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INTRODUCTION
Background: Veterinary medicine has become increasingly reliant on 
advanced imaging. 
● 3D visualizations of organisms and various regions of interest (ROI) 

have enhanced diagnosis and treatment procedures for veterinarians.
● Printed models of different animals can be generated from CT datasets.
● Additive manufacturing in particular has been an essential tool in training 

practices to increase confidence and efficiency of surgical operations.[1] 

Problem: Image slices of CT datasets are usually analyzed manually and 
thus can consume extensive periods of time. 
Solution: To facilitate image processing and visualization of CT datasets 
we created a Jetstream virtual machine (VM) [2]with: 
● 3D modeling software for preliminary stages of 3D printed models 
● Neural network for classifying CT image slices of different species.

METHODS
Data: DICOM (Digital Imaging and Communication in Medicine) is the 
standard file format for medical data management (i.e., CT or MRI).
●  Ant (Zasphinctus obamai)[4] and dog CT data sets were used to perform 

the additive manufacturing workflow. 
○ Ant CT data was retrieved from the Dryad Digital Repository[5]

● Additionally, armadillo, horse, snake, and turtle CT datasets were 
included in the image classification CNN model.

Building 3D Models
ParaView: 3D volumetric reconstruction of 2D DICOM image files were 
rendered and customized. 
● “Color Map Editor” was used to create unique transfer functions that 

allowed us to manipulate opacity levels, colors, and brightness of the 
organism based on varying structural densities of the body or ROI. 

● Adjustable visibility of body structures or layers became more apparent.

3D Slicer: Each organism was manually segmented into the desired body 
layer(s) or segment(s): epidermal, muscle tissues, or skeletal. 
● The “Segmentation” and “Segment Editor” modules were used with 

editing effects such as island erasing, thresholding, and smoothing.
●  Stereolithography (STL) files per segment were exported for further 

optimization on additional software via a local machine.

(Left) Canine interior-skeletal segment (Right) Ant exterior-skin segment (Both) Bottom half, CT slices viewed  in the 
axial, sagittal, and coronal plane, left to right respectively.

METHODS (continued)
Convolution Neural Network (CNN): Machine learning algorithm was 
trained to predict the organism of a given CT image slice in a dataset.                                                                                            
● Input: DICOM files converted to PNG images

● Layers[5]: Convolutional with ReLU activation function (3x3 kernel) → 
Max Pooling (3x3 filter) → Convolutional with ReLU activation function 
(3x3 kernel) → Dropout→ Max Pooling (3x3 filter) → Flatten→ 
Dropout→ Dense with Softmax activation function → Normalization→ 
Dense with Softmax activation function

● Output: Classification certainty (%) of each organism per test image 

RESULTS
● Batch size was 100 images in each epoch for all data collection
● Training accuracy tended to increase as number of epochs increased 

● Values represent certainties with 100 epochs of training

Non-Parametric ANOVA
● Kruskal-Wallis rank sum test on all species models: chi-square = 93.991, df = 5, p < 0.0001

○ Tukey HSD post-hoc comparisons: Turtle  Ant  Dog  Snake  Horse   Armadillo
(Underlined species NOT significantly different)                 

DISCUSSION
● Workflow for developing 3D printed models was primarily intended to be 

functional on Jetstream via a GUI virtual desktop of the VM workstation.
○ Only ParaView was found successfully serviceable on the VM, 

whereas 3D Slicer had graphical loading issues.
○ Latency problems prompted 3D modeling to be largely done locally. 

● CNN exemplified applicability of machine learning in veterinary data 
analysis, which provides a basis for an image segmentation algorithm.[6]

○ A FCN (Fully Convolutional Network), specifically in a U-Net structure, 
can be derived for automated segmentation.
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TRAINING ACCURACY

Number of Epochs 25 50 75 100

Accuracy (%) 93.240 96.575 97.840 98.353

DESCRIPTIVE STATISTIC: MEAN CLASSIFICATION CERTAINTY

Tested CT 
Dataset

Certainty (%)

Correct
Incorrect

ANT DOG ARMADILLO HORSE SNAKE TURTLE

ANT 88.530 --- 3.907 1.756 1.404 2.086 2.318

DOG 77.721 4.457 --- 6.514 3.645 4.146 3.512

ARMADILLO 14.152 7.689 48.310 --- 5.664 0.280 23.905

HORSE 57.543 3.585 1.772 5.068 -- 27.764 4.268

SNAKE 77.684 2.002 3.351 6.612 5.312 -- 5.033

TURTLE 95.063 0.915 0.989 2.605 0.244 0.183 ---

CNN IMAGE ALLOTMENTS

Image Allocation
Tested CT Datasets

ANTS DOGS ARMADILLO HORSE SNAKE TURTLE

Train (80%) 190 214 107 102 221 140

Test (20%) 48 54 27 26 55 35

Total 238 268 134 128 276 175


