
Journal of Theoretical Probability, Vol. 7, No. 4, 1994 

Law of the Iterated Logarithm for 
Perturbed Empirical Distribution Functions 
Evaluated at a Random Point for Nonstationary 
Random Variables I 

Michel  Harei  2 and Madan  L. Puri 3 

Received April 1, 1993; revised October 7. 1993 

We consider perturbed empirical distribution functions P~(x)= 1In ~.7=l G.(x-Xi),  
where {G., n >I 1 } is a sequence of continuous distribution functions converging 
weakly to the distribution function of unit mass at 0, and {X~, i~> 1} is a non- 
stationary sequence of absolutely regular random variables. We derive the almost 
sure representation and the law of the iterated logarithm for the statistic Pn(U~) 
where Un is a U-statistic based on Xt ..... Xn. The results obtained extend or 
generalize the results of Nadaraya, ~7~ Winter, "6~ Puff and Ralescu. ~9'l~ Oodaira 
and Yoshihara, cs~ and Yoshihara, Itg~ among others. 

KEY WORDS: Perturbed empirical distribution functions; absolutely regular 
processes; strong mixing; almost sure representation; U-statistic; law of the 
iterated logarithm. 

i. I N T R O D U C T I O N  

Let {X;, i~> 1 } be a sequence of absolutely regular r.v.s (random variables) 
with continuous c.d.f.s (cumulative distribution functions) {F;, i~>I} 
defined on the real line I~ and let/~,, be the corresponding empirical dis- 

1 ~"~n U(X, - -  X i )  tribution function based on Xt ..... X,,, i.e., F , , ( x ) = n -  ~ i = 1  
where u(t)= I or 0 according as t >/0 or t < 0. Suppose  that F; converges  
to a fixed d.f. F as i ~  ~ .  If {Xi,  i~> 1} is a stat ionary sequence (in which 
case F;-= F for all i), P,, is a natural est imator of  F based on the sample  
Xl ..... X,,. H o w e v e r  if F is a s m o o t h  distribution function,  then it seems 
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reasonable to consider smooth estimators which are better adapted to this 
situation. For  the case {X;, i~>1} is a sequence of iid (independent and 
identically distributed) r.v.s, Watson and Leadbetter, (~4) Nadaraya, (71 
Yamato,( ~s I and Winter, C16" ~ 7) have considered an estimator of the form 

F,,(x) = n - I  i G,,(x-Xi), x e R ,  n>~l (1.1) 
i = I  

where G,,(x)=S"_ ~ g,(t)dt, g,,(t)=~7,'g(tctT, l), {~,,;n>~l} is a sequence 
of positive real numbers such that ~t,, --. 0 as n --) 0% and g is a probability 
density function. Watson and Leadbetter (~4) established the asymptotic 
normality of F,,, while Nadaraya, (7) Winter, ()6) and Yamato, ~8) proved the 
a.s. (almost sure) convergence of F,, to F. Later Winter c17) showed that F,, 
has the Chung-Smirnov property, i.e. with probability one, 

lira sup(2n/log n) l/'- sup IF , , (x) -  F(x)[ ~< 1 
n ~ oo  A"  

For some related results dealing with the estimation of probability density 
function, see Schuster, ( 11 ) Scott et aL, t t 2) and Wertz, (~ s) for a general review 
in this area. 

Let h(x~ ..... Xm), symmetric in its arguments be a measurable kernel (of 
degree m), and let U,, be the corresponding U-statistics given by 

(m") U. = ~ h( X,, ..... X,..) (1.2) 
Cn.ra 

where C .... denotes the set of all ( ' ,) combination of m distinct elements 
{il ..... ira} from {1 ..... n}. Let 

t "  

O ( F ) = |  h(xl ..... x,,) l I  dF(xi) (1.3) 
o R  m i =  1 

When the r.v.s are i.i.d., Puri and Ralescu (m) derived the asymptotic 
normality of F,,(U,,) which is useful in estimating r when F is 
unknown. Later Sun 03) extended this result when the r.v.s are stationary 
and absolutely regular. Lea and Puri (6~ established for the iid case, (i) the 
almost sure (a.s.) representation, (ii) the law of the iterated logarithm and 
(iii) an invariance principle for F,,(U,,). In this paper, we extend the results 
(i) and (ii) when the r.v.s are nonstationary and absolutely regular. 

With our general framework (nonstationarity and absolute regularity), 
the results have applications for a larger class of processes such as ARMA 
processes and Markov processes for which the initial measure is not 
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necessary to be the invariant measure. For example, suppose that the 
sequence { X i, i/> 1 } of r.v.'s is an ARMA process defined by 

X j = a X i _ 1 + b e i + e i _  l, i>~l (1.4) 

where X o admits a strictly positive density, {e;, i >/1} is a sequence of i.i.d. 
r.v.'s with strictly positive density such that E ( ~ ) =  0 and a and b are real 
numbers such that lal < 1. Then, from Harel and Puri, ~4~ this process is 
absolutely regular and for any initial measure, the conclusions of the 
theorems and propositions here hold if the sequence of r.v.'s is an ARMA 
process defined by Eq. (1.4). The results of our paper can also be applied 
for nonstationary Markov processes (see, e.g. Harel and Puri~5)). 

2. S O M E  P R E L I M I N A R Y  R E S U L T S  

In the following, we suppose that the sequence {X i, i>~ 1 } is absolutely 
regular with rates 

~ ( m ) = O ( p " ) ,  0 < p < l  (2.1) 

Recall that a nonstationary sequence {X, , ,  1 ~< i~< n, n t> 1 } is absolutely 
regular if 

sup max E{ sup [P(AIa(X.~,  I < ~ i < ~ j ) ) - P ( A ) [ }  
m<~n l<~j<~n--m A~a(Xni,  i>~j+m) 

= /~(rn) + 0 as rn --* ~ 

Here a(X,,;, l<<.i<~j) and a ( X . ~ , i > ~ j + m )  are the a-fields generated by 
(X,,l ..... X,v) and (X,,,y+.,, X,,.y+,,,+l ..... X.,,) respectively. Also recall that 
{ X,,i} satisfies the strong mixing condition if sup,,, ~,, sup ~ ~i~< .. . . .  { I P(A ~ B)  
- P ( A ) P ( B ) [ ;  A ~ a ( Y , , i ,  l <~i<~j), B e a ( X , , ~ , i > ~ j + m ) } = ~ ( m ) + O  as 
m ~ ~ .  Since ~(m)~</~(m), it follows that if {X.;} is absolutely regular, 
then it is also strong mixing. 

Let {d,,} be a sequence of positive real numbers such that 
d. ~ k n -  1/2(log log rt)  1/2 a s  n ~ 0% for some k > 0. Define 

K,,(t)= sup I F . ( t + x ) - P , , ( t ) - F , , ( t + x ) - P , , ( t ) l  (2.1') 
Ixt <~ d,, 

where F,, = n - 1 ~_.:= ~ Fi, and let F; denote the density of F~. 

Lemma 2.1. For ~5>0, if {F; , i~>I} is 
(O(F) - ,5, O(F) + 6) and 

K,* = sup K,( t )  
It - -  O I F ) [  < 6/2 

uniformly bounded in 

(2.2) 
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then, for any v (0 < v < ~) and for any s > 1 there exist two positive con- 
stants C~ ~ and C[? ) and an integer n, such that 

P[ K,* >~ Co - 3/4 +o-] ~ C~21n -~" (2.3) 

for all n >/n~. Hence 

g , *  : 0(71-3/4+~ a.s. as n --* 

Proof  We start in a way similar way to Lemma2.1  of Lea and 
Pur iJ  61 For  q ~ I-0(F) - 6/2, O(F) + 6/2], let 

H,,(x) = F,,(x) - F,,Cq) -- F , (x )  + F,,Cq) (2.4) 

Let {b,,  n>>. 1} be a sequence of positive integers such that  b , ~ n  TM as 
n ~ o o .  Consider  a part icular  n. For  any integer r e  [ - b , , ,  b,,], let 
rL.,=rl+d,,bT,~r and Or.,=F,,(rlr+l.,,)-F,,(qr.,). Since F,, and F,, are non- 
decreasing, it follows from Eq. (2.4) that  for x ~  [q ..... q~+ L,,], 

H,,(x) ~< P,,(q~ + L,,) - F,,(q) - F,,(q~.,,) + F,,(r/) = H,,(qr + L,,) + 0 .... (2.5) 

Similarly 

H,,(x) >>. H,,(~L.,, ) - Or.,, for x e [q ..... rL + L,] (2.6) 

It follows from Eqs. (2.1), (2.5), and (2.6) that  

K,,(rl) <~ J,, + ft, (2.7) 

where 

J , ,=  max IH,,(q~.,,)l, fl , ,= max 0 .... (2.8) 
--bn<~r<~bn -bn<~r<.bn 

Now, since {F;, i~>1} is uniformly bounded  in a ne ighborhood of q, 
F;, is also uniformly bounded  in a ne ighborhood of q, it follows that for 
large n 

fl,, = O(n -  3/4(10g log n) t/2) (2.9) 

Let C2 be the upper  bound  of sup,>~lF; ,(x)  in ( r  Since 
d , , - - ,0  as n ~  ~ ,  there exists a positive integer N, such that 
sup,,>~ i r , ( r / )  - F , ( r / -  d,,) ~< C2d,, for all n >1 NI.  Applying Lemma 5.2 (see 
Appendix),  with m = n 2~176 0 < e < 2v, and a = 7, we have 

PElH,,(qr.,)l >1 6,,]<~~ 2n2O- ~ exp{ _ r(O) ~_,,, +2nfl(En2V-']) (2.10) 
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where (o) -3/4 + v, 6, =C~n [a ]  is the integer part of a, C~ is some con- 
stant > 0 and 

re, ~) = n 7 / 8 ' t - 2 ' + ' ' o ~ v ) / 5 M 0  (2.11 ) 

After some routine computations,  we obtain 

r(V)= O(nll4-v+~) 
n 

which implies 

We also have 

n 2v-'  exp { -- rl, ~) } = O(n - ~'~ + 3/4)) (2.12) 

,8([n 2v- ~] ) = O(e r176 p).20-~) (2.13) 

Thus, from Eq. (2.10), we deduce 

P[ln(qr.,,)[ >t 61~ )] = O(n -ts+3/4)) --t- O(ne "!2~176 (2.14) 

It follows from Eqs. (2.8) and (2.14) that  

p[j , , -  r  = >~o,, j O(b,,n-~"+3/o))+O(b,,ne "c2~176176 (2.15) 

It is easy to see that  if C~ is chosen sufficiently large, there exists a 
positive constant  C2 and a positive integer N~ such that  for n/> N~ 

p[ j ,  >1 61,,)] <~ C2 n-~.,. + u2) (2.16) 

From Eqs. (2.7), (2.9), and (2.16), it follows that  there exists a positive 
integer N2 such that  

P[K,(q)>~26~,o)]<<.Czn -~"+u2) for n>~N2 (2.17) 

Now, let 

j6 
r j . , = o ( r ) + 2 x / r  ~ , j = - [x//-n] ..... 0 ..... [ x / ~ ]  

Then by Eq. (2.17), we have 

P [  max K,(rz,,) >>. 26~v)] ~< 2C2nUZn-(~+ 1/2) 

= 2 C 2 n  -s  for n>~N2 (2.18) 
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For any t e [ 0 ( F ) - 6 / 2 ,  O(F) + 6/2] and for any 
x :~ 0, there exist two integers Jl and J2 such that 

and 

x ~ I-d,,, d.] where 

-1)6<t<<O(F)+ j,___~6 <<O(F)+ (j2-1)6 
(J2" - 2 , / .  O(F) + 

jz6 
< { ~ O ( F ) + - -  

where _t = min{t, t+x} and [=max{t ,  t+x}. 
From the triangular inequality, we obtain 

IV,,(t)- V,(t+x)l<~ V,,(t_)- V,, O(F)+ 

+ V,, (O(F) + 2J'6v/-~7"]'~ ( --  V,, \ O ( F )  + - -  

+ V,, (O(F)+ ( j 2 ~ l }  6~_ V,,(t+x) 
2 ~  J 

(J2 -- 1 ) 6"~ 

2, / ;  ) 

where V,,(t) = F,,(t) - ff ,,(t). 

As d,, >1 6/2 ~ for n sufficiently large, we deduce 

K,* ~< 3 max K,,(rj.,,) (2.19) 

( I )  _ Choosing C~, --6Cl,  C~2)=2C2 and n>~N 2, it follows, from Eqs. (2.18) 
and (2.19), that 

P[ K,* >1 C(vl )n -3/4+ v] ~ C(v21tl- s 

Thus Eq. (2.3) follows. Also 

• P[K,*>~C(vl)n-3/4+~ ~ n-"<oo 
I t =  I I I ~  1 

Consequently, using the Borel-Cantelli Lemma, we obtain 

K,*=O(rt  -3/4+v) a.s. as n ~ o o  

This completes the proof. 
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Lemma 2.2. If (i) {F '~ , i~ I}  is uniformly bounded in a neigh- 
borhood of O(F) and (ii) Sx2g(x) dx< oo, then 

that 

and 

IP,,(0(F))- L,(O(F) )I = O(n- 3/4+ v) 

+ O(nc~](log log n) -  1) a.s. (0 < v < ~) 

Proof We proceed as in Lemma 2.2 of Lea and Puri) 6) First note 

P,,(O(F))=n -1 G.(O(F)-X, )= G.(O(F)-t)dP,,(t) 
i = l  - - o o  

~+o~ F,,(O(F) t) g,,(t) dt (2.20) 
o o  

f+~ g,,(t) dt= 1 (2.21) 

Condition (i) ensures that there exists 6 > 0  and M > 0  such that 
supi~ N IFi(O(F)-t)-Fi(O(F))I <<.m Itl for all Itl <6.  

Using Lemma 2.1 and Eqs. (2.20) and (2.21), we have 

(a) IF,,(0(F)) - F,,(0(F))I 

~< ]F,,(0(F) - t) - F,,(0(F))I g,,(t) dt 
- - o o  

~< f IF,,(0(F) - t) - F,(0(F))I g,(t) dt 
d Itl ~< d.  

+ ~,,, >a, IF,,(0(F) - t ) -  F,(0(F))I g,,(t) dt 

<<" fl,, <~ a. IF,,(O(F) - t) - F,(O(F))I g,,(t) dt 

+~l,r>a. g"(t) dt + O(n- 3/4+V) a's" 

For large n, the first term on the right-hand side of the last inequality in 
(a) is bounded by 

M +o f+? 
(b) ~_= Itlg,,(t)dt=M~,, lY] g(y)dy=O(ct,,) 
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and the second term is bounded  by 

(c) n~,](log log n ) -  1 fl.vl > a,,/=. ) ,2g(y)  d.), = O(n~]( log log n ) - i )  

since I_+~ y 2 g ( y ) d y <  ~ .  Thus,  from (a ) - (c )  we have 

I F , , ( 0 ( F ) )  - F , , ( 0 ( F ) ) I  = O(~,,) + O(mt~(log log n) -1)  + O(n -3/4 + o) 

= O(nct~,(log log n ) - I )  + O(n-3/4 + o) 

a.s. as n --* oo and L e m m a  2.2 is proved.  
Because of the hypothesis  of nonsta t ionar i ty ,  we have to define some 

new nota t ions  for the U-statistics. 
For  every p(1 ~< p ~< m) and n >~ m, let 1 <~ il ~ . . .  4 = ip <~ n be arbi t rary  

integers. Put  

,"(Xl,..., x.)= Z 
tit,+ ,.....i,,,)~ lt,.,,(ii .....it,) 

2(xl  ..... Xp; z)+l ..... i.,) (2.22) 

where 

)~(X 1 . . . . .  Xp; ip+ 1 . . . . .  i,.)= f~.,_, h(xl ..... x,.) dF~.+,(Xp+ l)...dFi.,(x,,,) 

and Ip.,,(i, ..... ip) = {(i, ,..., ip); 
p +  1 <~l<~m} and 

l ~ < i p + l r  r  il r (il ..... ip), 

h~ = ~ ~R,,, h(x l  ..... x,,,) dFi , (x l )  ..... dFi~ 
( i [ . . . . . im) ~ lo.n 

where I o . . =  {(i, ..... i,,,), 1 <~il ~ ""  r  
For  every p(1 <~p<~m), set 

Ulff )m-Fl-[m] 2 f~ I~(il'""iP)lY Xp) 
l~ i l~ . . .  ~ip~ n P 

P 

x I-I d ( I t x ~ x j j - F i ~ ( x j ) )  
j = l  

(2.23) 

where n -  E,,,? = (n(n - i ) - - -  (n - m + 1 ) ) -  l 
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L e m m a  2.3. If there exists a posit ive number ~ such that for r = 4 + 6 

r 
max / Ih(xl  ..... x,,,)l r dF,,(x,) s u p  

n ( i l , . . . , im)E { I,..., n }m "Rm 

x . . .  x dFi,,(x,,,) <~ Mo < oo (2.24) 

sup max E( Ih(Xi, ..... X~,,)I r) ~< Mo < oo (2.25) 
n ( i l , . . . , im) e { l,...,n } m 

and for some 6'(0 < 6 ' <  ~), f l (n )=  O(r/-3(4+o')/(2+&')), then we have 

E ( V } ) ) )  4 = 0 ( / 2  - 3  - 7 )  ( 2 . 2 6 )  

where y = 6(6 - 6 ') /(4 + 6)(2 + 6') > 0 and 

E( (p) z U,, ) = O ( n - 3 ) ,  3 <~ p<~m (2.27) 

P r o o f  We first note  that 

ul) '="-E'3 Z F 
t~<i,,,,i2~<,, JR-'"2"" ~ I ,  x2) d(I[x,,<~.,.,] 

-- Fi, (x  l ) ) d( I[ x,,. <~ x,.] - Fi,(xz) ) 

E 2 2 
1 ~<ill,il2~<t/ I ~i21,i22<~n I ~<i31,i32~<n 

2 J ( ( i , , ,  i12), (iz, ,  i22), (i31, i32), (i4,, i42)) 
1 ~< i41.i42 ~< n 

So we have 

E ( U I ? ) )  4 = (Fl - [ m ]  )4  

x 

where 

(2.28) 

htO,,O2)t,,, xi2) = ~ g(xil, xi2, x3 ..... xm) dFis(X3).., dFi,,(x,,,) 2,n ~"a'il 
(i3,..., im) ~ 12.n(ijl ,/)2) 

J( ( i l l ,  i~2), (i21, i2z), (i31, i3z), (i41, i42)) 
4 

- E  1-[ __ { j = f t ,  Uj,.ij2,r . . . .  ~ d( l[x~2~xj , ]_F52(xj2))}  jn2 ,,2.,, v~jl , -~j2jd(I[x~<<.xj ,]-Fo,(xj l))  

(2.29) 

and 
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Let irs(<~n)(r=l ..... 4, s = 1 , 2 )  be mutually different. Reorder irs as 
1 ~<k~ < k 2 <  -.. <ks<~n and put 

J((il~, i~2) ..... (i41, i4z)) = n(kt  ..... ks) = E[g(Xk, ..... Xk,)] (2.30) 

Let d c'~ be the cth largest difference among (kj+ ~-k j ! , j=  1 ..... 7 
Since 

fa g(xl xs) l~(kl '""kS)(~" v" a j  I.'~" 1 ,..., -'-sJ = 0 ( j =  1, 7) (see Appendix) ~ . ~  
8 

It follows from Lemma 5.1 (see Appendix) that 

( )" 
H(kl ..... ks)~<kn(n- lj  M~ 

if k s - k v = d  tl) (2.31) 

and 

Hence 

n[m] 
H(kl ..... ks) ~< \~'-n ~-1 ))4 Mo[fl(k2- kl)] 12 +e~/t4+ ~ 

if k2-k l=d t l~  (2.32) 

H(kl ,..., ks) 
1 <~kl < ""  <ks<<.n 

k 8 - - k T = d  (I) o r  k 2 - -  k I = d  (I) 

[ nt,q ~4 
~<~n(-n-~_l) ) Mo n4 ~ (j'k-1)3tfl(j)] '2+a)/'4+a, (2.33) 

j = l  

If for some j , (2~<j,~6,1~<e~<4),kj ,+l-kj ,=d~'~(l~<e~<4),  then 
from Lemma 5.1 (see Appendix) 

/ hE,,,3 ~ 4  

ot=l  

and hence 

H(kl ..... ks) 
l ~ < k l <  . . .  <k8<~n 

4 { nt"J-kn(n- li)4 <~ Mort4 ~ ( j+ l)3 [fl(j)]t2+,v~4+,) 
j =  I 

Consequently 

[f l(kj ,+l-ks,)]  cz+~v~4+al (2.34) 

(2.35) 
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~, H(kl ,..., ks) 
1 < ~ k l <  - - -  < k s ~ < n  

/" f i l m ]  \ 4  ,1 

<<. M [  - -  | n 4 E (J+ l)[fl(J)] (2+6)/(4+6)=O(nam-3-r) (2.36) 
\n(n - 1 )J j = l 

where M >  0 is some constant. 
We can use a similar method to estimate the sums in the other cases 

and so we have Eq. (2.26). 
The proof of Eq. (2.27) is analogous and so it is omitted. 

Lemma 2.4. Under the conditions of Lemma 2.3, we have 

U, , -  O(F) = mUl,~) + R,, (2.37) 

where R,I= O((n -1 log log n) 1/2) a.s. as n ~ ~ .  

Proof We rewrite Eq. (1.2) as 

p = l  p = 2  

then we have to prove that for every e > 0 

P[[ W,,[ > e(n log log n) 1/2 i.o.] = 0 (2.38) 

where W,,=n(U, , -O(F)-mUI,I~) .  Let n k = [ k  c2+x)t4+6vac6-xl] and 
nko >~ m. Then, from Lemma 2.3 and the Bonferroni inequality 

P [  max IW,,l>>.~(nkloglognk) I/2] 
k = ko m <~ n ~< tlk 

~< P[]  W,, I >//~(r/k log log nk) l/z] 
k = k 0 n 

~<M ~ k - 2 < ~  (2.39) 
k = ko  

some constant. Consequently, from the Borel-Cantelli where M > 0  is 
Lemma, we have 

P[I W,I >>- e(n log log n) u2 i.o.] 

~< PI- max I W,,I >/e(nk log log nk) i.o.-I 
nk <~n<~nk+l 

[- 
~< P | max 

t_ rn<~n<~nk+t 
I w,,I >-~ (rib+ 1 log log nk+ 1) i.o. = 0  
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3. A L A W  O F  T H E  I T E R A T E D  L O G A R I T H M  F O R  T H E  
N O N S T A T I O N A R Y  U-STATISTIC 

a2({F/*})=a2= Ifl(x, ..... x,,,) 1-I d F ( x l ) - O Z ( F )  
m I =  1 

+ ,  [fo ..... i ~  1 2m 

x aF(x,) 1-I ar (x , ) -02(F)  (3.1) 
1 = 2  p = m + 2  

if the limit exists and is finite. 
Let F;.j be the distribution function of (X~, Xj), 1 ~< i < j .  

Theorem 3.1. Suppose the sequence {X;, i~> 1 } is absolutely regular 
with rates satisfying Eq. (2.1). Furthermore, assume that for any 1> 1, there 
exists a continuous d.f. F/* on R 2 with marginals F such that 

IIF,,j-F*_,II =O(p~"X'J-'~), 1 <~i<j (3.2) 

for some 0 < Po < 1 where [I II denotes the norm of total variation. 
Suppose also, that there exists a 6' such that Eqs. (2.24) and (2.25) are 

satisfied. Then we have 

n m [U,, - 0(F)I 
lim,,_sup~ 21/2too(log log n) '/2 - 1 a.s. (3.3) 

Proof  From Lemma 2.4, we have only to prove that 

U(I) t 
lim,,_sup~ 2~/2~r(log log n) 'n = 1 a.s. (3.4) 

where UI, II = ,7 - 1 Z,"= l X,,* and 

�9 _ c . . . .  ~l(h~ | P 

X , , , -  n -  ,~,,(X,) - h]'~,(x), dF,(x))  
an 

(3.5) 

From Lemma 5.6 (in the Appendix), we have to verify that the sequence 
X,,* satisfies the conditions in Eqs. (5.12)-(5.14). Condition in Eq. (5.13) 
follows from condition in Eq. (2.24). Condition in Eq. (5.14) follows from 
condition in Eq. (2.1). 
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We have to prove condition in Eq. (5.12), that is, for any n, m such 
that n/> m and any J c { 1 ..... n } such that card J = m ( )2 

E ~. X* i =mo'2(1 +o(1))  (3.6) 
i E J  

We prove Eq. (3.6) for card J = n ,  because for card J < n ,  the proof is 
similar. Denote 

p (1 )=  I h2(xl,...,x,,,) f l  dF(x , ) -O2(F)  
R m I = 1  

/ = 2  p = m + 2  

) q/(i, i) (;, 2 = (h,.,(x)) d F i ( x ) -  h]'.),,(x) dF,(x) 

~O(i, j )  = 2 J" (J) h ( J + i l t , , ~ d F i . i + j ( x  , y) ,. (hl,,,(x),,1., ~yJ/ 

Vi>~ 1 

i < j  

Then 

E 
n 2 

n - -  1 n - -  i ~ ,  

l ( n - E m - ' ] )  2 ~ E ~b(i , j )-  p(i) 
n i = o  j = l  i = 1  

~< - ( n  - t m - l J  ~, ~,, ~b(i,j) - 1  ( n - i )  p(i) 
/2 i = 0  j = l  1'7 i = 1  

+ 
i = n + l  i = 1  k = i  

= I Z . l + n . + c . .  

From condition in Eq. (3.2), it follows that [A,I = o(1). 
From condition in Eq. (2.24), we deduce that Ip(i)[ ~< 
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(~(i))~'/(2+a')M2/{2+~'} which implies, by using condition in Eq. (2.1), that 
n , 2 B , - ~ 0  and C,,-~ 0 as n--* m. Hence we have IE(~.i= , X, , i ) /n-a21 =o(1)  

and Theorem 3.1 is proved. 

4. A LAW OF THE ITERATED L O G A R I T H M  AND ALMOST SURE 
REPRESENTATION FOR ~.(U.) 

In what follows we make the following assumptions on F and g. 

{F~, 1 >/1 } is uniformly bounded in a neighborhood of 0(F) (4.1) 

foo Itl g ( t ) d t < m  (4.2) 
- - c O  

Proposition 4.1. Under assumptions in Eqs. (4.1) and (4.2), we have 
for any v(0 < v < t) 

sup [P,,(x)-P,,(O(F))-ff,(x)+F,(O(F))l=O(n-3/4+~)+O(a,,) (4.3) 
Ix-- O(F}I ~< at. 

a.s. as n + o o .  

Proof We proceed as in Theorem 3.2 of Lea and Puri. 16~ Suppose 
that {F', i>_. 1} is uniformly bounded in (O(F)-6 ,  O(F)+6) for some 
6 > 0. Note that I x -  0(F)I ~< d,, ~ I x -  0(F)I ~< �89 for large n. Now, 

f+r 
I E ( P , , ( x ) )  - F,,(x)l < IF, , (x  -- t) - F,,(x)l g,(t) at --CO 

J'l,, <a/2 [P"(X--t)--  F,(x)J g,,(t)dt + f l,l>~a/z g,,(t)dt 

But 

fltl >16/2 g.(t) dt = flyl >~ ~;'/2 g(y) dy 

_< 2=,, j'j 
-~--~- [y[ g(y) dy=O(ct,,) as n + m  (4.4) 

yl ~ 6 ~  I/2 

and by Taylor's theorem 
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~1,1 <612 Iff"(x -- t) -- ff,,(x)l g,,(t) dt 

= IF,,(x,)l Itl g , , ( t )dt  
Itl < 612 

f 
+oz, 

~< const. ~,, lYl g(Y) dy = 0(~,,) 
--O0 

as n--,  oo 

where x,  is between x and t. Combining Eqs. (4.4) and (4.5), we have 

I f ( P , , ( x ) )  - g , , ( x ) l  = o ( ~ , , )  

Moreover, for lxl ~< d. 

I F , , ( x )  - P,,(O(F)) - E(P, , (x))  + E(F.(O(F)))I 

(4.5) 

But 

as n ~  oo (4.6) 

[f +o~ g.(t)dt = (P , , (x - t ) - I~ , , (O(F)- t ) -F , , (x - t )+F, , (O(F)- t ) )  
-- 00 

<~ fl g,,(t) dt 
tl ~ 6 /2  

+ f,I < 6/2 IL , (x -  t)--_F,,(O(F)-- t)-- F,(x-- t) + F,(O(F)- t)l g,(t) dt 

(4.7) 

f1,1>~6/2 g,,(t) dt = Iyt>~6/2 g(Y) dy 

_<2~,,f lYl g(y)dy=O(oL,) as n ~ o o  (4.8) 
"~ 6 Jlyl I> 6/2~. 

and the second term of  the last inequality in Eq. (4.7) is bounded  by 

sup K,(t)=O(n-3/4+~ as n --. oo, (4.9) 
I t - O ( F ) l  <~612 

by Lem ma  2.1. 
F rom  Eqs. (4.7)-(4.9), it follows that  

sup I F . ( x )  - P,,(O(F)) - E ( P . ( x ) )  + E(P.(O(F))I  
I x -  O{F)I ~< d. 

= O(n -3/4+v) + O(0~,,) a.s. as n --* oo (4.10) 
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The proof now follows from Eqs. (4.6), (4.10), and the following 
inequality 

IP,,(x) - P,(O(F) ) - F,,(x) + F,,(0(F))I 

~< IP,(x)--  P, , (O(F) ) -  E (P , ( x ) )  + E(P,,(O(F)))I 

+ IE(P,,(x)) - P,,(x) + E(P,,(O(F)))I - P,,(0(F))I 

Theorem 4.1. Suppose that F/'(O(F)) Vi>~ 1 exists and is finite. Then, 
under the conditions of Theorem 3.1 and Eq. (4.2), we have 

F,,( U,,) = F,,( O( F)  ) + m 

where X,,*. is defined in Eq. (3.5) and 

F;,(O(F)) ~ , (4.11) X,,, + R,, 
T/ i=1 

R n = O ( n  -3 /4+v)  q,- O(0~n) a.s.  

as n--* oo and 0 < v < ~ .  

Proof  First, using Theorem 3.1, we obtain 

[ U,, - O( F )1 <<. ( 1 + ~) 21/2man - I/2(log log n ) 1/~ a.s. 

as n ~ ,  forsome e > 0  (4.12) 

Next, by Proposition 4.1, we get 

P,,(U,,) - P,,(O(F)) = F , , (U, , ) -  F,,(O(F)) + O(n -3/4+~) + O(~,,) (4.13) 

a.s. as n---, oo. Now using Young's form of Taylor's theorem, and 
Eq. (4.12), we obtain, 

F,,(U,,) - F,,(O(F)) = ( U , -  o ( r ) )  F' ,(O(F)) + O(n - t  log log n). (4.14) 

The proof follows by using Eqs. (4.13), (4.14), and Lemma 2.4. 

Theorem 4.2. Suppose that F/'(O(F))  exists for Vi>~ 1 and is finite, 
the conditions of Theorem3.1 and condition Eq. (4.2) are satisfied, 
O(F) > 0, and S_~ yZg(y)  dy < oo. Then 

F , , (U, , )=n- '  ~ Y,, ,+R,,  (4.15) 
i = t  
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where Y,,~ = u( O( F ) --X~) + mF',( O( F ) ) X ,,*. and 

R,, = O(n -3/4 + o) + O(n~] log log n) -  l a.s. 

a s n ~  and 0 < v < ~ .  

Proo f  Applying Theorem 4.1, we obtain 

F,(O(F))  ~ X , , + R , ,  F , , (U , , )=F, , (O(F) )+m - -  * 
n i = 1  

where 

R,, = O(n -3/4+ v) _{.. O(O~n) a.s. as n ~ oo 

Next using Lemma 2.2, we obtain 

~',,(O(F)) = F,,(O(F)) + O(n -3/4 + v) ..[_ O(n~](1og log n ) - l )  a.s. 

The proof follows using Eqs. (4.16) and (4.17). 

847 

(4.16) 

(4.17) 

Theorem 4.3. Under the conditions of Theorem 4.2, if ~ , =  
o(n-3/4+~ log n) m) for 0 < v < ~ and F'(O(F))  exists and is finite, then 

1 a.s. (4.18) li---m n 1/2 p ' (  U,,) - F( O( F ) ) 
~/2a 2 log log n 

2 = Sa Az (x )  F(dx)  + 2 Zk~=l SR2 A ( x )  A ( y )  F*dx ,  dy) and A ( x )  = where a .  
u(O(F) - x)  + mF ' (O(F) ) [h l (X)  - 0(F)] ,  and h~(x) = ~ h(x, x 2 ..... Xm) 
I-~','L 2 dF(xi). 

Proo f  The proof follows from Theorem 4.2 and Lemma 5.6 (in the 
Appendix). 

5. A P P E N D I X  

Let p>I2  and l ~ < i ~ < i 2 < . . -  <ip be arbitrary integers. For any 
j( 1 ~<j ~< p -  1 ), p~i,...,~p~ is the probability measure defined by 

p jtii.....ip) (A (J) • B (p-j))  

= P[(X,, ..... X,+)EA J I . . . . .  X,,)EB 

and Pto~'"ap) is the probability measure defined by 

Ptoit'""i'~( A tP)) = P[  ( Xi, ..... Xt,) E A tprl 

86o/7/4-1o 
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for any Au)~g(Xh ..... X~j~ (l~<j~<p) and any B(P-JJEff(Xi/+L ..... Xip), 
(1 ~<j~<p-- 1). 

Lemma 5.1. For every p l > l  and (i~ ..... ip) such that l~< i ,<  
i : <  .-- <ip and any j(1 <<.j<<.p- 1), let h(xl ..... xp) be a Borel function 
such that 

IR, Ih(xl ..... xp)l l+a dPJh'"ipl <~ M 

for some 6 > 0, .then 

[ I~ h(x~ ..... x .)  dP~o',.....",~- f~ h(x, ..... x.)  dP",.....',~., j 

<~ 4MU(Z +~[ 3~/ll +~)(!/+ i - i/) (5.1) 

As a special case, if h(x~ ..... xp) is bounded, say, [h(xl ..... Xp)[ <<. M*, then 
we can replace the right side of Eq. (5.1) by 2M*fl(i/+ ~--i/). 

Proof Follows from Lemma 1 of Yoshihara. tlgl 

Lemma 5.2. Let { Yi, i>~ 1} be a sequence of absolutely regular 
random variables with mean 0. Assume that s u p ~  I Y;l~<Mo and 
sup~>~[Var Yi]u2<<.M. Then, for any a ( 0 < a <  1) and m<<.n sufficiently 
large, 

t l  

P [  n-1 i~=~ Yi >~u]<~2mexp{-~Mo}+2nfl(m) (5.2) 

where k = [ n/m ]. 

Proof Let {Pi, i~> 1} be a sequence of independent random 
variables such that for any i, ~'~ has the same distribution as Y~. Then, from 
Collomb's ~2b~ extension of the Bernstein inequality (see Bennett~) ,  we 
have for any I c  {1 ..... n} such that cardl=m 

5M0J (5.3) 

Let now SUl=Yj+Yj+, , ,W. . .WYj+kim( j=l  ..... m) where for 
j ( 1 <~j <<. m) k~ = kz, , is the largest integer for which j + kjm <~ n. Then 

each 

Y ] P 1>o ~<P[i=~ IS'J'I>~v P[IS'Y'I>~m-'v] (5.4) 
i 1 1 . 1 
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For each j  (1 <~j<~m- 1), let Aj be the Borel subset of R kj+t defined by 

A j = { ( y o  ..... Y k ) : l Y 0 + ' ' ' + Y k j l > ~ m  -tv} 

and put 

gj(Yo ..... Yk) = {10 
if(yo ..... Yk) eAj  
otherwise 

Then ]gj(Yo ..... Ykj)[ ~< 1 and after iterating k j + l  times the inequality of 
Eq. (5.1) for the particular case M* = 1, we get 

P[ISU)I >~m-'v] =E(gj(Yj ..... Yj+kj.,)) 

;Rkj+' gj(Yo,'", Ykj) dFj(yo)'"dFy+km,(Yk) <~ 

+ 2(kj+ 1)fl(m) 

= P [  ,~, ~', >>.m-'v]+ 2(kj+ 1)fl(m) 

j" m -lvkj-"~ 
2 exp ) 5Mo J 

+ 2(kj + 1) fl(m) (from Eq. (5.3)). 

Now from Eqs. (5.4) and (5.5), we get 

(5.5) 

i = l  

If in Eq. (5.6), we replace v by un, we obtain Eq. (5.2). 
The following lemma is the Lemma 3 of Chow and Teicher ~2a) 

[p. 298]. 

- -  n Lemma 5.3. Let ~0,*(t) be the characteristic function of S , , -  Z i=  ~Zj 
where {Zj, j>~ 1} are independent (not necessarily stationary) r.v.'s with 
zero means, and variances a. 2, j t> 1. If F 2 + ~-- z..j= ix - ' "  ~,j- 2 + ~ and s 2 = Z~= 1 a~ 
where y2+~ = E [Zy-- E(Zj)[ ~+6, then for 0 ~< 6 ~< I 

q b * ( ~ , ) - e  -'2/2 ~<3 ~ 2 + 6  e -'2n for It[ < (5:7) 
2F,, 

Lemma 5.4. Let { Y,;, 1 ~< i ~< n, n/> 1 } be a sequence of absolutely 
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regular random variables (with means 0) satisfying the strong mixing con- 
dition. Suppose that )-'.m~> l ~ ( m ) <  t:X3 and there exists a2>  0 such that 

Var Y,,,. =ntr2(1 +o(1))  
i 1 

(5.8) 

Then the process { Y,,~, 1 ~<i<~n, n~> 1 } obeys the law of the iterated 
logarithm, that is lim sup . . . .  I~7= i (Y,,g/x(n))I = 1 a.s., if the following 
requirements are fulfilled for some p > 0 and for all sufficiently large n: 

sup Y,,~<xu - q~(x) = O  l+~; (5.9) 
.~ ~ i i log 

where 

and 

~ ( x ) =  1 f." _,2/2 - - ~  -o~ e dt 

P F  m a x L  l <~J<~,, li~=l Y,i >~bx(n)]=O((log~)l+p) (5.1o) 

where b > 1 is an arbitrary number and x(n)=  (2a2n log log n) I/2. 
This Lemma was proved by Oodaira and Yoshihara t8~ I-Th. 1 ] for the 

stationary case. The proof is similar for the nonstationary case and is there- 
fore omitted. 

Lemma 5.5. For a sequence of random variables satisfying the 
strong mixing condition, the condition in Eq. (5.10) holds if Eq. (5.9) holds 
and there exists a function r =  r(n) such that r(n)<~n(n >1 1), r(n)~ oo as 
n ~ oo and 

r n 1 ], ts.11, 

for any e (0 < e < (b - 1 )/b where b > 1 is an arbitrarily fixed number). 

Proof From Oodaira and YoshiharaCS)[Remark 1, Th. 1]. 

Lemma 5.6. Let { Y,,i, 1 ~< i ~< n, n t> 1 } be a sequence of absolutely 
regular random variables satisfying the strong mixing condition with 
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means 0. Suppose for any n, m such that n>~m and any J c  {1 ..... n} such 
that card J = m 

( E ~ Y,q =ma2(1 +o(1) )  (5.12) 
j E J  

Then the process { Y,,~, 1 ~<i<~n, n >/1 } obeys the law of the iterated 
logarithm if the following requirements are fulfilled for some 5 and 5' such 
that 

sup max EIY,,Az+~=M<oo (5.13) 
n>~ l l <.i<~n 

{a(m)}X/(2+x) < oo (5.14) 
m = l  

Proof Define 

fN(x)={O iflxl ~<N 
otherwise 

We define f N ( x ) = x - f u ( x ) .  Let N = n  m(l +~')(log n) -3 and 

r(n) = [n x/2(l +'V)(log n) 3 ] 

For convenience and without loss of generality, we denote Y; for Y,~. Then 
for any b > 0 

n 
- P [ I Y ,  I+  "" + [ L l ~ b x ( n ) ]  
r 

,] = - P  Ifu(Y~)l >~bx(n 
r i 1 

n rE  IfN(r;)l 

~< b2{z( ,)}2 r j = ,  

n {2 ~ E[IfN(Y,)I 2] 
<~ b:{z(n)} 2r i = ,  

r--I r--i 

+ 2 2 2  
i = I  j = l  

E[ [f N ( Yi)l " If N ( Yj + ~)I ] } 
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2n {1 ~. E[lfu(yi)l=+a] 
b={z(n)} 2'" ~,=1 

r - - I  r - - i  

+ 12 Z (~(i))a'/'2+a'~ Z E[Ifu(Y,)l=+a'] '/'2+a'' 
i = l  j = l  

xE[lf, v(Y:+i,, ~12 + a'~l'/12 + 6'~} (from Lemma 5.7) j 

{~-a "-1 r--, 1 
2n r M +  12 ~ (c~(i)) ~'/l'-+o'~ ~ N2ta_~. ~ 

~ b2{z(n)} 2 r i = i  j = l  

x EEIfN( g,)I2+a'] I/~2+a'~ EEIfN(Yj+,)I2+a'] '/~2+'5')} 
2n {FM 12r Z~i-: (~(i))a'/{z+")MZ/l=+a,)} 

~< b2{x(n)} 2 r "N-g+ N 2ca-6') 

= O ( n - ~ ' )  

holds for some ~, > 0 and 

n-a(r) = n-0 r r ( r - ' 2 + a " / ~ ' ) = O ( ~ )  

(5.15) 

From Lemmas 5.4 and 5.5 it suffices to show 

sup P ~ Yi < ax - O ( x ) = O  1 (5.16) 
x a R  i = 1  

Define p, q and k by p(n)= [nl/2+~], q(n)= [n 1/2-~] and k(n)= [n/(p+q)] 
where ct is a small number. Let N'=n ~'/~6t~+~'~ if 0~<6~<2 and 
N'=n ~/16~1+~'~ if 6 > 2 .  Put 

1 " s:,-  ~ ~ , = 2 , / I ~  / Y,)- e(i~ (y,))) 

1 n 

s,, =../~,__21 q.(r;) - E(:.,(r;))) 

P 

Zi = ~.. (fu,(Yu_l)tp+q)+i))-E(f:v,(Y{i_1~{p+q)+i)), i=I ..... k 
j=l 

I k 

v;,- Y, z, 

I T,I' = S ; , -  T,, 
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Then, it can easily be proved that for some ~ > 0 

1(1  M x ) 
E Ia/il 2 ~<~ \ ~  + g,Zr I M =/~2+a'~ = O(n -r) (5.17) 

(where M is defined in Eq. (5.13)), K is some constant > 0. E IT"[ 2 = O(n-e), 
[E( Z~ 2) - 11 = O(n-e). 

Now, let q~,,(t) be the characteristic function of S,,/ax/-n where 
S,, = E'i'= 1 Yi. Then 

I~o,,(t) - e-'~/2l ~< [q~,(t) - E(e~'S',) I + IE(e ~'s'.) - E(e~'r',)l 
k 

+ E(e~'r") - I-I E ( e ' z j / ~ )  
j = l  

k 

-[- (e-t2/2)--j~=l E ( e i t Z j / ~ ) ]  

=I1 + / 2 + 1 3  +I4 ,  say. (5.18) 

Then, we have 

I~ ~< [/I E(IS,',' l) = O(n -~,/z), I2~  < It[ E(IT~II)=O(n -~/2) (5.19) 

From Lemma 5.3, we have 

e-  '212 - i~1  E( ei'Zd ~ ) 

1~12+6 
<~ 3 i , i  e_t2/2 sup E IZjl 2+~ k~/2 I <~j<~k 

for l t l<~'~;=' i  E(Zj)2,1'2 
k E i / j l2+a 

Since 

1 
rain 

I ~j~k (E IzA2) c2+~v2 

(5.20) 

P p 
E(Z~)<~K(N,)4 p2 ~ j~( j)<K(N,)4 pZ ~ j-2/a' 

j = t  j = l  

~< K(N,)4 p2 max(l,  p-2/~) 

and E(Z~)=ptrZ(1 +o(1))  (from condition Eq. (5.12)), for all sufficiently 
large n, we have 

1 
sup E IZjl 2+a , ~j<~k k p/2 mini <~j~k(E(Z~) ) c2 + p~/2 

2~2+p)/2 
~< sup (E(Z])) ~z+a)/* l <~j<~k kp/2(ptrZ)~,+ p~/~ = O(n-r) (5.21) 
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holds for all sufficiently large n where p = m i n ( 2 , 6 )  and y is a positive 
number. 

We deduce that 

"/~ k E ( e i t Z d ~  ) - " ' -  1--[ - - ~< K'n -~' ]tl 2+a e -tz/2 (5.22) e 

j = l  

holds for all sufficiently large n and for all t such that 

1 1 
Itl ~<�88 n m -  ~/~t +2~) a x 

min~ E ..5 

Now from Eq. (5.14) and using Lemma 5.7, we obtain 

i k E ( e i , Z d ~  E(ei'r'.) - ~ <~k~x(q)=nl/Z-~'o((nl/2-:') -c2+'vl/'v) (5.23) 
j = l  

From Eqs. (5.17)-(5.23) it follows that 

P 
tl 

_ ~3 t ( l o g  n )  3 

[flog,,~3 [llo~,,j~ 
~< ~ clo~,,~ 3 K2 n-~' Itl~+a dt + {E(IS,71)+ E(IT,;'I)} dt 

-- " - -  ( l o g  n )3 

-t- K3 {I  o dt-bf,_,/,<ltl~< k~(q----~)dt+ K4} 
~<lS~<n -'/4 ~ ~tlog,,~ Itl ( logn) 3 

= 0 n )  3 (5.24) 

where K~, i =  1 ..... 4 are constants >0,  and Lemma 5.6 is proved. 

Lemma 5.7. Let {Y,,i, l~<i~<n,n>/1} be a sequence of random 
variables satisfying the strong mixing condition with coefficient ~(m). 
Let U be ~(Y,,i, 1 <<.i<<.j<~n)-measurable and V be a(Y,,~,j+m<<.i<<.n)- 
measurable. If E I U l 2 < o o  and E I V [ 2 < o o  where r - I + p - l + s - I = l  
(1 ~<r, s, p <  oo) then, 

IE(UV)-E(U) E(V)I ~< 12(c~(m)) p-' {E [Ulr} r-' {E IVIS} s-' (5.25) 

Proof This is Proposition 2.8 of Doukhan and Portal/3) 
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