From Bare Metal to Virtual: Lessons Learned when a Supercomputing Institute Deploys its First Cloud

Evan F. Bollig (<u>bollig@umn.edu</u>)

James C. Wilgenbusch

Minnesota Supercomputing Institute

Background (What's in a Name?)

1980's -- "Supercomputing"

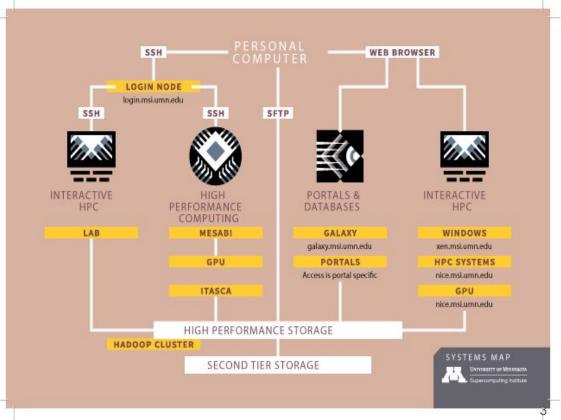
1990's -- "High Performance Computing (HPC)"

2000's -- "Research Computing"

Cyberinfrastructure used to support research

Research supported by cyberinfrastructure

Since 1984, MSI has supported computationally intensive research


- Academic unit under the Office of the Vice President for Research (Research Computing umbrella)
- 42 staff (5 functional groups) for 700 groups, 4000+ users
- Supports public and private entities throughout Minnesota

Background (MSI Core Services)

Homogenous environment simplifies experience and satisfies most data-use agreements

- Most workflows generalize to large HPC clusters (Mesabi and Itasca)
- Tiered storage with global namespace
- Central OIT ID management and authentication

Edge cases handled as one-offs

Requirements and Planning (Unmet Needs)

Edge-Cases become cumbersome

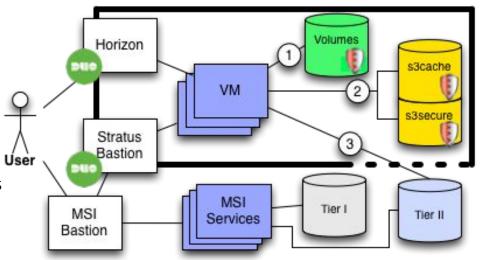
- On-demand resources for data intensive research
 - 10s 100s TBs of data
 - Non-traditional HPC software and workflows
- Long running jobs
 - Monthly maintenance day limits jobs to 29 days
- Container-based computing
 - Docker and sudo pose security risks

- NIH Controlled-Access Data (dbGaP)
 - Limited control over authentication, isolation, and logging
 - Growing number of researchers (40+)
 - One-off model for backups, access control, etc. does not scale
 - Size and cost of storage is high with unique copies required

Is MSI the right provider for these?
A: Yes. With a new resource.

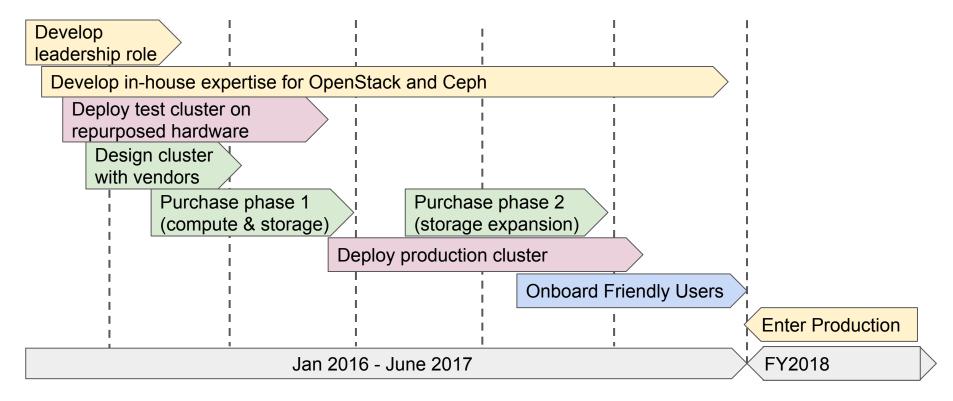
Requirements and Planning (Proposed Solution)

OpenStack Cloud


- Self-service VMs and Volumes
- Containers within VMs
- Live Migration for long jobs

Ceph Storage

- Inexpensive to scale
- Block Storage for VMs and Volumes
- Object Storage for secure S3 Cache and Persistent Storage


Designed for NIH dbGaP data

- Two-factor Authentication
- Encryption and Access Logging
- Isolation from Core Services
- 60 lifecycle on S3Cache

Stratus Compute Cloud

An Ambitious Timeline

Training and Staff Culture (Responsibilities)

New Leadership Roles

- MSI restructured as a Matrix
 - 5 functional verticals (groups)
 - A project spans multiple verticals
- Project Manager
 - Backed by functional leads
 - See project through operational hand-off
- Project Staff
 - Reports to functional lead first
 - Time allocated to project

Staff Effort (% FTE):

- OpenStack deployment, development -- 70%
- Ceph deployment -- 40%
- Acceptance tests and benchmarks
 -- 25%
- Security -- 10%
- Network -- 10%

MSI Team size: 7

Training and Staff Culture (Ownership)

Lesson Learned: For staff, finger pointing is easier than ownership.

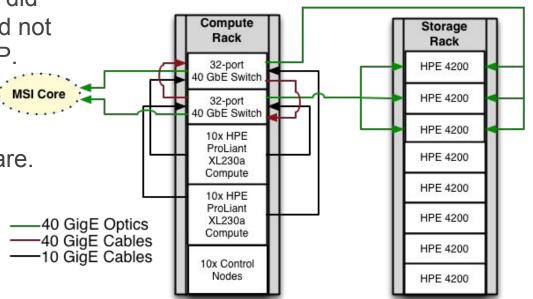
Solution: Take ownership of the project, and compliance. Lead by example.

- Defend logic behind MSI--not another dept or org--as the choice to build this research-centric service.
- "Therapy session" to reassure staff that technical design and documentation will not cost them a job, \$\$, or prison time.
- Weekly "Best Practices for Security" meeting to demystify standards, and open the dialog about implementation.

Training and Staff Culture (Staff-Development)

Lesson Learned: Staff do not always share the same appreciation for adding new services (a.k.a. "responsibilities"). Expect pushback.

Solution: Emphasize Professional Development Opportunities

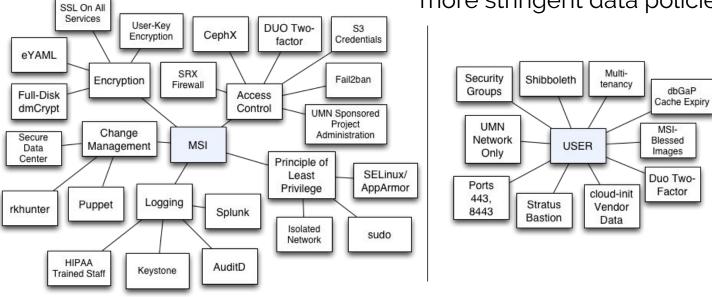

- Research Experience and Co-authorship
 - Four first-time authors on our first submission (https://doi.org/10.1145/3093338.3104185)
- OpenStack and Ceph are hot new skillsets
 - OpenStack Cloud Engineer salaries are 36% higher than industry average
- Cross-training for storage, network, automation, etc.

System Configuration, Acquisition, and Installation

Lesson Learned: Vendor solutions were rigid (i.e., no customization), did not meet security needs and would not be cost effective at scale of dbGaP.

Solution: Custom OpenStack deployment on compatible hardware.

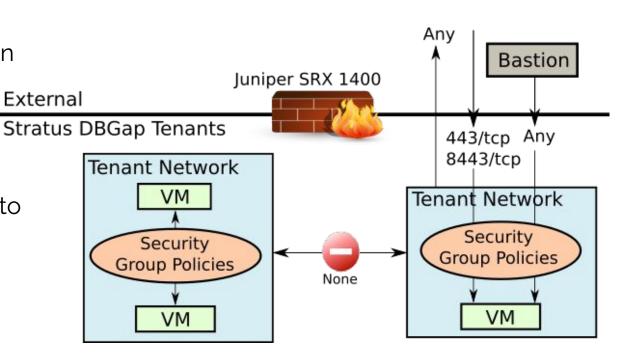
- Develop in-house experience
- Cut costs
- Satisfy Requirements



Security Planning (MSI-first Mentality)

Lesson Learned: the NIH GDS Policy is fairly lax, but a good launching point.

Solution: Use the NIH dbGaP Best-Practices Guide as a checklist. Expand to


more stringent data policies later.

Security Planning (Example: Isolating Users)

Stratus only allows campus network traffic on ports and 443, and 8443 with SSL-encryption significant strategies.

Tenants cannot connect to other tenants

Security Planning (Another Example: Base Images)

We provide a number of base images:

- Vanilla
- dbGaP Blessed
- dbGaP Blessed with Remote Desktop

Lesson Learned: Staff and users will use pre-configured options like Galaxy, and Remote Desktop.

	Name *	Туре	Status	Visibility
o >	Centos7_dbgap_blessed	Image	Active	Public
o >	Centos7_dbgap_blessed_desktop	Image	Active	Public
o >	Centos7_vanilla	Image	Active	Public
o >	Centos7_vanilla_desktop	Image	Active	Public
o >	cirros035	Image	Active	Public
o >	Debian8_dbgap_blessed	Image	Active	Public
o >	Debian8_vanilla	Image	Active	Public 13

Systems Installation and Testing

Lesson Learned: Network, Compute, Storage, it's all there right?

- A single friendly dbGaP user pulled 120TB of data
 - Storage expansion (+1PB raw) was necessary even before first release

Lesson Learned: Staff performing benchmarks and tests expected a managed HPC environment and pre-installed software.

- Train everyone to self-manage infrastructure for the first time
 - Expect a similar pain-point with regular users

Lesson Learned: Benchmarks revealed 5% efficiency loss between bare-metal and virtualization.

Cost Recovery (Zero-Profit Model)

- Include all hardware purchased
 - Target 100% recovery at 85% utilization
- Build in staff FTE costs for support (administration, ticket triage, training, etc.)
- Structure as annual subscription with a la carte extensions
 - o 16 vCPUs, 2TB block storage, 32GB memory, and access to 500TB S3Cache

Service Name	Unit	Cost/Year	
Stratus base subscription	Pkg	\$626.06	
Additional CPU Cores	vCPU	\$20.13	
Additional Block Storage	TB	\$151.95	
Persistent Secure Object Storage	TB	\$70.35	

Lesson Learned: private clouds are significantly cheaper than public cloud

Onboarding Users (Identifying Users)

Lesson Learned: dbGaP users exist, but no one has a complete list of them.

- University's Sponsored Project Administration (SPA) must approve PI for dbGaP project
- 2. PI chooses individuals who are granted access to data on the project
- 3. MSI depends on both SPA and PI to share authorizations
 - a. SPA notifies MSI of new PI
 - b. Email to PI advertises Stratus as option to store and analyze dbGaP data
 - c. PI initiates subscription request and reports list of users
 - d. MSI reviews project status annually to renew the subscription (obeying expiration dates is PI responsibility)

Onboarding Users (Training)

Lesson Learned: users don't really understand what they're asking for when they demand self-service.

First questions during onboarding:

- 1. "How do I run jobs?"
- "Where is my data and software?"
- 3. "Where do I send requests for software installs, or system administration?"

Solution: Be patient! The onboarding tutorial trains users incrementally--with repetition--to answer questions and assuage fears.

Onboarding Users (Meeting Demand)

Lesson Learned: "Enough" is never enough, convenience trumps cost, and users will pay for POSIX*.

Day 1: first group onto Stratus buys 20TB block storage (10% of usable)

- 1st of 31 known dbGaP projects
- Silver Lining:
 - Cost recovery ensures that we can scale to meet demand
 - o If 500TB s3Cache is unused, capacity can be converted to block storage

^{*} We are experimenting with Minio Client to make S3 interaction feel more like POSIX

Future Directions

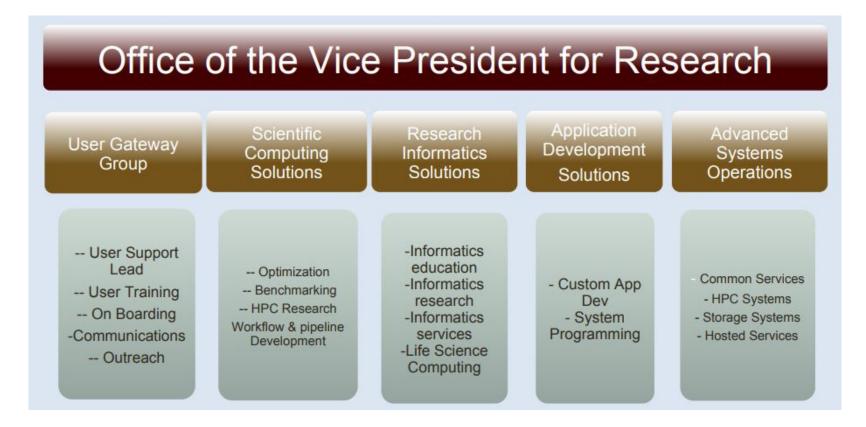
Lesson Learned: dbGaP is just the beginning.

 HIPAA and FISMA (FedRAMP) are "desired", but "need" is a lot harder to establish. (Build it and they will come?)

Lesson Learned: Give and inch and they'll take a mile. General users desire a general compute cloud. Staff desire a new internal infra-cloud.

- Flexibility
- Price
- Security
- Support

Thank You!


Questions?

bollig@umn.edu

Additional

Organization

MSI Services

HPC Systems -- Two systems

 Mesabi (2015) still in Top 20 university-owned supercomputers in the nation (670 TFLOPs plus 105 TFLOPs from GPUs)

Storage -- Three Tiers

- 4.1 PB high-performance Tier I global storage
- 3.1 PB S3 Tier II Object Storage
- Tape Archive

Consulting

- Scientific Computing Solutions
- Research Informatic Solutions
- Application Development Services

Requirements and Planning (Other Motivations)

Subscription-based Service ensures funds exist to scale resources

Isolation from MSI core services improves integrity of all MSI services

Free and open source software with large community

In-house knowledge

Requirements and Planning

Service limits

- 30 day maintenance window
- Compulsory updates on single OS
- Global filesystem shared by all users
- One-off configurations to avoid storage backups and individualize ACLs
- Two-factor auth only through separate bastion

Virtualization Features

- Live-migration for long running jobs
- Self-service VMs updated independently to ensure compatibility
- Per-project tenants and user-lists
- Software defined networking with per-network rules
- Secure file storage