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ABSTRACT

Computed tomography (CT) is a diagnostic imaging test using x-
rays to create multiple detailed images of internal organs, bones,
soft tissue and blood vessels. It produces a data set of thin, cross-
sectional “slices” for viewing and is much more detailed than con-
ventional radiography. Clinicians use CT examination to diagnose
cancers, detect abnormal blood vessels, discover disorders of the ab-
domen, bones, and joints, and to plan surgical interventions such as
heart defect or vascular repair. Dedicated visualization workstations
allow radiologists to make high-resolution examinations of diag-
nostic data, but understanding the image stacks can be challenging
for clinicians without specialized skills, training, and experience.
To aid and enhance diagnostic evaluation, we explored a cloud-
based workflow using Jetstream. CT data sets were segmented or
translated into regions-of-interest (ROI) and/or volumetric 3D re-
constructions which were then exported as polygonal 3D surface
models. Using data sets obtained via CT from a variety of animal
species, this project focused on the process of compiling a medi-
cal imaging/segmentation workstation instance with open source
software on Jetstream, importing sample data sets into the imag-
ing software, viewing 2D image sequences volumetrically, setting
custom transfer functions based on tissue density, and segment-
ing the anatomy into multiple ROI for export as stereolithography
files. Post-processing and polygon mesh editing techniques such
as smoothing, transient reduction, and decimation were employed
as the model was optimized for 3D printing or online distribu-
tion. Results were rendered into 2D graphical representations, and
the 3D models were deployed into interactive or virtual reality
environments, or were additively-manufactured (3D printed) into
real-world objects for visual and tactile examination. After work-
flows were verified and vetted, the Jetstream medical segmentation
VMs were made available for others to view and/or segment their
own volumetric data sets.
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1 INTRODUCTION

Three-dimensional visualizations such as additive manufacturing
of 3D printed models are principle resources in veterinary medicine.
When bones are broken or internal organs are damaged, CT scans
are usually captured for diagnostic purposes. The CT scans provide
a comprehensive map of an organism’s ROI that can be refined
further to a specific segment or layer of the body such as the skin,
muscle tissue, or bones. As single or nested segments, digital volu-
metric images and 3D printed models can be derived for enhancing
visualizations of medical CT data to optimize the quality of patient
care provided by veterinarians[11].

1.1 Background

Conventionally, the 2D image stack of scans from a CT dataset
is manually analyzed and segmented, a time-consuming process
that can delay patient diagnosis and further action. Particularly
with advancements in medical technology, CT scanners are capa-
ble of producing data sets of thousands of image slices with high
resolution and detail. Such strenuous CT data may require high
computer processing power. As a result, through the use of Indiana
University’s Jetstream Application Programming Interface (API)
[? ], we planned to create a virtual machine workstation to help
facilitate the management of veterinary CT scans and development
of 3D representations of animal segments.

Our workflow comprised two imaging software applications,
ParaView and 3D Slicer, which were used to create digital 3D vol-
umetric reconstructions of 2D CT data sets. Those were then seg-
mented for the ROI of a given organism. We also incorporated
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a convolutional neural network (CNN), a machine learning algo-
rithm for classifying CT image slices of varying animals species.
We then evaluated the overall efficacy and applicability of the final
workstation for progressing visualizations of veterinary data sets.

1.1.1  Jetstream. Jetstream is an interactive cloud-based computing
and data analysis platform. It offers on-demand access to super-
computing power for researchers in a broad range of disciplines,
providing support that was previously not available to them for
their big-data computational needs[12]. Funded by the National
Science Foundation (NSF), Jetstream bridges a connection between
its existing users in the Extreme Science and Engineering Discovery
Environment (XSEDE) and new users that have not yet utilized
high performance computing (HPC) in their research. Jetstream
strives to increase diversity in usage and accessibility of HPC, large
scale memory, and data storage and visualization resources.

Currently, Jetstream allows researchers and students remote
access to its library of various virtual machines (VM) online, and to
select the one most tailored to their needs. Because these virtual
machines are pre-configured with an operating system, storage
allocations, and software environments, Jetstream provides a user-
friendly interface for researchers with minimal HPC experience or
computer science background.

1.1.2  Virtual Machine Setup. We first began creating our work-
station on the IU Jetstream cloud through the Openstack Horizon
Dashboard from a pre-configured image, which is an inactive tem-
plate of a virtual machine. The image we used was a Jetstream API
with the CentOS7 operating system. An activated or launched im-
age is known as an instance, in which the the VM or server would
be running. In the process of doing so, we selected a flavor, which
entails the size specifications of the running instance. Our flavor
was the m1.xxlarge that allows for 120 GB of RAM, 44 vCPUs and 60
GB of disk space. A volume, which is a virtual file-system that can
be attached to or detached from an instance, was later mounted to
provide additional data storage space and enable easy data transfer
between instances. Our volume had a size of 60 GB.

2 METHODS

To create 3D models from CT data sets, we began by creating volu-
metric images and manual segmentation of the species of interest.
This was initially done on the virtual desktop of our VM worksta-
tion, which was viewed via the console graphical user interface
(GUI) on the Openstack Horizon dashboard. The CT image classifi-
cation CNN was saved and run on the current VM.

2.1 Data

The CT data sets were in the Digital Imaging and Communications
in Medicine (DICOM) file format, which is standard for managing
medical information. All imaging data and resources were trans-
ported between local machines and the VM through Globus, a
secure file transfer service via a web browser. An ant (Zasphinctus
Obamai) data set[3](see Figure 1) and a canine dataset were used to
demonstrate the additive manufacturing workflow. The ant DICOM
data set was retrieved from the Dryad Digital Repository[1]. In
addition to the ant and dog, data sets of an armadillo, horse, snake,
and turtle were used for the CT image classification CNN.
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Figure 1: Zasphinctus Obamai, Credit: April Nobile[7]

2.2 ParaView

Our workflow began on ParaView, producing 3D volumetric re-
constructions of a dog and ant. In doing so, the DICOM directory
of files for both organisms were imported and viewed under the
volume representation setting to enable a volumetric rendering of
the 2D sequence of image slices. We used the “Color Map Editor”
to create custom transfer functions per animal dataset and to map
field of dataset values in various brightness, colors, and opacity
levels. This feature allowed us to adjust the visibility of different
structures of the body and external particles, which all vary in phys-
ical densities or appearance in the CT scans. Different densities,
quantized on the Hounsfield scale[6], could be assigned variations
of colors and levels of opacity to show subtle or extreme contrast
between structural features. Screenshots of the volume renderings
were saved in a variety of angles on either the sagittal, coronal, or
axial anatomical plane. The transfer functions used for editing were
saved as presets to be reused or referenced for future analysis.

In Figure 2, a lateral view in the sagittal plane of a canine shows
skeletal and cardiovascular features. The canine was scanned due
to a defect in the heart. The cardiovascular system is emphasized in
the red while the bones are visible in white. The bones are lightly
shaded red presumably due to a layer of flesh that has a similar
density to that of the heart and blood vessels, which was set for
visibility. The transfer function used to visualize these structures is
represented in the bottom right corner.

Figure 2: Dog Heart

In Figure 3, a lateral view in the saggital plane of the ant shows
the exterior shell of the animal. The renderingadAZs corresponding
color map editor is captured in Figure 4. On the editor, the density
values increase from left to right (x-axis) and the corresponding
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structures of the chosen density can be made visible be by adjusting
the created or selected points on the plot up (higher opacity) or
down (lower opacity). Therefore, in respect to the ant, a mixture
of light brown, green, black, and gray colors which correspond to
lighter densities. Lighter densities of the ant would be representative
of the skin covering the bones, which consequently would not be
visible despite its corresponding density color (red) being set to full
opacity.

Figure 3: Ant’s Full Body Dissection in ParaView

Figure 4: Ant’s Map Editor in ParaView

2.3 3D Slicer

After volumetrically viewing the datasets in ParaView, we loaded
the data into 3D Slicer for manual segmentation of the organism.
Our goal was to segment layers of the body such as the exterior
skin (epidermal), muscle tissue (musculature), or skeletal bones.
This was accomplished using the segmentation and segment editor
modules. Primarily in the segment editor, we used effects such
as thresholding, islands, smoothing, erase, and paint to segment
the desired layer of the body. Each segment was exported as a
stereolithography (STL) file for further optimization on a local
machine.

In Figures 4 and 5, the upper-half is the 3D view of the segment’s
current state in the segment editor. In this view, the segment could
be edited, rotated, and magnified. The lower-half shows individual
CT image slices in the axial, sagittal, and coronal anatomical plane,
left to right respectively. The contrast of structural densities in each
view of the CT scans can be adjusted to accent a specific feature of
the body. Within the planes of the anatomical views, the presence
of green shading depicts the areas and particles of the body that
have been thresholded or, in other words, selected to be editable
based on density values pertaining to the body’s layers. Only the
thresholded parts of the organism will be visible in the 3D view
and remain as part of the segment unless removed otherwise.
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Figure 5: Dog Interior-Skeleton Segment

Figure 6: Ant’s Exterior-Skin Segment

2.4 Machine Learning

Another approach to visualizing CT datasets involves using im-
age segmentation algorithms. These algorithms can automate the
process of segmentation and detection of boundaries to output the
isolation of specific ROIs in an organism. Pham et al. [8] discuss
a variety of methods for semi- and fully-automated segmentation
of anatomical medical images. Due to the growing amount of data
and large sizes of medical image stacks, there is a need for higher
computer power to process and analyze MRI or CT scans of patients.
The study touches upon segmentation algorithms in the realm of
machine learning, specifically artificial neural networks. We used a
convolutional neural network (CNN), which varies from an ANN
structurally in the sense that the last layers of a CNN are fully
connected, whereas the neurons are connected to every other one
in an ANN[4]. CNNs are most suitable for image processing as the
basis for such algorithms were developed for Computer Vision in
Deep Learning. The CNN, which focused on image classification
of a 2D image slice, we incorporated was founded on the work of
Dakila Ledesma. Background information about convolutional neu-
ral networking and full documentation on the present algorithm
can be publically accessed online[5]. Our working algorithm was
developed in a Conda environment written in Python using Keras
and Tensorflow libraries. This CNN can be used as a basis for tran-
spiring a medical image segmentation to predominantly automate
the process of creating structural segments as opposed to a manual
based segmenting process.

Our CNN was trained to predict the CT scan to which animal
or species it belongs. The input training and testing images used
for data collection were converted DICOM files to PNG. Per each
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organism dataset, 80 percent of the images were allotted for training
and 20 percent was allotted for testing. The figure below represents
the specific image allocations and total images in each organism’s
CT dataset.

CNN IMAGE ALLOTMENTS

Image Tested CT Datasets

Allocation | ANTS DOGS |ARMADILLO| HORSE SNAKE | TURTLE

Train (80%)| 190 | 214 107 102 21 140
Test(20%) | 48 51 27 26 55 35
Total 238 | 268 134 128 276 175

Figure 7: CNN Image Input Allotments

The CNN essentially extracts the pixel data of an image into an
array and perform a series of matrix operations and transformation
to the pixel values of the image. The pixel value describes the bright-
ness or color information in each pixel that makeup the patterns,
shapes, and feature boundaries throughout the image. Thus, the
manipulation of the pixel values is the CNN’s process of isolating
different structures of an organism’s CT scan by the appearance of
different contrasts in brightness levels or shades of gray within the
image.

Our CNN consisted of three primary types of layers: convolu-
tional, pooling, and fully connected. These layers and their coin-
ciding functions perform the matrix operations needed to define
the unique image features of the CT images associated with the
organism’s ROIs. The fully connected layers included those from
the flatten layer to the the last dense layer. Figure 8 is a depiction
of CNN structure used for training:
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Figure 8: CNN Structure

The CT image classification CNN was tested for training accu-
racy and certainty of correctness and incorrectness of classifying
an individual 2D CT image slice of an organism. For all testing runs,
each epoch had a 100 image batch size. Relevant output informa-
tion of the CNN included a training accuracy for every run of the
algorithm as well as classification certainty percentages (6) of each
organism whose image data was used for training, per tested image.

3 RESULTS

3D printed models of ant and dog segments were produced after
additional rendering and optimization of the modeled segments
were done with software on a local machine.
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The CNN for CT image classification increased he number of
training epochs from 25 to 50, 75, and 100. The 100 images in each
batch from an individual CT data set per epoch were shuffled or
randomized. We found that as the number of epochs increased, the
training accuracy tended to improve as well.

TRAINING ACCURACY

Number of Epachs 25 50 75 100
Accuracy (%) 93.29 96.575 97.84 98.353

Figure 9: Training Accuracy Results

The certainty results shown below were from the same run
as the training accuracy test at 100 epochs. For correctness, the
CNN had the highest percentage of certainty in classifying turtles
with 95.063 percent, whereas the armadillo was classified with the
least percentage of certainty at 14.152 percent. The classification
of armadillo CT scans were particularly unique in the sense that
the CNN had fairly had certainty percentages that an armadillo
CT scan was either dog or turtle with 48.310 percent and 23.905
percent, respectively.

Certai %)
Tested CT ertainty (%)
Incomrect
Dataset | Comect
ANT DOG ARMADILLO[ HORSE | SNAKE | TURTLE
ANT 88.530 — 3.907 1756 1.404 2.086 2318
DOG 77721 | 4457 — 6.514 3645 4.146 3512
ARMADILLO| 14.152 | 7.689 48310 — 5664 0280 23.905
HORSE 57.543 | 3.585 1772 5.068 — 27.764 4.268
SNAKE 77681 | 2.002 3.351 6.612 5312 — 5033
TURTLE | 95.063 | 0.915 0.989 2.605 0244 0.183 —

Figure 10: Certainty Results

Due to the non-normally distributed nature of the results across
all of the datasets, a non-parametric ANOVA test was done for
further statistical analysis. A Kruskal-Wallis rank sum test was
performed on all species models with the following results and
parameters: chi-square = 93.991, df = 5, p < 0.0001. The results of this
test suggest that our organism data sets are significantly different
overall. Further more, a Tukey Honest Significant Difference test
(HSD) post-hoc comparison procedure was also conducted which
indicated that the following data sets were significantly not different
from each other: ant and turtle; ant, dog and snake; horse; armadillo.

4 DISCUSSION

In evaluation of the final state of our VM, current 3D imaging
software and visualization algorithms can be considered as the
groundwork towards cultivating a more effective workstation for
creating 3D models and visualizing veterinary medical data sets.
The design and optimization process for generating the 3D
printed models of the dog and ant segments was largely completed
on a local machine due to inadequate software compatibility with
Jetstream. Though ParaView and 3D Slicer were the main software
programs used to create the 3D models, additional open-source
3D imaging software (i.e., GIMP, MeshLab, and Blender) were ini-
tially downloaded onto the VM as well and were briefly explored
as part of the modeling workflow. Further investigation into these
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and other open-source software could be carried out for improving
the current VM workstation on the Jetstream platform for manual
visualization and segmentation of veterinary CT datasets.

Previous additive manufacturing work has been done commonly
on a local machine as well, but more so with with closed-source
software such as OsiriX and Materialise 3-Matic. For example, these
programs have been utilized by more technically experienced users,
who have visualized and created 3D printed models of canine car-
diovascular regions, specifically in the case of a heart defect such as
patent ductus arteriosus (PDA). Saunders, et al. conducted a study
about analyzing and visualizing this health issue in dogs[10]. The
study reported how using the software mentioned above allowed
them to study the anatomy of the PDA region and print models
to enhance training practice for treating this problem through a
particular surgical operation. Based upon our VM, similar advanced
open-source 3D modeling software could be implemented and in-
troduced to potential users of the workstation in a manner that
adheres to Jetstream’s user-friendly precedent. In doing so, a rep-
utable workflow in logic and efficiency for creating advanced 3D
visualizations of veterinary medical data sets could be established
and thus be utilized among users beyond additive manufacturers
or veterinarians.

In regard to our CNN, the provided results and analysis above
show our algorithm to be relatively successful in predicting whether
a CT scan belonged to an ant, dog, armadillo, horse, snake, or turtle.
The success in training accuracy and thus the classification certain-
ties per image can be attributed to limitations on the number of
training images and resolution or quality of those images within
each organism’s data set. The turtle data set had the highest cor-
rectness certainty with fairly low training images, which could be
a result of having the highest quality resolution across all data sets.
The ant, dog, and snake had moderately high correctness certainties
in respect to the remaining data sets. This could be due to having
the most training data at a margin slightly above or below 200
images. In contrast, the armadillo and horse had the fewest training
images and the lowest resolution resulting in the two lowest accura-
cies of correctness. Furthermore, similarity in CT scan patterns and
features from different organism data sets can also be taken into
account for low correctness accuracy, which would hold true for
the armadillo data set in which its structures have a resemblance
of those of a dog or turtle.

Similarly to prior workflows of 3D visualization processes and
mediums, machine learning in veterinary medicine has been proven
advantageous in the recent past as well. CNN imaging classification
of medical data sets have been utilized in deducing specific predic-
tions such as identifying different grades or types of meningiomas,
a tumor covering or surrounding the brain and spinal regions in
dogs, which was accomplished by Banzato, et al[2]. More gener-
ally, CNNs can make predictions on whether an organism has a
normal or abnormal lung based on image features or patterns in
radiography images, which was an algorithm construct explored
by Yoon, et al[14]. Not only have CNN image analyses been use-
ful for classification, but they also have benefited researchers and
veterinarians in retrieving quantitative information from medical
image data sets. For instance, Vinicki, et al achieved a CNN that was
inputted training microscopic sets images of felines’ blood smears
to test additional blood smear images for counts of immature and
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mature electrolytes produced based on their identified locations
within respective images[13]. These examples of CNN applications
in veterinary medicine have aligned with same goal that we had
set out for our CT image classification algorithm to meet, which
was to employ the advantages of deep learning and thus offer more
efficient, accurate, and cost-effective resources for implementation
by veterinarians, who may have minimal background in computer
science[13].

Moreover, the algorithm on the present VM can be used as a
building-block towards a more refined CNN that could perform a
fully-automated segmentation process of an organism. Provided
more time in exploring and testing machine learning algorithms,
we had planned to formulate a variation of a CNN called a Fully
Convolutional Network (FCN) in which the neural network would
consist of primarily convolutional layers to perform matrix oper-
ations and transformations on the pixel data of the images. The
ideal FCN pertaining to the intentions of this VM workstation for
visualizing veterinary medical data sets would be to automate the
segmentation process, which could be done manually on software
such as 3D Slicer. This could be accomplished by training the FCN to
recognize any structural layer, such as epidermal layer, musculature
layer, or skeletal layer, in each 2D scan in the CT dataset and then
outputting the 3D volumetric reconstruction of the segment with
any ROL Additionally, in our predicament of limited availability
of data images, an FCN would have been more appropriate than a
traditional CNN for our project, as an FCN can constructed to be
suitable for low amounts of training data[9].

4.1 Conclusion

Our current virtual machine ultimately provides a foundational
workstation for visualizing veterinary medical data sets on Jet-
stream. Future improvements or additions in the 3D modeling soft-
ware stack of ParaView and 3D Slicer could be explored to enhance
the real-time visualization analysis of image data sets. In the same
pursuit of progress, our CT image classification CNN could be
evolved into an FCN, effectively alleviating the manual labor of
segmenting patient-organisms’ CT scans and creating 3D printed
models. This work on Jetstream has demonstrated how VMs such as
the one we had created can of invaluable use to potential users from
veterinarians to graphic designers that may have little to no experi-
ence with cloud or high-performance computing. Given Jetstream’s
interactive and on-demand nature, the visualization resources that
we have vetted and tested may be made available for as tool in the
veterinary medicine file.
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