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Abstract—As deep learning techniques and algorithms become
more and more common in scientific workflows, HPC centers are
grappling with how best to provide GPU resources and support
deep learning workloads. One novel method of deployment is to
virtualize GPU resources allowing for multiple VM instances to
have logically distinct virtual GPUs (vGPUs) on a shared physical
GPU. However, there are many operational and performance
implications to consider before deploying a vGPU service in
an HPC center. In this paper, we investigate the performance
characteristics of vGPUs for both traditional HPC workloads
and for deep learning training and inference workloads. Using
NVIDIA’s vDWS virtualization software, we perform a series
of HPC and deep learning benchmarks on both non-virtualized
(bare metal) and vGPUs of various sizes and configurations. We
report on several of the challenges we discovered in deploying
and operating a variety of virtualized instance sizes and config-
urations. We find that the overhead of virtualization on HPC
workloads is generally < 10%, and can vary considerably for
deep learning, depending on the task.

Index Terms—Deep Learning, High Performance Computing,
Virtualization

I. INTRODUCTION

Approaches using deep learning frameworks are becom-
ing more and more commonplace in a variety of scientific
workflows. Aspects of deep learning have been integrated
into scientific workflows in genomics [1], precision health
[2], climate science [3], astrophysics [4], material science
[5], chemistry [6], and many other fields. As these types
of workflows become more prevalent in high performance
computing (HPC) centers, the need for flexibility in the
deployment and allocation of resources is becoming more
pronounced. There are currently several strategies for using
multiple graphics processing units (GPUs) within a single node
[7], [8], and across many nodes [9], [10], to do large-scale
distributed training of very large models with novel data sets.
Less attention has been given to strategies to optimize the
utilization of the the GPU deployments that are typically seen
in HPC centers today. While there are many deep learning

training workflows that can take advantage of multiple state-
of-the-art GPU cards (currently NVIDIA V100) in a node,
there are also many that cannot make full use of even a
single card. Additionally, inference workflows seldom require
the resources of a full GPU. While there are some hardware
offerings specifically geared toward inference, these are not
always available in HPC centers.

This paper explores the possibility of using virtualized
GPUs (vGPUs) to address the various workflows that do
not currently make optimal use of GPU resources that are
available in HPC centers today. We conduct a performance
study looking at the performance characteristics of vGPUs
as compared to non-virtualized GPUs (i.e., ”bare metal”). In
section II, we discuss a few potential workflows that vGPUs
are well suited to, and ways that vGPUs can be used to ”right-
size” the resource for the workflows being run. In section III,
we describe the methodology for the performance analysis, in-
cluding the details for the hardware, virtualization layers, and
software stack used to run the benchmarks. We also describe
the benchmarks used and key settings and configurations for
the experimental setup. Section IV provides the detailed results
from the benchmarking and performance analysis, and sections
V and VI wrap up with discussions of the results and future
work to be undertaken.

II. MOTIVATION

As deep learning workflows become more and more com-
mon in a variety of scientific and research domains, HPC cen-
ters from the individual lab level of the principal investigator
to the national lab level are grappling with how best to provide
GPU resources to researchers for these workflows. There are
several ways in which deep learning workflows differ from
a more traditional HPC workload based on batch scheduled
modelling and simulation.

Unlike many simulation workloads, most deep learning
training workloads do not have the capability to perform a



checkpoint and restart. Although it is possible to include a
checkpointing step in a training run, many researchers do not
include this step because they plan to run on a system that
they have exclusive use of for a long period of time. Another
difference is that in the training process, many researchers
prefer to tune their model hyperparameters in an interactive
fashion. In many cases, researchers want to examine the
models they have constructed using a graphical interface (e.g.,
tensorboard). There is also an inherent dichotomy in most deep
learning workflows between training and inference. Although
there are some studies that require only training to find model
parameters of interest and others that use pre-trained models,
in most cases, a workflow will use both training and inference.
However, the hardware resources required for a typical training
run are generally much greater than those needed for inference
with a similarly sized model. This leads to the challenge of
providing hardware resources that have enough computational
power to train models in a reasonable time, but that can be
allocated for inference and efficiently use the resource.

One way to address several of these challenges is to provide
virtualized GPUs on virtual machines (VMs) via a cloud based
infrastructure. The VMs and vGPU allocations can then be
appropriately sized to facilitate the workload in question. In
addition, the VM can be accessed in an interactive fashion and
a researcher can work with the resource in much the same
way that they would a dedicated interactive resource. This
approach gives both the end user and the resource provider
a good deal of flexibility in terms of resource allocation and
delivery. The goal of this study is to investigate the feasibility
of deployment, discover any potential problems in operations,
and measure the potential performance impact of using vGPUs
in a production cloud environment.

III. METHODOLOGY

We used the National Science Foundation (NSF) Jetstream
resource [11], [12] to evaluate vGPUs in a production envi-
ronment. Jetstream is a NSF-funded science and engineering
cloud resource that has been widely used by the NSF com-
munity over the past several years. The production side of
Jetstream is composed of CPU only nodes that host VMs for
researchers. Indiana University has augmented Jetstream with
six nodes containing GPUs as a testbed for evaluating the
performance and operations of virtualized GPUs. We obtained
and provisioned several nodes in Jetstream, each with dual
CPUs and four NVIDIA V100 GPUs. These nodes were
configured in several different ways including bare metal,
one vGPU per physical GPU (four vGPUs per node), two
vGPUs per physical GPU (eight vGPUs per node), and four
vGPUs per physical GPU (16 vGPUs per node). We then
ran a variety of benchmarks on each of these instances in
both ”best effort” and ”fixed” modes (see section III-B for
definitions of these modes). It should be noted that at this time
the virtualization software used for these tests required that the
GPUs be partitioned in the same way across an entire node. It
does not allow, for instance, an administrator to partition one
physical GPU into two vGPUs and another physical GPU into

four vGPUs if those physical GPUs are in the same node. In
the cases where there was more than one vGPU per physical
GPU we ran both a single instance of the benchmark and
multiple instances with one per vGPU. In this section, we
detail the experimental setup for these benchmarks, including
the hardware configuration, the virtualization configuration for
each of the nodes with vGPUs, the software stacks used, and
the benchmarks run.

A. Hardware specifications

The hardware used for the performance characterization
included several Dell PowerEdge C4140 servers, each with
dual Skylake Xeon Gold 6130 [13] CPUs and four NVIDIA
V100-SXM2 16GB [14] GPUs. Nodes contain 192GB of
memory from twelve 16GB DDR4-2666 RDIMMs. NVlink
is present but not utilized, as it only provides GPU to GPU
connections and the testing involved single GPUs. All nodes
are connected with bonded dual 10Gbps ethernet in a fat-
tree topology in a 2:1 oversubscription configuration. Testing
inside and outside of virtual machines was backed by network
based storage from a Ceph filesystem exported over NFS
via a Ganesha user space NFS server. Both HPL and SPEC
Accel were run on a Google Compute Platform (GCP) instance
(n1-standard-8) with 8 vCPUs, 30GB of memory, and a
single NVIDIA V100-SMX2 16GB.

B. Virtualization software

The GPUs are virtualized using NVIDIA’s Virtual Data
Center Workstation [15] (vDWS) virtualized GPU software,
which is based upon the Linux kernel’s Virtual Function I/O
[16] (VFIO). VFIO is a Linux kernel framework which allows
for safe, non-privileged userspace drivers. Utilizing isolation
features of modern inputoutput memory management units
(IOMMUs), VFIO kernel drivers create an allowed range of
DMA, I/O access, and interrupts that can be assigned to a
virtual machine hypervisor running as a user space process.
This is a logical extension of using VFIO to implement a user
space driver. These virtualized device functions are then passed
through by the hypervisor to guest VM kernel drivers. A two-
part driver approach requires matching drivers inside the guest
VM and in the underlying host. The performance impact of
using VFIO is minimized by the hardware implementation of
IOMMU isolation features, light-weight drivers implementing
VFIO, and efficient passthrough of these virtualized functions
by the hypervisor. Use of a unified memory programming
model is not allowed in the current software release. Guests are
allotted some fixed portion of the GPUs frame buffer but are
able to use all CUDA cores on a time division multiplexing
basis. Scheduling policies allow an administrator to choose
between allocating all available time slices to vGPUs with
work queued (best effort), allocating an equal number of
slices to to each vGPU assigned to a GPU (equal share), or
allocating slices proportional to the fraction of the frame buffer
assigned to the vGPU (fixed). For example, if a 16GB GPU
was assigned 3 vGPUs with 4GB each and only one vGPU
was actively being used, best effort gives all slices to the active



vGPU, equal share would give the active vGPU 1/3 of the
time slices, and fixed would give 1/4 of the time slices to the
active vGPU. For most of these tests, the scheduler policy was
set to fixed. The vDWS framework allows for a single V100-
SMX2 16GB card to be divided into 1, 2, 4, 8, or 16 vGPUs,
however the smallest vGPU we tested was 1/4 of the card due
to memory constraints.

C. Application software and benchmarks

We ran several different benchmark suites on the bare metal
GPUs and vGPUs in VMs. Two of the benchmarks (HPL and
SPECAccel) were designed to determine baseline performance
of the bare metal GPUs as compared to that of the vGPUs.
The other benchmarks were targeted at deep-learning-specific
workloads, and included two components of MLperf v0.51 and
an inference task developed at Indiana University.

High Performance Linpack (HPL) [17] is widely used to
determine the performance of a computational platform on
solving dense linear systems. In our case, it is used to measure
the baseline performance of the vGPUs as compared to the
bare metal systems. The HPL binary was compiled using
the Intel compiler, version 10.0 of the CUDA libraries, and
OpenMPI v3.1.

The SPEC Accel suites [18] test performance with com-
putationally intensive parallel applications running under the
OpenCL, OpenACC, and OpenMP 4 target offloading APIs.
The suite exercises the performance of the accelerator, host
CPU, memory transfer between host and accelerator, support
libraries and drivers, and compilers. For these experiments
we used version 1.2 of the SPEC Accel OpenACC suite
to gauge performance. This suite contains 15 different real-
world scientific applications or proxy apps written in Fortran
and C covering multiple science domains. These applications
are run and scored independently, and an aggregate score
is produced for the suite. This score is in comparison to a
reference machine; see the SPEC Accel website [19] for more
information. The SPEC Accel suite was compiled with the
PGI compiler v19.4 and version 10.1 of the CUDA libraries.

One of the more commonly used deep learning benchmarks
today is the MLPerf benchmark. MLPerf borrows several ideas
from SPEC high performance benchmarks, but has a different
set of rules for submission and execution of benchmarks. It
also focuses solely on deep learning workloads. Submissions
are allowed to use any deep learning framework and any
hardware configuration they want to submit scores; however,
for the closed division, they have to use the models specified
for each of the tasks. In this study we used the image clas-
sification and object detection, heavy-weight tasks of MLPerf
Training v0.5. For image classification we used TensorFlow
v1.14.0 with CUDA v10.1 and the cuDNN v7 library, and for
object detection we used a container specified in the MLPerf
documentation.

Although there is a recently released MLPerf Inference
v0.5 benchmark, we found this benchmark even more chal-

1No results presented in this work have been verified by MLPerf. MLPerf
name and logo are trademarks. See www.mlperf.org for more information.

TABLE I
HPL SCORES

Instance Scheduling Policy HPL Score (TFlops)

No virtualization – 4.71
16Q (full GPU) best effort 4.31
8Q (half GPU) fixed 2.66
Google Cloud V100 – 5.63

lenging to deploy and execute than the MLPerf Training
v0.5 benchmark. In addition, there are currently no publicly
available results for comparison, making the recently released
benchmark of little practical use over any other set of image
classification benchmarks. We used the Oxford Visual Ge-
ometry Group (VGG) 16-layer pretrained model for image
classification (VGG16) [20] to classify a subset of ImageNet
2013 images [21].

IV. RESULTS

In this section, we provide results from the various bench-
marks. We also detail several issues we encountered when
performing a few of the benchmarks that required workarounds
to obtain the results presented.

The HPL benchmark was run on bare metal, 16Q, 8Q, and
in a GCP instance. We were unable to obtain results for the 4Q
instance. The results for the HPL runs are presented in Table I.
The V100-SMX2 cards have a peak double precision floating-
point performance of 7.8 TFLOP/s. Initially, HPL provided
much poorer results than what is presented in Table I. This
was due to the fact that turbo had been turned on for only the
card that the HPL test was running on, which did not result in
expected behavior even though nvidia-smi reported that
the card was operating at turbo frequency. When turbo was
enabled for all four cards in the node, we were able to achieve
4.71 TFLOP/s (60% of peak) on bare metal. The 16Q instance
run in best effort mode gave 8% less performance than bare
metal. The 8Q instance gave nearly the same performance as
16Q when run in best effort, however when run in fixed mode,
constraining the run to using only half of the card’s resources,
the performance dropped to 62% of the 16Q instance, or 54%
of the bare metal numbers. We were able to achieve 5.63
TFLOP/s on the GCP instance for HPL.

The SPEC Accel suite was run on bare metal, 16Q, 8Q, 4Q,
and a GCP instance. Results for the SPEC Accel benchmark
runs are presented in Table II. The best currently-published
result using a V100 card is 13.2. One item of note for the
SPEC Accel benchmarks is that the suite requires a fairly
small amount (2GB) of device memory. On bare metal we
obtained 13.3, which is slightly better than the best published
result. This is due to the fact that the 13.2 result was obtained
with a V100-PCIE 16GB which has a slightly lower peak
performance than the V100-SMX2. The 16Q instance was
nearly equivalent to the bare metal run (< 1% difference) and
the best effort 8Q score was identical to the 16Q score. When
run in fixed mode, the 8Q instance scored 54% of the 8Q best
effort and 16Q instances. The 4Q fixed instance scored 30%

www.mlperf.org


TABLE II
SPEC ACCEL SCORES

Instance Scheduling Policy SPEC Accel Score

No virtualization – 13.3
16Q (full GPU) best effort 13.2
8Q (half GPU) best effort 13.2
8Q (half GPU) fixed 7.09
4Q quarter GPU) fixed 3.99
Google Cloud V100 – 11.3

of the 8Q best effort and 16Q instances. All of the 8Q and
4Q runs were performed with only a single instance running
on each card. The SPEC Accel suite was also run on the GCP
instance and scored 11.3, which is 14% less than the 16Q
virtualized instance.

Two components of the MLPerf Training v0.5 benchmark
suite were run: image classification and object detection,
heavy-weight. The image classification task was run with
TensorFlow v1.14.0 that was built using Bazel 0.25.1 and
Python 3.7.3. The object detection task was run using a docker
container specified in the MLPerf object detection repository.
This container uses pyTorch v1.0.1, CUDA v10.0, and cuDNN
v7. Both software installations are on node local storage. The
ImageNet data set for image classification and the COCO data
set for object detection were stored on the Ceph filesystem
exported over NFS via Ganesha from section III-A. Tables
III and IV report the run times for these components on bare
metal and 16Q instances.

The reference machine for MLPerf is ”16 CPUs, one Nvidia
P100”2 with a run time on image classification of 8831
minutes. There are currently no results published on on the
MLPerf website for a single V100. The P100 has a peak
single precision floating-point performance of 9.3 TFLOP/s
for the PCIE based card (the MLPerf documentation does not
specify PCIE or NVLINK/SMX2) and the V100 has a peak
single precision floating-point performance of 15.7 TFLOP/s
for the SMX2 card. The timing differential for our V100 on
bare metal as compared to the P100 reference machine (2.75x)
is better than the P100/V100 single precision performance
differential (1.69x). This is a bit surprising considering the
MLPerf reference machine is a cloud based instance with
”local” storage and our experiment uses NFS mounted Ceph
storage.

Running the image classification training task on the 16Q
fixed instance was 7% slower than the bare metal run, roughly
in line with the HPL numbers. In addition, we performed a
run of image classification on bare metal using all four of
the V100s. When compared to the single card bare metal run,
using all four GPUs in a node for the image classification
training task was 3.06 times faster. While the image classifi-
cation benchmark ran without much issue on bare metal, we
did encounter problems with the run on 16Q. Investigation

2MLPerf v0.5 Training Closed; Retrieved from www.mlperf.org 11 Septem-
ber 2019, entry 0.5-1. MLPerf name and logo are trademarks. See www.
mlperf.org for more information.

TABLE III
MLPERF 0.5 IMAGE CLASSIFICATION TRAINING RUN TIMES

Instance Scheduling Policy Run time (minutes)

No virtualization – 3964
16Q (full GPU) fixed 4231
No virtualization (4xV100) – 1294

of the vGPU via nvidia-smi revealed that the device was
presenting more memory than was physically available. This
was the likely culprit for several failed runs, which probably
tried to use device memory that was not actually present.
After modifying the code as in Listing 1 we were able to
run the benchmark limited to 95% of the memory reported by
nvidia-smi.

Listing 1. Limiting memory usage in TensorFlow
mem frac = 0 . 9 5
g p u o p t i o n s = t f . GPUOptions (

p e r p r o c e s s g p u m e m o r y f r a c t i o n =
mem frac )

s e s s = t f . S e s s i o n ( c o n f i g = t f . C o n f i g P r o t o (
g p u o p t i o n s = g p u o p t i o n s ) )

The MLPerf object detection, heavy-weight training task
was also evaluated. The reference machine run time for object
detection is 5000 minutes. Unlike the image classification
training task, the timing differential between the P100 and
V100 cards for object detection (1.56x) is slightly less than
the single precision performance differential (1.69x). This may
be due to the fact that we used containerized runtimes that
more closely matched the reference machine run. It is not
clear exactly what version of TensorFlow was used for the
reference machine run cited on the MLPerf website, but it
is almost certainly an older version than the v1.14 that we
used for image classification. The 16Q best effort instance
ran slightly slower (6%) than the bare metal, which is a
similar result to the image classification training task. Unlike
the image classification training benchmark that was written
in TensorFlow, the object detection training benchmark uses
PyTorch. We were unable to find an easy way to limit the
memory usage in PyTorch as in Listing 1 with TensorFlow.
The object detection training task was able to run on the 16Q
instance, but failed to run to completion on the 8Q instance,
likely due to memory issues. We were able to run the task
for several hours and extrapolate the completion time. This
estimate is provided in Table IV and is 2.28 times longer than
the 16Q run time.

Although a MLPerf inference benchmark is currently avail-
able, there are, at this time, no publicly available results and
the benchmark is fairly challenging to run. Instead of using
this, we evaluated an inference task of our own design. A pre-
trained model, VGG-16 (for Visual Geometry Group, Oxford
University, 16 layers deep), [20] was used for these tests
along with the validation data from the 2013 ImageNet large
scale visual recognition challenge [21]. The data set contained
20,121 images.

www.mlperf.org
www.mlperf.org
www.mlperf.org


TABLE IV
MLPERF 0.5 OBJECT DETECTION TRAINING RUN TIMES

Instance Scheduling Policy Run time (minutes)

No virtualization – 3037
16Q (full GPU) best effort 3206
8Q (half GPU) fixed 69273

Table V gives a summary of the conditions and results
of this measurement. Multiple runs of each configuration
were performed. Run times are presented in seconds with
the standard deviation for 5 runs. Because inference tasks
tend to be less resource-intensive than training tasks we ran a
series of tests to see how running multiple inference tasks in
parallel affected performance. The rows with 2 tasks give the
results (in seconds) when two classification tasks were run
simultaneously on two copies of the data cached in shared
memory. To run two tasks on a single bare metal or virtual
GPU, the allocation of memory on the GPU was manually
configured via modification of the Python script initiating the
benchmark. A nominal 40% of the memory was allocated to
each task. It was found that this allocation was insufficient to
run two tasks on a single 8Q node. For the 8Q instances, 1
task represents a single task running on one 8Q node, while 2
tasks represent two 8Q nodes sharing the same physical GPU
and each running a single task.

For inference, we see that the bare metal system performs
better than the 16Q (6-10%), although the performance gap
narrows a bit for two simultaneous tasks. Although there is
some overhead in running two tasks simultaneously, which is
likely due to PCIE contention, it is only 20-25%. We also
found that the run times were incredibly consistent with a
< 1% run to run variation. When only half of the GPU is
allocated in the 8Q instance, we see that the run time for even
a single task takes much longer than either the bare metal
(57% longer) or the 16Q (43% longer). However, with two 8Q
instances simultaneously running a single task on one physical
GPU, we see slightly faster completion times than a single
task, and only moderately longer run times than two tasks
running on bare metal (20% longer) or 16Q (14% longer).

V. DISCUSSION

The provisioning of vGPUs offers a great deal of flexibility
for both HPC service providers and users. It allows users to
select vGPU instances that are ”right sized” for their particular
workflows and service providers to provide an offering that
is not overkill for lighter weight workflows such as inference
based workflows. Virtualization may also allow machines with
large numbers of GPUs to be used in a larger variety of ways
than is currently possible with scheduling on bare metal. For
example, a node with 8 GPUs can be presented as eight VMs
with one physical GPU each, or as many as 64 VMs with
1/8 of a physical GPU each. However, there are many caveats
to deploying such a system. First is that all of the GPUs in

3Extrapolated run time based on run that failed after several hours.

TABLE V
IMAGE CLASSIFICATION WITH PRE-TRAINED MODEL

Instance Scheduling Policy Tasks Run time (seconds)

No virtualization – 1 179.8 ± 1.2
No virtualization – 2 225.4 ± 1.8
16Q (full GPU) fixed 1 198.1 ± 1.2
16Q (full GPU) fixed 2 239.5 ± 2.0
8Q (half GPU) fixed 1 283.1 ± 0.9
8Q (half GPU) fixed 2 272.4 ± 2.7

a node must be divided in the same way: a node with four
physical GPUs cannot currently have one provisioned as a
16Q vGPU and another physical GPU provisioned as two 8Q
vGPUs. To switch the node from one virtual configuration to
another (e.g., 16Q to 8Q) requires a system reboot. One must
also consider how to partition the rest of the resources on a
node. For a system with eight physical GPUs and 32 vGPUs
to have 128GB of main system memory per VM requires 1TB
of system memory on the node. Similar considerations must
be made for vCPU cores as well.

A. HPC benchmarks

Overall, the virtualized GPUs performed fairly well on
HPC tasks. When running virtualized on the full card, the
performance overhead from virtualization was < 10%, and
in the case of SPEC Accel, the overhead was negligible.
When the vGPU was limited to half or a quarter of the card’s
resources, the performance stayed above half or a quarter of
the bare metal numbers. It should be noted that all of the
HPC benchmarks we ran had fairly modest device memory
requirements, so device memory management was not a major
issue in the way that it was for the deep learning benchmarks.
It was only due to the fact that SPEC Accel requires 2GB of
device memory that we were able to run it on the 4Q instance;
all of the other benchmarks we attempted on the 4Q instance
failed due to insufficient device memory.

B. Deep learning benchmarks

The MLPerf and inference benchmarks we ran were on
par with the overhead seen in HPL, but fared a bit worse
than SPEC Accel, with virtualization introducing a 6-10%
overhead for the deep learning benchmarks. For the data we
were able to collect for 8Q instances, the performance using
half of the cards’ resources was less than half of the bare metal
runs. The larger challenge beyond the performance overhead
is the need for explict memory management on the device.
The fact that the vGPU reported more device memory than
was physically available to it meant that workflows would
fail in unanticipated ways. What would normally result in
a “device out of memory” error message instead resulted
in the run halting with no error output. Although we were
able to work around this for the image classification training
workflow, it required some code changes. We would anticipate
that most codes using a moderate amount of device memory
would need to explicitly manage the memory and should
not rely on accurate memory information from tools such



as nvidia-smi or the CUDA toolkit when running in a
virtualized mode. We expect that this issue can be remedied
through some combination of updates to the vDWS software
and updates to the NVIDIA drivers.

VI. CONCLUSIONS AND FUTURE WORK

The vGPU technology represents a very promising option
that HPC service providers could utilize to increase the
flexibility of their service offerings. We have shown that the
virtualization overhead for both HPC workloads and deep
learning workloads is relatively small. The device memory
requirements of the researchers’ workflows is probably the
most critical variable that service providers should consider
when evaluating the use of vGPUs.

Explicit memory management at the application level is eas-
ily applied but difficult to enforce in a production environment.
Additionally, the implementation used for this work is tied
specifically to TensorFlow. An effort to make such capability
easily implementable in other popular frameworks is a possible
direction for future work. Hopefully, future improvements to
the NVIDIA drivers and vDWS system should obviate the
requirement for explicit memory management on vGPUs.

The long-running MLPerf benchmark, when applied to one
and four GPUs on the bare metal system, achieved a factor of
three in performance as measured by execution time. This is a
rather rapid deviation from ideal scaling, implying that use of
multiple GPUs should be approached with caution. Addition-
ally, it points out a need for instrumentation to determine the
location and nature of bottlenecks and performance limitations.
The nature and cause of the observed deviation from ideal
scaling is currently unknown; application (and development)
of instrumentation seems to be a profitable future direction.

In addition to instrumentation at the vGPU level and trans-
port layer between vGPUs, there are a number of other poten-
tial bottlenecks to investigate. Most deep learning workflows
are sensitive to the rate at which data can be transported into
the card. In this study we had data stored in several different
storage locations (local memory, local disk, networked file
systems), but did not test these storage platforms head to head
for each of the workflows. In addition, there are other storage
options that would be interesting to compare (e.g., NVMe
storage).

We did not explore the performance impact of fully loading
the physical systems with virtual instances and running si-
multaneous benchmarks (e.g., four 16Q instances on a single
node all running an MLPerf task, or eight 8Q instances).
Although the virtualization isolates much of the system from
other VMs running on the same physical hardware, there are
still shared resources (e.g., network bandwidth to file systems),
which may introduce additional bottlenecks when the physical
systems are fully utilized. These tests should be carried out in
the future. There is also the possibility in future releases of
vDWS of providing vGPUs that consolidate multiple physical
GPUs (i.e., presenting two or more GPUs as a single logical
device). This capability will only further flexibility in what

can be offered to end users, and, when it is made available,
its performance impact should be evaluated.

The benchmarks used for this work were MLPerf and
an implementation of an ImageNet LSVR challenge winner.
MLPerf required several days to complete on a single GPU
system; the VGG inference benchmark took a few minutes.
Other benchmarks [22] exist and should be investigated. We
observe here that there is a need for realistic benchmarks
that run in an amount of time intermediate to what was
measured here, and that can be used to benchmark systems
from a fraction of a V100 card up to 8 or more of the
next generation of GPU devices. Additionally, small memory
footprint benchmarks for systems configured to use only a
fraction of a modern GPU should be developed and distributed.
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