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We consider perturbed empirical distribution functions £,(x)=1/n X7_, G,(x~ X)),
where {G,,n>1} is a sequence of continuous distribution functions converging
weakly to the distribution function of unit mass at 0, and {X;,i>1} is a non-
stationary sequence of absolutely regular random variables. We derive the almost
sure representation and the law of the iterated logarithm for the statistic F,(U,)
where U, is a U-statistic based on X,,.., X,,. The results obtained extend or
generalize the results of Nadaraya,'”" Winter,!'® Puri and Ralescu,'®'®! Oodaira
and Yoshihara,'® and Yoshihara,!'®) among others.

KEY WORDS: Perturbed empirical distribution functions; absolutely regular
processes; strong mixing; almost sure representation; U-statistic; law of the
iterated logarithm.

1. INTRODUCTION

Let {X,, i>1} be a sequence of absolutely regular r.v.s (random variables)
with continuous c.d.fs (cumulative distribution functions) {F;, i>1}
defined on the real line R and let F, be the corresponding empirical dis-
tribution function based on X,.,X,, ie, F (x)=n"'Y"  u(x—X,)
where u(t)=1 or 0 according as t >0 or ¢ <0. Suppose that F; converges
to a fixed d.f. Fasi—oo. If {X;,i>1} is a stationary sequence (in which
case F,=F for all i), F, is a natural estimator of F based on the sample

X,,... X,. However if F is a smooth distribution function, then it seems
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832 Harel and Puri

reasonable to consider smooth estimators which are better adapted to this
situation. For the case {X;,i>1} is a sequence of iid (independent and
identically distributed) r.v.s, Watson and Leadbetter,"' Nadaraya,”’
Yamato,!® and Winter,'®!”’ have considered an estimator of the form

F(x)=n""Y G,(x—X), xeR, n>1 (1.1)

i=1

where G,(x)=[ g, (1) dl, g, ()=0a;'g(ta,"), {a,;n>=1} is a sequence
of positive real numbers such that «,, — 0 as n — oo, and g is a probability
density function. Watson and Leadbetter!'® established the asymptotic
normality of F,, while Nadaraya,'”’ Winter,!'® and Yamato,'® proved the
a.s. (almost sure) convergence of F, to F. Later Winter!'” showed that F,
has the Chung-Smirnov property, i.e. with probability one,

lim sup(2n/log n)" sup | E,(x)— F(x)| <1

n— oo

For some related results dealing with the estimation of probability density
function, see Schuster, ' Scott et al,!'? and Wertz,"'> for a general review
in this area.

Let A(x,..., X,,), Symmetric in its arguments be a measurable kernel (of
degree m), and let U, be the corresponding U-statistics given by

n\~!
U,,=(m> Y KX, X,) (1.2)

Cam

where C, ,, denotes the set of all () combination of m distinct elements
{i} s Ipy} from {1,..,n}. Let

9(F)=jm B 1o ) [] dF(x) (1.3)

=1

When the r.v.s are iid., Puri and Ralescu'® derived the asymptotic
normality of F,(U,) which is useful in estimating &= F(6(F)) when F is
unknown. Later Sun"®) extended this result when the r.v.s are stationary
and absolutely regular. Lea and Puri‘®’ established for the iid case, (i) the
almost sure (a.s.) representation, (ii) the law of the iterated logarithm and
(iii) an invariance principle for £,(U,). In this paper, we extend the results
(i) and (ii) when the r.v.s are nonstationary and absolutely regular.

With our general framework (nonstationarity and absolute regularity),
the results have applications for a larger class of processes such as ARMA
processes and Markov processes for which the initial measure is not
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necessary to be the invariant measure. For example, suppose that the
sequence {X;, i>1} of r.v.’s is an ARMA process defined by

X,=aX,_, +be,+e_,, i>1 (1.4)

where X, admits a strictly positive density, {¢,, i>1} is a sequence of i.id.
r.v.’s with strictly positive density such that E(g;)=0 and a and b are real
numbers such that |a| < 1. Then, from Harel and Puri,'* this process is
absolutely regular and for any initial measure, the conclusions of the
theorems and propositions here hold if the sequence of r.v.'s is an ARMA
process defined by Eq. (1.4). The results of our paper can also be applied
for nonstationary Markov processes (see, e.g. Harel and Puri‘®).

2. SOME PRELIMINARY RESULTS

In the following, we suppose that the sequence {X,, i> 1} is absolutely
regular with rates

B(m)=0(p"), O0<p<l1 (21)

Recall that a nonstationary sequence {X,;, 1<i<n,n>1} is absolutely
regular if
sup max E{ sup {P(A|o(X,i, 1 <i<)))— P(A)|}

m<n I<jg<n—m Aea(Xp,izj+m)

= f(m)|0asm— oo

Here o(X,;, 1<i<j) and o(X,;, i=j+m) are the o-fields generated by
(X150 X)) @A (X, 4> Xy o+ 150 X)) TESPECtively. Also recall that
{X,;} satisfies the strong mixing condition if sup,, <, SUP; < jcn_m{ | P(4 N B)
—P(A)P(B)|; Aea(X,;, 1<i<)j), Bea(X,,izj+m)}=a(m)]0 as
m — c0. Since a(m)< f(m), it follows that if {X,;} is absolutely regular,
then it is also strong mixing.

Let {d,} be a sequence of positive real numbers such that

d,~kn~'2(loglog n)'’* as n — oo, for some k > 0. Define

Kn(t) = Ssup ‘F,,(t'f'X)—F,,(t)—F,,(t"l'X)—F,,(t)l (21’)

vl <dyp

where F,=n"'3Y"_| F;, and let F/ denote the density of F,.

i=1

Lemma 2.1. For 6>0, if {F/,i>1} is uniformly bounded in
(8(F)— 8, 8(F) + 8) and

K= sup K1) (22)
lt—6(F)| < 872
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then, for any v (0 <v<3) and for any s> 1 there exist two positive con-
stants C!" and C'» and an integer n, such that

P[K';kchyl)n—l/4+u]SC'()2)n——.v (23)
for all n > n,. Hence
K¥*=0(n¥+")as. asn—

Proof. We start in a way similar way to Lemma 2.1 of Lea and
Puri.’® For ne [0(F)—8/2, 8(F)+6/2], let

Hn(x) =Fn(x) - Fn(rl)—Fn(x) + Fn(n) (2‘4)

Let {b,,n>1} be a sequence of positive integers such that b,~n'* as
n— 0. Consider a particular n. For any integer re[—b,,b,], let
Nen="n + dnb;lr and er.n =Fn(’7r+ l.n)_Fn(nr.n)' Since Fn and Fn are non-

decreasing, it follows from Eq. (2.4) that for x€ [, ., 7,4 1.1

H"(X) < Fn(rlr+ l,n) - Fn(ﬂ) - Fn(r’r,n) + F,,(V[) = Hn(rlr+ l,n) + gr.n (25)

Similarly
H,(x)=H,(n,.,) =0, ,forxe[n,,,1.41.,] (2.6)
It follows from Egs. (2.1), (2.5), and (2.6) that
K,(n)<J,+B, (27)
where

JI1= max |Hn(’7r,n)|7 ﬁn= max 9

—ba<r<b, —b,<r<b,

(2.8)

r.n

Now, since {F;,i>1} is uniformly bounded in a neighborhood of #,
F', is also uniformly bounded in a neighborhood of #, it follows that for
large n

B, = 0(n=*"(log log n)'?) (29)

Let C, be the upper bound of sup,., F,(x) in (-6, &+ 6). Since
d,—0 as n— oo, there exists a positive integer N, such that
sup, ., F,(n) — F,(n—d,) < C,d, for all n>N,. Applying Lemma 5.2 (see
Appendix), with m=n*"%, 0 <e<2v, and a= 1, we have

P[IH,(n,,)] =6, 1<2n* " “exp{—ry’} + 2nB([n**~°])  (2.10)
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where §")=C,n~¥**° [a] is the integer part of a, C, is some con-
stant >0 and :

N A IOV VA (2.11)
After some routine computations, we obtain
ri=0(n'-r+e)
which implies
n®~fexp{—r}=0(n=G+¥9) (2.12)
We also have

B([n*=*]) = O(els»™™) (2.13)

Thus, from Eq. (2.10), we deduce
PLIH(1,,)| 2601 =0(n=6+¥) 4 O(ne"”"loer) (2.14)

It follows from Egs. (2.8) and (2.14) that
P[J, >8] =0(b,n"C*¥) 4 O(b,ne"* "oer) (2.15)

It is easy to see that if C, is chosen sufficiently large, there exists a
positive constant C, and a positive integer N, such that for n > N,

P[J, 250 Cyn= G+ 12 (2.16)

From Egs. (2.7), (29), and (2.16), it follows that there exists a positive
integer N, such that

P[K,(n)=286]1< Con= 412 for n=N, (2.17)
Now, let

W
W

Then by Eq. (2.17), we have

= —[/n)s Oy [ /1]

P[ max K,(r,,)>261]<2C,n"2p=t+1)
- nsjs\/l_l

=2C,n~*  for n=N, (218)
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For any te[(F)—46/2,0(F)+6/2] and for any xe[—d,,d,] where
x #0, there exist two integers j, and j, such that

[—/n1<)i<j.<[/n]

and
(L—-1o J10 (j )6
o(F 0(F) +
O <t<()2f 2f
<i<oF)+222

+2\/’_1

where t=min{s, r+x} and f=max{¢, 1+ x}.
From the triangular inequality, we obtain

V()= V(14 x)| < ] Vi)V, (H(F) + 2%)

1)y, (sgry+ L2129

V.{(F -V, | O(F)4———7or
+"<()+2ﬁ (o=

(2= 1)6

24/n

+an<9(F)+ >_Vn(t+x)

where Vn( ) Fn(t) - Fn(’)'
As d, = 0/2 \/; for » sufficiently large, we deduce
K¥<3 max K,,( Tin) (2.19)

-Jnsj<

Choosing C\"'=6C,, C'¥=2C, and n>N,, it follows, from Eqs. (2.18)
and (2.19), that

P[K:T > CLI)H—3/4+U] < C(L‘Z)n—.s-

Thus Eq. (2.3) follows. Also

[v o] o0
Y, P[K}¥=Cn 1< C? Y n <o

n=1

Consequently, using the Borel-Cantelli Lemma, we obtain
K¥*=0(n"%*"Yas. as n- o

This completes the proof.
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Lemma 22. If (i) {F;,i>1} is uniformly bounded in a neigh-
borhood of 6(F) and (ii) [ x’g(x) dx < oo, then

IFH(G(F))—FH(O(F))I = O(n_3/4+u)
+ O(na’(loglogn)~')as. (O<v<?)

Proof. We proceed as in Lemma 2.2 of Lea and Puri.’® First note
that

F8(F)=n"" z GAB(F)~X)=[ " G(8(F)—1)dF,(1)

- T ReE -0 s a (2.20)

and

jm g, (1) di=1 (2.21)

Condition (i) ensures that there exists >0 and M >0 such that
SUP; . | FH(O(F)—1t)— F(8(F))| <M |t] for all || <é.
Using Lemma 2.1 and Egs. (2.20) and (2.21), we have

< F” \F,(8(F)—1)—F,(8(F))| g,(t) dt
s f. _VE(OF) =)= F(6(F))] ga(0) d
+£.| 4 |F(0(F)— )~ F,(8(F))| g,(1) dt
< L V80N =0~ F,(00F)] (1) de
+f g (t)dt+0(n=3*+) as.
1t >dy,

For large n, the first term on the right-hand side of the last inequality in
(a) is bounded by

©  M[idendi=Ma, [ 1yl g(»)dy=0()
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and the second term is bounded by

(c) m(loglogn)™" [ yg(y)dy=O(na(log logm)~")

| ¥} > du/2n
since {*% y?g(y)dy < oo. Thus, from (a)-(c) we have

|Fu(0(F))_Fn(0(F))I = O(a,,) + O(rla;-f(log log n)—l)+ O(n_3/4+v)
= O(nal(loglogn)~")+ O(n=¥*")

a.s. as n— oo and Lemma 2.2 is proved.

Because of the hypothesis of nonstationarity, we have to define some
new notations for the U-statistics.

For every p(1<p<m)and n=m, let 1 <i; # --- #i,<n be arbitrary
integers. Put

B (e X)) = Y Xy ooy X3 Ey g 1oy Iy) (2.22)

{fpt a3 € Fp alTTseeer ip)

where

Mt Xy by i) = | W1 ) dF (%) ()

and Ip n(lla ¢ ] lp) {(l], 71p) 1<iF+1 # #imsns il¢(ilv"’ ip)s
p+1<I<m} and

hO,n= Z J. xl’ ’)‘m)dFu(xl)y ’dF:,,,( m)

. 1
(/1) € 10,0

where 10"—{ ll, . ,,,) 1<11 ‘ m\n}
For every p(1 < p<m), set

UP) = p=m] y f hiteiol(x ey X )

pon
I<ih# - #ipgn "R

P
x [T dIix, < g1— Fy(x))) (2.23)

j=1

where n Ul =(n(n—1)---(n—m+ 1))~ L.
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Lemma 2.3. If there exists a positive number ¢ such that for r=4+96

sup - max | h(x e x, ) dF (1)

n (ieendm) € { Loy n}™

X oo xdF, (x,)<My< o (2.24)
sup max E(JA(X; .. X, NV My< 0 (2.25)
n (ifyeim) € { L}

and for some §'(0 <8’ <), f(n)= O(n~3¢+9V2+3) then we have

E(UP) =0(n=>"") (2.26)

where y=6(0—9')/(4+6)(2+6")>0 and

EUP?=0(n?), 3<p<m (2.27)
Proof. We first note that

2 - 1.4
U}, )= n tm) Z J. N h!.".ln'Z)(xl H x2) d(I[X,'lS,\‘l]

I<ii#ih<n

- Fil(xl ) d(I[X,'._,s.\'g] - Fi-_»(x2))

So we have

EUQ)=(n"tm)* ¥ ) )

Lgindisn 1< insn 1<i1sn

X Z J((i115 112)s (ia15 i22), U315 32)s (15 142)) (2.28)

I<igligpsn

where
J((illi ilZ)’ (i2la i22)’ (i31a i32)9 (i4l’ i42))

4
=E { l—[ J-RZ h(zijpl:"m(le s xj2)d(I[X,~lexj|] - Fijl(xﬂ ) d(I[X,).ZS.\'jz] - Fijl(sz))}

j=1

(2.29)
and
h(z':j,'{im(xmxiz)= Z 8(Xi1s Xizs X3pees Xm) dFi](xB)"'dFi,,,(xm)

(13sees i) € I2.n(ij1 . §j2)
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Let i (<n)(r=1,.,4,5=1,2) be mutually different. Reorder i, as
1<k, <ky,< --- <kg<n and put

J((iln ixz)a---a (i41, iaz)) = H(kl’-"’ ks) = E[g(ka-": st)] (2'30)

Let 4 be the cth largest difference among (k;, , —k;),j=1,.., 7
Since )

It follows from Lemma 5.1 (see Appendix) that

[m] 4
Hikses k) < (s )| Mol Blks— )]0+ 014+
n(n—1)
if ky—k,=d"" (2.31)
and
n[m] 4
H(k,,...,ks)s<— Mo[ Bk, —k,)]@+oVE+3)
n(n—1)
if ky—k,=d" (2.32)
Hence
> H(k,,..., kg)
Iski< ... <kg<n
kg —ky=dVorky— k) =dV
LEEERY S (2+ 814 +8)
<l——F—= + + '
<n(n—1)) .§ U+ D LA (2.33)
If for some j,(2</j,<6,1<a<4),k;, ,—k,=d*(1<a<4), then

from Lemma 5.1 (see Appendix)

nlml

nn—1)

4 4
Hiky ks)s( ) MY DBk, . —k,)]2*o0e+0 (234)
a=1

and hence

¥ Hk, o keg)

I<k|< .- <hkg<sn
kjpe1—kj =dW(l <2<4d)

* (n(:[i]1)>4 Mon'* Z (+17 [B()ICHV4+o  (235)

Consequently
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Y H(k,,..., kg)

I<ki< --- <kg<sn

n[MJ 4 n ) . . o s
M(n(n-—l)) "4j§l (j+ DIB(HIEHVE+A=0(n*=3-7) (2.36)

where M > 0 is some constant.

We can use a similar method to estimate the sums in the other cases
and so we have Eq. (2.26).

The proof of Eq. (2.27) is analogous and so it is omitted.

Lemma 2.4. Under the conditions of Lemma 2.3, we have
U,—8(F)=mU'" + R, (2.37)
where R, = O((rn~'loglogn)'?) as. as n —» .

Proof. We rewrite Eq. (1.2) as

n

U,=0(F)+ ). (’:) UP'=0(F)+mU+ Z ( )U“”
1

p=

then we have to prove that for every ¢ >0
P[|W,| >¢e(nloglogn)?i0.]=0 (2.38)

where W,=n(U,—O(F)—mU'"). Let n,=[k?+5N4+036-¢17 apd
n,, = m. Then, from Lemma 2.3 and the Bonferroni inequality

Z P[ max |W,|>e(n, loglogn,)?]

<
k=ko m<n<ng B

Z ( "Zk P[I Rl >£(nk lOg log nk)llz])

k=ky \t=m
MY k<o (2.39)
k=ko

where M >0 is some constant. Consequently, from the Borel-Cantelli
Lemma, we have

P[|W,| = ¢(nloglogn)**i.0.]
<P[ max |W,| =e(n,loglogn,)io.]

MENSNEy)

sP[ max |W,|>— (nhlloglognkﬂ)w] 0

mEn<ngg|
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3. A LAW OF THE ITERATED LOGARITHM FOR THE
NONSTATIONARY U-STATISTIC

k

02({F,*})=02=|: jw. B(X oo X H F(x,)— 0% )]

2 Z IiJ. h(xlv"’ X,,,) h(xm+la"" XZIn)dF;*(xl9xm+l)
i=1

R
m 2m
x I dFtx) I dF(x,)— 92(F)] (3.1)
/=2 p=m+2

if the limit exists and is finite.
Let F; ; be the distribution function of (X, X)), 1<i</.

Theorem 3.1. Suppose the sequence {X;, i>1} is absolutely regular
with rates satisfying Eq. (2.1). Furthermore, assume that for any /> 1, there
exists a continuous d.f. F* on R? with marginals F such that

IFi = FFill = 0(pg™“/=7),  1<i<j (3.2)

for some 0 < py<1 where | || denotes the norm of total variation.
Suppose also, that there exists a 6’ such that Egs. (2.24) and (2.25) are
satisfied. Then we have

n'? U, — 8(F)|
2"2me(log log n)'”?

lim sup =1as. (3.3)

n— oo

Proof. From Lemma 2.4, we have only to prove that

) U
| S. .
I:ﬂ_’sololp 3 (log log n) =1as (3.4)

where UV'=n='¥"_ X* and

i=1 ni

X,’:‘i=n [In—l](h(l)( ) I h(l)

1,n 1n

(x) dF;(x)) (3.5)

From Lemma 5.6 (in the Appendix), we have to verify that the sequence
X7 satisfies the conditions in Eqgs. (5.12)-(5.14). Condition in Eq. (5.13)
follows from condition in Eq. (2.24). Condition in Eq. (5.14) follows from
condition in Eq. (2.1).
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We have to prove condition in Eq. (5.12), that is, for any n, m such
that n>m and any J< {1,.., n} such that card J=m

(Z X,,,) =ma*(1+o(1)) (3.6)

ied

We prove Eq. (3.6) for card J=n, because for card J<n, the proof is
similar. Denote

m

pt)= [ H(x1mx,) T dFGx) —0%(F)

I=1

pli)=2 [ fw, By s X) B4 1 X2e) AFE(X ), X 1)

2m

« T1 dFx) I dF(x,,)—HZ(F):I, Viz2

W)= | (07 aF, (x)—(j H x)dFi(x))z, Viz 1
W =2 (G R (30 dF (3, 9)
~(J arar o )([ a2V, 0)), i<
Then

(£ %) )=~

n—1n—i
= [ e Y wa- 3t

i=0 j=1

n—1{ n—i§ 1

‘ (n=0"=1)2 % N Wi, ) —;_Z (n—1i) p(i)

i=0 j=1

F Y @+Y S ek

i=n+1 i=1 k=i

= IAIII + B" + C"'

From condition in Eq. (3.2), it follows that |4,| = o(1).
From condition in Eq. (2.24), we deduce that |p(i)|<
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(a(i))272+9Ip 22+ %) which implies, by using condition in Eq. (2.1), that
B,—0 and C,—0 as n— oo. Hence we have [E(37_, X%)*/n—c?* =0(1)
and Theorem 3.1 is proved.

4. A LAW OF THE ITERATED LOGARITHM AND ALMOST SURE
REPRESENTATION FOR F£,(U,)

In what follows we make the following assumptions on F and g.

{F}, 1> 1} is uniformly bounded in a neighborhood of 8(F)  (4.1)

o

j 1| g(2) dt < o0 (4.2)

Proposition 4.1. Under assumptions in Eqgs. (4.1) and (4.2), we have
for any v(0<v<3})

sup |ﬁ,,(x)—F,,(G(F))—F,,(x)+F,,(9(F))| =0(n-3/4+8)+0(an) (43)

lx~8(F) <d,

a.s. as n — 0.

Proof. We proceed as in Theorem 3.2 of Lea and Puri.'®’ Suppose
that {F/,i>1} is uniformly bounded in (8(F)—9, 6(F)+J) for some
6> 0. Note that |x —8(F)| <d,=|x—6(F)| <16 for large n. Now,

B = F <[ 1Fx—0)~F,(x)| g,(0) dr

— 0

sj ‘Fn(x_t)_Fn(x)l g,,(t)dt-f- gu(t) dt
7] < 8/2

1] = d/2

But

f gn(t)dt=f & dy
|7) = 6/2 [¥] 2 da, /2

2a,,
< /Zlyl gy)dy=0(a,) as n—- oo (44)

~
0 Jivzoar!

and by Taylor’s theorem
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[ IFx—n=F,x) gun)ar
|r] <872

= |F(x )] 11 ga(1) dr

1] < 872

+ o0

sconst-oc,,f Iyl g(y)dy=0(a,) as n—oo0  (45)

where x, is between x and 7. Combining Eqgs. (4.4) and (4.5), we have
|E(F,(x))—F(x)|=0(x,) as n—oo (4.6)

Moreover, for |x| <d,
|E,(x)— F,(8(F))— E(F,(x))+ E(F,(6(F)))

‘[+w (F‘n(x_t)~Ft;(8(F)_1)_Fn(x_t)+Fn(8(F)_{)) gn(t)dt

-0

< ga(t)dt
|1l = 8/2
+ jl o VElr = 0= E(0(F) = ) = F,(x— 1)+ F,(8(F) = 1)| g,(1) d
1l < d/2
(4.7)
But

gndi=] g

J.I'l >8/2

=

< 2a,,

[yl g(y)dy=0(2,) as n—oo (4.8)

~
0 |v] 2 8/2a,

and the second term of the last inequality in Eq. (4.7) is bounded by

sup K, (1)=0(n"¥**")as. as n-— o, (4.9)
le—8(F) < 8/2

by Lemma 2.1.
From Egs. (4.7)-(4.9), it follows that

sup  |F,(x)— E,(8(F)) — E(E,(x)) + E(F,(8(F))

Ix—6(F)I<dy,

=0(n*") 4+ 0(a,)as. as n— o (4.10)
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The proof now follows from Egs.(4.6), (4.10), and the following
inequality

|E,(x)— E,(8(F))— F,(x) + F,(6(F))|
< |F,(x) = F,(0(F)) — E(F,(x)) + E(E,(6(F)))|
+ | E(F,(x)) — F,(x) + E(E,(8(F)))| — E,(8(F))|

Theorem 4.1. Suppose that F/(6(F)) Vi=1 exists and is finite. Then,
under the conditions of Theorem 3.1 and Eq. (4.2), we have

M i X¥%+R, (4.11)

i=1

E(U)=F0(F)+m .

where X7 is defined in Eq. (3.5) and
R,=0(n=***)+ 0(a,) ass.
asn— o0 and O<v<i.
Proof. First, using Theorem 3.1, we obtain

U, —0(F) < (1 +¢&)2"%mon~"(log log n)"* as.

as n—-oo, forsome e>0 (4.12)

Next, by Proposition 4.1, we get
F,(U,)—E(8(F)=F,(U,)—F,(8(F))+ O(n¥***)+ O(x,) (4.13)

as. as n— 0. Now using Young’s form of Taylor’s theorem, and
Eq. (4.12), we obtain,

F(U,) = F(8(F))=(U,—8(F)) F{8(F))+ O(n~ "' log log n). (4.14)
The proof follows by using Eqgs. (4.13), (4.14), and Lemma 2.4.
Theorem 4.2. Suppose that F/(6(F)) exists for Vi>1 and is finite,

the conditions of Theorem 3.1 and condition Eq.(4.2) are satisfied,
8(F)>0, and [®_ y’g(y)dy < co. Then

Fn(Un)zn‘] Z Yni+Rn (415)

i=1
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where Y,,=u(0(F)— X,;)+mF,(6(F)) X* and
R,=0(n"***y+ O(na’loglogn)~'as.
asn— oo and 0<v<j.

Proof. Applying Theorem 4.1, we obtain

I i +mFu(9(F))

EU) = F o) +m O S a iR )

i=1

where
R,=0(n"****) 4+ O(x,)as. as n—
Next using Lemma 2.2, we obtain
E(8(F))=F(6(F))+ O(n=¥**+") + O(na2(loglog n)~") as. (4.17)
The proof follows using Eqs. (4.16) and (4.17).

Theorem 4.3. Under the conditions of Theorem 4.2, if «,=
o(n=****(log log n)"/?) for 0 <v <} and F'(8(F)) exists and is finite, then
i FalU) = FO(F))

J20% loglogn
where o2 = [g A%(x) Fldx)+2 Y7 | [ge A(x) A(p) Fi¥dx, dy) and A(x)=

w(0(F)— x)+ mF'(0(F))[h/(x)—08(F)], and h(x)= jh(x, X3 g0y Xoy)
172, dF(x;).

Proof. The proof follows from Theorem 4.2 and Lemma 5.6 (in the
Appendix).

lim

=1as. (4.18)

5. APPENDIX

Let p>2 and 1<i,<i,<..- <i, be arbitrary integers. For any

= P[(X} X,-J.)EA”’] P[(X Xip)eB(p—j)]

ij+ R

860/7/4-10
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for any 4Yeo(X,,.. X;, (1<j<p) and any B¥ eo(X,,,,.X,),
(1<j<p-1).

Lemma 5.1. For every p>1 and (i,.,i,) such that 1<i <
iy<-.--<i,and any j(1<j< p—1), let h(x,,., x,) be a Borel function
such that

< 4M‘/(2+5)B§/(1+6)(ij+|—ij) (51)
As a special case, if 4(x,,.., x,) is bounded, say, |A(x,.., x,}| < M*, then
we can replace the right side of Eq. (5.1) by 2M*B(i;, , — ;).
Proof. Follows from Lemma 1 of Yoshihara.!"

Lemma 5.2. Let {Y,i>1} be a sequence of absolutely regular
random variables with mean 0. Assume that sup,,,|Y;|<M, and
sup; [ Var ¥;]"2< M. Then, for any a (0 <a<1) and m < n sufficiently

large,
P [n -!

where k= [n/m].

ak
5M,

}+2n,3(m) (5.2)

Y Yi’>u]<2m exp{—

i=1

Proof. Let {Y,i>1} be a sequence of independent random
variables such that for any i, ¥, has the same distribution as Y,. Then, from
Collomb’s®® extension of the Bernstein inequality (see Bennett'"), we
have for any /< {1,.., n} such that card I=m

- vk—°
l=v|<g — 53
P[Z Y" ”] ze"p{ SMO} (53)

Let now SY=Y;+ Y+ -+ Yipm(j=1..,m) where for each
J<j<sm)k;=k;, is the largest integer for which j+k;m <n. Then

PHZ Y,-’?v]SP[Z |S‘f’|>u]<z PISY|2m~v]  (54)

i=1 i=1 i=1
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For each j (1<j<m—1), let 4, be the Borel subset of R**' defined by

A= {ows 2 Lyt + ygl 2m o)

and put

1 if(yOs'-'aykj)EAj

8 (Yors i) = {0 otherwise

Then |g;(yo,» ¥i)l <1 and after iterating k;+ 1 times the inequality of
Eq. (5.1) for the partlcular case M*=1, we get

PLISV Zzm™ 0] = E(g;(Yjss Yisim))
< 8i(Yoss Vi) AF (o) -+ dF ;1 n Vi)

RKj+1

+2(k,+ 1) B(m)
Y f’i’>m“v]+2(kj+l)ﬂ(m)

=p[
iel

m~lvk; e
<2 €Xp {— T}
0

+ 2(k; + 1) B(m) (from Eq. (5.3)). (5.5)

Now from Egs. (5.4) and (5.5), we get

g

If in Eq. (5.6), we replace v by un, we obtain Eq. (5.2).
The following lemma is the Lemma 3 of Chow and Teicher®®
[p.298].

1—u

i Y.-‘Zv]<2meXp{ u5M }+2nﬁ(m ' (5.6)

i=1

Lemma 5.3. Let ¢(¢) be the characteristic function of §,=3%"7_, Z,
where {Z;, j>1} are independent (not necessarily stationary) r.v.’s with
zero means, and variances o, /> LIf I2*°=3"_, y?*?and s2=3"_, o}

where y?*°=E|Z,— E(Z,)|***, then for 061

LAY
Sn

Lemma 54. Let {Y,, 1<i<nn>1} be a sequence of absolutely

2+6 5
e—:/z

I,
)

<3 |— for |tf|<—= (5:7)

2F

n
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regular random variables (with means 0) satisfying the strong mixing con-
dition. Suppose that ¥, ., a(m) < co and there exists 62> 0 such that

Var(i Y,,,~>=naz(1 +0o(1)) (5.8)

i=1

Then the process {Y,,1<i<n n>1} obeys the law of the iterated
logarithm, that is limsup, _, . [>7_, (¥,;/x(n))| =1 as., if the following
requirements are fulfilled for some p >0 and for all sufficiently large n:

n 1

e [P (X, Yusso V) -009| =0 (gegyrms) 69

where

gp(x):;r e~ dr
J2nd -0
and

P i Y,.|=bx(n)|=0 ! 5.10
[112?:,, = ni| = X”)]_ ((logn)l+p) ( . )

where b> 1 is an arbitrary number and y(n)= (2¢*n log log n)'/2.

This Lemma was proved by Oodaira and Yoshihara® [Th. 1] for the
stationary case. The proof is similar for the nonstationary case and is there-
fore omitted.

Lemma 5.5. For a sequence of random variables satisfying the
strong mixing condition, the condition in Eq. (5.10) holds if Eq. (5.9) holds
and there exists a function r=r(n) such that r(n)<n(n=1), r(n) » o as
n— oo and

r 1
max {2P[ 3 1z am]. Zan}-0(omms)

i=1

for any ¢ (0 <e< (b—1)/b where b>1 is an arbitrarily fixed number).

Proof. From Oodaira and Yoshihara®[Remark 1, Th, 1].

Lemma 56. Let {Y,,1<i<nn>1} be a sequence of absolutely
regular random variables satisfying the strong mixing condition with
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means 0. Suppose for any n, m such that n>m and any J< {1,.., n} such
that card J=m

<Z ,u> =mo?(1 +0(1)) (5.12)
jed

Then the process {Y,, 1<i<nn>1} obeys the law of the iterated
logarithm if the following requirements are fulfilled for some § and 8’ such
that

sup max E|Y,|>"’=M<w (5.13)
n=11<i<n
i {a(m)}?/C*+% < 00 (5.14)
m=1
Proof. Define
{5 e

We define fy(x) =x — fy(x). Let N=n"20+%) (log n)~3 and
r(n)= [né’/2(1+6')(10g n)3]

For convenience and without loss of generality, we denote Y, for Y,;. Then
for any 6>0

gPUYJ+~-+Hﬂ>bAM]

n -
2P| 3 1uX)l> by

i=

< T (Z IfN(Y)|>
{2 E[|f'~(Y,-)u-|f'N(Y,)|J}

€ —
bz{X(n)}z rlb<ijsr

n r—1 r—i _ B
" MAFAY o
< P2 L, T, E ()
n

bz{x(

r—1 r—i
2y Y E[lfN(Y,->|-|f‘~(lo+.-)|]}

i=1 j=1

{2 3 EO/u(X)P)
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<2—"{ Z E[1fu(Y)17*4]
S o x(n)}r N N

r—1 r—i
+12 Y (a(i))*12+ S B[ (¥ 2o e+
i=1

i=1

X E[|/u( Y, )12*] ”‘“""} (from Lemma 5.7)

2n 5 1
W{ M+I2Z (a(i))27? +6)Z——N2(6 5

LW ()10 BTV (Y, 4710

M 12 ST ()OS
DNEPIEE N

=0(n"") (5.15)

MZ/(2 +6‘)}

holds for some y >0 and

noo_" —@48YEy _ 1
o) =20 (=0 9) =0 (=)

From Lemmas 5.4 and 5.5 it suffices to show

(Z Y<\/r_mx)

1
O<——(logn) > (5.16)

sup
xeR
Define p, g and k by p(n)=[n2**1, g(n)=[n"*==] and k(n)=[n/(p+q)]
where o is a small number. Let N’'=#»®/'%'+%) if 0<5<2 and

N'=p"180+5)4if §>2. Put

SI N’ N’
" afz (v A Y) = E(fu(Y))))

1
o Jn 1(fN(Y) E(fx(Y}))

P
Z;= Z (SnY i l)(p+q)+j))‘"E(fN'(Y(i— l)(p+q)+j)), i=1..,k
=1

Sll

1 k
T;1=— Zi
\/—I’;O' ,'§|

" __ Qt 1
Tn - Sn - Tn
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Then, it can easily be proved that for some y >0

n 1 1 K
E|S;? <F <— M+'N:z<¢s—a')(2+¢s')

7 MW”')) =0(n~")  (517)

(where M is defined in Eq. (5.13)), K is some constant > 0. E |T4|*=0(n""),
|E(T,?)—1]=0(n"").

Now, let ¢,(t) be the characteristic function of S,/o \/; where
S,=>"_, Y, Then

|@a() — e " < [@,(t) — E(e"S7)| + | E(e™S7) — E(e"T7)|

k
E(eitT,',) _ I‘I E(ei:z//\/ kE(zj)z)

Jj=1

+

k
(e—ﬂ/z) _ H E(eile/\/kE(Z/—)z)
=1

=11+12+I3+I4,Say. (518)

+

Then, we have
L E(S;)=0(n""?),  L<|t| E(|T;)=0(n""?) (519)

From Lemma 5.3, we have

k
e="? _ 1—1 E( eile/\/kE(Zj)Z)
Jj=1

t2+¢5
<3II

1
- 246 o
o € ’/Zliljl-zkEIZjl * E}Qk(mzjﬁ)‘“‘”ﬂ
(Z5=1 E(Z)H)'"
22/{ Elzj|2+¢$

j=1

for |1] <

(5.20)
Since

14 14
EZ})SKWN') p* Y, ja()SKWN') p2 Y j=
i=1 j=1
< K(N')* p? max(1, p=2?)
and E(Z J?)= pa*(1+0(1)) (from condition Eq. (5.12)), for all sufficiently
large n, we have

1
sup E|Z;)|**° -
1<j<k / k#? mlnlsjsk(E(Z}))(2+p)/2

2(2+p)/2
< sup (E(Z]))@+on

1<j<k

k"/z(paz)(up)/z:o(”_y) (5.21)
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holds for all sufficiently large n where p =min(2,d) and y is a positive
number.
We deduce that

k
e— "2 _ n E(euz,-/\/kl;'(zjyl) <Kn lt|2+d e~ "2 (5.22)
ji=1
holds for all sufficiently large n and for all 7 such that

1
minxsis;:ElYf|2+5

|1| <%’11/2—1/(l+26)o.x
Now from Eq. (5.14) and using Lemma 5.7, we obtain

' nT ﬁ E(euZ,/\/AE(7

<ka( ) 1/2—ao((nl/z—a)—(2+6’)/5’) (523)

From Egs. (5.17)-(5.23) it follows that

’ (Z Y<\/;_10x) ®(x)

i=1

< j"%"“ ’w,,(z)—e—'“ K,

= + 3
—(log n) t (log n)
(log n)3 i (logn)3

<[ Kttt [ (BUSI+EGTI)} di
—(log n)? —(log n)?

ko(q) K,
+K dt + dt
} {Lsmsr““ -[,.—'/4<|:|suogn)l H + (log ”)3}

1
= 0((za7) (5:24)

where K;, i=1,.., 4 are constants >0, and Lemma 5.6 is proved.

Lemma 5.7. Let {Y,, 1<i<nn>=1} be a sequence of random
variables satisfying the strong mixing condition with coefficient a(m).
Let U be o(Y,;,, I <i<j<n)-measurable and V be o(Y,;, j+m<i<n)-
measurable. If E|U|?<o and E|V|’<o where r '+p~'+s =1
(1<r s, p<oo) then,

|E(UV)— E(U) E(V)| < 12(a(m))*” {E|UI"}Y " {EIVI* ) (5.25)

Proof. This is Proposition 2.8 of Doukhan and Portal.”*)
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