages with imperative constructs, such as MP, can pro-

vide other avenues to approach “inverse programming” and could be a worthwhile target for

research in partial evaluation. Through our techniques for developing relational programs

from functional ones, a developer might need only to write a properly constrained func-

tional, “forward direction”, version of their program, and rely on a multi-modal relational

interpreter for that language to evaluate the inverse program, and rely on partial evaluation

to eliminate much of the interpretive overhead.

4.3. Relational type-checking and inference

Another common set of miniKanren programming examples are multi-modal type check-

er/inferencer/inhabiters for various small programming languages. Depending on the mode

in which we execute it, this single program can check if a program types at a given type,

infer a given program’s type, or find a program that inhabits a given type. Such programs

are especially nice to implement in a logic language. Whenever we can directly express a

judgment as a term structural relationship, such as the application case of Listing 4.13,

then implementing that judgment is mostly translating the syntax. An implementation’s

components not directly transferred from judgments—for example, the structure of envi-

ronments that allow type-checking let-bound polymorphic functions let-bindings1—can be

more complex. In Appendix C we provide the remainder of the implementation, due in part

to Spencer Bauman and presumably similar to Pan and Bryant’s [169] approach.

In earlier implementations, miniKanren programmers often implemented a not-in-envo

relation like that of Listing 4.15 that allowed us to specify that certain symbols were absent

from the environment. This relation expresses an important property for correctly checking

the types of functions shadowing primitive forms. This implementation has the unfortunate

consequence though of generating particular environments in which the judgment holds,

rather than representing them generally. miniKanren programmers have taken to instead

1Functions are otherwise monomorphic, and monotypic variables stand for a single, distinct type. Only

let introduces polytypic variables. In a Haskell-like language, we could use higher rank types to achieve a

similar effect for λs.

112

(define-relation (⊢ Γ e τ)
(conde

…
((fresh (rator rand)

(== `(,rator ,rand) e)
(fresh (τₓ)

(⊢ Γ rator `(,τₓ → ,τ))
(⊢ Γ rand τₓ))))))

Listing 4.13. Application case in a miniKanren-based implementation of a
type-checker

> (run* q
(⊢ '() '(let ([f (λ (x) #t)])

(if #t (f (f ”cat”)) (f #t))) q))
'(Bool)

Listing 4.14. A miniKanren-based type-checker polymorphically typing a
let-bound λ expression

(define-relation (not-in-envo x env)
(conde

[(== '() env)]
[(fresh (y _ rest)

(== `((,y ,_) . ,rest) env)
(=/= y x)
(not-in-envo x rest))]))

Listing 4.15. Implementation of a not-in-envo relation for a type environment

ensuring this property using an absento constraint to exclude a given term from an envi-

ronment structure. However, this has several deficiencies. An environment, a finite list of

pairs, is structurally more complex than an arbitrary tree. An absento constraint can overly

restrict the environment and exclude let or lambda from the environment altogether, rather

than just as type variables. In principle, types and type variables should be of different

sorts. The work-around in Section 4.1 was to redesign the interpreters’ environment as a

pair of lists. Moreover, absento constraints alone are also insufficient to properly constrain

the environment’s structure. A type judgment may still hold even if the environment is
113

constrained to an improper list; in fact miniKanren almost always generates partially-

determined environments specified up to an improper list structure. In Listing 4.16, we

implement the more precise non-in-envo constraint and a constraint interaction to forbid

improper-list environments. This gives the benefits a constraint without the deficiencies of

absento.

These environments could have been constrained to have an even more precise structure

(e.g. the left of each pair could be constrained to a symbol). Surely, if having a boolean on

the left-hand side makes an environment invalid, then that would be correct to specify.

We could add this additional structure as another way for the environment relationship

to fail to hold. Under the closed-world assumption, specifying additional failure cases is

as easy as more tightly specifying the success. These design decisions are the constraint’s

specification. We chose to instead treat an environment pair beginning without a type

variable as harmless noise-data. In our system the constraint writer explicitly states these

decisions in the constraints’ definitions. The CLP programmer separately describes lookup’s

behavior on these strange environments.

#:recursive-predicates
(…
(in-env?
[(X (cons (cons X (cons _ '())) _)) true]
[(X (cons (cons _ (cons _ '())) R)) (in-env? X R)]))

#:constraints
([(not-in-envo x ne) (in-env? x ne)]
…
[(improper-listo l) (equal? (cdr* l) '())])
#:rewrite-rules ()
#:failure-rules
([for-all ([improper-listo i] [not-in-envo x l])

#:fail-when [(equal? (cdr* i) (cdr* l))]]
…)

Listing 4.16. Implementing a not-in-envo constraint and its interactions

114

4.4. Relational Implementations of Natural Logics

In this section we exhibit exemplary Kanren implementations of proof search in a number

of natural logics [15]. These logics range from the Aristotelian syllogistic to those with the

reasoning power of full first-order logic and even beyond. They are natural in the sense they

admit argument and proof roughly on the level of natural language structures themselves.

This is an alternative to the familiar approach from most introductory logic courses: first

translate an argument into a formal language, and then analyze the argument in that setting.

(define-relation (A φ Γ proof)
(matche φ

[(∀ ,a ,a) (== φ proof)] ; Axiom
[,x (membero x Γ) (== proof `(,x in-Γ))] ; Lookup
[(∀ ,n ,q) ; “Barbara” inference
(fresh (p proof1 proof2)

(== `((,proof1 ,proof2) => ,φ) proof)
(A `(∀ ,n ,p) Γ proof1)
(A `(∀ ,p ,q) Γ proof2))]))

Listing 4.17. A matche-based miniKanren implementation of A

Being declarative and logic-based, miniKanren makes constructing proof searches for

these logics and experimenting with them straightforward. The implementations of this

section illustrate benefits of new constraints for implementations of natural logics. We

exhibit three models for declaratively implementing syllogistic logics:

(1) A “raw miniKanren” implementation encoding parts of the logic with the standard

miniKanren constraints over the standard terms.

(2) Hemann et al.’s [87] implementation that relies on features from an experimental

cKanren fork [5].

(3) A constraint microKanren implementation in a new constraint language.

For small logics like A , the logic of “All” syllogisms, these models are similar. We see

in Listing 4.17 that the main function implementing A proof search relies only on equal-

ity constraints. The program A expresses a 3-place relationship between a formula φ, an

environment Γ, and a proof of φ from Γ.
115

We start to see differences when implementing larger logics like R∗† [158], a relational syl-

logistic logic with recursively specified terms and full noun negation. Standard miniKanren

forces us to coax the problem into the fixed, pre-existing CLP language. Listing 4.18 shows

part of an R∗† implementation in a modern Racket implementation of miniKanren that

exemplifies this issue. We defer the remainder of the implementation to Appendix C. This

implementation fakes custom constraints using the built-in miniKanren datatype constraints

and negative numbers as type-tags. The implementation stipulates that 0 uniquely tags

bottom, -1 tags constants, and likewise -2 for unary atoms, -3 for binary atoms, and -4 for

variables. Listing 4.18 shows constraint-like relations to enforce the type tags of these faux

constraints, and Listing 4.19 shows host-language data constructors. Here, we demonstrate

the implementation of constants and unary atoms and literals; their binary analogues are

similar. We made the design choice here in implementing the language to allow the same

symbol for both unary and binary atoms. These design choices are captured only in the

implementation of these faux-constraints and perhaps comments. As such, the choices are

not especially well articulated, nor separated from the remainder of the logic program’s

implementation, nor open for automated checking. This has the additional drawback of

generating the two instances of a literal rather than a single constraint. The programmer’s

intention was to combine them together as a constraint. Because these faux-constraints are

just custom relations over the actual primitive constraints, the language implementation

treats the clauses as two separate choices when searching. Further, information about the

implementation of these ersatz constraints is tied in with the implementation of what

was intended as the underlying logic program, so we have little hope of cleaning up the

representation during the answer projection phase.

Contrast this approach to Hemann et al.’s [87] R∗† implementation in an experimental

cKanren dialect. This implementation, as exemplified by Listing 4.21, uses advanced, ex-

perimental cKanren features. It demonstrates a similar declarative style of implementing

constraint systems. Some of the key features, including its constraint interaction definitions,

are similar to those we can express in constraint miniKanren. Furthermore, it adds some

special reification for these constraints.

116

(define-relation (constanto c)
(fresh (sym)

(symbolo sym)
(== c `(-1 . ,sym))))

(define-relation (un-atomo a)
(fresh (sym)

(symbolo sym)
(== a `(-2 . ,sym))))

(define-relation (un-literalo l)
(conde

((un-atomo l))
((fresh (a)

(un-atomo a)
(== l `(not ,a))))))

Listing 4.18. Faux constraint implementation with miniKanren constraints

(define (make-constant sym) `(-1 . ,sym))
(define (make-un-atom sym) `(-2 . ,sym))

(define/match (negate-un-literal n)
[(`(not (-2 . ,(? symbol? x)))) `(-2 . ,x)]
[(`(-2 . ,(? (symbol? x))) `(not (-2 . ,x)))])

Listing 4.19. Translation function for faux miniKanren constraints of List-
ing 4.18

> (run* (q) (un-literalo q))
'(((-2 . _0) (sym _0)) ((not (-2 . _0)) (sym _0)))

Listing 4.20. Execution and reification of faux-constraint literals

Listing 4.21 implements constraints for representing unary versions of both literals and

atoms. Listing 4.22 shows these constraints act also as type tags for subsets of the ground

terms.
117

(define-attribute unary-atomo
#:satisfied-when symbol?
#:incompatible-attributes (number bin-atomo))

(define-attribute un-literalo
#:satisfied-when symbol-or-negated-symbol?
#:incompatible-attributes (number bin-literalo bin-atomo))

(define-constraint-interaction
[(un-literalo x) (unary-atomo x)] => [(unary-atomo x)])

(define/match (symbol-or-negated-symbol? s)
[((? symbol?)) #t]
[((cons 'not (? symbol?))) #t]
[(x) #f])

Listing 4.21. cKanren constraint definitions with violations, interactions,
and satisfaction conditions

> (run* (q) (un-literalo q))
'((_0 : (un-literalo _0)))

Listing 4.22. Execution and reification of cKanren-constraint literals

In this second implementation, we considered and dismissed the alternate design of List-

ing 4.19 because it was impractically slow for even medium-size relational proof search

queries. None of these implementations promise top-end performance, but that was a

consideration for this implementation.

Contrast these with a third, further approach in Listing 4.25. This gets some of the same

benefits of the cKanren-based implementation. cKanren provides a much more powerful

implementation. This is in part reflected in the size of the language implementation itself, as

well as its trajectory. We have significantly less implementation overhead. We have also some

different guarantees, tighter guarantees about the solver. In this constraint microKanren

model, we add new infinite types primitives, and exclude certain classes of host language

symbols altogether. We also add a second singleton set to prepare for a non-not constraint.
118

(define ((make-exotic-class l) c)
(and (symbol? c)

(let ([str (symbol->string c)])
(and (memv (string-ref str 0) l)

(string->number (substring str 1)) true))))

(define un-atom? (make-exotic-class (list #\p #\q)))
(define bin-atom? (make-exotic-class (list #\r)))

(define-attribute unary-atomo
#:satisfied-when un-atom?
#:incompatible-attributes (number bin-atomo))

(define-attribute bin-atomo
#:satisfied-when un-atom?
#:incompatible-attributes (number unary-atomo))

Listing 4.23. Alternate construction of the faux miniKanren constraints
from Listing 4.18

We define not-un-lit? structurally, as opposed to implementing another special class

for non-unary literals. We must define it structurally, because in our system all terms with

the same pfs need to be recognized by the same predicate. That means each instance of

each constructor needs to be limited to within one predicate.

It takes somewhat more effort in constraint microKanren to implement the necessary

constraint interactions from the base partition up. In this system the constraint implementer

has to write a great deal of explicit constraint interaction predicates that the second system

does not require. These kinds of interaction, however, as we mentioned in Section 3.4, can

and should be automatically generated. Constraint microKanren explicitly employs a closed

world assumption across a general term language; beyond the incidentally-disjoint predicates

over basic Scheme terms, the other implementation does not have this property.

Since constraint microKanren that guarantees this independence of atomic negative

constraints, we know that a constraint is solvable if the equalities are consistent, and in

that every indexed n-tuple of atomic negative constraints is consistent.
119

(define ((make-ordinary-syms l) c)
(and (symbol? c) (not (eqv? c 'not))

(not (memv (string-ref (symbol->string c) 0) l))))

(define sconst? (make-exotic-class (string->list ”abcd”)))
(define svar? (make-exotic-class (list #\x #\y #\z)))
(define plain-sym? (make-ordinary-syms (string->list ”abcdpqrxyz”)))
(define is-not? ((curry eqv?) 'not))

(make-constraint-system
#:var? number?
#:posary-constructors ((cons . 2))
#:infinite-types (pair? sconst? un-atom? bin-atom? svar? plain-sym?)
#:finite-types (null? is-not?)
…)
…
#:recursive-predicates
([not-un-lit? [((cons X _)) (not-not? X)]

[((cons 'not X)) (not-un-atom? X)]
[(X) (not-pair-or-un-atom? X)]])

Listing 4.24. A third construction of relational logic constraints

([for-all ([un-lito u] [sconsto t]) #:fail-when ([equal? u t])]
[for-all ([un-lito u] [bin-atomo v]) #:fail-when ([equal? u v])]
[for-all ([un-lito u] [svaro w]) #:fail-when ([equal? u w])]
[for-all ([un-lito u] [plain-symo x]) #:fail-when ([equal? u x])]
[for-all ([un-atomo u] [sconsto t]) #:fail-when ([equal? u t])]
[for-all ([un-atomo u] [bin-atomo v]) #:fail-when ([equal? u v])]
[for-all ([un-atomo u] [svaro w]) #:fail-when ([equal? u w])]
[for-all ([un-atomo u] [plain-symo x]) #:fail-when ([equal? u x])]
…)

Listing 4.25. A subset of the interactions required for the basic sets of
constraints

A constraint microKanren constraint designer will start to feel the price of this guar-

antee as the need for finer and finer grained partitions over the terms to implement more

constraints. This is the tension in our system between expressivity of the constraint language

and the independence guarantee. Another limitation, and one that we had hoped for, is that

we cannot express negated-version-of as a constraint, because these homogeneous atomic
120

constraints would not be independent of one another. We further compare and contrast our

model of constraints to both Alvis et al.’s [6] approach and Alvis’s later approach in the

advanced experimental cKanren in Chapter 5.

In this chapter we have seen several extended examples of miniKanren programs made

possible by, or greatly benefit from, the addition of constraints beyond standard equality

and mechanisms for quickly adding and experimenting with them. Section 4.1 includes two

Scheme-subset languages capable of expressing quines, one of which uses constraints and

the other that does not. The example of Section 4.2 shows an interpreter for an imperative

language useful for expressing program inversions and testing preconditions of annotated

programs. In Section 4.3 we saw the implementation of relational type inferencers, and in

Section 4.4 we included several related natural logics that provided reasoning both inside

and outside the “Aristotelian border”. These cases show how using a language with suitable

constraints can clarify a programmer’s intent. Being able to rapidly implement and test

constraints leads the programmer to better model the problem domain, and all the attendant

benefits of a higher-level logic language that fits the problem.

121

Chapter 5 Related Work

We express programmed constraints of LP languages via negated logical formulae un-

derstood in a closed world. Already, Chapter 1 introduces much of the general history and

background of the field of CLP and Chapter 2 gives a theoretical background to the research

we conducted within the CLP Scheme of Jaffar and Lassez. Here, we relate our work in the

context of certain closely-related research efforts and within the arc of the more recent

research in the field.

5.1. Functional Embeddings of Logic Programming

The functional and logic programming language communities have had a decades long

and storied exchange. One byproduct of the cross-pollination of ideas across communities

is a proliferation of embeddings of logic programming in functional host languages. These

are too numerous to exhaustively list, but Komorowski’s [124] QLOG is an early exemplary

deep Lisp embedding. Implementers often position these as integrated, mixed-paradigm

programming environments. Many subsequent systems’ designers have similar purposes,

and it is often only the intended usage pattern that distinguishes an embedded logic

language from a mixed paradigm environment. Using a deep, interpreter-based embedding

like Carlsson [31], Nilsson [165], and Wallace [221] side-steps some of the important issues

we address with our work. Other shallow, compositional embeddings of logic programming

come closer to the constraint-independent portion of the LP language embeddings we began

describing in Section 3.5.

Robinson and Silbert’s [181, 182] LogLisp is an early shallow Lisp-based embedding; they

were initially motivated by the relative ease of extending an embedded language. LogLisp

also offers complex search behavior beyond the standard depth-first search. Wand’s [222]
122

alternative embedding is similar to LogLisp but more machine-oriented. This embedding

implicitly takes syntactic equality as the only constraint, hidden within the Prolog-style

syntax, and it is not immediately clear how this approach scales to a more general constraints

framework.

We directly write our languages’ relations in an if-and-only-if (IFF), bi-implicational

form [48, p. 103] instead of interpreting implications through Clark’s predicate completion.

This is a small syntactic difference, but it does let us honestly give predicates a kind of

closed-world meaning.1 We do not introduce negation into our pure logic programs explicitly,

and in the pure relational sub-language we do not permit general negation. Felleisen’s

[56] Transliterating Prolog into Scheme also permits pure definite logic programming with

relations expressed in an IFF form. This system implements a stateful, strictly depth-first

search for a single answer, and omits the occurs? check. We instead aim to implement pure

relational programming through pure functional programming over finite structures.

Many existing pure functional LP embeddings reside in a lazy host language, for laziness

precludes directly manipulating state. Hinze [94, 95] and Seres and Spivey [190, 202] both

exhibit purely functional Haskell embeddings of LP features. The languages components we

developed in Section 3.5 are in the main similar, though all three were developed indepen-

dently. Hinze uses his embeddings to demonstrate the expressivity of monadic functional

programming, and he captures Prolog’s depth-first search behavior in his backtracking.

Seres uses her embedding to express logic program transformations using host-language

program equivalences, and she also explores and generalizes different search techniques.

1As Shepherdson [194] makes the case,

Since one of the merits of logic programming is supposed to be making a rapprochement

between the declarative and procedural interpretation of a program, in the interests of

Wysiwym—What you say is what you mean—logic programming, I think that if you

mean “iff” you should write “iff”; if you want to derive consequences of comp(P) you

should write comp(P), and if in order to carry out this derivation it is necessary to go

via P then this should be done automatically.

123

Theirs rely on a lazy host, though; we distinguish our embedding by its search behavior

in our specifically eager, functional host. We also importantly differentiate our work from

most of the preceding by our distinct approach to negation. Byrd [24] directly precedes us in

several respects. Friedman et al. [64] express their Scheme embedding functionally, but with

a heavier reliance on macros that make their embedding less obviously compositional and

intertwine the implementations of core functionality with the surface syntax. Further, they

interleave beyond what is minimally necessary in general to maintain a complete search,

which we require.

These earlier works rarely, if ever, explore constraints much beyond syntactic equality,

and do not address generically embedding classes of them. However, Seres [190] and Byrd

[24] probably come closest to the constraint-independent portion of our embedding, and we

do continue their agendas in that we address several problems they highlighted.

Researchers have explored advanced search behavior both in logic programming and

elsewhere. Clark et al. [36] describes some of the meta-control expressions for programs

in a Prolog free of non-logical operators. Naish [161] and Vasak [214] survey the non-

standard control and meta-control facilities of many Prolog implementations, including

various kinds of intelligent backtracking and entire separate control meta-languages. These

features require the programmer’s separate, deliberate intervention beyond writing the

declarative logic program. As we have mentioned, Spivey and Seres express breadth-first

search in their embedding, via specially managed streams. Perhaps the closest approach to

our particular model of nondeterminism is Kiselyov et al.’s [120] “Backtracking, interleaving,

and terminating monad transformers: (functional pearl)”. In a Haskell setting, they describe

adding interleaved backtracking via monad transformers, and suggest fair search in logic

programming as an application. They do not, however, go so far as to suggest taking the

shape of the user’s program and query as an heuristic for the minimal generally-necessary

interleaving for implementing a complete search. We separated constraint solving and search

to clarify the common portion of a parameterized CLP language; Schrijvers et al. [188] offer

a different motivation. They implement different advanced search strategies via monad

124

transformers over basic search monads. It’s not yet clear where miniKanren’s interleaving

depth-first search fits in their framework, or what benefits additional monad transformers

over this search might bestow.

5.2. Functional Logic Programming

Like other functional embeddings of logic programming, our work superficially resembles

“functional logic programming” (FLP) languages, as it does provide a kind of impover-

ished admixture of the logic and functional paradigms. However, our embeddings of logic

languages inside functional programming meta-languages instead have more complicated

semantics, or simply reduce to the semantics of the functional meta-language, and in any

case express no underlying, united formalism. Developers came to FLP languages in part

from their experiences with those earlier mixed paradigm amalgamated systems, so the an-

cestral resemblance is not surprising. Robinson [178], for instance, begins advancing LogLisp

toward a more fully integrated functional-logic programming language. True functional logic

languages should have a simpler unified semantics that encompass behaviors of both pure

functional programming as well as logic programming. We draw much of this section from

summaries of Aït-Kaci and Nasr [2], Bellia and Levi [14], and Hanus [79, 80].

Aït-Kaci and Nasr [2] describe a variety of ways to mix functional and logic programming.

However, the term “functional-logic programming” now more commonly describes languages

implemented via two general approaches. Functional-logic languages’ designs proceed from

either introducing logic variables to a reduction-based model of functional programming

evaluation, or from letting programmers specify equational axioms that describe functions’

behavior. In FLP these (conditional) equations act as (conditional) rewrite rules. When the

atom to evaluate is not ground, evaluation would seem stuck. The two general approaches

then are to either search for the right instantiation, or to delay that computation until the

non-ground portions become sufficiently instantiated to proceed.

The former strategy, narrowing, uses some form of search to find an instantiation that

solves these E-unification problems. Unification in even small equational theories is generally

undecidable. In practice, then approaches restrict the allowed rewrite rules’ forms to some set
125

expressive enough for programmers and still permits an efficient enough algorithm. An FLP

language should evaluate fully ground atoms via a deterministic rewrite sequence like their

functional language counterpart would. However, searching to sufficiently instantiate non-

ground atoms can lead to a huge explosion in complexity. Much narrowing research involves

designing restrictions that limit such explosion. Basic narrowing, like earlier restrictions

to linear input resolution, restricts narrowing steps to positions inside one of the original

program clauses or inside the query. Selection based narrowing corresponds to the selection

rule of SLD. Certain other narrowing restrictions correspond to specifying a language’s

evaluation order. ALF [78] and BABEL [157], for instance, are narrowing-based languages.

With all forms of narrowing, however, the system must still sometimes guess the value

with which to instantiate. The alternative is Aït-Kaci and Nasr’s [2] residuation approach.

This approach delays the evaluations of insufficiently-instantiated atoms. This avoids search-

ing for values that other parts of the computation would eventually make manifest, like

the way SLDNF manages negative literals. This strategy, unlike narrowing, is incomplete

generally, and this can lead to floundering-like behavior. Residuation works for certain

classes of programs though, and can be more efficient than narrowing. Languages like

Escher [142], Le Fun [2], Life [1], and NUE-Prolog [160] rely on residuation or residuation-like

behavior. For instance NUE-Prolog provides FLP by first transforming function definitions

to predicates before executing in NU-Prolog, so it operationally behaves as though via

residuation. Curry [81], meanwhile, uses both lazy narrowing as a general strategy as well

as residuation to address concurrency. Finally, Braßel et al. [21] offer an intriguing approach

for translating functional logic programs into monadic functional programs that preserve

the flexibility to employ, e.g., different search strategies.

5.3. CLP and the CLP Scheme

We described early constraint logic programming and the development of the CLP

Scheme in Section 1.2. The scheme was designed to help solve the problem of too many

different one-off constraint systems, so myriad different collections of constraints and pro-

gramming languages using those constraints fit within that framework [110]. Given this
126

abundance, we will focus on constraint systems that relate directly to our languages’ Her-

brand/symbolic constraints. Marriott and Stuckey [152] introduce constraint programming

generally while also giving special consideration to syntactic equality and disequality con-

straints in logic programming.

Colmerauer [41] first introduces disequality constraints on infinite trees in Prolog II;

these infinite data structures obviate the occurs? check. Barták [13] and Maher [147]

define CLP(H) for the special case of equality constraints and negative atomic disequality

constraints over finite trees. In several papers, Smith and Hickey [201] describe CLP(FT),

a Prolog-like CLP language over finite trees but with universally quantified disequality

constraints. Our term structures are similar, and their universal disequality constraints

are more expressive than ours, as our disequality constraints are limited to the standard

existentially quantified logic variables. They tailor their results toward applications in

partial evaluation, and their universally quantified constraints (i.e. “U-constraints”) [200]

bear a strong relationship to Chan’s [32] constructive negation.

We mentioned in Section 1.2.1 a different 1980s-era inspiration for CLP. This style was

driven more by research in constraint satisfaction problems using constraint propagation

to reduce the search space. The scheme’s demand to express constraints via Horn formulae

and to axiomatize the domain can make some domains difficult to express, and complicates

using some OR based techniques like constraint propagation or letting constraints impact

search behavior. Guo [77] and Höhfeld and Smolka [100] suggested related approaches that

“turn CLP inside out”, and instead treat CLP predicates as recursive definitions of sets of

complex constraints defined over the primitive constraints of the domain. Then the full CLP

program expresses the standard kind of constraint programming so well tuned for OR/AI

techniques.

Alvis et al.’s [6] cKanren is an early constraint-based miniKanren that takes this different

approach. Alvis et al. take finite domains as their prototypical example, and they use domain

restriction and constraint propagation to solve constraints. Unlike languages generated

127

by our framework, their cKanren projects and minimizes answer constraints, and prettily

format the results. Presently their solver uses a nondeterministic fix-point algorithm to solve

constraint interactions.

Alvis’s [5] subsequent iterations of cKanren utilized a more general, CHR-based tech-

nique written in a kind of event-driven programming style. Her more comprehensive system2

aims to support not just constraints like our negative independent constraints, but also

CLP(FD) constraints and beyond. She does not aim to characterize such a family of

constraint languages by their theories, nor to find a class that admit our particular strategy

for solving. Accommodating this more expressive constraint system forced her outside of our

“sweet spot” of a simple solver, and into a more complicated constraint-interaction approach

using an event-based programming model implementation and a fix point technique. This

comes at the price of a significantly more complex implementation and the system takes

a vastly larger code base to implement. Much of it makes heavy use of Racket-exclusive

macro-level programming features. This is part of why we envisioned another approach to

extending microKanren with constraints. These experimental branches are in an unstable

state and incompatible with more recent releases of Racket. Alvis [5] indicates the project

has stalled, and her development of it is indefinitely suspended. This is unfortunate; the

cKanren examples in Hemann et al. [87] indicate how nice the complete system could be

for an end user.

As the “mini-”, “micro-” “c-” modifiers suggest, there is an earlier language “Kan-

ren” [66]. Kanren, from the Japanese meaning “relation”, is also a programming language

based on relation composition and relation extension in the way many functional languages

are based on the extension and composition of functions. miniKanren is named with respect

to the earlier Kanren, but the languages have diverged significantly. Kanren has distinct

2cKanren does not so heavily enforce, and ultimately blurs the boundary between an explicitly fixed

CLP language and a constraint-augmented programming language system. The project pivoted to Kraken,

a prototype constraint-logic programming language implementation: https://github.com/calvis/kraken.

128

https://github.com/calvis/kraken

syntax, semantics, and design goals. miniKanren is “mini-” in the sense that as a language it

makes more demands of the users and its implementations provides less automated support,

and did not address constraints.

We usually see the constraint system’s definition as picking out a member of a CLP

language family and generating a black-box solver. Each of our languages give the CLP

programmer some predefined set of constraints with which to program. The programmer

uses these constraints to define a problem; the solver provides an answer without any

programmer input as to how. In general, a sound black box solver gives truthful answers

to binary questions about some logical relationship of constraints. Further, as discussed in

Chapter 2, our solvers are always complete solvers, as opposed to the more common practice

of incomplete solvers that may return “unknown” as an answer.

Members of the CLP community have constructed a number of frameworks and “shells”

for building CLP languages over one or a variety of domains. In that sense such shells

resemble also describe constraint-system parameterized families of languages. Lim and

Stuckey [141] envision similar uses for their framework as we envision for constraint mi-

croKanren. Their aim is to allow the inclusion of any solver via access to an API. They

give a CLP language implementation wrapped over this solver or these solvers, and their

approach enables quicker development of constraints over various domains. We both separate

control from the actual solving, and like our approach they require modifying the unifier.

However, our approaches differ both in the manner we integrate constraint solving into

a logic programming framework and in the styles of solvers we support. They support

integrating existing solvers, while we support direct encodings of the theory. In terms of

implementation, they provide an imperative solution based on WAM extensions, whereas we

embed our framework in a general-purpose functional programming language. Further, the

style of logic programming—the control mechanism, as well as trivialities like the surface

LP syntax and term language—are instead the standard Prolog.

Constraint solvers are described as “black-box” in contrast with the glass-box style. In

the latter style, CLP programmers specify or influence the control behavior of constraint

solving. In some models, programmers can even define new kinds of constraints with their

129

programs. Frühwirth’s [68] constraint-handling rules (CHR) and Kowalski et al.’s [129]

forward propagation rules (FPR) are both glass box solving approaches, CHR being the

more popular style. Frühwirth and Abdennadher [69] introduces many kinds of constraints

with CHR and also uses them to implement arc consistency algorithms. Kowalski et al.

defines FPRs via IFF definitions like we do our constraint predicate definitions, though

their goals (comparable here to our constraints) are conjunctions of disjunctions. Like our

systems’ constraints, Frühwirth defines goals as conjunctions of atoms, though their CHRs

are embedded in Prolog like languages and bound by their syntactic restrictions.

We can alternately view a program in a particular one of our CLP languages as some-

thing like a two-strata logic program, combining the program’s actual predicates with the

solver’s logical specifications of predicates. Since we express our constraints’ domains in

part by giving a theory of that domain, similar theories are relevant to our work even if

described for other reasons. A great deal of the related work focuses specifically on equations

and disequations. Colmerauer [40] studies solving specifically equations and disequations on

finite or infinite trees, inspired by his work on Prolog II. Maher [149] gives complete first-

order axiomatizations for the theories of finite, infinite, and rational trees, of both finite

and infinite languages. See Djelloul et al. [50] both for a more detailed introduction, and for

continued related work combining constraints within those theories. For instance, Djelloul

et al. add an operator (constraint) for labeling a given tree as finite. These are on the whole

broader than our concern here, as we cannot express universally quantified constraints, nor

do we entertain the algebra of infinite trees.

Solving combinations of equations and subterm relationships (like the positive version

of our absento constraint) in tree algebras are less widely studied. Venkataraman [216]

shows that the existential theory of free algebras over a first-order languages with equality,

a subterm relation, and enough function symbols is decidable, but that the full first order

theory is undecidable. Tulipani [208] revisits those results and also studies these questions

in the algebras of infinite and rational trees. These are more general than the problems we

intended to address; they study full positive and negative uses of the subterm relationship,

while we restrict ourselves to negative uses.

130

We restrict ourselves to negative uses of subterm relationships to maintain the special

form of the independence of negated constraints of Maher [147]. Lassez and McAloon [139]

first characterize this independence property in the context of constraint logic programming.

They point out this same property undergirds Colmerauer’s earlier work, and exploit this

property in implementing an algorithm to efficiently bring linear arithmetic constraints

to a canonical form. Lassez and McAloon [138] later address the phenomenon in a more

general setting. Several other kinds of constraint domains have this same independence of

negative constraints property, including not only those described by Maher [149], but also

feature trees with infinitely many sorts and features [110]. The standand Prolog-like trees

are essentially part of these domains, and ours. This is uncommon in general—in many

others domains the constraints and the objects of the constraint domain are separate and

apart from the LP trees constructed over those elements.

Makowsky [150] describes important properties of the models of universal-existential

Horn clause theories, pseudo-term structures, and their relationship to the consistency of

the closed-world assumption. Pseudo-term structures are structures for which each element

has existentially-closed primitive positive defining formula. For every element of a pseudo-

term structure, there is some existential primitive positive formula that defines that element.

Makowsky shows that a first-order theory admits initial models iff it is a partially functional

∀∃-Horn theory. Theories admitting ∃+-generic structures have the intersection property

that their classes of models are closed under arbitrary limits. Volger [217] independently

and contemporaneously gives results similar to Makowsky. In [150, §6.1], Makowsky re-

proves Colmerauer’s result as one instance of a more general result; the same proof works

for any set of negated atomic- or negated ∃+-formulae. Vel [215] gives a proof-theoretic

characterization of a more general version of the independence property over formulae, for

instance, of any sequence of quantifiers. These characterizations relate to the independence

of an homogeneous set of negative atomic constraints; the theory of each such constraint is a

universal existential horn theory and it therefore has a pseudo-term model. When combining

these separate theories together, we consider a variant of the k-independence property from

Cohen et al. [37].

131

5.4. Negation in Logic Programming

Because our LP languages’ constraints are negations of LP predicates, our approach

has much to do with general negation in LP. Given its widely-understood promise of

programming purely in logic, programmers naturally expect LP languages to express general

negation with its standard behavior. One of the longest-standing areas of LP language design

is to provide reasonable semantics to negation, and exploring different definitions of both

“negation” and “reasonable”. Gabbay and Sergot [70, §1 Appendix] describe at least five

different general flavors of negation that could interest a logic programmer, and whole

volumes including Apt and Bol [9], Dix [49], Kunen [132], and Shepherdson [194, 195] just

summarize and survey work addressing negation in logic programming. These approaches

tend to be accounts of full, general predicate negation in logic programming; this seems

more difficult than our limited use of negation to pre-defined constraints under Herbrand

interpretations of some universal language. The computational complexity of full first-order

theorem proving and the unfortunate language pragmatics of needing to explicitly define

negatives discourage classical logic as a semantics for general logic programs. Various other

approaches take as a program’s semantics either a logical theory derived via transformation

of the program, e.g. the program’s completion, or instead via some canonical model, like

the least Herbrand model, or specially restricted classes of models. Apt and Bol suggest

Wallace [220] for an evaluation of the merits of both approaches. An early approach that

is a common starting point for negation is Clark’s [34] “negation as failure” (NF) rule. In

fact, the NF view of negation also dates back to PLANNER [108]. This has a connection

to pessimistic default reasoning and non-monotonic logic, treating the failure to prove

as proof of the negation. This is often a reasonable shorthand, both because it can be

efficiently executed, and simplifies the programmer’s task. For instance, in programming a

train schedule, assuming the negation unless the positive version succeeds obviates listing

all the destinations and times for which a train does not depart.

132

The NF rule, as used in Clark3 is compatible with both the completed database (CDB)

and Reiter’s [175] closed-world assumption (CWA). Both are studied in comparison to SLD

with the NF rule. The CDB, via Clark’s [34] predicate completion, is what you get from

getting completed versions of all the predicates in the database (DB) of clauses. The CWA

says that if a ground literal isn’t implied by the database, then we assume it to be false.

The CWA and CDB are in general different: one or the other could be inconsistent, and

even when they’re both consistent they might be incompatible (see Shepherdson [193]).

The use of negation as failure in traditional logic programming relates to our constraints.

Our CLP languages do evaluate ground atomic negative constraints to failure when their

ground positive counterparts succeed. We give our constraints names distinct from simply

negative versions of their predicates. Such renaming to avoid explicit negation is also

familiar to logic programmers, this approach dates back at least to 1979. We however also

allow evaluation of non-ground terms in constraints. We take Kunen “universal language”

approach, ensuring the language is “big enough” no matter the program.

Some approaches to negation also restrict the class of programs for which negation

is allowed or meaningful, but not so far in the way we do so. Clark’s SLDNF procedure

expects a definite clause database, and instead will only allow negative literals in the queries.

Extending the syntax to program clauses a la Lloyd that permit negation in normal logic

programs adds additional complexity still, and we do not include any special mechanisms

or fixed control to delay our constraints to only ground terms.

Our languages permit a limited form of normal logic programs; they permit negated

literals in predicates’ bodies only for pre-defined constraints. Furthermore, these constraints

are permitted only in their negative form. Our approach works in part because we stratify

the logic program into constraint and logic program portions, and because the limitations

on constraints guarantees constraint checking terminates. Apt et al.’s [8] “stratified pro-

grams” are those programs where no relation “depends negatively” on itself. Our programs

resemble 2-level stratified logic programs, with the CLP program in the top stratum,

3Basically, as in Prolog. Clark’s query evaluation procedure (QEP) is SLD + NF, which Lloyd succinctly

calls SLDNF.

133

and the constraints, treated logically, in the lower stratum. The call-consistent programs,

those programs where no relation “depends negatively, oddly” on itself, encompass the

stratified programs. It follows from a theory of Sato [187] that those programs will all have

an Herbrand model. Sato describes the relationships between these and larger classes of

programs. There, in the second level, we have that we get some NAF behavior. Shepherd-

son’s [195] finite tree property ensures, for us, that the evaluation of any atomic negative

constraints check will terminate with success or failure. Clark [34, Theorem 4] first showed

that hierarchical databases imply the finite tree property.

134

Chapter 6 Summary and Future Work

In this final chapter, we summarize the argument of this thesis and the impact of the

work it presents, describe some directions for future work, and conclude.

6.1. Summary

We have presented a framework for developing microKanren-like CLP languages as

instances of the CLP Scheme. It supports customary miniKanren constraints as well as in-

teresting and useful new ones. By decoupling the constraint management from the inference,

control, and variable management, our work clarifies the semantics of microKanren. Our

major contributions are:

Kernel Logic Language. We have exhibited the parameterized constraint microKanren

language family and a framework for generating executable semantics for CLP in an eager,

functional host language.

miniKanren Syntactic Extensions. We demonstrated a translation mechanism from

pure miniKanren programs to microKanren programs via host-language macros.

Parameterized Constraint Systems. We situate microKanren constraints within the

CLP Scheme and provide logical, algebraic, and operational semantics for constraint

systems.

Interrelated Semantics. We exhibited these languages’ relationship via the shared com-

mon portion of these embeddings’ implementations that is an executable semantics.

Problem-solving Aids. Along the way we also provide and demonstrate a collection of

novel constraints, and several novel uses of logic programming for relational interpreters.
135

Several minor results emerge from situating this work inside the CLP Scheme. These

contributions include: cataloging, clarifying, correcting, and translating the terminological

gap between miniKanreners and the larger logic programming community. We also help to

characterize and clarify a sea of existing implementations.

We envision our framework as a lightweight tool for rapidly prototyping constraint sets.

Our results are useful for CLP language implementers wanting to test-drive their model

constraint systems. Language designers can now explore and test constraint definitions and

interactions without building or modifying a complicated, dedicated solver tailored to some

other application. Academics, professionals, and hobbyists can now roll their own CLP

systems. We also imagine our system as an educational artifact to provide functional pro-

grammers a minimal executable instance for constructing CLP Scheme-constraint systems.

As Seres [190] says in her 2001 dissertation:

There are several promising research avenues based on this implemen-

tation: our favourite ones are an algebraic specification of a constraint

language, and subsequent applications [sic] the program transformation

from functional programming. Both the implementation and the examples

may help functional programmers realise how close this constraint-based

style is to functional programming, and might lead to a further cross-

fertilisation of the methodologies for these declarative styles.

We further suggest that allowing the logic programmer to implement their constraint-logic

programming language in logic programming is a novel end in itself.

Enumerating a minimum host language feature set will help improve the microKanren

embeddings in the various host languages. This makes room for more shallow embeddings

and implementations in other styles. We can improve the efficiency of non-Scheme imple-

mentations, like the JavaScript implementation. Rather than needing to first re-implement

the miniKanren term language structure, the JavaScript Kanren implementer can now

meaningfully use a direct embedding into a native JavaScript term language, and change to a

different concrete implementation of unification over this new term language. Removing the
136

overhead of the binary tree term language should improve performance. More generally, this

change allows the constraint designer to reason about constraints’ definitions and constraint

interactions across such changes to the term language.

We did not intend to generate efficient, state-of-the-art CLP languages. Even without

performance numbers or a full benchmark test suite, we know our generated language

implementations do not compete with state of the art systems. Instead of efficiency, our

aim is a simple, general framework for implementing constraints in microKanren, and we

hope to have followed Robinson’s [180] dictum:

I think that it’s important to go for elegance and beauty in these mathe-

matical engineering quests. You can’t really go far wrong if it’s beautiful.

6.2. Future Work

In this section we briefly outline some natural next steps in a research agenda starting

from this dissertation. This future work includes suggestions for improving existing systems,

making programming in logic languages more declarative, and simplifying the construction

of relational constraint logic programs.

6.2.1. Constraint System Performance. We have deliberately rejected certain com-

mon but implementation-complicating features. Although we have preferred simplicity over

optimized performance, we hope in future research to investigate some of the following

low-hanging ideas for improvements.

With the term “redundancy” we collect here two related areas of future work. Various

notions of redundancy appear in the context of logic programming, and problem solving

more broadly, but we call something redundant when “it can be removed without affecting

the system of concern” [115]. We have seen in this dissertation that the constraint solving

algorithm can render a constraint redundant.

Our generated constraint solvers are not at all adapted for incrementally solving con-

straints. In the execution of a program our implementations will repeatedly solve from

scratch (portions of) the same constraint problem, instead of solving incrementally and
137

memoizing the intermediate solutions. We also face redundancy in the constraint store,

to the point of even adding wholly duplicative constraints. We know that duplicating a

constraint in the store by adding another copy is redundant. Since a problem’s complexity

is as much a function of that problem’s degree of redundancy as it is a function of the

size of the problem instance, redundancy can causes inefficiency, confusion, and heartache.

In extreme cases redundancy can make otherwise tractable problems effectively impossible.

Addressing this general issue seems likely to have significant benefits.

Beyond these suggestions for improving the constraint system and those of Section 3.4,

we hope to implement various other simple optimizations including early projection [61],

or to optionally call out to an appropriate dedicated constraint solver. Future, subsequent

researchers or users of this system wanting our style of control might integrate existing

solvers, rather than using our approach to solving, to create an Echidna-style shell [141] for

constraint microKanren languages. One can envision a user building solver-aided languages

in Racket with Constraint microKanren, which offers promising suggestions for future

work [207].

Michael Ballantyne has shown how to implement the standard miniKanren constraints

using attributed variables [104]. This would be useful to incorporate into our parameter-

ized constraint systems. We hope to develop many of these optimizations as sequences of

correctness-preserving transformations from our kind of straightforward embedding imple-

mentations, and we also hope to evaluate their performance impact.

6.2.2. Presenting Answer Constraints. Since our system’s solvers only ensure con-

sistency and do not simplify the constraint set during the solving process, the next step

forward is to build a parameterized constraint simplifiers framework like we have for solvers.

This is what the designers of miniKanren implementations typically call the “reification”1

of answer constraints. In implementing this we hope to support answer constraint simplifi-

cation, answer projection, entailment, determinacy detection, and prettily printing answers.

1This usage of meaning of “reification” is independent and distinct from Friedman and Wand’s [67] usage

in the literature on reflection.

138

We may find that the specification of constraint simplification and printing mechanisms are

even bigger than those of the constraint systems and that they may generate more code.

However, it may be that by limiting our systems to these negative, atomic-independent

symbolic constraints, we can generically fashion this simplifier and answer projector for our

kinds of constraints where it would be more difficult in general. We expect this to even more

closely resemble a CHR-style approach.

6.2.3. Deep Embeddings and LP Hosts. Moving forward we want to explore deep

embeddings, and many attendant research questions follow from that idea. Rosenblatt et al.

[183] have begun work in this direction for guided synthesis problems. We have already

constructed two deep embeddings (i.e. interpreters) that implement search using respec-

tively a stream-based and a success and failure continuation-based model of interleaved

backtracking. These models extend the behavior of Hughes’s [103] backtracking monads,

which are designed for use in a lazy language. These implementations mediate our host

language’s strictness with explicitly marked delay positions. These demarcations also inform

the search’s interleaving behavior. Our two different implementations of extending the

standard backtracking model by delays and interleaving suggests future work comparing

these two models and proving their equivalence a la Hughes. Specifically we expect to

extend the work of Danvy et al. [46] and Wand and Vaillancourt [223] to relate our models

of interleaved backtracking. In part this would be reminiscent of Chung-chieh Shan’s prior

unpublished work connecting an early Kanren with continuation-based backtracking and

an implementation with list-based backtracking monad. Hinze [93] demonstrates that our

stream model of nondeterminism is asymptotically worse than a context-passing implemen-

tation so this may lead in certain cases to improved performance. We might hope to prove

the equivalence of the two implementations by deriving the same abstract machine via

correctness-preserving transformations.
139

We might like also to formally connect the deep and shallow approaches to implementing

our embeddings. This might follow Gibbons and Wu [73] in connecting deep and shallow

embeddings, and it may be we find it easier to connect the embeddings with continuation-

based backtracking than the embeddings with stream-based backtracking.

Moving to a deep embedding carries a host of attendant benefits and opens new ques-

tions to approach. That basic work we described enables asking important questions and

permits foundational research on the search and its completeness. These two models fully

characterize our microKanren’s search, and the context-passing implementations give a

better foundation to precisely explain how microKanren’s search works and what it does.

It provides another context in which to formally characterize the search’s fairness and to

prove that property holds.

This will also let us, in future work, compare microKanren’s interleaving to the search of

older, more traditional, miniKanren implementations and with other existing work beyond

LP. These other approaches to search include other complete variants of DFS and Seres’s

[190] technique for implementing breadth-first search. We should be able to connect our

microKanren-style search to Schrijvers et al.’s [188] monadic search transformers technique

and describe our approach as a search transformer. This surely also provides a better setting

to continue exploring, with the ultimate aim of back-porting a fair queue-based conjunction

to the shallow embedding without resorting to employing full breadth-first search.

We hope to explore how programmers can already achieve similar results to the examples

we demonstrate in a variety of existing LP languages in their already existing favorite logic

language. By building a deep embedding hosted in Prolog, we can introduce microKanren’s

search strategy, and perhaps its constraint set, to Prolog as a Prolog meta-interpreter. This

work could also bridge some of the connections between miniKanren and traditional LP

community.

Further, the Prolog meta-interpreter for miniKanren could lead to some performance

improvements. There is a wealth of existing logic programming research focused on improv-

ing performance of existing implementations and existing feature sets. This opens the door

to using many well-known Prolog techniques, and this thesis anticipates theoretically-driven

140

approaches to improving performance. There is room to apply a whole host of the tools of

the formal study of programming languages to this particular instance. For example, we

could then apply partial evaluation [92, 145] to hopefully achieve more efficient compilation,

and even derive specialized logic engines, a la Biernacki and Danvy [17]. Optimizing this im-

plementation could improve our ability to compile constraint microKanren. So our research

also addresses performance optimization issues important for compiler writers implementing

fast CLP systems. In addition to these specific next steps, our approach also reinvigorates

some older, time-worn research questions. A whole host of optimizations and performance

considerations come when working with constraints over pure relational programs. Our work

provides a reason to and a context in which to reconsider from first principles some early

decisions of many avenues of logic language design.

6.3. Conclusion

This dissertation presents the microKanren approach to adding constraints beyond

equality. In doing so, we hope to have improved understanding and eased the development

of constraints in miniKanren. In addition to the aforementioned results and avenues for

future research we’ve introduced, we hope for one further outcome. Quoth Robinson [179],

more deeply integrating functional and logic programming seems to address an unfortunate

and longstanding issue:

It has been a source of weakness in declarative programming that there

have been two major paradigms needlessly pitted against each other,

competing in the same marketplace of ideas. The challenge is to end the

segregation and merge the two. There is in any case, at bottom, only one

idea.

We hope that this work does some small part to help bridge this divide.

141

Appendix A microKanren Implementations

We layer over either of these implementations with a suite of macros, and export only

the relevant ones. This appropriately hides these underlying primitives’ implementations.

A.1. microKanren Implementations with Equality Constraints

The implementation of core microKanren as a Racket embedding.

(define ((succeed) S/c) (list S/c))
(define ((fail) S/c) '())

(define (((make-constraint-goal-constructor invalid? key) . ts) S/c)
(let ([S (hash-update (car S/c) key ((curry cons) ts))])

(if (invalid? S) '() (list `(,S . ,(cdr S/c))))))

(define ((call/fresh f) S/c)
(let ((c (cdr S/c)))

((f (var c)) `(,(car S/c) . ,(+ c 1)))))

(define ((disj g1 g2) S/c) ($append (g1 S/c) (g2 S/c)))
(define ((conj g1 g2) S/c) ($append-map g2 (g1 S/c)))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) S/c) (delay/name (g S/c))))

(define ($append $1 $2)
(cond

((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else ($append (g (car $)) ($append-map g (cdr $))))))

(define ($append-map g $)
(cond

((null? $) '())
((promise? $) (delay/name ($append-map g (force $))))
(else ($append (g (car $)) ($append-map g (cdr $))))))

142

(define (call/initial-state n g)
(take n (pull (g `(,S0 . 0)))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
(cond

((null? $) '())
((and n (zero? (- n 1))) (list (car $)))
(else (cons (car $)

(take (and n (- n 1)) (pull (cdr $)))))))

(define ((ifte g0 g1 g2) S/c)
(let loop (($ (g0 S/c)))

(cond
((null? $) (g2 S/c))
((promise? $) (delay/name (loop (force $))))
(else ($append-map $ g1)))))

(define ((once g) S/c)
(let loop (($ (g S/c)))

(cond
((null? $) '())
((promise? $) (delay/name (loop (force $))))
(else (list (car $))))))

A.2. Constraint microKanren Framework Implementation

This implementation requires srfi/31 and Racket’s generic-bind, contract, and

syntax/parse/define libraries, as well as Racket’s generic-bind, racket/match, syntax/stx

racket/syntax, and syntax/parse/define libraries as well as srfi/1 and srfi/31 for syntax.

(define-syntax-rule (make-subst var? (con d ...) ...)
(rec (sub x v t)

(match t
[(? var?) (if (equal? x t) v t)]
[(con d ...) (con (sub x v d) ...)]
...
[else t])))

143

(define-syntax-rule (make-occurs? var? (con d ...) ...)
(rec (o? x v)

(match v
[(? var?) (equal? x v)]
[(con d ...) (or (o? x d) ...)]
...
[else false])))

(define-syntax-rule (make-ext-s var? diag ...)
(let ([occurs? (make-occurs? var? diag ...)]

[subst (make-subst var? diag ...)])
(λ (x t s)

(cond
[(occurs? x t) false]
[else
(cons `(,x . ,t)
(~for/list ([($: a d) s])

(cons a (subst x t d))))]))))

(define-syntax-rule (make-subst-all var? (con d ...) ...)
(rec (w* t s)

(match t
[(? var?)
(cond

[(assoc t s) => cdr]
[else t])]

[(con d ...) (con (w* d s) ...)]
...
[else t])))

(define-syntax-rule (make-unify var? subst-all (c p1 p2) ...)
(let ([ext-s (make-ext-s var? (c . p1) ...)])

(rec (unify u v s)
(let ([u (subst-all u s)] [v (subst-all v s)])

(match* (u v)
[(u v) #:when (equal? u v) s]
[((? var?) v) (ext-s u v s)]
[(u (? var?)) (ext-s v u s)]
[((c . p1) (c . p2))
(for/fold ([s s])

([t1 (list . p1)]
[t2 (list . p2)])

#:break (not s)
(unify t1 t2 s))]

...
[(_ _) false])))))

144

(define-syntax-rule (make-fail-check subst-all ([(b x ...) ...]
[(p? fa ...) ...]))

(λ (s)
(~for*/or ([($list x ...) b] ...)

(and (p? (subst-all fa s) ...) ...))))

(define-syntax-rule (make-normlzr subst-all unify
([(b x ...) ...] [vs cs] [(p? fa ...) ...]))

(λ (s)
(~for*/fold ([s s])

([($list x ...) b] ...)
#:break (not s)
(if (and (p? (subst-all fa s) ...) ...)

(for/fold ([s s])
([t1 (list . vs)]
[t2 (list . cs)])

(unify t1 t2 s))
s))))

(define-syntax-rule
(make-solver subst-all unify (cid ...) (rr ...) (fr ...))
(λ (S)

(let ([cid (hash-ref S 'cid)] ...)
(cond

[((compose (make-normlzr subst-all unify rr) ...) '())
=> (or/c (make-fail-check subst-all fr) ...)]
[else #t]))))

(define (((make-constraint-goal-constructor invalid? key) . ts) S/c)
(let ([S (hash-update (car S/c) key ((curry cons) ts))])

(if (invalid? S) '() (list `(,S . ,(cdr S/c))))))

145

(begin-for-syntax
(define-syntax-class fail-rule

#:attributes (norm)
(pattern ((~literal for-all)

[(cid:id x:id ...+) ...+]
(~datum #:fail-when) [gpapp ...+])
#:with norm #'([(cid x ...) ...] [gpapp ...])))

(define-syntax-class rewrite-rule
#:attributes (norm)
(pattern ((~literal for-all)

[(cid:id x:id ...+) ...+]
#:rewrite
[(v (~datum =>) c) ...+]
#:when
[gpapp ...+])
#:with norm #'([(cid x ...) ...]

[(v ...) (c ...)]
[gpapp ...]))))

(define-for-syntax (make-pattern ns)
(build-list (syntax->datum ns) generate-temporary))

146

(define-syntax-parser make-constraint-system
[(_ #:var? var?

#:posary-constructors ((c:id . n:nat) ...)
#:infinite-types (ip:id ...)
#:finite-types (fp:id ...+)
#:== ==
#:=/= =/=
#:primitive-predicates ((ppn:id ((~datum one-of) fp/ip ...+)) ...)
#:term-structural-functions ((sfn:id sfcls ...+) ...)
#:recursive-predicates ((rpn:id [(t ...) body] ...+) ...)
#:constraints (((rcn:id x ...) nrp) ...)
#:rewrite-rules (rr:rewrite-rule ...)
#:failure-rules (fr:fail-rule ...)
#:sugar-constraints (((sugn:id suga:id ...) b) ...))

(with-syntax
([S0 (syntax-local-introduce #'S0)]
[(p1 ...) (stx-map make-pattern #'(n ...))]
[(p2 ...) (stx-map make-pattern #'(n ...))])
#'(begin

(define invalid?
(let ([ppn (or/c fp/ip ...)]

...)
(letrec ([sfn (match-lambda**

[((? var? X)) X]
sfcls ...)]

...)
(letrec ([rpn (λ args

(or (match args
[(list t ...) body]
[else false])

...))]
...)

(let* ([subst-all (make-subst-all var? (c . p1) ...)]
[unify
(make-unify var? subst-all (c p1 p2) ...)])

(make-solver subst-all unify (== =/= rcn ...)
[rr.norm ... ([(== t1 t2)] [(t1) (t2)] [])]
[([(=/= a d)] [(equal? a d)])
([(rcn x ...)] [nrp]) ... fr.norm ...]))))))

(define S0
(make-immutable-hasheqv '((=/=) (==) (rcn) ...)))

(define == (make-constraint-goal-constructor invalid? '==))
(define =/= (make-constraint-goal-constructor invalid? '=/=))
(define rcn (make-constraint-goal-constructor invalid? 'rcn))
...
(define (sugn suga ...) b) ...))])

147

Appendix B miniKanren Implementation

Our revised miniKanren implementation based on the microKanren from Appendix A.

(define-syntax disj+
(syntax-rules ()

((_ g) g)
((_ g0 g ...) (disj g0 (disj+ g ...)))))

(define-syntax conj+
(syntax-rules ()

((_ g) g)
((_ g0 g ...) (conj g0 (conj+ g ...)))))

(define-syntax-rule (conde (g0 g ...) (g0* g* ...) ...)
(disj+ (conj+ g0 g ...) (conj+ g0* g* ...) ...))

(define-syntax fresh
(syntax-rules ()

((_ () g0 g ...) (conj+ g0 g ...))
((_ (x0 x ...) g0 g ...)
(call/fresh (λ (x0) (fresh (x ...) g0 g ...))))))

(define-syntax-rule (run n (q) g0 g ...)
(call/initial-state n (fresh (q) g0 g ...)))

(define-syntax ifte*
(syntax-rules ()

((_ g) g)
((_ (g0 g1) (g0* g1*) ... g)
(ifte g0 g1 (ifte* (g0* g1*) ... g)))))

(define-syntax-rule (conda (g0 g1 g ...) ... (gn0 gn ...))
(ifte* (g0 (conj+ g1 g ...)) ... (conj+ gn0 gn ...)))

(define-syntax-rule (condu (g0 g1 g ...) ... (gn0 gn ...))
(conda ((once g0) g ...) ... ((once gn0) gn ...)))

148

Appendix C CLP Examples

C.1. Equality constraint Relational Interpreter

;; Terms
(define-relation (expr? o)

(conde
((fresh (n)

(== o `(x . ,n))
(nat? n)))

((== o 'quote))
((fresh (n t)

(== o `(λ (x . ,n) ,t))
(nat? n)
(expr? t)))

((fresh (t₁ t₂)
(== o `(,t₁ ,t₂))
(expr? t₁)
(expr? t₂)))

((fresh (t₁ t₂)
(== o `(list₂ ,t₁ ,t₂))
(expr? t₁)
(expr? t₂)))))

Listing C.1. Relational Interpreter using only equality constraints

(define-relation (nat? o)
(conde

((== o '()))
((fresh (n)

(== o `(s . ,n))
(nat? n)))))

Listing C.2. Help relation matching unary naturals

149

;; Environment
(define-relation (env? o)

(conde
((== o '()))
((fresh (n v e)

(== o `((,n . ,v) . ,e))
(nat? n)
(val? v)
(env? e)))))

Listing C.3. Help relation matching well-formed environments

C.2. Quines, Twines

> (run 3 (q) (eval q q))
((((λ (_0) (list _0 (list 'quote _0)))

'(λ (_0) (list _0 (list 'quote _0))))
(=/= ((_0 closure)) ((_0 list)) ((_0 quote)))
(sym _0))
(((λ (_0) (list ((λ (_1) _0) '_2) (list 'quote _0)))

'(λ (_0) (list ((λ (_1) _0) '_2) (list 'quote _0))))
(=/= ((_0 _1)) ((_0 closure)) ((_0 list)) ((_0 quote))

((_0 λ)) ((_1 closure)))
(sym _0 _1)
(absento (closure _2)))
(((λ (_0) (list _0 (list ((λ (_1) 'quote) '_2) _0)))

'(λ (_0) (list _0 (list ((λ (_1) 'quote) '_2) _0))))
(=/= ((_0 closure)) ((_0 list)) ((_0 quote)) ((_0 λ))

((_1 closure)) ((_1 quote)))
(sym _0 _1)
(absento (closure _2))))

> (run 1 (p) (fresh (q) (=/= p q) (eval p q) (eval q p)))
(('((λ (_0) (list 'quote (list _0 (list 'quote _0))))

'(λ (_0) (list 'quote (list _0 (list 'quote _0)))))
(=/= ((_0 closure)) ((_0 list)) ((_0 quote)))
(sym _0))

Listing C.4. Quine and Twine Query Examples

C.3. Program Cycles

Here we include sample results of searches for program cycles.

150

> (run 1 (p q r)
(eval `(,p ,q) r) (eval `(,q ,r) p) (eval `(,r ,p) q))

((quote quote quote))
> (run 1 (p q r) (=/= p q) (=/= q r) (=/= r p)

(eval `(,p ,q) r) (eval `(,q ,r) p) (eval `(,r ,p) q))
((((λ (_0)

'(λ (_1)
(list
'λ
'(_2)
(list
'quote
(list 'λ '(_0) (list 'quote (_1 '_3)))))))

(λ (_2)
'(λ (_0)

'(λ (_1)
(list
'λ
'(_2)
(list
'quote
(list 'λ '(_0) (list 'quote (_1 '_3))))))))

(λ (_1)
(list
'λ
'(_2)
(list 'quote (list 'λ '(_0) (list 'quote (_1 '_3)))))))

(=/= ((_0 closure)) ((_0 quote)) ((_1 closure)) ((_1 list))
((_1 quote)) ((_2 closure)) ((_2 quote)))

(sym _0 _1 _2)
(absento (closure _3))))

Listing C.5. Query for program cycles

C.4. Mirrored-language Interpreter

This section contains the interpreter for the mirrored language, and tsil-reporpo, a

help relation needed to describe reversed proper lists. While the syntax of the language is

mirrored, the internal representations of closures and environments are not.

151

(define-relation (fo-lavo pxe vars env lav)
(conde

[(fresh (v)
(== `(,v etouq) pxe)
(absento 'etouq vars)
(absento 'closure v)
(== v lav))]

[(tsil-reporpo pxe vars env lav)
(absento 'closure pxe)]
[(symbolo pxe) (lookupo pxe vars env lav)]
[(fresh (rotar dnar x ydob vars^ env^ a)

(== `(,dnar ,rotar) pxe)
(fo-lavo rotar vars env `(closure ,x ,ydob ,vars^ ,env^))
(fo-lavo dnar vars env a)
(fo-lavo ydob `(,x . ,vars^) `(,a . ,env^) lav))]

[(fresh (x ydob)
(== `(,ydob (,x) adbmal) pxe)
(== `(closure ,x ,ydob ,vars ,env) lav)
(symbolo x)
(absento 'adbmal env))]))

(define-relation (tsil-reporpo pxe vars env lav)
(conde

[(== `(tsil) pxe)
(== `() lav)]
[(fresh (a d t-a t-d)

(== `(,a . ,d) pxe)
(== `(,t-a . ,t-d) lav)
(fo-lavo a vars env t-a)
(tsil-reporpo d vars env t-d))]))

Listing C.6. The fo-lavo evaluation relation with a split environment

C.5. Relational miniProlog Interpreter

This appendix contains a relational implementation of a miniPascal interpreter a la

Sestoft’s [192] The Structure of a Self-applicable Partial Evaluator. It differs from the

functional implementation of this same miniPascal interpreter in that, upon update, we
152

cdr to the variable in question and then rebuild the front of the environment. This im-

plementation maintains the ordering of variables in the environment. We could also have

split the environment to begin with and mandated that globals begin bound. This may aid

program generation when running with all fresh variables.

(define-relation (initialize-local-envo vars out)
(conde ;; vars

[(== vars `()) (== out `())]
[(fresh (a d)

(== `(,a . ,d) vars)
(fresh (d^)

(== `((,a _) . ,d^) out)
(initialize-local-envo d d^)))]))

(define-relation (initialize-global-envo vars vals out)
(conde ;; vars

[(== vars `()) (== vals `()) (== out `())]
[(fresh (a d v vs)

(== vars `(,a . ,d))
(== vals `(,v . ,vs))
(fresh (res)

(== out `((,a ,v) . ,res))
(initialize-global-envo d vs res)))]))

(define-relation (appendo l s out)
(conde

[(== '() l) (== s out)]
[(fresh (a d res)

(== `(,a . ,d) l)
(== `(,a . ,res) out)
(appendo d s res))]))

(define-relation (run-programo V1* V2* B value* out)
(fresh (genv lenv)

(initialize-global-envo V1* value* genv)
(initialize-local-envo V2* lenv)
(fresh (env)
(appendo lenv genv env)
(evalBlocko B env out))))

Listing C.7. Relations for environments and initial program execution

153

(define-relation (evalBlocko B env out)
(conde ;; B

[(== B `()) (== env out)]
[(fresh (h t)

(== B `(,h . ,t))
(evalCommandso h t env out))]))

(define-relation (evalCommandso C B env out)
(conde ;; B

[(== B `()) (evalCommando C env out)]
[(fresh (h t)

(== B `(,h . ,t))
(fresh (env^)

(evalCommando C env env^)
(evalCommandso h t env^ out)))]))

(define-relation (reverseo-env^ acc env^ out)
(conde

((== '() acc) (== out env^))
((fresh (a d)

(== `(,a . ,d) acc)
(fresh (env^^)

(== env^^ (cons a env^))
(reverseo-env^ d env^^ out))))))

(define-relation (update-env V pr env acc out)
(fresh (a d)

(== `(,a . ,d) env)
(fresh (aa da)

(== `(,aa ,da) a)
(conde

((== aa V)
(fresh (env^)
(== env^ `(,pr . ,d))
(reverseo-env^ acc env^ out)))

((=/= aa V)
(fresh (acc^)

(== `(,a . ,acc) acc^)
(update-env V pr d acc^ out)))))))

Listing C.8. Relations to evaluate blocks and modify environments

154

(define-relation (evalCommando C env out)
(conde ;; C

;; [(== C `(print-env)) (prt) (== out env)]
[(fresh (V E)

(== C `(:= ,V ,E))
(fresh (val pr)

(== `(,V ,val) pr)
(evalExpressiono E env val)
(update-env V pr env '() out)))]

[(fresh (E B1 B2)
(== C `(if ,E ,B1 ,B2))
(fresh (val)

(evalExpressiono E env val)
(fresh (b-exp)
(isTrueo val b-exp)
(conde

((== b-exp '(true)) (evalBlocko B1 env out))
((=/= b-exp '(true)) (evalBlocko B2 env out))))))]

[(fresh (E B)
(== C `(while ,E ,B))
(fresh (val b-exp)

(evalExpressiono E env val)
(isTrueo val b-exp)
(conde
((== b-exp '(true))
(fresh (env^)

(evalBlocko B env env^)
(evalCommando C env^ out)))

((=/= b-exp '(true)) (== out env)))))]))

(define-relation (lookup-envo E env out)
(fresh (a env^)

(== env `(,a . ,env^))
(fresh (x v)

(== a `(,x ,v))
(conde

((== x E) (== a out))
((=/= x E) (lookup-envo E env^ out))))))

Listing C.9. Relations for evaluating commands and environment lookup

155

(define-relation (evalExpressiono E env out)
(conde ;; E

[(symbolo E)
(fresh (a ad)

(== ad out)
(lookup-envo E env `(,a ,ad)))]

[(fresh (Value)
(== `(quote ,Value) E) (== Value out))]

[(fresh (E^)
(== `(car ,E^) E)
(fresh (a d)

(== a out)
(evalExpressiono E^ env `(,a . ,d))))]

[(fresh (E^)
(== E `(cdr ,E^))
(fresh (a d)

(== d out)
(evalExpressiono E^ env `(,a . ,d))))]

[(fresh (E1 E2)
(== E `(cons ,E1 ,E2))
(fresh (val1 val2)

(== out `(,val1 . ,val2))
(evalExpressiono E1 env val1)
(evalExpressiono E2 env val2)))]

[(fresh (E^)
(== E `(atom ,E^))
(fresh (val)

(eval-atomo val out)
(evalExpressiono E^ env val)))]

[(fresh (E1 E2)
(== E `(equal ,E1 ,E2))
(fresh (val1 val2)

(eval-equalo val1 val2 out)
(evalExpressiono E1 env val1)
(evalExpressiono E2 env val2)))]))

Listing C.10. Relation for evaluating an MP expression

156

(define-relation (eval-atomo v out)
(conde ;; v

[(fresh (a d)
(== v `(,a . ,d))
(== out '()))]

[(not-pairo v) (== out '(true))]))

(define-relation (eval-equalo v1 v2 out)
(conde

((== v1 v2) (== out '(true)))
((=/= v1 v2) (== out '()))))

(define-relation (isTrueo value out)
(conde

((fresh (a d)
(== `(,a . ,d) value)
(== out '(true))))

((not-pairo value) (== out '()))))

Listing C.11. Small MP help relations

157

C.6. Traverse Graph

These examples demonstrate a variety of graph walks. In the current implementation,

the cycle check happens in the program before we check for the presence of the nodes in

the graph. This means that when miniKanren runs examples in the inverted modality, and

asked for cycles, it doesn’t respect the definition of the graph. This could be improved in

later versions. Our interpreter does not have a return statement, and so we modified the

program from the original implementation. Through a series of flags to modify control, we

regained more or less the original behavior, adding a return statement to the interpreter

would allow a more clear implementation of the algorithm in miniPascal. It may be that

doing so would disconnect the wires a la Byrd & Amin.

(define traverse-graph
'((:= flag '(true))

(:= out '())
(:= rest '())
(while flag
((if t ;; t is not a leaf

((:= rest (cons (cdr t) rest)) ;; center, right
(:= t (car t))) ;; left
((:= out (cons t out))
(if rest

((if (car rest)
((:= out (cons (car (car rest)) out)) ;; center
(:= t (cdr (car rest))) ;; right
(:= rest (cdr rest)))

((:= flag '())
(:= out (cons 'Error out)))))

((:= flag '())))))))))

Listing C.12. The MP language traverse-graph program

C.7. Relational Type-checking and Inference

This section contains the implementation of a relational type inferencer for a small

language with polymorphic let.

158

(define-relation (⊢ Γ e τ)
(conde

[(stringo e) (== 'String τ)]
[(conde

[(== e '#t)]
[(== e '#f)])

(== τ 'Bool)]
[(fresh (x b)

(== `(λ (,x) ,b) e)
(symbolo x)
(fresh (τₓ τb)

(== `(,τₓ → ,τb) τ)
(not-in-envo 'λ Γ)
(⊢ `((,x (mono ,τₓ)) . ,Γ) b τb)))]

[(fresh (v eʹ body)
(== `(let ([,v ,eʹ]) ,body) e)
(symbolo v)
(not-in-envo 'let Γ)
(⊢ `((,v (poly ,eʹ ,Γ)) . ,Γ) body τ))]

[(symbolo e)
(fresh (τʹ)

(lookupo Γ e τʹ)
(conde

[(== `(mono ,τ) τʹ)]
[(fresh (eʹ Γʹ)

(== `(poly ,eʹ ,Γʹ) τʹ)
(⊢ Γʹ eʹ τ))]))]

[(fresh (t c a)
(== `(if ,t ,c ,a) e)
(⊢ Γ t 'Bool)
(⊢ Γ c τ)
(⊢ Γ a τ))]
[(fresh (rator rand)
(== `(,rator ,rand) e)
(fresh (τₓ)

(⊢ Γ rator `(,τₓ → ,τ))
(⊢ Γ rand τₓ)))]

[(fresh (f func x)
(== `(fix (λ (,f) ,func)) e)
(not-in-envo 'fix Γ)
(⊢ `((,f (mono ,τ)) . ,Γ) func τ))]))

Listing C.13. The relational type inferencer with polymorphic let

159

(define-relation (not-in-envo x env)
(conde

[(== '() env)]
[(fresh (y _ rest)

(== `((,y ,_) . ,rest) env)
(=/= y x)
(not-in-envo x rest))]))

(define-relation (lookupo Γ y τ)
(fresh (x τʹ Γʹ)

(== `((,x ,τʹ) . ,Γʹ) Γ)
(conde

[(== x y) (== τʹ τ)]
[(=/= x y) (lookupo Γʹ y τ)])))

Listing C.14. An environment restricting relation and relational type en-
vironment lookup

160

C.8. Natural Logic R∗†

An implementation of the R∗† logic without custom constraints that fakes domain

constraints by using negative number tags and the standard miniKanren symbol constraints.

(define (make-un-atom sym) `(-2 . ,sym))
(define (make-bin-atom sym) `(-3 . ,sym))

(define-relation (unary-atomo a)
(fresh (sym)

(symbol sym)
(== `(-2 ,sym) a)))

(define-relation (bin-atomo a)
(fresh (sym)

(symbol sym)
(== a `(-3 . ,sym))))

(define (negate-un-literal n)
(match n

(`(not (-2 . ,x)) #:when (symbol? x) `(-2 . ,x))
(`(-2 . ,x) #:when (symbol? x) `(not (-2 . ,x)))))

(define (negate-bin-literal n)
(match n

(`(not (-3 . ,x)) #:when (symbol? x) `(-3 . ,x))
(`(-3 . ,x) #:when (symbol? x) `(not (-3 . ,x)))))

(define-relation (negate-un-literalo l o)
(conde

((unary-atomo l)
(== o `(not ,l)))
((== l `(not ,o))
(unary-atomo o))))

(define-relation (negate-bin-literalo l o)
(conde

((bin-atomo l)
(== `(not ,l) o))
((bin-atomo o)
(== l `(not ,o)))))

Listing C.15. A set of constructor functions and basic relations for imple-
menting the R∗†

161

(define-relation (un-literalo l)
(conde

((unary-atomo l))
((fresh (a)

(== l `(not ,a))
(unary-atomo a)))))

(define-relation (bin-literalo l)
(conde

((bin-atomo l))
((fresh (a)

(bin-atomo a)
(== l `(not ,a))))))

(define-relation (set-termo s)
(conde

((un-literalo s))
((fresh (p r)

(conde
((== s `(∃ ,p ,r))
(un-literalo p)
(bin-literalo r))
((== s `(∀ ,p ,r))
(un-literalo p)
(bin-literalo r)))))))

(define-relation (sentenceo s)
(conde

((fresh (p c)
(== `(∃ ,p ,c) s)
(un-literalo p)
(set-termo c)))

((fresh (p c)
(== `(∀ ,p ,c) s)
(un-literalo p)
(set-termo c)))))

(define-relation (negate-quant q q^)
(conde

((== q '∀) (== q^ '∃))
((== q '∃) (== q^ '∀))))

Listing C.16. Relations for constructing higher-level components of the
R∗† implementation

162

(define-relation (negateo s o)
(fresh (qf1 p c)

(== `(,qf1 ,p ,c) s)
(conde

((un-literalo c)
(fresh (qf1^ c^)

(== `(,qf1^ ,p ,c^) c)
(negate-quant qf1 qf1^)
(negate-un-literalo c c^)))

((fresh (qf2 q r)
(== `(,qf2 ,q ,r) c)
(fresh (qf1^ qf2^ r^)

(== `(,qf1^ ,p (,qf2^ ,q ,r^)) o)
(negate-quant qf1 qf1^)
(negate-quant qf2 qf2^)
(negate-bin-literalo r r^)))))))

(define-relation (membero x ls)
(fresh (a d)

(== `(,a . ,d) ls)
(conde

[(== a x)]
[(=/= a x) (membero x d)])))

Listing C.17. The relations for membership and general negation of R∗†

sentences

163

(define-relation (R G phi proof)
(conde

((membero phi G)
(== `(Gamma : ,G => ,phi) proof))
((fresh (p c) ;; D1

(== `(∃ ,p ,c) phi)
(unary-atomo p)
(set-termo c)
(fresh (q r1 r2)

(== `((,r1 ,r2) D1=> ,phi) proof)
(unary-atomo q)
(R G `(∃ ,p ,q) r1)
(R G `(∀ ,q ,c) r2))))

((fresh (p c) ;; B
(== `(∀ ,p ,c) phi)
(unary-atomo p)
(set-termo c)
(fresh (q r1 r2)

(== `((,r1 ,r2) B=> ,phi) proof)
(unary-atomo q)
(R G `(∀ ,p ,q) r1)
(R G `(∃ ,p ,c) r2))))

((fresh (p c) ;; D2
(== `(∃ ,p ,c) phi)
(unary-atomo p)
(set-termo c)
(fresh (q r1 r2)

(== `((,r1 ,r2) D2=> ,phi) proof)
(unary-atomo q)
(R G `(∀ ,q ,p) r1)
(R G `(∃ ,q ,c) r2))))

((fresh (p) ;; T
(== `(∀ ,p ,p) phi)
(== phi proof)
(un-literalo p)))

((fresh (p) ;; I
(== `(∃ ,p ,p) phi)
(un-literalo p)
(fresh (c r)

(set-termo c)
(== `((,r) I=> ,phi) proof)
(R G `(∃ ,p ,c) r))))

…))

Listing C.18. Part one of the implementation of proof search for the R∗† logic

164

(define-relation (R G phi proof)
(conde

…
((fresh (p nq) ;; D3

(== `(∃ ,p ,nq) phi)
(unary-atomo p)
(fresh (q c nc r1 r2)

(== `((,r1 ,r2) D3=> ,phi) proof)
(negateo c nc)
(un-literalo q) ;; these two lines could be better specialized.
(negate-un-literalo q nq)
(R G `(∀ ,q ,nc) r1)
(R G `(∃ ,p ,c) r2))))

((fresh (p c) ;; A
(== `(∀ ,p ,c) phi)
(un-literalo p)
(set-termo c)
(fresh (np r)

(negate-un-literalo p np)
(== `((,r) A=> ,phi) proof)
(R G `(∀ ,p ,np) r))))

((fresh (p) ;; II
(== `(∃ ,p ,p) phi)
(unary-atomo p)
(fresh (q r t)

(unary-atomo q)
(bin-literalo t)
(== `((,r) II=> ,phi) proof)
(R G `(∃ ,q (∃ ,p ,t)) r))))

((fresh (p q t) ;; AA
(== `(∀ ,p (∃ ,q ,t)) phi)
(unary-atomo p)
(unary-atomo q)
(bin-literalo t)
(fresh (q^ r1 r2)

(== `((,r1 ,r2) AA=> ,phi) proof)
(unary-atomo q^)
(R G `(∀ ,p (∀ ,q^ ,t)) r1)
(R G `(∃ ,q ,q^) r2))))

…))

Listing C.19. Part two of the implementation of proof search for the R∗† logic

165

(define-relation (R G phi proof)
(conde

…
((fresh (p q t) ;; EE

(== `(∃ ,p (∃ ,q ,t)) phi)
(unary-atomo p)
(unary-atomo q)
(bin-literalo t)
(fresh (q^ r1 r2)

(== `((,r1 ,r2) EE=> ,phi) proof)
(unary-atomo q^)
(R G `(∃ ,p (∃ ,q^ ,t)) r1)
(R G `(∀ ,q^ ,q) r2))))

((fresh (p q t) ;; AE
(== `(∀ ,p (∃ ,q ,t)) phi)
(unary-atomo p)
(unary-atomo q)
(bin-literalo t)
(fresh (q^ r1 r2)

(== `((,r1 ,r2) AE=> ,phi) proof)
(unary-atomo q^)
(R G `(∀ ,p (∃ ,q^ ,t)) r1)
(R G `(∀ ,q^ ,q) r2))))

((sentenceo phi) ;; RAA
(fresh (p np nphi r)

(negate-un-literalo p np)
(negateo phi nphi)
(== `((,r) RAA=> ,phi) proof)
(R `(,nphi . ,G) `(∃ ,p ,np) r)))))

Listing C.20. Part three of the implementation of proof search for the R∗† logic

166

Bibliography

[1] Hassan Aït-Kaci. “An Overview of Life”. In: Next Generation Information System

Technology. Ed. by Joachim W. Schmidt and Anatoly A. Stogny. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1991, pp. 42–58.

[2] Hassan Aït-Kaci and Roger Nasr. “Integrating Logic and Functional Programming”.

In: Lisp and Symbolic Computation 2.1 (02/1989), pp. 51–89.

[3] Luc Albert, Rafael Casas, and François Fages. “Average-Case Analysis of Unifica-

tion Algorithms”. In: Theoretical Computer Science 113.1 (1993), pp. 3–34. url:

https://doi.org/10.1016/0304-3975(93)90208-B.

[4] Luc Albert, Rafael Casas, François Fages, A. Torrecillas, and Paul Zimmermann.

“Average Case Analysis of Unification Algorithms”. In: STACS 91, 8th Annual

Symposium on Theoretical Aspects of Computer Science, Hamburg, Germany, Feb-

ruary 14-16, 1991, Proceedings. Ed. by Christian Choffrut and Matthias Jantzen.

Vol. 480. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1991,

pp. 196–213. url: https://doi.org/10.1007/BFb0020799.

[5] Claire E. Alvis. Later cKanren Implementations. Private communication. 2019.

[6] Claire E. Alvis, Jeremiah J. Willcock, Kyle M. Carter, William E. Byrd, and Daniel

P. Friedman. “cKanren: miniKanren with Constraints”. In: Scheme Workshop ’11

(2011).

[7] Nada Amin. Constraint-free Relational Quine Generator. url: https://github.

com / namin / logically / blob / 2693692029b9271c30247f5843f0dfa38555dc88 / src /

logically/exp/lf1/quine.clj.

167

https://doi.org/10.1016/0304-3975(93)90208-B
https://doi.org/10.1007/BFb0020799
https://github.com/namin/logically/blob/2693692029b9271c30247f5843f0dfa38555dc88/src/logically/exp/lf1/quine.clj
https://github.com/namin/logically/blob/2693692029b9271c30247f5843f0dfa38555dc88/src/logically/exp/lf1/quine.clj
https://github.com/namin/logically/blob/2693692029b9271c30247f5843f0dfa38555dc88/src/logically/exp/lf1/quine.clj

[8] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. “Towards a Theory

of Declarative Knowledge”. In: Foundations of Deductive Databases and Logic

Programming. Ed. by Jack Minker. Morgan Kaufmann, 1988, pp. 89–148. url:

https://doi.org/10.1016/b978-0-934613-40-8.50006-3.

[9] Krzysztof R. Apt and Roland N. Bol. “Logic programming and negation: A survey”.

In: The Journal of Logic Programming 19-20 (05/1994), pp. 9–71. url: https:

//doi.org/10.1016/0743-1066(94)90024-8.

[10] Krzysztof R. Apt and Maarten H Van Emden. “Contributions to the Theory of

Logic Programming”. In: Journal of the ACM 29.3 (07/1982), pp. 841–862. url:

https://doi.org/10.1145/322326.322339.

[11] Franz Baader and Wayne Snyder. “Unification Theory”. In: Handbook of Automated

Reasoning. Ed. by John Alan Robinson and Andrei Voronkov. Vol. 1. Amsterdam

New York Cambridge, Mass: Elsevier MIT Press, 2001, pp. 445–532. url: https:

//doi.org/10.1016/b978-044450813-3/50010-2.

[12] Isaac Balbin and Koenraad Lecot, eds. Logic programming : A Classified Bibliog-

raphy. Fitzroy, Victoria, Australia: Wildgrass Books, 1985. url: https://doi.org/

10.1007/978-94-009-5044-3.

[13] Roman Barták. Constructive Negation in CLP(H). Tech. rep. 98/6. Prague:

Department of Theoretical Computer Science, Charles University, 07/1998.

[14] Marco Bellia and Giorgio Levi. “The Relation between Logic and Functional

Languages: A Survey”. In: The Journal of Logic Programming 3.3 (1986), pp. 217–

236. url: https://doi.org/10.1016/0743-1066(86)90014-2.

[15] Johann van Benthem. “A Brief History of Natural Logic”. In: Logic, Navya-Nyāya,

& Applications: Homage to Bimal Krishna Matilal. Ed. by Mihir K. Chakraborty,

Benedikt Löwe, Madhabendra Nath Mitra, and Sundar Sarukkai. Studies in logic

15. London: College Publications, 2008, pp. 21–42.

[16] Jon Bentley. “Programming Pearls: Little Languages”. In: Communications of the

ACM 29.8 (08/1986), pp. 711–721. url: http://doi.acm.org/10.1145/6424.315691.

168

https://doi.org/10.1016/b978-0-934613-40-8.50006-3
https://doi.org/10.1016/0743-1066(94)90024-8
https://doi.org/10.1016/0743-1066(94)90024-8
https://doi.org/10.1145/322326.322339
https://doi.org/10.1016/b978-044450813-3/50010-2
https://doi.org/10.1016/b978-044450813-3/50010-2
https://doi.org/10.1007/978-94-009-5044-3
https://doi.org/10.1007/978-94-009-5044-3
https://doi.org/10.1016/0743-1066(86)90014-2
http://doi.acm.org/10.1145/6424.315691

[17] Dariusz Biernacki and Olivier Danvy. “From Interpreter to Logic Engine by

Defunctionalization”. In: Logic Based Program Synthesis and Transformation: 13th

International Symposium, LOPSTR 2003, Uppsala, Sweden, August 25-27, 2003,

Revised Selected Papers. Ed. by Maurice Bruynooghe. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2004, pp. 143–159. url: http://dx.doi.org/10.1007/978-3-

540-25938-1_13.

[18] Michel Billaud. “Prolog Control Structures: a Formalization and its Applications”.

In: Programming of Future Generation Computers: Proceedings of the First Franco-

Japanese Symposium on Programming of Future Generation Computers, Tokyo,

Japan, 6-8 October 1986. Ed. by Kazuhiro Fuchi and Maurice Nivat. Elsevier

Science Publishers BV. North Holland, 1988, pp. 57–73.

[19] Richard J. Boulton, Andrew D. Gordon, Michael J. C. Gordon, John Harrison,

John Herbert, and John Van Tassel. “Experience with Embedding Hardware De-

scription Languages in HOL”. In: Theorem Provers in Circuit Design, Proceedings

of the IFIP TC10/WG 10.2 International Conference on Theorem Provers in

Circuit Design: Theory, Practice and Experience, Nijmegen, The Netherlands, 22-

24 June 1992, Proceedings. Ed. by Victoria Stavridou, Thomas F. Melham, and

Raymond T. Boute. Vol. A-10. IFIP Transactions. Amsterdam, The Netherlands:

North-Holland, 1992, pp. 129–156. url: http://dl.acm.org/citation.cfm?id=

645902.672777.

[20] Daniel W. Brady, Jason Hemann, and Daniel P. Friedman. “Little Languages

for Relational Programming”. In: 2014 Scheme And Functional Programming

Workshop. Ed. by Jason Hemann and John Clements. Washington, D.C., USA:

Computer Science Department, Indiana University, 2015. url: http://cs.indiana.

edu/pub/techreports/TR718.pdf.

[21] Bernd Braßel, Sebastian Fischer, Michael Hanus, and Fabian Reck. “Transforming

functional logic programs into monadic functional programs”. In: International

Workshop on Functional and Constraint Logic Programming. Springer. 2010, pp. 30–

47.

169

http://dx.doi.org/10.1007/978-3-540-25938-1_13
http://dx.doi.org/10.1007/978-3-540-25938-1_13
http://dl.acm.org/citation.cfm?id=645902.672777
http://dl.acm.org/citation.cfm?id=645902.672777
http://cs.indiana.edu/pub/techreports/TR718.pdf
http://cs.indiana.edu/pub/techreports/TR718.pdf

[22] David C Brock, ed. Understanding Moore’s Law: Four Decades of Innovation.

Philadelphia, Pa: Chemical Heritage Foundation, 2006.

[23] Craig Brozefsky. “Core.logic and SQL Killed my ORM”. In: Clojure/West. San

Jose, California, 08/2013. url: infoq.com/presentations/Core-logic-SQL-ORM.

[24] William E. Byrd. “Relational programming in miniKanren: Techniques, applica-

tions, and implementations”. PhD thesis. Indiana University, 2009.

[25] William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might.

“A Unified Approach to Solving Seven Programming Problems (Functional Pearl)”.

In: Proc. ACM Program. Lang. 1.ICFP (08/2017), 8:1–8:26. url: http://doi.acm.

org/10.1145/3110252.

[26] William E. Byrd and Daniel P. Friedman. “αKanren: A Fresh Name in Nom-

inal Logic Programming”. In: Proceedings of Scheme Workshop ’07, Université

Laval Technical Report DIUL-RT-0701. (see webyrd.net/alphamk/alphamk.pdf for

improvements). 2007, pp. 79–90.

[27] William E. Byrd, Eric Holk, and Daniel P. Friedman. “miniKanren, Live and

Untagged: Quine Generation via Relational Interpreters (Programming Pearl)”. In:

Proceedings of the 2012 Annual Workshop on Scheme and Functional Programming.

Scheme ’12. Copenhagen, Denmark: ACM, 2012, pp. 8–29. url: http://doi.acm.

org/10.1145/2661103.2661105.

[28] William E Byrd and Nada Amin. Proceedings of the 2019 miniKanren and Rela-

tional Programming Workshop. Tech. rep. TR-02-19. Cambridge, Massachusetts:

Computer Science Group, Harvard University, 2019. url: dash . harvard . edu /

bitstream/handle/1/41307116/tr-02-19.pdf.

[29] Venanzio Capretta. “General recursion via coinductive types”. In: Logical Methods

in Computer Science 1.2 (07/2005). Ed. by Henk Barendregt, pp. 1–28. url:

https://doi.org/10.2168/lmcs-1(2:A1)2005.

[30] Mats Carlsson. “On Implementing Prolog in Functional Programming”. In: Pro-

ceedings of the 1984 International Symposium on Logic Programming, Atlantic

City, New Jersey, USA, February 6-9, 1984. IEEE-CS, 1984, pp. 154–159.

170

infoq.com/presentations/Core-logic-SQL-ORM
http://doi.acm.org/10.1145/3110252
http://doi.acm.org/10.1145/3110252
webyrd.net/alphamk/alphamk.pdf
http://doi.acm.org/10.1145/2661103.2661105
http://doi.acm.org/10.1145/2661103.2661105
dash.harvard.edu/bitstream/handle/1/41307116/tr-02-19.pdf
dash.harvard.edu/bitstream/handle/1/41307116/tr-02-19.pdf
https://doi.org/10.2168/lmcs-1(2:A1)2005

[31] Mats Carlsson. “On Implementing Prolog in Functional Programming”. In: New

Generation Computing 2.4 (1984). adapted from [30], pp. 347–359. url: https:

//doi.org/10.1007/BF03037326.

[32] David Chan. “Constructive Negation Based on the Completed Database”. In: Logic

Programming, Proceedings of the Fifth International Conference and Symposium,

Seattle, Washington, USA, August 15-19, 1988 (2 Volumes). Ed. by Robert A.

Kowalski and Kenneth A. Bowen. MIT Press, 1988, pp. 111–125.

[33] Keith L. Clark. Logic Programming Schemes and their Implementations. Tech.

rep. UPMAIL Technical Report No. 59. Uppsala Programming Methodology

and Artificial Intelligence Laboratory, Computing Science Department, Uppsala

University, 03/1990.

[34] Keith L. Clark. “Negation as Failure”. In: Logic and Data Bases, Symposium on

Logic and Data Bases, Centre d’études et de recherches de Toulouse, France, 1977.

Ed. by Hervé Gallaire and Jack Minker. Advances in Data Base Theory. New York:

Plemum Press, 1977, pp. 293–322. url: https://doi.org/10.1007/978-1-4684-

3384-5_11.

[35] Keith L. Clark and Sten-Åke Tärnlund, eds. Logic programming. Automatic

Programming Information Centre (Brighton). Studies in data processing no. 16.

Academic Press, 1982.

[36] Keith L Clark, Frank G McCabe, and Steve Gregory. “Co-routining in IC-Prolog”.

In: Logic Programming. Ed. by Keith L. Clark and Sten-Åke Tärnlund. Automatic

Programming Information Centre (Brighton). Studies in data processing no. 16.

Academic Press, 1982, pp. 253–266.

[37] David Cohen, Peter Jeavons, Peter Jonsson, and Manolis Koubarakis. “Building

tractable disjunctive constraints”. In: Journal of the ACM 47.5 (09/2000), pp. 826–

853. url: https://doi.org/10.1145/355483.355485.

[38] Jacques Cohen. “A view of the origins and development of Prolog”. In: Commu-

nications of the ACM 31.1 (01/1988), pp. 26–36. url: https://doi.org/10.1145/

35043.35045.

171

https://doi.org/10.1007/BF03037326
https://doi.org/10.1007/BF03037326
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1145/355483.355485
https://doi.org/10.1145/35043.35045
https://doi.org/10.1145/35043.35045

[39] Jacques Cohen. “Constraint Logic Programming Languages”. In: Communications

of the ACM 33.7 (07/1990), pp. 52–68. url: http://doi.acm.org/10.1145/79204.

79209.

[40] Alain Colmerauer. “Equations and Inequations on Finite and Infinite Trees”.

In: Proceedings of the International Conference on Fifth Generation Computer

Systems, FGCS 1984, Tokyo, Japan, November 6-9, 1984. Ed. by Institute for

New Generation Computer Technology. OHMSHA Ltd. Tokyo and North-Holland,

1984, pp. 85–99.

[41] Alain Colmerauer. PROLOG II: Manuel de Référence et Modèle théorique. Tech.

rep. Groupe D’intelligence Artificielle, Université Aix-Marseille II, 1982.

[42] Alain Colmerauer and Philippe Roussel. “The Birth of Prolog”. In: History

of Programming Languages Conference (HOPL-II), Preprints, Cambridge, Mas-

sachusetts, USA, April 20-23, 1993. Ed. by Thomas J. Bergin Jr. and Richard G.

Gibson Jr. New York, NY, USA: ACM, 1993, pp. 37–52. url: https://doi.org/

10.1145/154766.155362.

[43] Hubert Comon and Jean-Luc Rémy. How to characterize the language of ground

normal forms. Tech. rep. Rapports de Recherche 676. INRIA, 1987.

[44] Sylvain Conchon and Jean-Christophe Filliâtre. “A Persistent Union-Find Data

Structure”. In: Proceedings of the ACM SIGPLAN Workshop on ML. ACM.

Freiburg, Germany, 10/2007, pp. 37–46.

[45] Ryan Culpepper. “Fortifying macros”. In: Journal of Functional Programming 22.4-

5 (08/2012), pp. 439–476. url: http://dx.doi.org/10.1017/s0956796812000275.

[46] Olivier Danvy, Bernd Grobauer, and Morten Rhiger. “A unifying approach to

goal-directed evaluation”. In: New Generation Computing 20.1 (2002), p. 53. url:

http://dx.doi.org/10.1007/BF03037259.

[47] Martin Davis. “The prehistory and early history of automated deduction. Classi-

cal Papers on Computational Logic 1957-1966”. In: Automation of Reasoning 1:

Classical Papers on Computational Logic 1957-1966. Ed. by Jorg Siekmann and

Graham Wrightson. Vol. 1. New York: Springer-Verlag, 1983.

172

http://doi.acm.org/10.1145/79204.79209
http://doi.acm.org/10.1145/79204.79209
https://doi.org/10.1145/154766.155362
https://doi.org/10.1145/154766.155362
http://dx.doi.org/10.1017/s0956796812000275
http://dx.doi.org/10.1007/BF03037259

[48] Pierre Deransart and Jan Małuszyński. A Grammatical View of Logic Programming.

Cambridge, MA, USA: MIT Press, 1993.

[49] Jürgen Dix. “Semantics of Logic Programs: Their Intuitions and Formal Properties.

An Overview”. In: Logic, Action, and Information - Essays on Logic in Philosophy

and Artificial Intelligence. Walter de Gruyter, Berlin, New York, 1996 (Based on

a meeting held in autumn 1992 in Konstanz, Germany). Ed. by André Fuhrmann

and Hans Rott. 1996, pp. 241–327.

[50] Khalil Djelloul, Thi-Bich-Hanh Dao, and Thom W. Frühwirth. “Theory of finite or

infinite trees revisited”. In: Theory and Practice of Logic Programming 8.4 (2008),

pp. 431–489. url: https://doi.org/10.1017/S1471068407003171.

[51] Kees Doets. From Logic to Logic Programming. Cambridge, Mass: MIT Press,

1994.

[52] Michael Downward. Logic and Declarative Language. Routledge, 03/2004. url:

https://doi.org/10.4324/9780203211991.

[53] E. W. Elcock. “Absys: the first logic programming language —A retrospective and

a commentary”. In: The Journal of Logic Programming 9.1 (06/1990), pp. 1–17.

url: https://doi.org/10.1016/0743-1066(0)90030-9.

[54] E. W. Elcock. “Absys: The Historical Inevitability of Logic Programming”. In:

Logic Programming, Proceedings of the North American Conference 1989, Cleve-

land, Ohio, USA, October 16-20, 1989. 2 Volumes. Ed. by Ewing L. Lusk and

Ross A. Overbeek. MIT Press, 1989, pp. 1201–1214.

[55] Herbert B Enderton. A Mathematical Introduction to Logic. Elsevier, 2001. url:

https://doi.org/10.1016/c2009-0-22107-6.

[56] Matthias Felleisen. Transliterating Prolog into Scheme. Tech. rep. TR182. Com-

puter Science Department, Indiana University, Bloomington, 10/1985. url: https:

//help.sice.indiana.edu/techreports/TRNNN.cgi?trnum=TR182.

173

https://doi.org/10.1017/S1471068407003171
https://doi.org/10.4324/9780203211991
https://doi.org/10.1016/0743-1066(0)90030-9
https://doi.org/10.1016/c2009-0-22107-6
https://help.sice.indiana.edu/techreports/TRNNN.cgi?trnum=TR182
https://help.sice.indiana.edu/techreports/TRNNN.cgi?trnum=TR182

[57] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,

Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. “A Programmable Pro-

gramming Language”. In: Communications of the ACM 61.3 (02/2018), pp. 62–71.

url: http://doi.acm.org/10.1145/3127323.

[58] Matthias Felleisen, Michael Hanus, and Simon Thompson. Proceedings of the

Workshop on Functional and Declarative Programming in Education. Tech. rep.

Technical Report 99-346. Computer Science Department, Rice University, 08/1999.

url: http://www.ccs.neu.edu/home/matthias/FDPE99/.

[59] Melvin Fitting. “Bilattices and the Semantics of Logic Programming”. In: J. Log.

Program. 11.1&2 (1991), pp. 91–116. url: https : / / doi . org / 10 . 1016 / 0743 -

1066(91)90014-G.

[60] Matthew Flatt and PLT. Reference: Racket. Tech. rep. PLT-TR-2010-1. http:

//racket-lang.org/tr1/. PLT Design Inc., 2010.

[61] Andreas Fordan. Projection in Constraint Logic Programming. Ios Press, 1999.

[62] Martin Fowler. Domain-specific languages. Upper Saddle River, NJ: Addison-

Wesley, 2011.

[63] Martin Fowler. Language workbenches: The killer-app for domain specific languages.

2005. url: https://martinfowler.com/articles/languageWorkbench.html.

[64] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The Reasoned Schemer.

The MIT Press, 07/2005, p. 176.

[65] Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason Hemann. The

Reasoned Schemer, Second Edition. The MIT Press, 03/2018. url: mitpress.mit.

edu/books/reasoned-schemer-0.

[66] Daniel P. Friedman and Oleg Kiselyov. A declarative applicative logic programming

system. 2005. url: http://kanren.sourceforge.net/.

[67] Daniel P. Friedman and Mitchell Wand. “Reification: Reflection without Meta-

physics”. In: Proceedings of the 1984 ACM Conference on LISP and Functional

Programming, LFP 1984, August 5-8, 1984, Austin, Texas, USA. ACM, 1984,

pp. 348–355. url: https://dl.acm.org/citation.cfm?id=800055.

174

http://doi.acm.org/10.1145/3127323
http://www.ccs.neu.edu/home/matthias/FDPE99/
https://doi.org/10.1016/0743-1066(91)90014-G
https://doi.org/10.1016/0743-1066(91)90014-G
http://racket-lang.org/tr1/
http://racket-lang.org/tr1/
https://martinfowler.com/articles/languageWorkbench.html
mitpress.mit.edu/books/reasoned-schemer-0
mitpress.mit.edu/books/reasoned-schemer-0
http://kanren.sourceforge.net/
https://dl.acm.org/citation.cfm?id=800055

[68] Thom Frühwirth. Constraint simplification rules. Tech. rep. 18. European

Computer-Industry Research Centre, 1992.

[69] Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Programming.

Berlin Heidelberg New York: Springer Science & Business Media, 2003. url: https:

//doi.org/10.1007/978-3-662-05138-2.

[70] Dov M. Gabbay and Marek J. Sergot. “Negation as Inconsistency I”. In: Journal

of Logic Programming 3.1 (1986), pp. 1–35. url: https://doi.org/10.1016/0743-

1066(86)90002-6.

[71] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. “Trampolined Style”. In:

Proceedings of the fourth ACM SIGPLAN International Conference on Functional

Programming (ICFP ’99), Paris, France, September 27-29, 1999. Ed. by Didier

Rémy and Peter Lee. ACM, 1999, pp. 18–27. url: https://doi.org/10.1145/

317636.317779.

[72] Henry Meloni Gérard Battani. Interpreteur du langage de programmation Prolog.

Tech. rep. Rapport de D.E.A. U.E.R da Luminy, Université d’Aix-Marseille, 1973.

[73] Jeremy Gibbons and Nicolas Wu. “Folding domain-specific languages: deep and

shallow embeddings (functional Pearl)”. In: Proceedings of the 19th ACM SIG-

PLAN international conference on Functional programming, Gothenburg, Sweden,

September 1-3, 2014. Ed. by Johan Jeuring and Manuel M. T. Chakravarty. ACM,

2014, pp. 339–347. url: https://doi.org/10.1145/2628136.2628138.

[74] Robert Glück. “A Self-applicable Online Partial Evaluator for Recursive Flowchart

Languages”. In: Software - Practice and Experience 42.6 (2012), pp. 649–673. url:

https://doi.org/10.1002/spe.1086.

[75] Daniel Gregoire. Web Testing with Logic Programming. 2013. url: http://www.

youtube.com/watch?v=09zlcS49zL0.

[76] Sumit Gulwani. “Automating String Processing in Spreadsheets Using Input-

output Examples”. In: ACM Sigplan Notices. Vol. 46. 1. ACM. 2011, pp. 317–330.

[77] Yike Guo. “Definitional constraint programming”. PhD thesis. Department of

Computing, Imperial College, 1994.

175

https://doi.org/10.1007/978-3-662-05138-2
https://doi.org/10.1007/978-3-662-05138-2
https://doi.org/10.1016/0743-1066(86)90002-6
https://doi.org/10.1016/0743-1066(86)90002-6
https://doi.org/10.1145/317636.317779
https://doi.org/10.1145/317636.317779
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1002/spe.1086
http://www.youtube.com/watch?v=09zlcS49zL0
http://www.youtube.com/watch?v=09zlcS49zL0

[78] Michael Hanus. “Compiling logic programs with equality”. In: Programming

Language Implementation and Logic Programming. Ed. by Pierre Deransart and

Jan Maluszyński. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 387–

401.

[79] Michael Hanus. “Functional Logic Programming: From Theory to Curry”. In:

Programming Logics - Essays in Memory of Harald Ganzinger. Ed. by Andrei

Voronkov and Christoph Weidenbach. Vol. 7797. Lecture Notes in Computer

Science. Springer, 2013, pp. 123–168. url: https://doi.org/10.1007/978-3-642-

37651-1_6.

[80] Michael Hanus. “The integration of functions into logic programming: From theory

to practice”. In: The Journal of Logic Programming 19-20 (1994). Special Issue:

Ten Years of Logic Programming, pp. 583–628. url: http://www.sciencedirect.

com/science/article/pii/0743106694900345.

[81] Michael Hanus, Herbert Kuchen, and Juan Jose Moreno-Navarro. “Curry: A truly

functional Logic Language”. In: Proceedings ILP Workshop on Visions for the

Future of Logic Programming. Ed. by Leon Sterling. MIT Press, 1995, pp. 95–107.

[82] Robert Harper. What, If Anything, Is A Declarative Language? Blog. 2013. url:

http://existentialtype.wordpress.com/2013/07/18/what- if- anything- is- a-

declarative-language/.

[83] Jason Hemann and Daniel P. Friedman. “µKanren: A Minimal Functional Core

for Relational Programming”. In: Scheme 13. 2013. url: http://schemeworkshop.

org/2013/papers/HemannMuKanren2013.pdf.

[84] Jason Hemann and Daniel P. Friedman. “A Framework for Extending microKan-

ren with Constraints”. In: Proceedings of Scheme Workshop ’15, Northeastern

University Technical Report NU-CCIS-2016-001. 2015. url: http://hdl.handle.

net/2047/D20213213.

[85] Jason Hemann and Daniel P. Friedman. “A Framework for Extending microKanren

with Constraints”. In: Proceedings 29th and 30th Workshops on (Constraint) Logic

Programming and 24th International Workshop on Functional and (Constraint)

176

https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-642-37651-1_6
http://www.sciencedirect.com/science/article/pii/0743106694900345
http://www.sciencedirect.com/science/article/pii/0743106694900345
http://existentialtype.wordpress.com/2013/07/18/what-if-anything-is-a-declarative-language/
http://existentialtype.wordpress.com/2013/07/18/what-if-anything-is-a-declarative-language/
http://schemeworkshop.org/2013/papers/HemannMuKanren2013.pdf
http://schemeworkshop.org/2013/papers/HemannMuKanren2013.pdf
http://hdl.handle.net/2047/D20213213
http://hdl.handle.net/2047/D20213213

Logic Programming, Dresden and Leipzig, Germany, 22nd September 2015 and

12-14th September 2016. Ed. by Sibylle Schwarz and Janis Voigtländer. Vol. 234.

Electronic Proceedings in Theoretical Computer Science. Open Publishing Associ-

ation, 2017, pp. 135–149.

[86] Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might. “A

Small Embedding of Logic Programming with a Simple Complete Search”. In:

Proceedings of DLS ’16. ACM, 2016. url: http://dx.doi.org/10.1145/2989225.

2989230.

[87] Jason Hemann, Cameron Swords, and Lawrence S Moss. “Two Advances in the

Implementations of Extended Syllogistic Logics”. In: Joint Proceedings of the 2nd

Workshop on Natural Language Processing and Automated Reasoning, and the 2nd

International Workshop on Learning. 2015, p. 1.

[88] Pascal Hentenryck. Constraint satisfaction in logic programming. Cambridge, Mass:

MIT Press, 1989.

[89] Jacques Herbrand. “Recherches sur la théorie de la démonstration”. PhD thesis.

Université de Paris, 1930.

[90] Felienne Hermans. Spreadsheets for Developers. St. Louis, Missouri, USA. url:

youtube.com/watch?v=0CKru5d4GPk.

[91] Carl Hewitt. “Middle History of Logic Programming Resolution, Planner, Prolog,

and the Japanese Fifth Generation Project”. In: (2009).

[92] Timothy J. Hickey and Donald A. Smith. “Toward the Partial Evaluation of CLP

Languages”. In: Proceedings of the 1991 ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-based Program Manipulation. PEPM ’91. New Haven,

Connecticut, USA: ACM, 1991, pp. 43–51. url: http://doi.acm.org/10.1145/

115865.115871.

177

http://dx.doi.org/10.1145/2989225.2989230
http://dx.doi.org/10.1145/2989225.2989230
youtube.com/watch?v=0CKru5d4GPk
http://doi.acm.org/10.1145/115865.115871
http://doi.acm.org/10.1145/115865.115871

[93] Ralf Hinze. “Deriving backtracking monad transformers”. In: Proceedings of

the Fifth ACM SIGPLAN International Conference on Functional Programming

(ICFP ’00), Montreal, Canada, September 18-21, 2000. Ed. by Martin Odersky

and Philip Wadler. ACM, 2000, pp. 186–197. url: https://doi.org/10.1145/

351240.351258.

[94] Ralf Hinze. “Prolog’s control constructs in a functional setting: Axioms and

implementation”. In: International Journal of Foundations of Computer Science

12.02 (2001), pp. 125–170.

[95] Ralf Hinze. “Prological Features in a Functional Setting: Axioms and Implemen-

tation.” In: Fuji International Symposium on Functional and Logic Programming.

Ed. by Masahiko Sato and Yoshihito Toyama. World Scientific, 1998, pp. 98–122.

url: https://doi.org/10.1142/3709.

[96] Wilfrid Hodges. “Logical Features of Horn Clauses”. In: Handbook of Logic in

Artificial Intelligence and Logic Programming (Vol. 1). Ed. by Dov M Gabbay,

Christopher John Hogger, and John Alan Robinson. New York, NY, USA: Oxford

University Press, Inc., 1993, pp. 449–503. url: http://dl.acm.org/citation.cfm?

id=185728.185756.

[97] Wilfrid Hodges. Model Theory. Vol. 42. Encyclopedia of Mathematics and its

Applications. Cambridge University Press, 1993. url: https://doi.org/10.1017/

cbo9780511551574.

[98] Douglas Hofstadter. Gödel, Escher, Bach : an eternal golden braid. New York:

Basic Books, 1979.

[99] Christopher John Hogger. Essentials of Logic Programming. New York, NY, USA:

Oxford University Press, Inc., 1990.

[100] Markus Höhfeld and Gert Smolka. Definite Relations over Constraint Languages.

Tech. rep. LILOG Report 53. IWBS, 1988.

[101] Alfred Horn. “On sentences which are true of direct unions of algebras”. In:

Journal of Symbolic Logic 16.1 (03/1951), pp. 14–21. url: https://doi.org/10.

2307/2268661.

178

https://doi.org/10.1145/351240.351258
https://doi.org/10.1145/351240.351258
https://doi.org/10.1142/3709
http://dl.acm.org/citation.cfm?id=185728.185756
http://dl.acm.org/citation.cfm?id=185728.185756
https://doi.org/10.1017/cbo9780511551574
https://doi.org/10.1017/cbo9780511551574
https://doi.org/10.2307/2268661
https://doi.org/10.2307/2268661

[102] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. “Datalog and

emerging applications: an interactive tutorial”. In: Proceedings of the ACM SIG-

MOD International Conference on Management of Data, SIGMOD 2011, Athens,

Greece, June 12-16, 2011. Ed. by Timos K. Sellis, Renée J. Miller, Anastasios

Kementsietsidis, and Yannis Velegrakis. ACM, 2011, pp. 1213–1216. url: https:

//doi.org/10.1145/1989323.1989456.

[103] R. John Muir Hughes. “A novel representation of lists and its application to the

function “reverse””. In: Information Processing Letters 22.3 (1986), pp. 141–144.

url: http://www.sciencedirect.com/science/article/pii/0020019086900591.

[104] Serge Le Huitouze. “A new data structure for implementing extensions to Prolog”.

In: Programming Language Implementation and Logic Programming. Springer

Science LNCS, 1990, pp. 136–150. url: http://dx.doi.org/10.1007/bfb0024181.

[105] ISO. “IEC 14882: 2011 Information technology—Programming languages—C++”.

In: International Organization for Standardization, Geneva, Switzerland 27 (2012),

p. 59.

[106] Joxan Jaffar and Jean-Louis Lassez. “Constraint Logic Programming”. In: Proceed-

ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages. POPL ’87. Munich, West Germany: ACM, 1987, pp. 111–119.

url: http://doi.acm.org/10.1145/41625.41635.

[107] Joxan Jaffar and Jean-Louis Lassez. “From Unification to Constraints”. In: Pro-

ceedings of the Conference on Logic Programming ’87. Ed. by Koichi Furukawa,

Hozumi Tanaka, and Tetsunosuke Fujisaki. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 1–18. url: https://doi.

org/10.1007/3-540-19426-6_1.

[108] Joxan Jaffar, Jean-Louis Lassez, and John Lloyd. “Completeness of the negation as

failure rule”. In: Proceedings of the 8th International Joint Conference on Artificial

Intelligence IJCAI-83. Vol. 1. Morgan Kaufmann Publishers Inc. 1983, pp. 500–

506.

179

https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1145/1989323.1989456
http://www.sciencedirect.com/science/article/pii/0020019086900591
http://dx.doi.org/10.1007/bfb0024181
http://doi.acm.org/10.1145/41625.41635
https://doi.org/10.1007/3-540-19426-6_1
https://doi.org/10.1007/3-540-19426-6_1

[109] Joxan Jaffar, Jean-Louis Lassez, and Michael J. Maher. “A Logic Programming

Language Scheme”. In: Doug DeGroot and Gary Lindstrom. Logic Programming:

Relations, Functions, and Equations. Prentice-Hall, Inc. Englewood Cliffs, New

Jersey, 1986, pp. 441–467.

[110] Joxan Jaffar and Michael J. Maher. “Constraint logic programming: a survey”.

In: The Journal of Logic Programming 19-20 (05/1994), pp. 503–581. url: http:

//dx.doi.org/10.1016/0743-1066(94)90033-7.

[111] Joxan Jaffar, Michael J. Maher, Kim Marriott, and Peter J. Stuckey. “The Seman-

tics of Constraint Logic Programs”. In: The Journal of Logic Programming 37.1-3

(10/1998), pp. 1–46. url: http://dx.doi.org/10.1016/s0743-1066(98)10002-x.

[112] Joxan Jaffar, Michael J. Maher, Peter J. Stuckey, and Roland H. C. Yap. “Output

in CLP(R)”. In: Fifth Generation Computing Systems. 1992, pp. 987–995.

[113] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. “The

CLP(R) language and system”. In: ACM Transactions on Programming Languages

and Systems 14.3 (1992), pp. 339–395.

[114] Jean-Pierre Jouannaud and Claude Kirchner. “Solving equations in abstract alge-

bras: A rule-based survey of unification”. In: Computational Logic: Essays in Honor

of Alan Robinson. Ed. by Jean-Louis Lassez and Gordon Plotkin. Cambridge, Mass:

The MIT Press, 1991. Chap. 8, pp. 257–321.

[115] Mark H. Karwan, Vahid Lotfi, Stanley Zionts, and Jan Telgen. “An Introduction

to Redundancy”. In: Redundancy in Mathematical Programming. Springer Berlin

Heidelberg, 1983, pp. 1–13. url: https://doi.org/10.1007/978-3-642-45535-3_1.

[116] Andrew W. Keep, Michael D. Adams, Lindsey Kuper, William E. Byrd, and Daniel

P. Friedman. “A Pattern-matcher for miniKanren -or- How to Get into Trouble

with CPS Macros”. In: Proceedings of Scheme Workshop ’09, Cal Poly Technical

Report CPSLO-CSC-09-03. 2009, pp. 37–45.

180

http://dx.doi.org/10.1016/0743-1066(94)90033-7
http://dx.doi.org/10.1016/0743-1066(94)90033-7
http://dx.doi.org/10.1016/s0743-1066(98)10002-x
https://doi.org/10.1007/978-3-642-45535-3_1

[117] Claude Kirchner, Hélene Kirchner, and Michaël Rusinowitch. “Deduction with

symbolic constraints [Research Report] RR-1358”. In: Revue d’intelligence artifi-

cielle 4.1358 (12/1990). Ed. by Ricardo Caffera, pp. 9–52. url: https://hal.inria.

fr/inria-00077103.

[118] Oleg Kiselyov. The taste of logic programming. 2006. url: http://okmij.org/ftp/

Scheme/misc.html#sokuza-kanren.

[119] Oleg Kiselyov, William E. Byrd, Daniel P. Friedman, and Chung-chieh Shan.

“Pure, declarative, and constructive arithmetic relations (declarative pearl)”. In:

Proceedings of the 9th International Symposium on Functional and Logic Program-

ming. Ed. by Jacques Garrigue and Manuel Hermenegildo. Vol. 4989. LNCS.

Springer, 2008, pp. 64–80.

[120] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. “Back-

tracking, interleaving, and terminating monad transformers: (functional pearl)”.

In: Proceedings of ICFP ’05. Vol. 40. 9. ACM, 10/2005, pp. 192–203. url:

http://doi.acm.org/10.1145/1086365.1086390.

[121] Stephen Cole Kleene. Introduction to Metamathematics. New York: Van Nostrand,

1952.

[122] Kevin Knight. “Unification: A Multidisciplinary Survey”. In: ACM Computing

Surveys (CSUR) 21.1 (1989), pp. 93–124. url: https://doi.org/10.1145/62029.

62030.

[123] Eugene Edmund Kohlbecker. “Syntactic Extensions in the Programming Language

Lisp”. PhD thesis. 1986. url: http://www.cs.indiana.edu/ftp/techreports/TR199.

pdf.

[124] H. Jan Komorowski. “QLOG: The programming environment for PROLOG in

LISP”. In: Logic Programming. Ed. by Keith L. Clark and Sten-Åke Tärnlund.

Automatic Programming Information Centre (Brighton). Studies in data process-

ing no. 16. Academic Press, 1982, pp. 315–324.

181

https://hal.inria.fr/inria-00077103
https://hal.inria.fr/inria-00077103
http://okmij.org/ftp/Scheme/misc.html#sokuza-kanren
http://okmij.org/ftp/Scheme/misc.html#sokuza-kanren
http://doi.acm.org/10.1145/1086365.1086390
https://doi.org/10.1145/62029.62030
https://doi.org/10.1145/62029.62030
http://www.cs.indiana.edu/ftp/techreports/TR199.pdf
http://www.cs.indiana.edu/ftp/techreports/TR199.pdf

[125] Oliver Kowalke and Nat Goodspeed. call/cc (call-with-current-continuation): A

low-level API for stackful context switching. C++ Standards Group Paper, Docu-

ment number: P0534R3. 2017. url: open-std.org/jtc1/sc22/wg21/docs/papers/

2017/p0534r3.pdf.

[126] Robert A. Kowalski. Logic for problem solving. Vol. 7. The computer science

library: Artificial intelligence series. New York: North-Holland, 1979. url: http:

//www.worldcat.org/oclc/05564433.

[127] Robert A. Kowalski. “Predicate Logic as Programming Language”. In: Information

Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August

5-10, 1974. Ed. by Jack L. Rosenfeld. Amsterdam: North-Holland, 1974, pp. 569–

574.

[128] Robert A. Kowalski, Francesca Toni, and Gerhard Wetzel. “Executing suspended

logic programs”. In: Fundamenta Informaticae 34.3 (1998), pp. 203–224.

[129] Robert Kowalski, Francesca Toni, and Gerhard Wetzel. “Towards a declarative

and efficient glass-box CLP language”. In: Workshop Logische Programmierung.

1994. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.

1002&rep=rep1&type=pdf.

[130] Shriram Krishnamurthi. “Teaching Programming Languages in a Post-Linnaean

Age”. In: SIGPLAN Notices 43.11 (2008), pp. 81–83.

[131] Frank Kriwaczek. “An Introduction to Constraint Logic Programming”. In: Ad-

vanced Topics in Artificial Intelligence. Springer, 1992, pp. 82–94.

[132] Kenneth Kunen. “Negation in logic programming”. In: The Journal of Logic

Programming 4.4 (12/1987), pp. 289–308. url: https://doi.org/10.1016/0743-

1066(87)90007-0.

[133] Kenneth Kunen. “Signed Data Dependencies in Logic Programs”. In: The Journal

of Logic Programming 7.3 (1989), pp. 231–245. url: http://www.sciencedirect.

com/science/article/pii/0743106689900228.

[134] Catherine Lassez. “Constraint Logic Programming”. In: Byte 12.9 (08/1987),

pp. 171–176.

182

open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0534r3.pdf
open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0534r3.pdf
http://www.worldcat.org/oclc/05564433
http://www.worldcat.org/oclc/05564433
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.1002&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.1002&rep=rep1&type=pdf
https://doi.org/10.1016/0743-1066(87)90007-0
https://doi.org/10.1016/0743-1066(87)90007-0
http://www.sciencedirect.com/science/article/pii/0743106689900228
http://www.sciencedirect.com/science/article/pii/0743106689900228

[135] Jean-Louis Lassez. “From LP to LP: Programming with Constraints”. In: Theo-

retical Aspects of Computer Software, International Conference TACS ’91, Sendai,

Japan, September 24-27, 1991, Proceedings. Ed. by Takayasu Ito and Albert R.

Meyer. Vol. 526. Lecture Notes in Computer Science. Springer, 1991, pp. 420–446.

url: https://doi.org/10.1007/3-540-54415-1_57.

[136] Jean-Louis Lassez. “Querying Constraints”. In: Proceedings of the Ninth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, April

2-4, 1990, Nashville, Tennessee, USA. Ed. by Daniel J. Rosenkrantz and Yehoshua

Sagiv. ACM Press, 1990, pp. 288–298. url: https://doi.org/10.1145/298514.

298581.

[137] Jean-Louis Lassez, Michael J. Maher, and Kim Marriott. “Unification Revisited”.

In: Foundations of Logic and Functional Programming. Springer Berlin Heidelberg,

1988, pp. 67–113. url: https://doi.org/10.1007/3-540-19129-1_4.

[138] Jean-Louis Lassez and Ken McAloon. “A Constraint Sequent Calculus”. In:

Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS

’90), Philadelphia, Pennsylvania, USA, June 4-7, 1990. IEEE Computer Society

Press, 1990, pp. 52–61. url: https://doi.org/10.1109/LICS.1990.113733.

[139] Jean-Louis Lassez and Ken McAloon. “Independence of Negative Constraints”. In:

TAPSOFT’89: Proceedings of the International Joint Conference on Theory and

Practice of Software Development, Barcelona, Spain, March 13-17, 1989, Volume

1: Advanced Seminar on Foundations of Innovative Software Development I and

Colloquium on Trees in Algebra and Programming (CAAP’89). Ed. by Josep Dı́az

and Fernando Orejas. Vol. 351. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, 1989, pp. 19–27. url: https://doi.org/10.1007/3-540-

50939-9_122.

[140] Thierry Le Provost and Mark Wallace. “Generalized constraint propagation over

the CLP scheme”. In: The Journal of Logic Programming 16.3 (1993), pp. 319–359.

183

https://doi.org/10.1007/3-540-54415-1_57
https://doi.org/10.1145/298514.298581
https://doi.org/10.1145/298514.298581
https://doi.org/10.1007/3-540-19129-1_4
https://doi.org/10.1109/LICS.1990.113733
https://doi.org/10.1007/3-540-50939-9_122
https://doi.org/10.1007/3-540-50939-9_122

[141] Pierre Lim and Peter J. Stuckey. “A constraint logic programming shell”. In:

Programming Language Implementation and Logic Programming. Springer. 1990,

pp. 75–88.

[142] John Wylie Lloyd. Declarative programming in Escher. Tech. rep. CSTR-95-013.

Department of Computer Science, University of Bristol, 1995.

[143] John Wylie Lloyd. Foundations of Logic Programming. 1st. Springer, 1984.

[144] John Wylie Lloyd. Foundations of Logic Programming. 2nd. Berlin, Heidelberg:

Springer-Verlag, 1987.

[145] John Wylie Lloyd and John C. Shepherdson. “Partial evaluation in logic program-

ming”. In: The Journal of Logic Programming 11.3-4 (10/1991), pp. 217–242. url:

http://dx.doi.org/10.1016/0743-1066(91)90027-m.

[146] Kuang-Chen Lu, Weixi Ma, and Daniel P Friedman. “Towards a miniKanren with

fair search strategies”. In: Proceedings of the 2019 miniKanren and Relational

Programming Workshop. TR-02-19. Cambridge, Massachusetts, 2019, pp. 1–15.

url: dash.harvard.edu/bitstream/handle/1/41307116/tr-02-19.pdf.

[147] Michael J. Maher. “A Logic Programming View of CLP”. In: Logic Programming,

Proceedings of the Tenth International Conference on Logic Programming, Bu-

dapest, Hungary, June 21-25, 1993. Ed. by David Scott Warren. The MIT Press,

1993, pp. 737–753. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.

1.1.25.6946.

[148] Michael J. Maher. “Adding Constraints to Logic-based Formalisms”. In: The Logic

Programming Paradigm: A 25-Year Perspective. Ed. by Krzysztof R. Apt, Victor

W. Marek, Mirek Truszczynski, and David S. Warren. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1999, pp. 313–331. url: https://doi.org/10.1007/978-3-642-

60085-2_13.

184

http://dx.doi.org/10.1016/0743-1066(91)90027-m
dash.harvard.edu/bitstream/handle/1/41307116/tr-02-19.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.6946
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.6946
https://doi.org/10.1007/978-3-642-60085-2_13
https://doi.org/10.1007/978-3-642-60085-2_13

[149] Michael J. Maher. “Complete Axiomatizations of the Algebras of Finite, Rational

and Infinite Trees”. In: Proceedings of the Third Annual Symposium on Logic in

Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. IEEE

Computer Society, 1988, pp. 348–357. url: https://doi.org/10.1109/LICS.1988.

5132.

[150] Johann A. Makowsky. “Why Horn Formulas Matter in Computer Science: Initial

Structures and Generic Examples”. In: Proceedings Of the International Joint

Conference on Theory and Practice of Software Development (TAPSOFT) Berlin,

March 25-29, 1985 on Mathematical Foundations of Software Development, Vol. 1:

Colloquium on Trees in Algebra and Programming (CAAP’85). CAAP ’85. Berlin,

Germany: Springer-Verlag, 1985, pp. 374–387. url: http://dl.acm.org/citation.

cfm?id=21855.21878.

[151] Johann A. Makowsky. “Why Horn Formulas Matter in Computer Science: Initial

Structures and Generic Examples”. In: Journal of Computer and System Sciences

34.2-3 (1987), pp. 266–292. url: http://www.sciencedirect.com/science/article/

pii/0022000087900274.

[152] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduc-

tion. Cambridge, Mass: The MIT Press, 1998.

[153] Alberto Martelli and Ugo Montanari. “An Efficient Unification Algorithm”. In:

ACM Transactions on Programming Languages and Systems 4.2 (04/1982), pp. 258–

282. url: https://doi.org/10.1145/357162.357169.

[154] Gianfranco Mascari and Antonio Vincenzi. “Model-theoretic Specifications and

Back-and-forth Equivalences”. In: Recent Trends in Data Type Specification. Ed.

by H. Ehrig, K. P. Jantke, F. Orejas, and H. Reichel. Springer. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1991, pp. 166–184. url: https://doi.org/10.1007/3-

540-54496-8_9.

[155] Elliott Mendelson. Introduction to Mathematical Logic. 6th. Boca Raton: CRC

Press/Taylor & Francis Group, 06/2015.

185

https://doi.org/10.1109/LICS.1988.5132
https://doi.org/10.1109/LICS.1988.5132
http://dl.acm.org/citation.cfm?id=21855.21878
http://dl.acm.org/citation.cfm?id=21855.21878
http://www.sciencedirect.com/science/article/pii/0022000087900274
http://www.sciencedirect.com/science/article/pii/0022000087900274
https://doi.org/10.1145/357162.357169
https://doi.org/10.1007/3-540-54496-8_9
https://doi.org/10.1007/3-540-54496-8_9

[156] Pedro Meseguer. “Interleaved Depth-First Search”. In: Proceedings of the Fifteenth

International Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya, Japan,

August 23-29, 1997, 2 Volumes. Morgan Kaufmann, 1997, pp. 1382–1387. url:

http://ijcai.org/Proceedings/97-2/Papers/085.pdf.

[157] Juan Jose Moreno-Navarro and Mario Rodriguez-Artalejo. “Logic Programming

with Functions and Predicates: The Language Babel”. In: The Journal of Logic

Programming 12.3 (1992), pp. 191–223. url: http://www.sciencedirect.com/

science/article/pii/074310669290024W.

[158] Lawrence S. Moss. “Logics for Two Fragments beyond the Syllogistic Boundary”.

In: Fields of Logic and Computation: Essays Dedicated to Yuri Gurevich on the

Occasion of His 70th Birthday. Ed. by Andreas Blass, Nachum Dershowitz, and

Wolfgang Reisig. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 538–564.

url: https://doi.org/10.1007/978-3-642-15025-8_27.

[159] Lee Naish. “A three-valued semantics for logic programmers”. In: TPLP 6.5 (2006),

pp. 509–538. url: https://doi.org/10.1017/S1471068406002742.

[160] Lee Naish. “Adding equations to NU-Prolog”. In: Programming Language Imple-

mentation and Logic Programming. Ed. by Jan Maluszyński and Martin Wirsing.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 15–26.

[161] Lee Naish. “Prolog Control Rules”. In: Proceedings of the 9th International Joint

Conference on Artificial Intelligence. Los Angeles, CA, USA, August 1985. Ed. by

Aravind K. Joshi. Morgan Kaufmann, 1985, pp. 720–722. url: http://ijcai.org/

Proceedings/85-2/Papers/006.pdf.

[162] Lee Naish. Pruning in logic programming. Tech. rep. Technical Report 95/16.

Melbourne, Australia: Department of Computer Science, University of Melbourne,

06/1995.

[163] Lee Naish and Harald Søndergaard. “Truth versus information in logic program-

ming”. In: TPLP 14.6 (2014), pp. 803–840. url: https://doi.org/10.1017/

S1471068413000069.

186

http://ijcai.org/Proceedings/97-2/Papers/085.pdf
http://www.sciencedirect.com/science/article/pii/074310669290024W
http://www.sciencedirect.com/science/article/pii/074310669290024W
https://doi.org/10.1007/978-3-642-15025-8_27
https://doi.org/10.1017/S1471068406002742
http://ijcai.org/Proceedings/85-2/Papers/006.pdf
http://ijcai.org/Proceedings/85-2/Papers/006.pdf
https://doi.org/10.1017/S1471068413000069
https://doi.org/10.1017/S1471068413000069

[164] Joseph P. Near, William E. Byrd, and Daniel P. Friedman. “αleanTAP : A Declar-

ative Theorem Prover for First-Order Classical Logic”. In: Logic Programming,

24th International Conference, ICLP 2008, Udine, Italy, December 9-13 2008,

Proceedings. Ed. by Maria Garcia de la Banda and Enrico Pontelli. Vol. 5366.

Lecture Notes in Computer Science. Springer, 2008, pp. 238–252. url: https:

//doi.org/10.1007/978-3-540-89982-2_26.

[165] Martin Nilsson. “The World’s Shortest Prolog Interpreter?” In: Implementations

of Prolog. Ed. by John A. Campbell. Chichster, England: Ellis Horwood, 1984,

pp. 87–92.

[166] Pilar Nivela and Fernando Orejas. “Initial Behaviour Semantics for Algebraic

Specifications”. In: Recent Trends in Data Type Specification, 5th Workshop on

Abstract Data Types, Gullane, Scotland, UK, September 1-4, 1987, Selected Papers.

Ed. by Donald Sannella and Andrzej Tarlecki. Vol. 332. Lecture Notes in Computer

Science. Springer, 1987, pp. 184–207. url: https://doi.org/10.1007/3-540-50325-

0_10.

[167] Erik Palmgren. “Denotational Semantics of Constraint Logic Programming - A

Nonstandard Approach”. In: Constraint Programming, Proceedings of the NATO

Advanced Study Institute on Constraint Programming, Parnu, Estonia, August 13-

24, 1993. Ed. by Brian H. Mayoh, Enn Tyugu, and Jaan Penjam. Vol. 131. NATO

ASI Series. Springer, 1993, pp. 261–288. url: https://doi.org/10.1007/978-3-

642-85983-0_10.

[168] Erik Palmgren and Viggo Stoltenberg-Hansen. “Logically Presented Domains”. In:

Proceedings, 10th Annual IEEE Symposium on Logic in Computer Science, San

Diego, California, USA, June 26-29, 1995. IEEE. IEEE Computer Society, 1995,

pp. 455–463. url: https://doi.org/10.1109/LICS.1995.523279.

[169] Aiqin Pan and Barrett R Bryant. “Logic programming implementation of func-

tional programming languages”. eng. In: TENCON ’89. Fourth IEEE Region 10

International Conference. INFORMATION TECHNOLOGIES FOR THE 90’s”.

187

https://doi.org/10.1007/978-3-540-89982-2_26
https://doi.org/10.1007/978-3-540-89982-2_26
https://doi.org/10.1007/3-540-50325-0_10
https://doi.org/10.1007/3-540-50325-0_10
https://doi.org/10.1007/978-3-642-85983-0_10
https://doi.org/10.1007/978-3-642-85983-0_10
https://doi.org/10.1109/LICS.1995.523279

E2C2; ENERGY, ELECTRONICS, COMPUTERS, COMMUNICATIONS. Nov

22-24, 1989 Bombay, India. IEEE. IEEE, 1989, pp. 174–178. url: http : / /

xplorestaging.ieee.org/ielx2/843/4471/00176865.pdf?arnumber=176865.

[170] Michael S. Paterson and Mark N. Wegman. “Linear unification”. In: Journal of

Computer and System Sciences 16.2 (04/1978), pp. 158–167. url: https://doi.

org/10.1016/0022-0000(78)90043-0.

[171] Francis Jeffry Pelletier and Allen P. Hazen. “A History of Natural Deduction”.

In: Handbook of the History of Logic. Elsevier, 2012, pp. 341–414. url: https:

//doi.org/10.1016/b978-0-444-52937-4.50007-1.

[172] Alan J. Perlis. “Epigrams on Programming”. In: SIgPLAN Notices 17.9 (1982),

pp. 7–13.

[173] Dag Prawitz. “An improved proof procedure 1”. In: Theoria 26.2 (1960), pp. 102–

139.

[174] Eric S Raymond. The New Hacker’s Dictionary. 3rd. Cambridge, Massachusetts,

USA: MIT Press, 1996.

[175] Raymond Reiter. “On Closed World Data Bases”. In: Logic and Data Bases,

Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse,

France, 1977. Ed. by Hervé Gallaire and Jack Minker. Advances in Data Base

Theory. New York: Plemum Press, 1977, pp. 55–76. url: https://doi.org/10.

1007/978-1-4684-3384-5_3.

[176] Graem A. Ringwood. “SLD: a folk acronym?” In: ACM SIGPLAN Notices 24.5

(05/1989), pp. 71–75. url: https://doi.org/10.1145/66068.66074.

[177] John Alan Robinson. “A machine-oriented logic based on the resolution principle”.

In: Journal of the ACM (JACM) 12.1 (1965), pp. 23–41.

[178] John Alan Robinson. “Beyond LOGLISP: Combining Functional and Relational

Programming in a Reduction Setting”. In: Machine Intelligence 11. Ed. by J. E.

Hayes, D. Michie, and J. Richards. New York, NY, USA: Oxford University Press,

Inc., 1988, pp. 57–68. url: http://dl.acm.org/citation.cfm?id=60769.60772.

188

http://xplorestaging.ieee.org/ielx2/843/4471/00176865.pdf?arnumber=176865
http://xplorestaging.ieee.org/ielx2/843/4471/00176865.pdf?arnumber=176865
https://doi.org/10.1016/0022-0000(78)90043-0
https://doi.org/10.1016/0022-0000(78)90043-0
https://doi.org/10.1016/b978-0-444-52937-4.50007-1
https://doi.org/10.1016/b978-0-444-52937-4.50007-1
https://doi.org/10.1007/978-1-4684-3384-5_3
https://doi.org/10.1007/978-1-4684-3384-5_3
https://doi.org/10.1145/66068.66074
http://dl.acm.org/citation.cfm?id=60769.60772

[179] John Alan Robinson. “Computational logic: Memories of the past and challenges

for the future”. In: Computational Logic—CL 2000. Springer, 2000, pp. 1–24.

[180] John Alan Robinson. “Logic programming —Past, present and future—”. In: New

Generation Computing 1.2 (06/1983), pp. 107–124. url: https://doi.org/10.

1007/bf03037419.

[181] John Alan Robinson and Ernest E. Silbert. Logic Programming in LISP. Tech. rep.

RADC-TR-80-379-VOL-1. Rome Air Development Center / Syracuse University,

School of Computer & Information Science, 01/1981. url: https://apps.dtic.

mil/dtic/tr/fulltext/u2/a096042.pdf.

[182] John Alan Robinson and Ernest E. Silbert. “LOGLISP: an alternative to PRO-

LOG”. In: Machine Intelligence 10. Ed. by J. E. Hayes, Donald Michie, and Y.-H.

Pao. Ellis Horwood, 1982. Chap. 20, pp. 399–419.

[183] Gregory Rosenblatt, Lisa Zhang, William E Byrd, and Matthew Might. “First-

order miniKanren representation: Great for tooling and search”. In: Proceedings

of the 2019 miniKanren and Relational Programming Workshop. TR-02-19. Cam-

bridge, Massachusetts, 2019, pp. 20–34. url: dash.harvard.edu/bitstream/handle/

1/41307116/tr-02-19.pdf.

[184] Francesca Rossi. “Constraint (Logic) Programming: A Survey on Research and Ap-

plications”. In: New Trends in Contraints, Joint ERCIM/Compulog Net Workshop,

Paphos, Cyprus, October 25-27, 1999, Selected Papers. Ed. by Krzysztof R. Apt,

Antonis C. Kakas, Eric Monfroy, and Francesca Rossi. Vol. 1865. Lecture Notes in

Computer Science. Springer, 1999, pp. 40–74. url: https://doi.org/10.1007/3-

540-44654-0_3.

[185] Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev. “Certified Seman-

tics for miniKanren”. In: Proceedings of the 2019 miniKanren and Relational

Programming Workshop. TR-02-19. Cambridge, Massachusetts, 2019, pp. 80–98.

url: dash.harvard.edu/bitstream/handle/1/41307116/tr-02-19.pdf.

189

https://doi.org/10.1007/bf03037419
https://doi.org/10.1007/bf03037419
https://apps.dtic.mil/dtic/tr/fulltext/u2/a096042.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a096042.pdf
dash.harvard.edu/bitstream/handle/1/41307116/tr-02-19.pdf
dash.harvard.edu/bitstream/handle/1/41307116/tr-02-19.pdf
https://doi.org/10.1007/3-540-44654-0_3
https://doi.org/10.1007/3-540-44654-0_3
dash.harvard.edu/bitstream/handle/1/41307116/tr-02-19.pdf

[186] Amr Sabry. “Declarative Programming Across the Undergraduate Curriculum”.

In: Technical Report 99-346. Section 3 of [58]. 08/1999. url: http://www.ccs.neu.

edu/home/matthias/FDPE99/.

[187] Taisuke Sato. “Completed logic programs and their consistency”. In: The Journal

of Logic Programming 9.1 (1990), pp. 33–44. url: http://www.sciencedirect.com/

science/article/pii/074310669090032Z.

[188] Tom Schrijvers, Peter J. Stuckey, and Philip Wadler. “Monadic constraint pro-

gramming”. In: Journal of Functional Programming 19.06 (08/2009), p. 663. url:

http://dx.doi.org/10.1017/s0956796809990086.

[189] Ryan Senior. “Practical core.logic”. In: Clojure/West. San Jose, Califoria, 03/2012.

url: infoq.com/presentations/core-logic.

[190] Silvija Seres. “The algebra of logic programming”. PhD thesis. University of Oxford,

UK, 2001. url: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365466.

[191] Silvija Seres, J. Michael Spivey, and C. A. R. Hoare. “Algebra of Logic Program-

ming”. In: Logic Programming: The 1999 International Conference, Las Cruces,

New Mexico, USA, November 29 - December 4, 1999. Ed. by Danny De Schreye.

MIT Press, 1999, pp. 184–199.

[192] Peter Sestoft. The Structure of a Self-applicable Partial Evaluator. Tech. rep.

DIKU Report 85-11. Institute of Datalogy, University of Copenhagen. url: http:

//www.itu.dk/~sestoft/papers/Sestoft-DIKU-report-85-11.pdf.

[193] John C Shepherdson. “Negation as Failure II”. In: The Journal of Logic Pro-

gramming 2.3 (1985), pp. 185–202. url: http://www.sciencedirect.com/science/

article/pii/0743106685900184.

[194] John C Shepherdson. “Negation as failure, completion and stratification”. In:

Logic Programming. Ed. by John A Robinson Dov M Gabbay CJ Hogger. Vol. 5.

Handbook of Logic in Artificial Intelligence and Logic Programming. 1998, pp. 355–

419.

190

http://www.ccs.neu.edu/home/matthias/FDPE99/
http://www.ccs.neu.edu/home/matthias/FDPE99/
http://www.sciencedirect.com/science/article/pii/074310669090032Z
http://www.sciencedirect.com/science/article/pii/074310669090032Z
http://dx.doi.org/10.1017/s0956796809990086
infoq.com/presentations/core-logic
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365466
http://www.itu.dk/~sestoft/papers/Sestoft-DIKU-report-85-11.pdf
http://www.itu.dk/~sestoft/papers/Sestoft-DIKU-report-85-11.pdf
http://www.sciencedirect.com/science/article/pii/0743106685900184
http://www.sciencedirect.com/science/article/pii/0743106685900184

[195] John C Shepherdson. “Negation in logic programming”. In: Foundations of

deductive databases and logic programming. Ed. by Jack Minker. Los Altos,

California: Elsevier, 1988, pp. 19–88.

[196] Olin Shivers. List Library. Scheme Request for Implementation. SRFI-1. 1999.

url: http://srfi.schemers.org/srfi-1/srfi-1.html.

[197] Jörg H. Siekmann, ed. Computational Logic. Vol. 9. Handbook of the History of

Logic Edited by Dov M. Gabbay, Jörg H. Siekmann, and John Woods. Amsterdam,

Boston: North-Holland, 2014. url: https://doi.org/10.1016/c2009-0-16676-x.

[198] Jörg H. Siekmann. “Unification theory”. In: Journal of Symbolic Computation 7.3-4

(03/1989), pp. 207–274. url: https://doi.org/10.1016/s0747-7171(89)80012-4.

[199] Ben A. Sijtsma. “On the Productivity of Recursive List Definitions”. In: ACM

Transactions on Programming Languages and Systems 11.4 (10/1989), pp. 633–

649. url: http://doi.acm.org/10.1145/69558.69563.

[200] Donald A Smith. “Constraint Operations for CLP(FT).” In: Proceedings of ICLP

’91. 1991, pp. 760–774.

[201] Donald A. Smith and Timothy J. Hickey. “Partial Evaluation of a CLP Language”.

In: Logic Programming, Proceedings of the 1990 North American Conference,

Austin, Texas, USA, October 29 - November 1, 1990. Ed. by Saumya K. Debray

and Manuel V. Hermenegildo. MIT Press, 1990, pp. 119–138.

[202] J. Michael Spivey and Silvija Seres. “Embedding Prolog in Haskell”. In: Proceedings

of Haskell Workshop ’99, Utrecht University Technical Report UU-CS-1999-28. Ed.

by E. Meier. Vol. 99. 1999. url: http://www.cs.uu.nl/research/techreps/repo/CS-

1999/1999-28.pdf.

[203] Guy Lewis Steele Jr. “It’s Time for a New Old Language”. In: Proceedings

of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Austin, TX, USA, February 4-8, 2017. Ed. by Vivek Sarkar and

Lawrence Rauchwerger. ACM, 2017, p. 1. url: http://dl.acm.org/citation.cfm?

id=3018773.

191

http://srfi.schemers.org/srfi-1/srfi-1.html
https://doi.org/10.1016/c2009-0-16676-x
https://doi.org/10.1016/s0747-7171(89)80012-4
http://doi.acm.org/10.1145/69558.69563
http://www.cs.uu.nl/research/techreps/repo/CS-1999/1999-28.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-1999/1999-28.pdf
http://dl.acm.org/citation.cfm?id=3018773
http://dl.acm.org/citation.cfm?id=3018773

[204] Guy Lewis Steele Jr. “The definition and implementation of a computer pro-

gramming language based on constraints”. PhD thesis. Massachusetts Institute of

Technology, 1980.

[205] Ivan E. Sutherland. “Sketch-Pad: A Man-machine Graphical Communication

System”. In: Proceedings of the SHARE Design Automation Workshop. DAC

’64. New York, NY, USA: ACM, 1964, pp. 6.329–6.346. url: http://doi.acm.org/

10.1145/800265.810742.

[206] Bruce A. Tate, Ian Dees, Frederic Daoud, and Jack Moffitt. Seven More Languages

in Seven Weeks: Languages That Are Shaping the Future. Pragmatic Bookshelf,

2014.

[207] Emina Torlak and Rastislav Bodik. “Growing solver-aided languages with Rosette”.

In: Proceedings of the 2013 ACM international symposium on New ideas, new

paradigms, and reflections on programming & software - Onward! ’13. ACM. 2013,

pp. 135–152. url: https://doi.org/10.1145/2509578.2509586.

[208] Sauro Tulipani. “Decidability of the existential theory of infinite terms with

subterm relation”. In: Information and Computation 108.1 (01/1994), pp. 1–33.

url: https://doi.org/10.1006/inco.1994.1001.

[209] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. “Nominal unification”.

In: Theoretical Computer Science 323.1-3 (09/2004), pp. 473–497. url: https:

//doi.org/10.1016%5C%2Fj.tcs.2004.06.016.

[210] Alasdair Urquhart. “Emil Post. Logic from Russell to Church”. In: The Handbook

of the History of Logic. Ed. by Dov M. Gabbay and John Woods. Vol. 5. Elsevier,

2009, pp. 5–617.

[211] Maarten H. van Emden and Robert A. Kowalski. “The Semantics of Predicate

Logic as a Programming Language”. In: Journal of the ACM (JACM) 23.4 (1976),

pp. 733–742. url: https://doi.org/10.1145/321978.321991.

[212] Pascal Van Hentenryck. “Constraint logic programming”. In: The Knowledge

Engineering Review 6.3 (09/1991), pp. 151–194. url: https://doi.org/10.1017/

s0269888900005798.

192

http://doi.acm.org/10.1145/800265.810742
http://doi.acm.org/10.1145/800265.810742
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1006/inco.1994.1001
https://doi.org/10.1016%5C%2Fj.tcs.2004.06.016
https://doi.org/10.1016%5C%2Fj.tcs.2004.06.016
https://doi.org/10.1145/321978.321991
https://doi.org/10.1017/s0269888900005798
https://doi.org/10.1017/s0269888900005798

[213] Pascal Van Hentenryck and Viswanath Ramachandran. “Backtracking Without

Trailing in CLP(Rlin)”. In: ACM Transactions on Programming Languages and

Systems 17.4 (07/1995), pp. 635–671. url: http://doi.acm.org/10.1145/210184.

210192.

[214] Thomas Vasak. “A survey of control facilities in logic programming”. In: Australian

Computer Journal 18.3 (1986), pp. 136–145.

[215] Marcel Lodewijk Johanna van de Vel. “Theories with the Independence Property”.

In: Studia Logica 95.3 (), pp. 379–405. url: https://doi.org/10.1007/s11225-010-

9263-5.

[216] K. N. Venkataraman. “Decidability of the Purely Existential Fragment of the

Theory of Term Algebras”. In: Journal of the ACM 34.2 (04/1987), pp. 492–510.

url: http://doi.acm.org/10.1145/23005.24037.

[217] Hugo Volger. On Theories Which Admit Initial Structures. Tech. rep. Universität

Passau, 1987.

[218] Philiip Wadler, Walid Taha, and David MacQueen. “How to add laziness to a

strict language without even being odd”. In: SML’98, Workshop on Standard ML.

Baltimore, 09/26/1998.

[219] Mark Wallace. “Constraint Logic Programming”. In: Computational Logic: Logic

Programming and Beyond. Springer Science LNCS, 2002, pp. 512–532. url:

http://dx.doi.org/10.1007/3-540-45628-7_19.

[220] Mark Wallace. “Tight, consistent, and computable completions for unrestricted

logic programs”. In: The Journal of Logic Programming 15.3 (1993), pp. 243–273.

url: http://www.sciencedirect.com/science/article/pii/074310669390041E.

[221] Richard S. Wallace. “An easy implementation of PiL (Prolog in Lisp)”. In: SIGART

Newsletter 85 (07/1983), pp. 29–32. url: https://doi.org/10.1145/1056635.

1056638.

[222] Mitchell Wand. A semantic algebra for logic programming. Tech. rep. 148. Depart-

ment of Computer Science, 08/1983.

193

http://doi.acm.org/10.1145/210184.210192
http://doi.acm.org/10.1145/210184.210192
https://doi.org/10.1007/s11225-010-9263-5
https://doi.org/10.1007/s11225-010-9263-5
http://doi.acm.org/10.1145/23005.24037
http://dx.doi.org/10.1007/3-540-45628-7_19
http://www.sciencedirect.com/science/article/pii/074310669390041E
https://doi.org/10.1145/1056635.1056638
https://doi.org/10.1145/1056635.1056638

[223] Mitchell Wand and Dale Vaillancourt. “Relating Models of Backtracking”. In:

Proceedings of the Ninth ACM SIGPLAN International Conference on Functional

Programming. ICFP ’04. Snow Bird, UT, USA: ACM, 2004, pp. 54–65. url:

http://doi.acm.org/10.1145/1016850.1016861.

[224] Martin P Ward. “Language-oriented programming”. In: Software-Concepts and

Tools 15.4 (1994), pp. 147–161.

194

http://doi.acm.org/10.1145/1016850.1016861

Jason Hemann
E-Mail: jhemann@iu.edu Website: hemann.pl

EDUCATION
2020 PhD in Computer Science

Indiana University (Bloomington, IN, USA)
Minor: Logic, Certificate in Logic
Advisor: Dan Friedman

2012 MS in Computer Science
Indiana University (Bloomington, IN, USA)
Advisor: Dan Friedman

2007 BS in Computer Science, Philosophy, cum laude
Trinity University (San Antonio, TX, USA)
Advisor: Paul Myers

2007 BA in History, cum laude
Trinity University (San Antonio, TX, USA)

TEACHING EXPERIENCE
2018–2019 Clinical Instructor, College of Comp. & Info. Science

Northeastern University (Boston, MA, USA)
Programming Langs, CS II, Software Dev

2017–2018 Visiting Faculty, Department of CS & SE
Rose-Hulman Inst. Tech. (Terre Haute, IN, USA)
Programming Langs

2012–2017 Course Admin, Instructor Department of Computer Science
Indiana University (Bloomington, IN, USA)
Programming Langs, Programming Langs (Graduate)

June 2014 Instructor, uCombinator Lab
University of Utah (Salt Lake, UT, USA)
miniKanren Summer School

Summer 2013 Instructor, Foundations in Science and Mathematics
Indiana University (Bloomington, IN, USA)
Intro to CS

2010–2012 Lab Instructor, Department of Computer Science
Indiana University (Bloomington, IN, USA)
Discrete Math for CS, Theory of Comp, CS for Non-Majors

PROFESSIONAL SERVICE
2019 miniKanren Workshop (Program Committee)
2019 Scheme Workshop (Program Committee)
2016 Scheme Workshop (Bursar)
2015 ICFP (Student Volunteer)
2014 Scheme Workshop (General Chair, Publicity Chair)

Reviewing
ICFP, CPP, miniKanren Workshop, Scheme Workshop, ML Workshop

STEM Education Outreach
2013–2017 Foundations in Science and Mathematics (FSM)

Indiana University (Bloomington, IN, USA)
• Grant Writing Team (2015–2017)
• Program Administration (2015–2017)
• Computer Science Program Lead (2014–2017)
• Computer Science Course Instructor (2013)

AWARDS & RECOGNITIONS
Travel Awards

2017 IJCAI-17 Travel Grant
2017 CP/ICLP/SAT DP Travel Award
2016 PLMW Travel Award for SPLASH 2016
2016 SIGPLAN PAC Travel Award for SPLASH 2016
2016 Scheme 2016 Travel Scholarship
2016 SIGPLAN PAC Travel Award for ICFP 2016
2015 SIGPLAN PAC Travel Award for ICFP 2015
2015 NSF Travel Award for ECOOP 2015
2014 FLoC Travel Award for Vienna Summer of Logic
2014 ICLP Summer School Travel Award for Vienna Summer of Logic
2013 Scheme 2013 Travel Scholarship
2013 SIGPLAN PAC Travel Award for ICFP 2013
2012 NASSLLI 2012 Travel Award
2012 OPLSS Housing Grant
2012 NECSS 2012 Student Sponsorship

Other Awards
2017 Women’s Philanthropy Leadership Council Award (FSM Team)
2015 SOIC Associate Instructor of the Year

PUBLICATIONS

Books & Dissertations
[BD1] Jason Hemann. “Constraint microKanren in the CLP Scheme”. PhD thesis.

Indiana University, Bloomington, 01/2020.
[BD2] Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason Hemann. The

Reasoned Schemer, 2nd Edition. The MIT Press, 01/2018. url: mitpress.mit.
edu/books/reasoned-schemer-0.

Journal & Selective Conference Papers
[JC1] Daniel Schwab, Logan Cole, Karna Desai, Jason Hemann, Kate Hummels, and

Adam Maltese. “A Summer Stem Outreach Program Run By Graduate Students:
Successes, Challenges, And Recommendations For Implementation”. In: Journal
of Research in STEM Education 4 (2 12/2018), pp. 117–129.

[JC2] Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might. “A
Small Embedding of Logic Programming with a Simple Complete Search”. In: Proc.
of DLS’16. Amsterdam, Netherlands: ACM, 11/2016. url: dx.doi.org/10.1145/
2989225.2989230.

Workshop Papers & Technical Reports
[W1] Jason Hemann and Daniel P. Friedman. “A Framework for Extending microKan-

ren with Constraints”. In: Joint Proc of WLP’15/’16/WFLP’16 29th. Ed. by Sibylle
Schwarz and Janis Voigtländer. Vol. 234. EPTCS. Open Publishing Association,
01/2017, pp. 135–149. url: eptcs.web.cse.unsw.edu.au/content.cgi?WFLP2016.

[W2] Jason Hemann and Daniel P. Friedman. “Deriving Pure, Functional One-Pass
Operations for Processing Tail-Aligned Lists”. In: Proc. of Scheme ’16. Nara,
Japan, 09/2016. url: scheme2016.snow-fort.org/static/scheme16-paper6.pdf.

[W3] Jason Hemann and John Clements, eds. Proceedings of the 2014 Workshop
on Scheme and Functional Programming, Indiana University Technical Report
TR718. Washington, D.C., USA: Computer Science Department, Indiana Univer-
sity, 09/2015. url: cs.indiana.edu/pub/techreports/TR718.pdf.

[W4] Jason Hemann and Daniel P. Friedman. “A Framework for Extending microKan-
ren with Constraints”. In: Proc. of Scheme ’15, Northeastern University Techni-
cal Report NU-CCIS-2016-001. Ed. by Andrew W. Keep and Ryan Culpepper.
09/2015. url: http://hdl.handle.net/2047/D20213213.

[W5] Jason Hemann, Cameron Swords, and Lawrence S Moss. “Two Advances
in the Implementations of Extended Syllogistic Logics”. In: Joint Proc. of
NLPAR’15/LNMR’15. Ed. by Marcello Balduccini, Alessandra Mileo, Ekaterina
Ovchinnikova, Alessandra Russo, and Peter Schüller. Lexington, Kentucky, USA,
09/2015, pp. 1–15. url: peterschueller.com/pub/2015/nlpar2015-proceedings.
pdf.

[W6] Daniel Brady, Jason Hemann, and Daniel P. Friedman. “Little Languages for
Relational Programming”. In: Proc of Scheme ’14, Indiana University Technical
Report TR718. Washington, D.C., USA, 09/2015, pp. 54–64. url: cs.indiana.
edu/pub/techreports/TR718.pdf.

mitpress.mit.edu/books/reasoned-schemer-0
mitpress.mit.edu/books/reasoned-schemer-0
dx.doi.org/10.1145/2989225.2989230
dx.doi.org/10.1145/2989225.2989230
eptcs.web.cse.unsw.edu.au/content.cgi?WFLP2016
scheme2016.snow-fort.org/static/scheme16-paper6.pdf
cs.indiana.edu/pub/techreports/TR718.pdf
http://hdl.handle.net/2047/D20213213
peterschueller.com/pub/2015/nlpar2015-proceedings.pdf
peterschueller.com/pub/2015/nlpar2015-proceedings.pdf
cs.indiana.edu/pub/techreports/TR718.pdf
cs.indiana.edu/pub/techreports/TR718.pdf

[W7] Jason Hemann and Daniel P. Friedman. “µKanren: A Minimal Functional Core
for Relational Programming”. In: Proc. of Scheme ’13. Digital. Alexandria, Vir-
ginia, USA, 11/2013. url: schemeworkshop.org/2013/papers/HemannMuKanren2013.
pdf.

[W8] Jason Hemann and Daniel P. Friedman. “λ∗: Beyond Currying”. In: Proc. of
Scheme ’13. Digital. Alexandria, Virginia, USA, 11/2013. url: schemeworkshop.
org/2013/papers/HemannCurrying2013.pdf.

[W9] Jason Hemann and Eric Holk. “Visualizing the Turing Tarpit”. In: Proc. of
FARM ’13. FARM ’13. Boston, Massachusetts, USA: ACM, 2013, pp. 71–76. url:
doi.acm.org/10.1145/2505341.2505348.

[W10] Jason Hemann, Fatma Mili, and Paul Myers. “Synchronized Energy Efficient
Clustering of Wireless Sensor Networks”. In: Proc. of NCUR 2007. San Rafael,
California, 04/2007. url: ncurproceedings.org/ojs/.

Presentations & Demonstrations
[PD1] Daniel P. Friedman and Jason Hemann. “Implementing a microKanren”. In:

CodeMesh 2016. London, England, 11/2016. url: http://youtube.com/watch?v=
0FwIwewHC3o.

[PD2] Daniel P. Friedman and Jason Hemann. “From Functions To Relations in
miniKanren”. In: Øredev 2015. Malmö, Sweden, 11/2015. url: vimeo . com /
144710533.

[PD3] Daniel P. Friedman and Jason Hemann. “Generating a Quine”. In: Midwest PL
Summit ’15. West Lafayette, Indiana, USA, 12/2015.

[PD4] Daniel P. Friedman and Jason Hemann. “How to be a Good Host: miniKanren
as a Case Study”. In: Curry On 2015. Prague, Czech Republic, 07/2015. url:
youtube.com/watch?v=b9C3r3dQnNY.

[PD5] Daniel P. Friedman and Jason Hemann. “Rapidly Rolling a Relational DSL”. In:
Øredev 2015. Malmö, Sweden, 11/2015. url: vimeo.com/144988186.

[PD6] Daniel P. Friedman and Jason Hemann. “Roll Your Own Relational DSL: A
Logic Programming Language in Less than 40 Lines”. In: Lambda Jam 2014.
Chicago, Illinois, USA, 07/2014.

[PD7] Daniel P. Friedman and Jason Hemann. “Write the Other Half of Your Program:
From Functional to Logic”. In: Strange Loop 2014. St. Louis, Missouri, USA,
09/2014. url: youtube.com/watch?v=RG9fBbQrVOM.

[PD8] Daniel P. Friedman and Jason Hemann. “It’s Only Quine Time”. In: Program-
ming Languages Fest. Bloomington, Indiana, USA, 10/2013. url: web.archive.
org/web/20140113225905/lambda.soic.indiana.edu/programming-languages-fest.

[PD9] Daniel P. Friedman and Jason Hemann. “The Art of Several Interpreters,
Quickly”. In: Lambda Jam 2013. Chicago, Illinois, USA, 07/2013.

[PD10] Jason Hemann. “A Typed Trivalent Logic to Resolve Category Mistakes”. In:
North Georgia Student Philosophy Conference. Kennesaw, Georgia, USA, 04/2007.

schemeworkshop.org/2013/papers/HemannMuKanren2013.pdf
schemeworkshop.org/2013/papers/HemannMuKanren2013.pdf
schemeworkshop.org/2013/papers/HemannCurrying2013.pdf
schemeworkshop.org/2013/papers/HemannCurrying2013.pdf
doi.acm.org/10.1145/2505341.2505348
ncurproceedings.org/ojs/
http://youtube.com/watch?v=0FwIwewHC3o
http://youtube.com/watch?v=0FwIwewHC3o
vimeo.com/144710533
vimeo.com/144710533
youtube.com/watch?v=b9C3r3dQnNY
vimeo.com/144988186
youtube.com/watch?v=RG9fBbQrVOM
web.archive.org/web/20140113225905/lambda.soic.indiana.edu/programming-languages-fest
web.archive.org/web/20140113225905/lambda.soic.indiana.edu/programming-languages-fest

Doctoral Consortia
[DC1] Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matt Might. “A

Simple Complete Search for Logic Programming”. In: Technical Communications
of the 33rd International Conference on Logic Programming (ICLP 2017). Ed. by
Ricardo Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei. Vol. 58.
Melbourne, Australia: OASIcs, 2018, 14:1–14:8. url: dagstuhl.de/dagpub/978-3-
95977-058-3.

Posters
[Po1] Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matt Might. A Small

Embedding of Logic Programming with a Simple Complete Search. Poster presented
at SPLASH ’16, Nov. 2, 2016, Amsterdam, The Netherlands. 2016.

[Po2] Karna Desai, Jing Yang, and Jason Hemann. Foundations in Science and Math-
ematics Program for Middle School and High School Students. Poster presented
at AAS Meeting #227, Jan. 4-8, 2016, Kissimmee, Florida, USA. 2016. url:
adsabs.harvard.edu/abs/2016AAS...22724612D.

Panels
[Pa1] Deyaaeldeen Almahallawi, Jason Hemann, Rin Metcalf, and Fatemeh Sharifi.

Associate Instructor Panel. Panel Discussion IU SOIC Graduate Recruiting, Feb.
24, 2017, Bloomington, Indiana, USA. 2017.

[Pa2] Charles Pope and Jason Hemann. Associate Instructor Panel. Panel Discussion
at IU SOIC Associate Instructor Training, Sept. 11, 2015, Bloomington, Indiana,
USA. 2015.

Interviews
[I1] Jason Hemann. CodeMesh 2016 Talk Interview. Interview with Eric Normand

of PurelyFunctional, Oct. 12, 2016. 2016. url: purelyfunctional.tv/speaker-
interview/jason-hemann-code-mesh-2016-interview/.

[I2] Jason Hemann. Pre-conj Scheme ’14 Interview. Interview with Eric Normand
of LispCast, Nov. 17, 2014. 2014. url: lispcast.com/pre-conj-scheme-workshop.

dagstuhl.de/dagpub/978-3-95977-058-3
dagstuhl.de/dagpub/978-3-95977-058-3
adsabs.harvard.edu/abs/2016AAS...22724612D
purelyfunctional.tv/speaker-interview/jason-hemann-code-mesh-2016-interview/
purelyfunctional.tv/speaker-interview/jason-hemann-code-mesh-2016-interview/
lispcast.com/pre-conj-scheme-workshop

	Prerequisites and Mathematics
	List of Figures
	List of Tables
	List of Listings
	Chapter 1. Aims & Motivation
	1.1. A Brief Description and History of Logic Languages
	1.2. Constraint and Constraint-Logic Programming
	1.3. The CLP Scheme
	1.4. Domain-specific Programming Languages
	1.5. Situating miniKanrens in Context
	1.6. The Terrain
	1.7. Dissertation Outline

	Chapter 2. Prolegomena, Programming, & Prolog
	2.1. Preliminaries
	2.2. Terms and Term Algebras
	2.3. Substitutions, Equations, and Unification
	2.4. Interpretation
	2.5. Elementary Logic
	2.6. The Constraint-Logic Programming Scheme
	2.7. miniKanren Constraint Domains
	2.8. Negative Constraints

	Chapter 3. Semantics of microKanren Constraints
	3.1. Making a Domain
	3.2. microKanren Constraint Systems
	3.3. miniKanren Constraints over this Term Algebra
	3.4. Potential future improvements, enhancements, and alternative designs
	3.5. The microKanren Language
	3.6. Finite, Depth-first Search microKanren Implementation
	3.7. Depth-first search with infinite branches
	3.8. Interleaving, Complete Search
	3.9. Impure Extensions
	3.10. Recovering miniKanren
	3.11. miniKanren Implementation
	3.12. Impure miniKanren extensions

	Chapter 4. Examples, Uses and Techniques
	4.1. Quine and quine-like program generation
	4.2. Imperative Language Interpreters and Program Inversion
	4.3. Relational type-checking and inference
	4.4. Relational Implementations of Natural Logics

	Chapter 5. Related Work
	5.1. Functional Embeddings of Logic Programming
	5.2. Functional Logic Programming
	5.3. CLP and the CLP Scheme
	5.4. Negation in Logic Programming

	Chapter 6. Summary and Future Work
	6.1. Summary
	6.2. Future Work
	6.3. Conclusion

	Appendix A. microKanren Implementations
	A.1. microKanren Implementations with Equality Constraints
	A.2. Constraint microKanren Framework Implementation

	Appendix B. miniKanren Implementation
	Appendix C. CLP Examples
	C.1. Equality constraint Relational Interpreter
	C.2. Quines, Twines
	C.3. Program Cycles
	C.4. Mirrored-language Interpreter
	C.5. Relational miniProlog Interpreter
	C.6. Traverse Graph
	C.7. Relational Type-checking and Inference
	C.8. Natural Logic R*

	Bibliography
	EDUCATION
	TEACHING EXPERIENCE
	PROFESSIONAL SERVICE
	Reviewing
	STEM Education Outreach
	AWARDS & RECOGNITIONS
	Travel Awards
	Other Awards
	PUBLICATIONS
	Books & Dissertations
	Journal & Selective Conference Papers
	Workshop Papers & Technical Reports
	Presentations & Demonstrations
	Doctoral Consortia
	Posters
	Panels
	Interviews

