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1. Introduction and Summary 

A problem which occurs frequently in statistical analysis is that of deciding 
whether several samples should be regarded as coming from the same population. 
This problem, usually referred to as the k-sample problem, when expressed 
formally is stated as follows: Let X i , ,  j = 1, * * - , m. a )  i = 1, - , k, be a set of 
independent random variables and let F,(x) be the probability distribution 
function of Xij  . The set of admissible hypotheses designates that each Fi belongs 
to some class of distribution functions Q. The hypothesis to be tested, say H ,  , 
specifies that Fi is an element of a, for each i, and that furthermore 

(1.1) F,(x) = * * ’ = F,(x) for all real x . 
The class of alternatives to H ,  is considered to consist of all sets (F,(x) ,  * 0 - , 

FJx))  which belong to Q but which violate (1.1). This is the most general form 
of the alternative and is the basis of most of the existing work in the non-para- 
metric theory. Reference to prior work on this problem and some of the recent 
work may be found in Dwass [7], Kruskal-Wallis [12], Mood [15], Terpestra 
[20], and the author [16]. 

However, in some problems, it is possible to be more precise in the specifi- 
cation of the alternative. When this is the case, it is advantageous to make use 
of this extra information to obtain more powerful tests. Thus instead of the 
unrestricted form of the alternative mentioned above, we shall consider in this 
paper the ordered alternatives 

(at least one inequality being strong). 
For the case k = 2, the situation is met by using the single-tail test but for 

k > 2 the distinction between one- and two-tail tests is lost. The present work 
may therefore be regarded as generalizations of some of the single-tail non-para- 
metric tests. 

* This work represents results obtained under Sloan Foundation grant for statistics and under 
U.S. Navy Contract Nonr-285(38). Reproduction in whole or in part is permitted for any purpose 
of the United States Government. 
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This problem has many applications in social sciences. Jonckheere [l 11, for 
example, has mentioned an experiment to test the effect of stress on the task of 
manual dexterity. Here data would be obtained from groups of subjects working 
under high, medium, low, and minimal stress; the null hypothesis being that 
stress has no effect on performance, and the alternative that increasing stress 
produces an  increasing effect. Armitage [l] discussed a similar problem in 
connection with 2 x k contingency tables and found the applications in the 
medical field. 

A few tests of parametric nature have been developed for this problem by 
Bartholomew [2], Chacko [5], Kudo [13], among others [see Bartholomew [3] 
for references). In non-parametric theory, attempts to meet the need for a test 
against ordered alternatives have only been made very recently. Jonckheere [ 1 11 
discussed the one-way analysis of variance and proposed a distribution-free test 
which may be considered the most direct predecessor of the tests presented in 
this paper. Chacko [ 5 ]  proposed another test similar to the one proposed by 
Kruskal and Wallis [ 121 for the unrestricted alternatives and studied its asymptotic 
Pitman efficiency against translation alternatives. In  the present paper, we 
propose and develop a family V of rank tests for the equality of k probability 
distributions against the ordered alternatives. Limiting distributions of the 
proposed test statistics are derived, following the methods used in Chernoff and 
Savage [6] and the author [4], [l6]. These results are used to derive general 
formulas for the asymptotic efficiencies of these tests with respect to one another 
and their parametric competitor, viz. the test based on the Student statistic. 
In some of the cases where the asymptotic efficiency cannot be used to compare 
the tests, the asymptotic power comparisons are made in an attempt to select the 
best test. 

2. The Proposed Family of Tests 

k 

i = l  
The over-all sample consists of N = 2 mi independent random variables 

X . .  13 7 i = 1, . * * , k, j = 1, , mi, where the first subscript refers to the sub- 
sample and the second subscript indexes observations within a sub-sample. 
Under the null hypothesis, all the X's have the same continuous but unknown 
c.d.f. (cumulative distribution function) F ( x ) .  

Denote by Xi the vector (Xi,, * - , Xi%> and consider all the samples in 
pairs, there being k ( k  - 1)/2 pairs in all. Let 51"~~) = 1 if the v-th smallest 
observation from the combined i-th andj-th samples is an Xi observation and, 
otherwise, let lcg5) = 0. Let #i) = - 1, if the v-th smallest observation from 
the combined i-th and j-th samples is an Xi observation and, otherwise, let 
vc3i) = 0. 

Denote 
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where the {Eit*", Y = 1, - , mi + mj); i < j }  are constants satisfying certain 
restrictions to he stated below. Then we propose to consider the test statistics of 
the form 

t - 1  k 
V =-i- 2 mimjhij 

i = l  j = i t l  

for testing the null hypothesis against the alternative of ordered cumulative 
distribution functions. 

Relationship to other tests. The V test presented here is a simple extension 
to several groups, of a class of procedures, which have been frequently recom- 
mended for the problem of deciding whether two samples come from the same 
population. For example, when Ei'si) = v/(mi + mi) ,  the test described above 
coincides with the Jonckheere test [ 111 which is a direct generalization of the 
one-sided Wilcoxon test discussed in detail by Mann and Whitney [14]. When 
k = 2 and EJi,j) is the expected value of the k-th order statistic of a sample of 
size (mi + mi) from the standard normal distribution function, then the V test is 
the same as the one-tail normal scores test (which is asymptotically equivalent 
to the Van der Waerden test) discussed in detail by Hoeffding [lo], Terry [19], 
Chernoff and Savage [6], Hodges and Lehmann [9], and the author [lS]. When 
k = 2 and EJi,j' is the expected value of the v-th order statistic of a sample of 
size (mi + m j )  from the exponential distribution, then the V test reduces to the 
I. R. Savage test [18]. 

3. Assumptions and Newtions 

Let .U,, , * , Xtm,  be the ordered observations of a random sample from a 

population with continuous c.d.f. F,(x) .  Let N = 2 mi and suppose that the mi 

tend to infinity in such a way that m, = p, . N, N ---f 00. Write ma, = m, + m3 . 
Let Fmc(x)  be the sample c.d.f. of m, observations X ,  . Then 

k 

i = l  
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is the combined sample c.d.f. of the i-th and j-th samples. The combined popu- 
lation c.d.f. of the i-th andj-th samples is 

Then the following representation of hij is equivalent to (2.1) : 

(3.1) hi j  = j-*~J(m,,,"mi,(x)l d(F,Jx) - Frnj(4) , 
where 

Jtm,,[~/mii] = Et+j ) ,  Y = I ,  * * * , m i j >  i < j =  l , . . . , k .  

While the function J(mrl, need be defined only at l/mij , - - , mijlmij , we may 
extend its domain of definitions to (0, 11 by letting it be constant on ( v / m i j ,  
(Y + l)/mij]. Furthermore, we make the following assumptions:l 

ASSUMPTION 1. 

ASSUMPTION 2. 

lim Jav(u) = J(u) exists for 0 < u < 1 and is not a constant. 
N-a 

where 
znE,j = { x :  0 < H,,(X) < I}, ( i d  = 1, . * , k, i < j .  

ASSUMPTION 3. J N ( l )  = o ( i W 2 ) .  

ASSUMPTION 4. IJ(i)(u)l = ]d(i)J/du(i)l 5 K[u( 1 - E)]~-"~-', i = 0, 1, 2, for 
some K and some 6 > 0. 

4. Asymptotic Normality 

We shall prove the following theorem. 

THEOREM 4.1. Under Assumptions 1-4, 

1 These assumptions are analogous to those of Chernoff and Savage [6 ] ,  to which paper the 
reader is also referred to for general background. 

* If {X,} is a sequence of random variables and {f,} a sequence of positive numbers, we write 
X,, = 09(fn) if X,,/fn + 0 in probability, or equivalently, if for each E > 0 there is a sequence 
M., + 0 such that P{lx,( > M,&f < 1 - E.  
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and 

(4.3) 

otj and aij,76 being given by (4.12) and (4.13), resfiectiueb. 

The proof of this theorem rests on the following lemma. 

LEMMA 4.1. Under Assumptions 1-4, the matrix with elements i V 1 e ( h j j  - p-.) I 3  9 

where 

has a limiting normal distribution with zero mean and covariance matrix given by (4.12) 
and (4.13). 

Proof of Lemma 4.1 : We can rewrite hij (cf. [IS]) as 

r s  

r i m  

and the C-terms are all O ~ ( N - ~ ’ ~ )  (cf. [IS]). The difference N1’2(hrj - pz,) - 
N1/2Bm,, tends to zero in probability and so the matrices withelements W 2 ( h l j  - p,,) 
and N1I2B,,, possess the same limiting distribution if they have one at  all. Thus, 
to prove this lemma, it suffices to show that for any real 6,, , i < j = 1, * * * , k, 
not all zero, N1’2 2 2 S,,B,,, has the normal distribution in the limit. Now 

z <3 
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Bm,j , after omitting straightforward but tedious computations, can be rewritten 
as 

(4.8) 

where 

(4.9) 

and 

(4.10) 

with x,, determined somewhat arbitrarily, say by Hij(x , )  = 4; E represents the 
expectation and Xi has the Fi distribution. The rest of the proof follows by 
standard arguments, see for example Bhuchongkul and Puri [4]. 

To compute the variance-covariance matrix of Bmt i ,  we note from (4.8) that 
3m,j can be rewritten as 

This gives (after omitting the routine computations) 

- m < x < y i  m 
(4.12) 

2 

mi 
+ - j-j- Fj(4C1 - ~ ~ ~ r ~ l J " ~ ~ i ~ ~ > l J ' C ~ i ~ ~ r ~ l  @,(Y) * 

- m t x < y < m  

Note that the application of Fubini's theorem permits the interchange of integral 
and expectation. 
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(4.13) 

5. Asymptotic Distribution Under Translation 
Alternatives and Efficiency 

In this section, we shall concern ourselves with a sequence of admissible 
alternative hypothesis HA{ which specifies that, for each i = 1, * * . , k ,  F,(X) = 
F(x + e,/d/N.,, with F E D but not specified further, and not all the 0's being 
equal. 
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lim N c ~ i j , ~ ~  . 
N-*m 

THEOREM 5.1. For each index N, assume that mi = pi - N ,  with pi a positive 
integer and that the hypothesis H i  is Irue. Let hij be defined as in (3.1) with the function J 
satisfying the assumptions of Lemma 7.2 of [l6]. Then the matrix with elements {N-3/2Uij , 
i < j } ,  where Uii = mim,(hij - pi$) ,  has a joint asymptotic normal distribution with 
zero mean and convariance matrix 

Var (N-3/2Uij) = p i p j ( p i  + p i ) A 2 ,  
if i, j ,  r,  s are distinct, 

= PiP jPsA2 if i = r ,  j # s ,  

(5.1) COV ( N-3/2Uij , N-3//"U,,) if' i # r ,  j = s ,  

;f i = s ,  j # r ,  

= - p P i p , p e A 2  if i # s, j = r ,  

if i = r ,  j # s ,  
A2 

Pi  

A2 

P i  

=- 

if i f r ,  j = s ,  - -- 

A2 if i = s ,  j # r ,  - - - -  
Pi 

A2 

P i  
= - -  i f i f s ,  j = r ,  

where 

( 5 4  A2 = 1 J2(x) dx - (1 J(x) dx)" . 
This theorem is an immediate consequence of Theorem 4.1 and the fact that 

under the assumptions of Lemma 7.2 of [l6], 

[ = o  if i, j, r, s are distinct, 

and 
lim Nu& = (l/pi + l/pj)A2. 
N-. m 

Furthermore, since under the regularity assumptions 

Nl'2(pij(e) - Pi j (0) )  - (% - e i ) s { d J [ F ( x ) l / 4  d W  9 

we conclude 

THEOREM 5.2. For each index N assume that mi = p i  N,  with pi a positive 
integer, and that the hypothesis H$ is true. Then the statistic N--3/2V has a limiting distri- 
bution with mean 
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and variance 

where A2 is given by (5 .2 ) .  Here the function J is assumed to satis& the regularity 
conditions of Lemma 7 .2  of [ 161. 

We are now in a position to make large sample comparison between different 
members of the V test and their normal theory competitor based on Student's 
statistic. We shall adopt a method developed by Pitman [15a] who defined the 
relative asymptotic efficiency of two sequences of tests as the limiting inverse 
ratio of sample sizes necessary to achieve the same power against the same 
sequences of alternatives at the same significance level. 

THEOREM 5.3. 
test based on the statistic 

The mpptot ic  e$ciency of the V test relative to the normal theory 

T = 2 2 nimr(Xi .  - X j . )  , 
i < j  

mi 

a=l  
where X i .  = 2 Ximimi, is 

a2 t m  

(5.3) e",T(F) = ;Tz (1- { d J [ F ( x ) l / d 4  W X ) $  9 

where a2 = Var (Xi=).  

Let Tij = Xi. - Xi. and V$!, = N112(Tii - (ti - ti)).  Then the 
variables {V& i <j> have an asymptotic normal distribution with zero mean 
and covariance matrix 

Proof 

Var (Vl )  = u2(1/pt + l /pj) ,  

[ = 0 if i, j ,  r,  s are distinct, 

if i = s ,  j # r ,  

d 
1 P i  
1 = - -  i f i # s ,  j = r .  

Hence N-3'2T has a limiting normal distribution with zero mean and variance 
(after omitting the details of computation) equal to 
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Now proceeding by the standard arguments, see for example Puri [17] and 
Chernoff-Savage [6], the result follows. 

The relative efficiency of the V test relative to the T test is the same as found 
by Chernoff-Savage [6] for the corresponding procedures in the two-sample 
problem, and shown by the author [lS] to be valid also for the multi-sample 
problem (unrestricted alternatives). 

Special cases. (i) let J be the inverse of the rectangular distribution on 
(0, l ) ,  then the V test reduces to the rank-sum V(R)  test, better known as the 
Jonckheere test [ l l] .  The efficiency (5.3) then is equal to 12o2(Sf2(x) d ~ ) ~ .  

This is known to satisfy eVcRb,T(F) >= 0.864 for all F ;  eVcR),,(F) = - - 0.955 

when F is normal, and eVcR),,(F) > 1 for many non-normal distributions. (For 
the Gamma distribution with parameter @ = 1, eVcR), , (F)  = 3.) 

(ii) Let J = @-l, where @ is the standard normal distribution function. 
The V test reduces to the normal scores V(@) test. The efficiency then is 
known to satisfy evcm,,T(F) )= 1 for all F and ev(m) ,T(F)  = 1 if and only if F is 
normal. 

Thus from the asymptotic efficiency point of view both the V(R)  and V(@) 
tests can appear to be advantageous compared with I’ test unless one can be 
reasonably sure of the absence of gross errors and other departures from normality. 
(For the asymptotic efficiency comparison of the rank-sum to the normal scores 
procedure, see Hodges and Lehmann [9].) 

In  [2], under the assumptions of normality, Bartholomew derived the likelihood 
ratio statistic I? relevant to the problem treated in this paper. Chacko [5] 
extended the work of Bartholomew and showed that the statistic has the 
limiting non-central chi-square distribution as N + 00. Asymptotic relative 
efficiency cannot be used to compare the V and E2 tests because of the fact that 
the forms of their limiting distributions are different. For the same reason, it is 
not possible to find the asymptotic relative efficiency of the V and 2F tests. However, 
some light can be thrown on the question of the choice between the V, l? and 9 
tests by making large sample power comparisons. Some numerical results for 
V(@) ,  V ( R ) ,  E2 and S are given in Table 1. Some of the figures for E2 and 9 
have already been given by Bartholomew [2] but they are reproduced here for 
ease of comparison. It must be borne in mind that they are asymptotic results 
and that they involve the assumptions of normality. Furthermore, it is assumed 
that the sample sizes mi are all equal. Two configurations of 0’s are considered and 
the power in each case is expressed as a function of 

3 
iT 

where 8 = 0, /k .  
i = l  
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TABLE 1.3 

k = 3  

k = 4  

k = 8  

k = 12 

The asymptotic power comparisons of V(@),  V( R), E2 and 9 
when el 2 e2 2 . . ' 2  er. 

A 

0 
.050 
.050 
.050 
.050 
.050 
.050 
,050 
.050 
.050 
.050 
.050 
.050 
.050 

0.050 
.050 
.050 
.050 
.050 
.050 
.050 
.050 
.050 
.050 
.050 
.050 
.050 
.050 

0.050 

1 
.258 
.218 
.252 
.212 
,239 
.22 1 

0.130 
.258 
.I92 

0.252 
.I87 
.239 
,202 

0.115 
.258 
.142 
.252 
* 140 

.I91 
0,090 

.121 
,252 
,120 

.O 178 

,258 

- 

0.080 

2 
.637 
.532 
.622 
.519 
.594 
.569 

0.402 
.637 
.460 

0.622 
.448 
.594 
.531 

0.350 
.637 
.311 
.622 
.303 

.456 
0.249 
,637 
.258 
.622 
.240 

.423 
0.205 

- 

- 

3 4 
.911 .99 1 
.829 .965 

.814 .959 

.885 .980 
3 7 2  .983 

0.776 .959 
.911 .991 
.749 .926 

0.901 0.988 
,734 .917 
.885 .980 
.849 .978 

0.710 0.945 
.911 .99 1 
.532 .744 
.go1 ,988 
.519 .730 

300 .973 
0.535 0.853 
.911 .99 1 
.417 .606 
.90 1 .988 
.406 .592 

.766 .963 
0.466 0.776 

.go1 .gas 

- - 

- - -  

(i) 0's equally spaced. Let - Oi = A*,  i = 2, * * -, k, then Oj - Oi = 
(i - j ) A * ,  i < j .  The asymptotic power of the B(R) test (cf. Theorem 5.2) 
is then 

(5.4) 

and the asymptotic power of the V(@) test is given by (cf. Theorem 5.2) 

P(V(R)) = 1 - @,[A, - Ad%], 

(5.5) 
Here 

and 1, is the upper lOOa ./* point of @ ( x ) .  

a The upper figure of each pair corresponds to equal spacing of the 8's and the lower figure to 
the case when all but one of the 0's are equal. 
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(ii) 6, 2 e2 = . = 6,. The asymptotic powers of the V(R) and V(@) tests 
in this case are given by 

/3(V(R)) = 1 - <D A, - A - -- [ ZKI 

It is clear that, unless k = 2, both the V(R)  and V ( 0 )  tests are more powerful 
in detecting a given A when the means are equally spaced than when all but 
one are equal. Furthermore, in the latter case the power of the V(R) test as well 
as that of the V(@) test decreases as k increases. 

‘ 

The following conclusions may be drawn from these results. 
(i) The V(@),  V(R) and Ez tests are always to be preferred to the classical 

9- test which assumes no prior information regarding the 8’s. 
(ii) The powers of the V(@) ,  V(R)  and E2 tests for the case when all but one 

of the 0’s are equal, are lower than the powers of the corresponding tests for the 
case when the 6’s are equally spaced. 

(iii) The V(@)  test is superior to the V(R)  and I? tests when the 8’s are 
equally spaced; it is also superior to the V(R)  test but inferior to the EZ test 
when all but one of the 8’s are equal. 
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