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 In this paper we introduce a class of linear serial rank statistics for the
 problem of testing white noise against alternatives of ARMA serial depend-
 ence. The asymptotic normality of the proposed statistics is established, both
 under the null as well as alternative hypotheses, using LeCam's notion of
 contiguity. The efficiency properties of the proposed statistics are investi-
 gated, and an explicit formulation of the asymptotically most efficient score-
 generating functions is provided. Finally, we study the asymptotic relative
 efficiency of the proposed procedures with respect to their normal theory
 counterparts based on sample autocorrelations.

 1. Introduction. Nonparametric methods have been developed for the
 analysis of univariate, and, much later, for the analysis of multivariate observa-
 tions as a reaction against the distributional assumptions (mostly, that of
 normality) on which much of the classical inference relies.

 The need for nonparametric procedures is even stronger in the area of
 (univariate and multivariate) time-series analysis: indeed, while there are several
 quite tractable inference procedures for independently distributed nonnormal
 observations, almost nothing exists, in time series, except for methods based on
 the normal theory likelihood ratio approach.

 Although many rank-based procedures have been developed in (non-time-
 series context) for testing randomness against different types of trend alternatives
 (see, e.g., Dufour et al. (1982)), one of the most significant problems for practical
 applications, viz. the problem of testing randomness against serial dependence
 using rank methods has not received much attention-apart from some scattered
 results here and there. Of course, even if not always specifically time series-
 oriented, some of the "historical" nonparametric tests, such as the run test and
 the turning point test can be used for testing the hypothesis of an independent
 time series against serial dependence-in fact, the history of the problem can be
 traced back to Hotelling and Pabst (1936), and Wald and Wolfowitz (1943) who
 proposed tests based on serial versions of Spearman's correlation coefficient
 referred to below as Spearman's autocorrelation coefficient (see Section 5.3).
 Jogdeo (1968)-also in a non-time-series context-studied the distribution (un-
 der independence) of a class of statistics which is not unrelated with our Sn
 statistics (to be defined below); however, because of the restrictions he puts on
 the score functions, his statistics are not adapted to time-series situations.
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 Moreover, in none of these early papers is any particular alternative of serial
 dependence considered, nor any optimality question addressed.

 The first attempt to investigate the power of serial rank procedures against
 specific alternatives of serial dependence is due to Knoke (1977), who studies the
 asymptotic relative efficiency of several tests based on rank statistics (e.g.,
 Spearman's first-order autocorrelation coefficient or the turning point statistic)
 with respect to the first-order sample autocorrelation coefficient, for autoregres-
 sive alternatives of order one. This, in some sense, was the first step towards the
 application of rank methods in time-series analysis problems-but the statistics
 that he studies are not new, and are not specifically devised for the alternative
 considered. Recently, in a rather restrictive set-up, Gupta and Govindarajulu
 (1980) considered the first-order autoregressive and moving average normal
 alternatives, and derived a locally most powerful rank statistic which is a
 particular case of our linear serial rank statistic (cf. (1.1)). Aiyar (1981) proposed,
 on heuristic considerations, a test (still for first-order alternatives) based on a
 statistic which is also a particular case of an extended van der Waerden statistic
 which we arrive at in (5.4). Bartels (1982) introduces a rank version of von
 Neumann's ratio test, still for first-order autoregressive alternatives, which he
 shows to be more efficient than the run test and parametric von Neumann test
 (under normality).

 In a somewhat different direction, a highly systematic and theoretically-based
 approach is provided in Bell et al. (1970), where the Pitman functions generating
 the most powerful distribution-free tests are derived for a null hypothesis of
 randomness against the alternative of a process with stationary independent
 increments and several other alternatives of dependence.

 More recently, letting Zt = XtXt_l where (X1 ... Xn) denotes the observed
 series, Dufour (1982) applied to Zt some well-known procedures, such as the sign,
 Wilcoxon, signed rank and van der Waerden tests for symmetry about zero.
 Although the statistics he introduces are new, they still are an adaptation of
 existing ones: no optimality considerations are made and whether multivariate
 extensions are possible is unknown. A sign test of the type studied in Dufour
 (1982) was also considered by Govindarajulu and Dwass (1983). An overall review
 of some of these procedures is given in Govindarajulu (1983).

 In spite of the growing interest in time-series problems, there exists thus no
 systematic, coherent and unified rank order theory, on the model of the one
 developed in Hajek and Sidak (1967) and Puri and Sen (1971) for independent
 observations; the few available results constitute only a very incomplete and
 piecemeal approach, and the subject remains, to a large extent, unexplored.

 The purpose of this paper is to undertake a first systematic time-series oriented
 study of this important problem of testing for randomness against the types of
 serial dependence usually considered in time-series analysis (autoregressive,
 moving average or mixed ARMA dependence). We propose to do so by considering
 the statistics of the form

 (1.1) S,n = (n - p)-1 EXn=p+1 an(R (n) R(n), I R(n)

 where an( ...) is some given score function and R(n) is the rank of the observation
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 made at time t in an observed series of length n. These statistics are what we
 call linear serial rank statistics. There are many reasons for considering this class
 of statistics. For example,

 (a) it is intuitively a quite natural idea to account for serial dependence (of
 order 1 through p) by considering the ranks of successive (p + 1)-tuples
 of observations;

 (b) special cases of the score functions an give traditional test statistics, such
 as the run statistic (with respect to the median)

 an*il i. J1 if (2i - n - 1)(2i2- n - 1) < 0
 l if (2i1-n-1)(2i2-n-1) >. ,

 the turning point statistic

 I 1 if i1 > i2 < i3

 an(il i2 i3) = 1 if il<i2>i3
 10 elsewhere,

 Spearman's rank correlation coefficient of order p (up to additive and

 multiplicative constants)

 an(il, i2, * . ip+l) = ilip+1/(n + 1)2, etc.;

 (c) it can be shown that the locally most powerful rank statistic for testing
 randomness against autocorrelation (AR(1)) alternatives belongs to this
 class of statistics (cf. Ingenbleek (1980));

 (d) multivariate versions can be considered (hence, among others, multivariate
 extensions of the run, turning point, ... statistics); this latter argument is
 very important, since the need for results is particularly strong in the
 multivariate case.

 We mainly develop here the asymptotic theory of the class of tests based on
 linear serial rank statistics, and our approach largely relies on Hajek's projection
 method and LeCam's results on contiguous sequences of hypotheses.

 Denote by H (n) the null hypothesis under which the observed series (of length
 n) is white noise, and by H(n) the alternative under which it is generated by an
 ARMA(p1, P2) model of the form

 (1.2) Xt- n1/2 aXt1 ai = et + n-1/2 X2 biet-i.

 Under fairly mild assumptions (Section 2), we show in Section 3 (Proposition
 3.1) that the sequence of hypotheses H(n) is contiguous to H(n).

 This result, together with a lemma by LeCam, allows us to derive the asymp-
 totic distribution of Sn under the alternatives H(n) from the knowledge of the
 asymptotic joint distribution of Sn and the log-likelihood ratio under H(n); these
 distributions are obtained (Section 4) by introducing an adequate U-statistic.

 The last section (Section 5) is devoted to efficiency considerations. We inves-
 tigate the asymptotic relative efficiency (ARE) of linear serial rank statistics and
 provide (Proposition 5.1) an explicit form of the asymptotically most efficient
 one-hence, for particular density types (normal, logistic, double exponential,
 . . . ), time-series versions of Wilcoxon's, van der Waerden's, median, ... tests.
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 Next, we (Proposition 5.3) compare our nonparametric statistics with their
 classical (normal theory) competitors, based on autocorrelation coefficients. This
 comparison seems to be quite favorable to serial rank statistics: the ARE of the
 "optimal" linear serial rank test with respect to that based on its "optimal"
 normal theory competitor depends on the Fisher information associated with the
 white noise density type, taking value one in the case of normal distribution,
 7.2/9 in the case of logistic distribution and two in the case of double exponential
 distribution. Finally, a more detailed study of the first-order case (ARMA(1, 1),
 AR(1) or MA(1) alternatives) is given, the "optimal" serial rank statistic (in the
 sense of Proposition 5.1) having then the important additional property that it
 is uniformly "optimal" (over the whole range of ARMA(1, 1), AR(1) and MA(1)
 alternatives, and within the class of linear serial rank statistics).

 2. Notation and basic assumptions. Throughout the paper, we denote

 by x = 10, ?1, ?2, * }, JI and C, respectively, the sets of integer, real and
 complex numbers.

 Let le,; t E 2} be a discrete-time stationary white noise, i.e., a sequence of
 independent and identically distributed random variables with means E[et] = 0,
 t E M; assume that it has a density f(x), and that the following conditions are
 satisfied.

 (i) -t has finite moments up to the third order; denote its variance by a 2.

 (ii) f(x) is a.e. derivable, and its derivative f '(x) satisfies f =+ I f'(x) I dx < 00.
 (iii) f(x) has finite Fisher's information I(f ), i.e., f(x) is absolutely continuous

 on finite intervals, and

 (+00~4~ x) 2
 0 < I(f) = (f f(x) dx < X

 (as usual, I(f) is the Fisher information related to the location parameter

 family tfe(x) = f(x - 0)I 0 eE M).
 (iv) Let F(x) be et's distribution function, and F-1(u) = infIx I F(x) > u},

 0 < u < 1. Put

 t(F-1(u)) = -f'(F-1(u))/f(F-1(u)) 0 < u < 1.

 This function can also be written a.e. as 0(x) = -f '(x)/fAx), x E R. Assume
 +(x) is a.e. derivable, and its derivative 0'(x) satisfies (a.e.) a Lipschitz
 condition I q'(x)-?'(y) I < A I x-y 1.

 These conditions are satisfied by most of the densities considered in the theory
 of rank tests. However, they do not include Cauchy and stable distributions.

 Under these conditions, we have (Hajek and gidak (1967) Chapter I)

 r+0
 (2.1) f k(x)f(x) dx = 0

 _00

 and
 (+f

 (2.2) 0'WfW(x dx = I(f
 _co
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 It is also easy to check that

 (2.3) xk(x)f(x) dx = 1

 and

 r+0
 (2.4) &'(x)f(x) dx = I(f).

 _co

 Note also that a2I(f ) is independent of the scale transformation (i.e., if we put
 fj(x) = (1/cr)fi(x/1), then a2I(f,) = I(f1)).

 3. Asymptotic distribution of likelihood ratios.

 3.1. The hypotheses. Let al, * , ap1, b., i *, bp,2 be an arbitrary (P1 + P2)-
 tuple of real numbers, and consider the sequence

 (3.1) x - n-12 E aXX(n)2 = t + n/2 P21 biti, t E 7, n = 1, 2, ...

 of stochastic difference equations. For n sufficiently large, all the roots of the
 characteristic equation

 zP1 - n-1/2 XPi, aizP'-' = 0, z E C

 lie inside the unit-circle, and (3.1) (see, for example, Wold, 1954, page 99)
 generates a sequence of stationary processes $X..; t E XI. Denote by X n) -
 (x(n,* , xff) an observed realization of X(n) -(X, * *

 If 1 = a2 = = ap1 = bi = b2 = ... bp2 = 0, the processes IX(n}l of course all
 coincide with the generating white noise process {et}. The likelihood function of
 the observation x(n) is then

 (3.2) 4n(X(n)) = fln 1 f(X(n))

 Denote by Hon) the sequence of simple (null) hypotheses consisting of these
 densities.

 If (at least) ap, and bp2 are both different from zero, the processes {X(n) are
 stationary autoregressive-moving average processes of order PI and P2 (shortly,
 ARMA(pl, P2) processes). Denote then by G(n) (Xt+x, *.. xt+p,) the distribution
 function of p1 successive values of {X(4). The likelihood function of x("f is

 /I(X(n)) = In t(tn) _ n-1/2 EPI, a(n) + it-l g(n) X(n) -1/2 (P axn)) = fl f(x~ n11 aix +X g(x~ - n11 '1, aix d_* n - J t=l ~t S= t-i u=l gu t-u n =1 t-u-i

 (3.3)
 + U5=Pt' gu )etu) dGab_(x_p,+1, I - I xo)f(e-p2+1), . .. f(eo) de-,,,+, .* , deo,

 where the coefficients g n) are the Green's functions associated with the moving
 average difference operator (L denotes the lag operator) 1 + n-11 =1 biLi (cf.
 Appendix 1). Denote by H [n) the corresponding sequence of hypotheses: H(n) will
 be our sequence of alternatives (ARMA dependence); H(n) is the sequence of null
 hypotheses (randomness).
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 Particular cases of H(') are

 (a) the autoregressive case of order Pi (b1 = = ** . = bp2= 0; ap, , O)

 (b) the moving average case of order P2 (a1 = a2 = *.. = ap, = 0; b,2 # 0).

 The corresponding likelihood functions can be obtained by letting, respectively,
 g) =OeVn, =1, 2, ... or ai = 0, i = 1, p *,p1 in (3.3).

 As we shall see, however, the asymptotic behaviour of the likelihood function
 /1(x (n) is quite similar under the three types of dependence considered (mixed
 ARMA, pure AR or pure MA).

 3.2. Contiguity. In what follows, we shall omit the superscripts (n), and write
 x, xt, X and Xt for x(n), x (n), X(n) and x(n) respectively. Consider the likelihood
 ratio

 (/. (x)//4(x) if /n(x) > 0
 (3-4) Ln (x) = 41 if /4(x) = 4O(X) = O 00 if 41(x) > /4(x) = O.

 It follows from LeCam's first lemma (we adopt here Hajek and gidak's (1967)
 terminology) that, in order to establish that a sequence of hypotheses H (n) is
 contiguous to a sequence H(f), it is sufficient to show that log Ln(X) is asymptot-
 ically normal (under H(n)), with mean -d2/2 and variance d2.

 The following proposition therefore implies that Hi is contiguous to Ho

 PROPOSITION 3.1. Under H(n), log Ln(X1, ..., Xn) = 5on(X1, ..., Xn) -
 d2/2 + op, where

 (3.5) 5?(X) = n"12 En 1 O(Xt) j= 1 diXt
 (ai + bi 1 c i :5 min(pl, P2)

 (3.6) di= ai P22<icp1 if P2<P1
 tbi Pl<i:p2 if Pl<P2

 (3.7) p = max(p1,P2) and d2 = E dia2I(f).
 Moreover, 2'(X) is asymptotically normal, with mean zero andt variance d2.

 PROOF. See Appendix 2.

 The form of this asymptotic distribution shows that, for n sufficiently large,
 there will be little difference, from a statistical point of view, between AR, MA
 and ARMA models; as an example, the samples x () generated by the models

 xt - n'1/2 aiXti = et, Xt - t + n1/2' ai

 xt-n-1/2 2 aiXt-i/2 = et + n-1/2 >2=4 aje-tj/2

 have the same asymptotic behaviour.
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 4. Asymptotic distribution of linear serial rank statistics. In this
 section, we study the asymptotic distribution under H(') of the linear serial rank
 statistics Sn defined in (1.1). To this end, we derive the joint asymptotic normality
 of

 {n 1/2 (Sn - Mn)8
 ( log Ln J

 under H(n), where

 mn = E[Sn I H (n)] =-i... an(il, i+)
 =[S =n(n -1) ** (n - p) 1:i1X.a.9ip, *n

 The asymptotic normality under H (n) will then follow from LeCam's third lemma
 (Proposition 4.2).

 Put U, = F(Xd) and U = (U1, *.-, Un). We assume that the score functions
 an( .. ) are such that there exists a function J = J(vp+1, vp, ** , v1), defined over
 [0, 1]P+1, such that

 (4.1) 0 < fO1 J 2(vP+1 ... v1) dvp+l ... dv1 < oo

 and

 (4.2) limn,,..E[(J(Up+i, *.., U1) - an(R (n)1, *.., R(n)))2IH(n)] = 0

 (this assumption is satisfied most of the time when an is of the form

 an (il, i2, *, ip+l) = J(il/(n + 1), i2/(n + 1), ..., ip+l/(n + 1)).

 Such a function J will be called a score-generating function (associated with the
 serial rank statistic Sn).

 We proceed as follows. First (Section 4.1), we establish the asymptotic equiv-
 alence of (n - p)'/2(S, - Mn) with 5n - an, where

 (4.3) 5'?n(X) = (n - pY1l2 Xt=p+i J(F(Xt), F(Xt-1), ***, F(Xt,p))
 and

 (4.4) 87n(X) - (n _ .** 2 J(F(Xt,) ... F(Xt
 (4.4) ~ n(n -1) ... (n -p) l Otl#.* S np+ll

 then (Section 4.2) we show that n-1/2(5n - an) and n-112y50 are themselves
 asymptotically equivalent to U-statistics. An appropriate convergence theorem
 for U-statistics finally establishes (Section 4.3) the desired result.

 4.1. Asymptotic equivalence of (n - p)1/2(Sn - Mn) and (5?n - n) (under
 H(n)). Let

 (4.5) An(X) = (n - p) / (Sn(X) - Mn) - (5'n(X) - n(X)).

 Then it suffices to show that limn,,.,.E[Av(X)] = 0.
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 First, note that

 (n - p)112Sn - = (n _ p)Y112 En p+i [an(R n)*, Rn_- J(U(Rt), ..., U(RtP))

 can be written as

 (n _ p) 12 En 1 j(-(R(n). *.n, R()) - Sc(X; U(.))

 where U(.) is the vector (U(j), U(2), * , U(n)). Conditionally, given the vector U(.),
 nU)(- ...= an(...)-J( ...) is indeed a score function, and, consequently,

 Sa(X; U(.)) is a linear serial rank statistic.
 Now

 E[Av(X)] = Eu(.)[E[((n - p)'12Sc(X; U(.)) - ((n- p)I2mn - (X)))21 U ]]

 and

 E[(n - p)112Sa(X; U(.)) I U(.)]

 = (n -p)'12[Ean(Rp+, * R1") EJ(URi1, * URjn))I

 = (n p)12Mn - 1 t *... UtP+)1
 n(n-1) (n-p) 1-ti . Otp+,-n

 = (n-p)"1/2mn _ -

 Hence, denoting by D2(Sn I U(.)) the conditional variance of Sa(X; U(.)), we have

 E[A2] = (n - p)Eu(.)[D2(Sa I U(-))]

 In view of Lemmas 2 and 4 (Appendix 3), we obtain

 E[,A21 c Eu(.)[D2(a u(-) I U(.))(2p + 1)

 + n Cov(au()(Ra(n) 1R(n) ...R an'(RuR(n) 2R(n) R2(n)U))]

 c (2p + 1 + K)Eu(.)[E[(aou4f(R+, * ... R(n)))21 U(.)]]

 = (2p + 1 + K)E[(au(')(R , *n , R(n)))2],

 which by (4.2) converges to 0 (as n oo).

 4.2. We now show that n'1/2(5'?1 - Xn) and n-112Y5 are asymptotically equiv-
 alent to U-statistics.

 Define the (p + 1)-dimensional random variables

 Yt, 1 Ut

 (4.6) Y P + 1 p t + t n.

 The Yt's are identically distributed (uniformly over [0, 1]P+l, under H n)); of
 course, they are not independent-but, being p-dependent, they constitute an
 absolutely regular process (Yoshihara, 1976).
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 Consider the function G(y)(of (p + 1) arguments y = (yl **, yp+) e
 [0, 1]P+l) where

 (4.7) G(y) = G(y), ', yp+i) = 4F-'(y,)) Pt diF-'(y1+,).

 G(Y) could serve as a kernel (of degree 1) converting the variables n"tI24Y into
 a sequence of U-statistics. However, in order to obtain a U-statistic approxima-
 tion of n-"e2n we shall need a kernel of degree (p + 1). Therefore, put

 (4.8) *NYe, *, YtP+1) = 1 G(Yt)/(p + 1),
 then the corresponding U-statistic is

 f -1

 (;; ) p+iNjt : - (Ye , y Ytp) un'12Y5 + op(n-2).
 +1 p1-tj< .. tp+j!5n

 In a slmilar way, the kernel

 (4.9) 4' (Yt11 . Y y+) Y=Zt J(Y)/(p + 1)
 - XS1 J(Yt,,, ..., YtjP+,)/(p + 1)

 defines a U-statistic which is asymptotically equ'ivalent to ni112Y.:

 ( - i(`"2Yn + op(n12).
 iP~ ~ ~ ~~~~t ytp+l) = n<.+i

 As for Z, let us consider the kernel

 (4.10) 4'(Yl, .., Y ) = (1/(p + 1)! ) J(Yj1,, I * , ,)J

 where the summation Lj extends over all possible (p + 1)! permutations
 /l} j+ 1) of (t, *, tp+D. The corresponding U-statistic is

 W 9 n -P S * ,+tY* n= ...E 4tx(tll 0 ..., Yt)

 (1/(n -p) .. (n- 2p)) X .. I J(U ... U+l).
 p;+1 stio .. 9 &tp+,:sn

 From (4.4), we obtain

 (n -p)-'12 _ (( -p) (n - 2p))/(n(n -1) . (n -p))WK + 3,,

 where

 Jn ( l/nUn -) . U U (n - p)) L U L U *?
 1s1#- * *1<- lkl <.-<k,Ip+l P+1<tO.-tp+^ * fts -/n

 J( utS ** -th,71 *X*l Utl -2UW471 uti**,*k,_ %o'R-+7* }1-)
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 The number of terms, in An, is

 p(p - 1) ...

 (p + 1) ... (p + 2 -/) (n-p) * (n /)

 'p! (p + l)! (n -p) ... (n -2p + 1).

 Thus,

 E I !n1 (0 + 1) (n -p) ... (n 2p + 1) E I J(Up+1 ... Uj) I = O(n1),
 n(n -1) ... (n-p)

 and

 1 - 2 + o(n-1/2).

 4.3. Asymptotic normality. It follows from the conclusions of the preceding
 section that, a and 1B being arbitrary coefficients, 2, = n-1/2[a (5n - gn) +
 fl2'?] is (up to op(n-1/2) terms) a sequence of U-statistics, with kernel

 (4.11) = a($ - ) + f3t$.

 A number of results are available concerning the asymptotic behaviour of
 U-statistics in case the sample observations (here, the Yt's) are not independent.
 The one we are using in Proposition 4.1 below is a theorem established by
 Yoshihara (1976) for the class of stationary absolutely regular processes-from
 which the p-dependent processes constitute a subclass.
 Let

 J*(up+1,***, ui) =J(up+1,***, ui)

 (4.12) .1 J(vp,.* , k,.ul,vl, *,vvl)dl* dvp k1 , VlP VkUlIV1, Vdv

 + p [lj+ J(vp+,, *Xvi) dv ... dvp+l.

 Obviously, E[J* (Up+1, * , U1)] = 0. We have then the following results.

 PROPOSITION 4.1. Under HO

 -Irn(Sn - mnO)
 log Ln /

 is asymptotically normal, with mean

 (-1/2 EP ) 62(f

 and covariance matrix

 V2 21 diCif

 \P diCi El,=, di?u2I(f)'



 1166 HALLIN, INGENBLEEK AND PURI

 where

 V r J*'(v,+,,--- vi) dvi . dvp+l (4.13) O,1]P+1

 + 2 El? J*(vp+1, * * *, v1)J*(vp+1+j, * * *, vl+;) dv1 .*. dvp+1+

 and

 (4.14) Ci = J*(vp+,, * , vl) EP-i p(F-1(vp+, j))F(vp+, _,) dv, ... dvp+,.

 PROPOSITION 4.2. Under H(ln), V(Sn - mn) is asymptotically normal, with
 mean = diCi and variance V2.

 The proof of Proposition 4.1 is given in Appendix 4; Proposition 4.2 follows
 immediately from Proposition 4.1, by application of LeCam's third lemma. Note
 that the asymptotic variance V2 depends only on the score-generating function
 J( ... ), not on the ARMA model coefficients ai and bi (cf. (3.7)), nor on the white
 noise density f. The mean, on the contrary, depends on both f and the coefficients
 ai and bi; however, it remains invariant under scale transformations because of
 its dependence on f only through o(F-1(u))F-1(v).

 5. Asymptotic efficiency of linear serial rank statistics.

 5.1. ARE of two linear serial rank statistics-Optimal scores. The results of
 Proposition 4.2 allow for an explicit form of the asymptotic relative efficiency of
 two linear serial rank statistics.

 Let Sn) and S(2) have asymptotic normal distributions under H('), with means
 E diCd') and E diC(2) and with variances V(1) and V(). Then, the ARE of S(
 with respect to S?2) is

 (5.1) e(Sn, Sn n) = (V(2) El?1 dCd1)/V(l) EP1 diC)

 A test statistic S.n such that e(3n, SO) 2 1 for any linear serial rank statistic
 Sn will be asymptotically the most efficient statistic (in Pitman's sense) within
 the class of linear serial rank statistics for testing randomness (i.e., H(n)) against
 ARMA dependence (i.e., H(n)). (A test based on gn will be called the asymptoti-
 cally optimal test against H W.) We shall denote by Hdn) a sequence of alterna-
 tives characterized by the coefficients d = (dl, * , dp) (cf. (1.2) and (3.6)).

 The following result provides an explicit formulation of the optimal test
 statistic.

 PROPOSITION 5.1. An asymptotically optimal linear serial rank test for Ho
 against H (n) is provided by any statistic Sli with score-generating function (up to
 additive and multiplicative constants) given by

 (5.2) J (v +1, **, V1) = = (di/(p + 1-) - i_))F-V < -i)-
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 Under H"n (4 E RP), n'12(Sd - m*) is asymptotically normal, with mean
 ZI= hidio2I(f) and variance Vi = 2P d&i2I(f).

 This optimality result relies on the following lemma whose proof is given in
 Appendix 5.

 LEMMA 5.1. Let Sn be a linear rank statistic with score-generating function

 J*(v,+,, - **, v1)(cf. (4.12)), and let

 (5.3) JO* (v,+ , -**, v1)
 = (aI(t)-l S=1 (Cp+ -) ,=-o' 0 (F-'(vp+1_j))F-'(vp+1_j_i). - (cr2(f))' (Ci/(p + 1 - i)) ZP?=o

 Denote by S? a linear serial rank statistic associated with J*. Then e(Sn, SO) < 1
 for any alternative Hn.

 J* (vp+i, *.*, v1) is actually the projection of J*(vp+i, ** , vl) onto the linear
 L2-space spanned by I j2_-oz 0(F-1(vp+le))F-'(vp+1_j_i); i = 1, *-, p}. This im-
 mediately follows from (4.14) and

 T [JP= 0(F-'(vp+1_j))F-1(vp+l_j_,)]2 dvp+l ... dv1 = (p + 1 - i)2I(f).

 Similarly, (So - m?) is the projection (under H(n) and up to op(n-1/2) terms)
 of (Sn - mO) onto the second-order linear space spanned by p linear serial rank
 statistics of orders 1 through p, associated with the score-generating functions

 =-1 X (F-1(vp+7_j))F-1(vp+7 j-i), i = 1, * * , p.

 PROOF OF PROPOSITION 5.1. Because of Lemma 5.1, we may restrict our
 attention to score functions of the form (5.3). The corresponding statistic has an
 asymptotic variance

 Vo=2 - r cS f [ (F-1(u))F-(v)]2 du dv

 + 2 = = X,o0 k c*ck f F1(vp+1..))F-1(vp+1.1.i)

 * X(F-l(vp+l+8,-))F-l(vp+l+8-,-k) dv

 where ci = (of2I(f))-1C,/(p + 1 - i).
 Omitting routine computations, we obtain

 V20 = a2I(f)[1= p I 9-)i + P-Ci J=' (p + 1- j -i)]
 ( -c2I(f) xp=1 C?(p + 1 - i)2 = (ff2J(f))d-1 E i C2

 The values of the Ci's that maximize

 (XP=1 diCi)2/Vo = (a2I(f))(Xpz= diCi)2/Zp. 1 C?

 are thus proportional to the di's, and this establishes the desired result. 0
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 Note that the optimal scores (5.2) could also be taken as

 JI(v,+,, * -**, v1) = ZiPI= (d,/(p + 1 - i)) "=-o F-(vp+ie)k(F-l(vp+i.-)).

 This is in accordance with the fact that, due to stationarity, if $x,) is generated
 by an ARMA model of the form (3.1), it can also be seen as generated by an
 ARMA model of the form

 Xt - n-1/2 Pi1 aiXt+i = et + n-1/2 Z21 bict+j.

 An additional consequence of Proposition 5.1 is that the "optimal" serial rank
 statistic against an ARMA(pl, P2) alternative is a serial rank statistic of order
 p = max(pl, P2). Using a statistic of the wrong order-whether too low or too
 high-always results into a loss of efficiency.

 EXAMPLES. The optimal score functions in (5.2) depend only on the type of
 the density of the generating white noise; examples are:

 (i) Gaussian white noise (van der Waerden scores)

 J(vp+1 , v1) = X1=i (d,/(p + 1 -i)) 2j"- =-1(vp+15)4-1(vp+1-_i)

 (with ?(x) = (27rX)-1/2 e-2/2 du).

 (ii) Logistic white noise (Wilcoxon scores)

 (5.6) J(u,+1, ..., v1)
 = Xl'=, (di/(p + 1 -i)) ZjfAo (2 vp+1.1 - l)log(vp+i_j_l1(1 - vp+j_j_j)).

 (iii) Double exponential white noise (median test scores)

 J(vp+l,*--, v1) = ZPI=, d,/(p + 1 -i) Z'P` sgn(vp+i1 - 2)Fe1(vp+liji)

 (with Fe (x) = e-l" du).

 As an example of an optimal test statistic, let us consider the problem of
 testing randomness against the sequence of ARMA(2, 1) alternatives

 Xt + (1.4)n112X 1 + (0.5)n112X-2 = Ct + (0.2)n"2etl, t E X

 where IetI has a logistic density (with unspecified variance). The following serial
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 version of Wilcoxon's test is then optimal:

 Sn = (n -2)i t= {i2 [(2 n + 1 l)iog( + 1)

 ( Rn+1 1)

 n+ n)t1 - 1 log Rt2

 -0.(2n+ 1 -Rn2R+1J2

 = -(1.2)(n - 1) l t=2 (2 n + 1"lol?g -R(n) + n1
 R(n) \ R(n) n +1 - 5n - Rti1j

 -(0.5)(n- 2)-1 ,t=3 2 - l'og R(n)2 + 1 + O(n-').
 n + 1 kn- Rt-2~

 5.2. Comparison withclassicalparametricprocedures. Theparametric version
 of our problem is treated, in the Gaussian case, by Anderson (1971, Chapter 6).
 For the problem of testing for randomness against an alternative of AR(p)
 dependence

 (5.8) Xt - E=1 #iXt-i = et, t E z

 (with flp # 0), Anderson (1971, page 266) shows that the most powerful similar
 test is based on a test statistic

 (5.9) Pk= zkrn

 where

 (5.10) Yk = i3k + E ip IkiA3i+k,

 k ) being a serial correlation coefficient of order k. These coefficients are such
 that

 (5.11) -(n) = r(n) + op(n-1/2)

 where rk7) is the sample autocorrelation coefficient of order k, i.e.,

 (5.12) rk = (n/(n - k)) En=k+1 XtXt-k/lE =1 X2.

 It is therefore natural to compare our linear serial rank statistics (1.1) with linear
 combinations of the autocorrelation coefficients (also, time-series analysts gen-
 erally give much attention to the correlogram of their series). In order to do this,
 we need the asymptotic joint distribution of those linear combinations and log
 Ln under Ho
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 PROPOSITION 5.2. Under HO , (n /2r,), ..., n" 'r( , log LO)' is asymptotically
 normal, with mean (0, *, 0, -1/2" I1 d?%2I(f))' and covariance matrix

 \ ~~~~dp
 K d, ... dp XdUT2I(f))

 (I being the p x p identity matrix).

 COROLLARY 5.1. Under H( , n1/2 Z2=i akr(n) is asymptotically normal with mean EllL, aidi and variance >P 1 a,2

 COROLLARY 5.2. The asymptotically most efficient (in Pitman's sense) linear

 combination of the r W)'s against H(n) is Z2=j dkr n)

 PROOF. See Appendix 6. 0

 Letting i= = f3i = n"2ai in (5.10), and by denoting by ykrz) the corresponding
 values of 'Yk, we obtain in the pure AR(p) case, that

 = dkrn) = n1/2 Py (n) * (n) +

 The asymptotically optimal test statistic in Corollary 5.2 is thus asymptotically
 equivalent to the one providing the most powerful similar test (which is of course
 not surprising !).

 Now, if we denote by e the ARE of the asymptotically optimal serial rank
 statistic defined in Proposition 5.1 with respect to the asymptotically optimal
 combination of autocorrelations P=l dkr(n), we obtain the following result.

 PROPOSITION 5.3.

 (5.13) e = a21(f).

 PROOF. On account of Proposition 5.1 and Corollary 5.1, we have

 (PI=, d?cr2I(f)) 2/2" 1 d2a2I(f) = o21(f). 0

 This efficiency thus depends on the density f. For normal, logistic, and double
 exponential densities, it takes the values 1, ir2/9, and 2, respectively.

 A more detailed study for the case p = 1 is given in the next section.

 5.3. The first-order case (AR(1), MA(1) or ARMA(1, 1) alternatives). The
 asymptotic mean of any linear serial rank statistic has the form of an inner
 product El,= dEC,; any of these statistics has thus the drawback that, when
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 p - 2, there exists, for any type of density f, a family of alternatives against
 which this statistic has a zero efficiency-namely, the alternatives characterized

 by a vector of coefficients d = (di) (cf. 3.7)) orthogonal to C = (Ci) (4.14) (recall
 that Ci depends only on J and f).

 This does not happen, however, in the first-order case (p = 1); indeed the
 ARE of a linear serial rank statistic SY1) with respect to another S(2) is given by

 e(S"), S(2)) C(ctl/V,I)2

 and hence does not depend on the alternative. As a consequence, the statistic

 (5.14) S = (n - 1)-l t=2 ( n + 1)F F(n + 1

 is uniformly asymptotically most efficient against the whole family of
 ARMA(1, 1) alternatives where f is a strongly unimodal density (cf. Hajek and
 Sidak, 1967).

 The classical parametric test statistic in this problem is the first-order auto-
 correlation coefficient r. Under the usual gaussian assumptions, this statistic
 (cf. Anderson, 1971, Chapter 6) provides the (one-sided) uniformly most powerful
 similar and (two-sided) unbiased tests. It is therefore interesting to investigate
 the AREs e(Sf ) of (5.14) with respect to r(n)

 In Table 1, we give, for various score functions (van der Waerden, Wilcoxon,
 median test, Spearman) and various density types (normal, logistic and double
 exponential), the values of e(Sf ).

 Because of its popularity, we also include in this comparative study the
 Spearman autocorrelation coefficient of order 1, viz.

 n (n - 1) St=2 Rt )RtP1 - (n + 1)/2)2
 r= -2 rs = (n2 _ 1)/12

 rn is equivalent (for strongly unimodal densities f(.)) to the linear serial rank
 statistic S' induced by the score-generating function J(u, v)= uv. Indeed, it can
 be shown that

 rn= (Ss_ 1/4)/(/12(n - 1)/(n + 1)),

 with

 Ms= E(Ss) = (3 n2 - n - 2)/12(n2 - 1)
 and

 v 0o112 UV - 2 +) du dv= (144)-l
 Consequently, n'/2(Ss - ms) is asymptotically normal, with mean 0 and variance
 1/144 (under H(n)). This confirms a classical result (cf., for example,
 Kendall and Stuart, 1968) that n1/2rn is asymptotically normal, with mean 0
 and variance 1.
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 APPENDIX 1

 The Green's functions. Denoting by L the lag operator (Lit = At-,), consider
 the linear difference operator of order p: C(L) = 1 + EP ciL, where the ci's are
 real and cp $ 0. The Green's function gu associated with this operator is (cf.
 Miller, 1968, Chapter 2.2 or Hallin, 1984) the value in t = u of the solution of
 the homogeneous difference equation i/t + EP 1 ciIt'i = 0, t e X, taking on initial
 values 4/o = 1, i,-1 = *= '-p+i = 0.

 Let gf(n) be the Green's function associated with the operator B(n)(L) =
 1 + n-2 = biL'. The following lemma will be helpful for the proof of
 Proposition 3.1.

 LEMMA 1.

 Ev I g(n I < 'w=-'[l)/p+l (pbmn I2)U VW : V 2 0

 where bM = maxi I bi I

 COROLLARY 1. For n > 4(pbM)2,

 (Al) Eu=pv+l I g(n) I 2(pbMnl2)v+l = o(n-v/2) Vv O .

 PROOF. g(n) is a sum of terms of the form

 (A2) (_l)k (bi(l) bi(2) ... bi(,))n-k/2

 where the indexes i(1), ***, i(k) E {1, *- * , p} need not be distinct, and [(u - 1)/p]
 + 1 c k c u ([z] stands for the largest integer c z). Each of these terms is
 absolutely bounded by (bMn-1/2)k.

 Denote by v k the maximal (some might collapse) number of these terms in
 (n) Vk does not depend on n. Put VP = &ko, and vu = 0 for u < 0 or k 4

 [[(u -1)/p] + 1; u]. Obviously, vk = EL, v Hence, letting Uk = >= vk -
 Eu=k vu, we get v = = u=O Vu = pV and, since v = 1, = it follows
 that

 Ew | g(n) < Ck[( -l)/p]+l v(bMn/) = k , (pb 1n2)k.

 The proof of Corollary 1 is straightforward. [1

 APPENDIX 2

 PROOF OF PROPOSITION 3.1. To avoid unnecessary details of computations
 involved in the proof for the general ARMA(pl, P2) case, we successively consider
 the pure AR(p) and MA(p) cases, since these two cases cover all the problems
 raised in the general case.

 A2.1. The AR(p) case. Let Xo = (X_p+,, * , X0), and

 n f(Xt - n2 /E aiX) - X(n (X; X0).
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 Then, we have (a.e.)

 log X(')(X; X0)

 (A3) n 1 log f(X,) + n"1/2 nL1 O(Xt) J-=1 aXt-i

 -(2n)-' En -n(Xt '2 >2"O aXt) J aajXt_iXtj,
 with 0 =(Xn, *..., X_p+1) E [0, 1]. The first-order term in (A3) is

 (A4) Y?(X) + n"1/2 pU i(XM) EP 1 aiXt-i = Y?(X) + op.
 Yon is itself of the form n/2 Sp+l Zt, where the Zt's are p-dependent. It is
 therefore (cf., for example, Anderson, 1971, page 427) asymptotically normal with
 mean E[Zt] = 0 and variance

 E[Z21 + 2 EP 1 E[ZtZt+i] = (>P 1 a?)a2I(f) + 0 d2.
 Now consider the second-order term in (A3). Put I a = maxi I ai and

 Qt = EX,j=1 aiajXt_iXt- q being Lipschitzian (assumption (iv)), we have

 I 1/zi Qq Y(X -0n >2"1 aXt_) - >n1 Qtot(Xt) I
 c n-1/2A I aM I yn1 1 Qt I yp=1iX-

 c n'2 I A ~ | aM |Et=l tj,k=l I Xt-iXt-1Xtk I.

 Since its summands are p-dependent, and since (assumption (i)) E I XrXSXt I<
 00 Vr, s, t, this upper bound is O0(n1/2). It follows that the second-order term in
 (A3) can be written as -(2n)-l En=1 0&(Xt) P2j_ a-ajXt_iXtj + op, and hence
 converges in probability to -1/2 EP1 a?E['(Xt)X2 i =-d2/2. Summing up,

 log X(n)(X; X0) = log /(n)(X) + 50n(X)-(d22) + (n)(Xp .. . Xo ... X

 where R(n) is op. Hence

 log L(n)(X) = log E[exp(log X(n)(X; XO) - log /4n(X)) I XI

 = (Y2(X) - d2/2) + log Ejexp(R (n)) I X] - (Y'(X) - d2/2) + o,,
 where the latter expectation is to be taken with respect to the joint distribution
 G n of X_p+1 . , X

 Proposition 3.1 now readily follows from the asymptotic normality of S9(X).

 A2.2 The MA(p) case. Define here log X(n)(X, Co) where co = (p+, ***, 0)
 as

 log X(n)(X,, ) = In 1 log f(Xt + E2All g(n)Xt- + > 1 g(n)_t

 (A5) = En=l log f(Xt) -_ E (t-1 g(nf)Xt_u + Jt+P-lg(n)2C-
 -1/2 E>n (ut-1 g(n)Xt_u + Etpl gun)ft_u)

 * qY(Xt + 0 Eu=l > u + 0 u u

 with 0 = O(X, c) E [O, 1].
 The first-order term in (A5) is

 ->_21 g(n) t2=u+l (AXt)Xt-u - >u=l gu )2 t=-p+l ?k(Xd)ct-u = ->(1) - >(2).
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 Considering -Y,(l), decompose

 -(j) = n-1/2 Z>e bi En+l 4(Xt)Xt_ - ZP= (g(n) + bun"1/2) nt=u+i 4(Xt)Xt
 - 2p (n)n _ n-1 n
 u=P+l gu zt=u+l O(Xt)Xt-u EU2p+l gu Et=-u+l ?O(Xt)Xt-u

 = (11) - (12) -(13) - E(14).

 Up to a finite number of op's Z(11) = 5?(X) (as in (A4), replacing the ai's
 with bi's), and is therefore asymptotically normal, with mean 0 and variance
 d2- = Z1 bV a2I(f). For 1 c u < p, g(n) is a finite sum of terms of the form

 -bun-' 2s bi(,)bi(2,n-2, u -)bi(l) bi(2) .. bi(u) n-u/

 (guf) - bun112) is thus O(n-'), and, since E[O(Xt)Xt-u] = 0, Z(12) converges to 0
 in probability. Identical arguments apply to the case of X(13). As for E(14), it
 follows from Lemma 1 that

 E I (14)I1 C Xu-p+1 gn) (n-2p)EjXt IEI(Xt)j

 < 2(qbM)3n-3/2(n - 2p)E I Xt I E I O(Xt) 1.

 Hence Z(14) also converges to 0.
 Similar arguments can be used to show that Z(2) is also op.
 Let Qt = I Et` g(n)Xt_u + Zt+P-1 g(n)et_u I, and consider the second-order term

 in (A5). Since Xt and et have, under H(n), exactly the same distribution, and since
 our purpose is to prove that this second-order term converges in probability
 to a constant, we may write Qt under the more convenient form Qt -
 I t+p1 glg(n)Xt I. I u=l gu -

 &' being (assumption (iv)) Lipschitzian, this second-order term is of the form

 -1/2 t Qt'(Xt) + 1/2Tn(X, ) where I Tn(X; e) I < AO Et_ Qt.
 Now

 n EQ3 = n1 E zt+P-1 gn)Xtu 13 < M E 1 (tp-1 I gun) 1)3

 ' nM( 1 | (n) 1 )3 < m(2pbM)3 -1/2

 Hence Tn(X, e) is op. Finally,

 _1/2 n 1 Q2&0(Xt) = -1/2 yp= (gn))2 t=u-p+l Xt- U&(Xt)

 -/2 Zn+p-1 (g(n))2 En u_p+l X (

 -Pu+1 zvu-1 g(n)g(n) Etn u_p+l Xt_uXt_vo? (Xt)

 n+p-1 "u-1 (n) (n) vn X X ?u=p+2 LV=( gu >v 2t=u-p+i t_u t_vo"(Xt)

 =- 1/2 X(21) - ?2 (22) - (23) - Z(24).

 =(21) XP=1 (bu/l)2 Xt=u-p+l Xt-u 0 /(Xd)

 + SPU=1 (gun) - 1bn2En2)2 X_=u-p+l X X2_u,(XX)

 + 2 EPu=l (g(- bun- 2)bun-'/2 zt=u-p+ X2- (X)
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 but gXg)2 - bun- , as we already know, is 0(nr2), and thus

 X(21) = Ee=l b?E[X2]E[I`(Xt)] + op = El?1 b?a2I(f ) + op.

 Also

 E I (22) j C n 1 (g(n))2(n - U + p)o21(f)

 < 2(n - )a2I f)(pbmn-1/2)2(p+1)

 E I X(24)1 C(E I Xt 1)2I(f)(n + p - 2) n+p -l I g(n)g(n)I

 < (E Xt )2I(f)(n + p - 2)4(pbmn'1/2)4,

 and, since g(n)g(n) is 0(n1'), X(23) iS Op.
 So far, we have proved that log X(n)(X, e) = log /iW>(X) + yo(X) -(d2/2) +

 Rn(X e) where R (.**) is op. Since L is again a conditional expectation, viz.

 L(n) = E[exp(log n(X, e) - log /(n)(X)) I X],

 the proof follows as in the AR(p) case.

 A2.3. The ARMA(pl, P2) case. We briefly sketch here the proof; it is easy to
 see that it will lead to the same problems as in the AR and MA cases treated
 above.

 Assume P2 ' Pi = p. Denoting by X(n)(X; XO; e), the integrand in (3.3),
 we have

 log k(n) = En 1 log f(Xt)

 + En1 0(Xt)[Lp X -1(n1/2ai - gin)) + n-1/2 EP (n) PaXt

 - X't3+ n g n)(X __- n'1 z a UX-u) - u-E ' gu%=]

 -?/2 ,t_= [n-12 EAP_ aiXt-i - E"-A gun)(Xt_ - n"2 =
 1= =1u Xtu nA-' P (X at-u..*). Ettft-l g(n),,t_U]20i(Xt ]

 The term En d/(Xt) Ep 1 Xt_1(n"/2ai _ g(n)) is of the form (3.5), up to op terms.
 The second-order term converges in probability to -1/2[E"21 (ai + bi)2 +
 e P+1 a?]. The proof follows. E

 APPENDIX 3

 Some properties of linear serial rank statistics.

 LEMMA 2. The variance of (n-P)Sn= *la * *, R tP) is
 D2((n -p)Sn) = (n -p)Var(a(R , * ,(n)))

 + 2 EP 1 (n-p- i)Cov(a(Ri1)+, *. n *(n) . * * n),)

 +[ (n-3p)(n-3p- 1) +p(2n-5p- 1)]

 * Cov(a(R(n2, ... *, RD+2), a(R (n, ... *, R )
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 COROLLARY 2.

 D2((n -p)Sn) c Var(a(R n), ... , R n))(n-p)(2p +1)

 + n Cov7(a(RX n) 2 R ^ Rn>) )(R ... tR *,n))

 PROOF. The proof is straightforwardly obtained by expanding E1 a(... )]2. 0

 LEMMA 3.

 _(n -p- 1)(n -p- 2) .. n t- 2p -1) E[aRp(n+) R(r)) R(n) R(n)
 n(n- 1) ... (n-p) [(1 2p2 p2

 P+, (n-p -l1)(n- p -2) .. (n -2p - 1 +
 + /= - I n(n-1) ... (n - p) p+2: ... 2pp2 Ishk. ...+< sp+l

 * 1 (R n)1 * ,RR'(n) R / 1 **, n') DR'1 DR(n) 1**, (n)) (n R(n2,*** p)2 EWR P+0 t Rkl+,j. k.-1, RI R2p-21'Ip

 PROOF. Again, the proof follows from a tedious enumeration of the n(n - 1)
 (n -p) terms of E ... * a(il, * ip, 4,), which contains (n-p -I)

 C1+ *l .. oipsn

 (n-2p -1) terms with # i# *i ^* #... f ip t n R>2 * , R+ -0, (n-p-i),
 **(n - 2p) terms with # i1 # * ...#i ipR n , *I Rp , R2p2 - 1* (n -
 p-1), ... , (n-2p-1 + /) terms with # It 0 ..i. nR *6 ip n. RR n =
 4..., and (n - p + 1) terms with # 14$ ... 5$ 4ip n 1R2 *. , Rn =
 p + 1.0

 LEMMA 4.

 n I Cov(a(R('), R^n) , a(R2]+2, *n , Rn2)) I c KE(a2(RDn, *. n))

 (where the constant K does not depend on n).

 PROOF. Applying Lemma 3,

 EaRr (Dn) ...R n)E WR(n) D (n) \ DlvP+J, * ,^ 2p+21 * ,p+2)

 - E[a(R , n)., R (n )E[a(R(741 * RXn)j R2, .R J. Rn) 2]]

 n(n-I).. (n-p) 2 n
 (n - p - 1) * (n - 2p - 1) E[a(RP+ *

 - P`1 [(n -2p - 2) (n -2p - 1)-1 ** **
 p+2-j ... 9*#j2p+2 1sk,<. * d$+1

 E[a(R(n)1 , R (n)+ jR(n R(n) p(nl) .. *, R(nf))a(R (n)+ R, (n2)

 For every fixed value of 4 this latter sum contains

 ((p + 1) ... (p + 2 - /))2/(n - 2p - 2 f (n - 2p-1)/!
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 terms and since I E[a( ... )a( ... )] I < E[a2( ... )], this sum is bounded by

 n ((p + 1) ... (p + 2 p-) E[a2(Rn) ...R(n)) =(n -2p - 2 + (n -2p - 1V! p+1'..

 = CnE[a2(Rn+), *., R(n)

 where Cn is O(n-1). Thus

 Cov[a(Rp1, *.n , R (n)) a(R2n) *. Rpn) 1)]

 ( (n - p1 (n -2p-) - )(Ea(R(n+)l R. R(n)))2
 + CnE[a 2(R(n+)l R. R(n))]

 + C'E[a2(R 1 ... R()

 with C' another O(n-1). E

 APPENDIX 4

 PROOF OF PROPOSITION 4.1. The g1 function in Yoshihara's (1976) Theorem
 1 is here

 gat (Yt) Oa (Yt, Y2 * Yp+l dY2 ... dYp+l

 where dyi stands for dyi ,, dyi,2, ** , dyi,p+1. Since

 {1JP ) +y(Yt, Y2, , Yp+l) dy2 ... dYp+l

 = (p + l)-'(G(Yt) + pEG(Y1)) = (p + l)-lk(F-l(Ut)) 1P= diF-l(Ut-j),

 L,iJP(P+1) &5'(Yt, Y2, ', Yp+l) dy2 ... dyp+l

 = (p + l)-'(J(Yt) + p f p+l J(up+1, **, ul) du, ... dup+.),

 and

 T V(Yt, Y2, , Yp+i) dy2 ... dyp+l

 J(up, *.., Uk, Ut, Uk-1, ul., u1) du, ... due,

 we obtain

 g,,'(Yd) = g a(Ut, Ut-p)

 = (p + l)-1[aJ*(Ut, *.., Ut-p) + #0(F-l(Ut)) EP 1 diF-l(Ut-j)I.
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 Clearly, E[g,,(Y,)] = 0; the variance of ga,,(Yt) is

 D 2(g(Yt))

 = (p + 1)-2{a 2 I J*2(V,+l, * v v1) dv1 ... dvp+, + 2af Zl=1 di
 t 0,1]p+1 J

 Js11p+* J*(vp+l ,v)0(F-1(vp+1))F-1(vp+1_i) dvu ... dvp+l

 + /32 EP=1 d2a I(f)};

 the covariances between ga,fi(Yt) and ga,(Yt+j), 1 c j c p, are

 E[gaf(Yt)ga,(Yt+j)]

 =(p + j)-2[ca2s J*(vp+,, v l)J*(vp+,+j, ,vl+j) dvu.. dvp+,+j

 + af3 EXP'2 di ,J F-1(vp+i_i)k(Fl(vp+i))J*(vj++p, , vj+1) dvj+l dvj+1+p

 (with the convention that, for j = p, the sum iP-- vanishes). On account of
 assumption (iii) and (4.1),

 or2 D2(ga#(Yt)) + 2 El? E[gaf(Yt)ga6(Yt+j)]

 = (p + 1)-2la 2V2 + 2af3 El?1 diC, + f2 EA?1 d?a2I(f)I

 (with V2 and Ci given in (4.13) and (4.14)) is never zero; the conditions of
 Yoshihara's (1976) Theorem 1 are therefore satisfied; and n112(W' n - E n/) is
 asymptotically normal, with mean zero and variance (p + 1)2a2 . This completes
 the proof, since

 1/2 (n _ Etln) = acIn(Sn - m) + f(log Ln + 1/2 daY2I(f)) + op. [

 APPENDIX 5

 PROOF OF LEMMA 5.1. It is easy to see that

 P-o (F-1(vp+1_j))F-1(v +11.); i = 1, ***,
 constitutes a p-tuple of L2-orthogonal functions, with norms

 [(p + 1 - i)o21(f)]1/2, i= 1, . . *, p.

 Any square-integrable score-generating function J* can therefore be decomposed
 into J*(vp+1, * *, v1) = J*(vp+1, * *, v1) + JI(vp+1, ** , vD), where JO is given by
 (5.3) and

 (A6) JI J(vp+1, *., v1) EP-' 0(F-1(vp+1_j))F-1(vp+1_j_i) dvp+1, *-, dv1 = 0,

 i =1,* * , p.
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 Denote by S1, S?, and S' linear serial rank statistics associated with J*, JO, and
 JI, respectively; denote by V2, VO, and V' the asymptotic variances of
 1/2m(Sn- M), n1/2(S' - mo) and nlN(Sk - mi), respectively. Then, it is easy to

 check that

 n1(S2 - mn) = n1/2(SO - m?) + n1/2(S* - mi) + o (l),

 with limn1nnE[(S' = m')(S' - mi)] = 0 (under H(nl).
 Thus, we have V2 = VO + VL. Now, since using J* or JO in (4.14) leads to the

 same values of the Ci's, we have

 e(S, S?) - (XP IdiC)2/(VO + V1)
 ( =1 diC,)2/Vo 1

 which completes the proof. U

 APPENDIX 6

 Asymptotic normality of (n1/2r(n) ..., n1/2r(n), log Ln)'.

 PROOF OF PROPOSITION 5.2. Consider the linear combination (with
 Sila = 1)

 /n airn) + / log Ln

 = [o-2 1 n1/2(n E-n,+, XtXt_, + 0?(X)] - l/2o21f2j(f) Xe i

 (A7) - a( -I ((1/n) E1 Xt1)(nl/2/(n - i))n'12 Xt 1 XtXt-i + ot

 = X(1) - /202 Ei d? u2I(f) -(2

 Since n112 E XtXt-k is asymptotically normal, and since (ar2 - ((1/n) St Xt1)
 converges to 0 in probability, (2) is op. Hence

 o 2E- X [ 2 =1 aiXt+i + 0dd)Xj+i)] + op = n112 Zt'=? Zt + ?'.
 An immediate computation gives

 (A8) E(Z2) = a2 12 + /2 Ep 1 d%21f2(f) + 2/ Ei=1 diai

 and

 E(ZtZt+k) = 0.

 Consequently, (A7) is asymptotically normal, with mean -1/22 >2 d?a2I(f) and
 variance (A8). This proves Proposition 5.2. 0

 Corollary 5.1 is an immediate consequence of LeCam's third lemma and

 Corollary 5.2 follows from the Cauchy-Schwarz inequality. [
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