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Standard approaches to multi-agent navigation problems formulate them as searches

for policies that are optimal mappings from belief states to actions. However, computing

such policies is almost always intractable, both in theory and in practice, due in part to

the combinatorial effects of reasoning about uncertain interactions into the future. This

dissertation proposes a framework to address that intractability by identifying when and how

interaction effects can be factored out of the problem while maintaining collision guarantees

and goal-directed motion.

At a low level, stochastic optimal control theory is leveraged to formulate a constrained

interference minimization principle within which multi-objective control problems can be

formulated and solved to a defined level of confidence. At a high level, it is shown that, un-

der certain conditions, complex multi-agent decision process problems can be factored into

independent sub-problems, which removes coordination effects and greatly reduces overall

complexity. These two results are unified into a single problem solving strategy called the

Selective Determinism (SD) framework, which enables robust and efficient solutions to multi-

agent navigation problems.
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Chapter 1

Introduction

Robotics, fundamentally, is the problem of how machines engage in meaningful real-world

interactions. These interactions require reasoning at varying levels of complexity, and as

machines have become capable of more complex reasoning, robots have become capable

of more complex interactions. Examples of domains in which robot successfully engage

in real-world interactions include mining [63, 146], health care [89, 99], and automated

driving [43, 108, 145].

While such applications are impressive, there are still basic types of interaction problems

whose general solutions have remained elusive. One such problem is the motion planning

and decision making problem of how to navigate quickly and efficiently in the presence of

obstacles and other intelligent agents. The problem is referred to here as the multi-agent

navigation problem, and is defined broadly below:

Problem 1. For a set of agents navigating a shared space, each agent may assume that all

agents will choose to avoid collision and to avoid causing collision, but that otherwise agent

decision processes are not fully observable. In such a system, how can an agent compute

controls to navigate toward a given goal without violating collision constraints?

Problem 1 is the kind of problem pedestrians face when navigating crowded sidewalks
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or drivers face when navigating crowded roadways. Variants and aspects of this problem

occur commonly in the world and have received much attention from researchers, e.g. [62,

84, 86, 131, 147, 157], but it has proven surprisingly difficult to provide efficient, robust, and

practical robotics solutions for them. To address this problem in a practical and meaningful

way, this dissertation builds, in part, on an idea explored in van den Berg et al. [153]: that

under certain conditions multi-agent navigation can be achieved by decomposing the problem

into separate collision avoidance and goal direction sub-problems. In order for this idea to

be put to use, the following questions must be addressed:

1. In a stochastic multi-agent system, precisely how can an instance of Problem 1 be

decomposed into independent sub-problems?

2. If an instance of Problem 1 is decomposed into separate sub-problems, how can the

solutions of those sub-problems be re-combined to provide a solution to the original

problem?

The primary contribution of this dissertation is an in-depth investigation of these ques-

tions and their answers, as well as experimental results produced with a novel type of motion

planner. Chapter 2 develops the motion planner and notes that, while it is not suited for

use in multi-agent systems on its own, it has important properties that can be exploited

by a more general navigation solution. Chapter 3 specifically addresses Question 2 in the

context of stochastic optimal control by defining a probabilistic framework that enables

blended-priority control computation to a given level of confidence. Chapter 4 specifically

addresses Question 1 by deriving a general, dynamics-based decision problem for whether

a multi-agent system requires coordination among agents in order to remain collision free.

As is shown, solving this decision problem is precisely what enables a correct navigation
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problem decomposition. Finally, Chapter 5 unifies the results of Chapters 3 & 4 into a single

Selective Determinism framework, which is the solution this dissertation provides to Prob-

lem 1. To demonstrate the framework, a path network traversal problem is defined and the

motion planning algorithm of Chapter 2 is employed to formulate a Selective Determinism

solution. The demonstration shows one of the more powerful aspects of the Selective Deter-

minism framework: that it enables simple, deterministic planning algorithms to be deployed

in complex multi-agent systems where their use would otherwise be inappropriate.

The following sections introduce the multi-agent navigation problem in more details and

provide context for the contributions of this dissertation in the field.

1.1 Multi-agent navigation: “good enough” is often good enough

Classically, the intelligence facet of the navigation problem has been approached from two

sides: perception and planning. In the context of a perception/planning decomposition,

perception is the problem of creating an abstraction of the world within which reasoning can

occur, while planning is the process of reasoning within that abstraction. The goal of this

dissertation is to advance the state of the art in multi-agent navigation planning under the

assumption of reasonable perception input.

When a person thinks about how to solve a given problem, they might naturally want

to solve it in the ‘best’ way possible, that is, to find the ‘optimal’ solution. For small

and well-defined problems, such a solution might be relatively easy to arrive at. But when

problems become large, uncertain, or not-so-well defined, finding an optimal solution becomes

difficult or impossible. In such cases, a person might instead just find a solution that is

sufficient for their needs. When a machine is put to the same big, complex, problem, however,

people often expect that the machine will be able to find the true optimal solution and are
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disappointed when it cannot. This is an unfortunate prejudice because the ability to find

sufficient solutions is exceedingly powerful, especially in domains where global optimality is

not possible or practical.

Multi-agent navigation is precisely one such problem domain. Many popular approaches

to these problems are made tractable through randomization or approximation, but even then

they are often still modified versions of globally optimal solvers formulated fundamentally

in terms of finding a globally optimal solution according to some cost or reward function.

But as covered in Chapters 2, 3, & 4 such optimal navigation solutions for multi-agent

systems, particularly in stochastic systems, cannot tractably be computed. They simply are

not solvable. One significant cause of this intractability is the inter-dependencies of agent

actions: if the goal is solve a multi-agent system optimally, one necessarily must consider

interaction effects not only of one’s own actions on the other agents, but of the actions of all

other agents on each other.

In light of this problem with optimal solution techniques, the problem statement in

Problem 1, by design, does not mention optimality. It may be advantageous to perform

optimization in some manner and to some degree, but, as stated, there’s no need for the

solution to be optimal with respect to the problem statement. This leaves the door open for

sufficient, or “good enough,” solutions. One such sufficient solution frames the multi-agent

navigation problem in terms of guided collision avoidance:

Definition 1. Guided collision avoidance describes the strategy of choosing goal-directed

motions from the space of collision avoiding controls in order to navigate to a goal while

satisfying collision constraints.

Guided collision avoidance exploits the fact that, at any given time, the set of collision
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avoiding controls available to an agent typically has a non-trivial measure, which implies that

some of those controls could make more progress toward a given goal than others. Choosing

from within this restricted set of controls allows an agent to bias its motion toward a goal

without having to reason jointly about collision avoidance and goal direction. This approach

serves as a basis for the derivation in Chapter 5 of the Selective Determinism framework,

which allows general, efficient, and robust algorithmic solutions to the general multi-agent

navigation problem to be derived. Key to the efficiency of problem solutions formulated under

this framework is the fact that, under certain conditions, the interaction effects mentioned

earlier can be removed from the problem.

1.2 Background of approach

As alluded to earlier, solution techniques for navigation problems are typically formulated

as searches for control policies, which are optimal mappings from belief states to actions.

Unfortunately, algorithms that solve for these control policies generally belong to theoret-

ically intractable complexity classes. This is partially due to the combinatorial explosion

that results from reasoning about how the effects of uncertain interactions propagate into

the future. An approach to achieving tractability, therefore, is to factor out these interaction

effects.

Previous work has exhaustively demonstrated that the näıve approach of complete fac-

torization, i.e., assuming complete independence of all agent actions, dramatically simplifies

planning problems, and, for that reason, it has been a dominant paradigm in practice for

solving navigation problems in multi-agent systems [14, 107, 150]. While the computational

benefits of such a factorization are substantial, real-world systems often require some degree

of interaction, and formulating them with the overly strong complete independence assump-
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tion can produce undesirable results, including policies that are too conservative to be useful,

too aggressive to be safe, or that behave non-intuitively in the presence of human agents.

A completely different approach takes the classical perception/planning decomposition

and discards it in favor of a pure machine learning approach. Such end-to-end techniques

attempt to learn a direct mapping from sensor input to control output that obviates the

need for any human-designed sub-systems. End-to-end solutions have shown some success

in limited domains, e.g. [103, 122, 124, 136]; however, Shalev-Shwartz et al. [127] con-

tains a crucial observation about their use particularly in safety-critical systems, specifically

automobiles. Quoted directly:

Using machine learning, and specifically RL, raises two concerns . . . . The first
is about ensuring functional safety of the Driving Policy–something that machine
learning has difficulty with given that performance is optimized at the level of
an expectation over many instances. Namely, given the very low probability of
an accident the only way to guarantee safety is by scaling up the variance of the
parameters to be estimated and the sample complexity of the learning problem–
to a degree which becomes unwieldy to solve. Second, the Markov Decision
Process model often used in robotics is problematic . . . because of unpredictable
behavior of other agents in this multi-agent scenario.

These concerns hold not just for automobiles, but for any robotic agents operating in envi-

ronments where hard guarantees must be made about their behavior. Because these types of

domains are the primary focus of this work, it is reasonable to consider end-to-end solutions

on their own to be insufficient solution methods for the guided collision avoidance problem.

Instead, they should be augmented in a way that desired hard constraints can be enforced.

In order to achieve the benefits of factorization and maintain hard constraint guarantees

while avoiding overly strong independence assumptions, this dissertation derives theory and

algorithms for the factoring of interaction effects based on collision avoidance behaviors.

The factorization is enabled by formulating the navigation problem as a guided collision
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avoidance problem with two key assumptions: that global optimality is not required, and

that agents’ behaviors are self preserving. The novelty of the contributions is demonstrated

through surveys of background literature in each technical chapter, and proofs of correctness,

complexity analysis, and experimental results are provided where relevant.

1.3 Outline of technical content

Chapter 2 presents the first exact, polynomial-time, speed profile planning algorithm to han-

dle speed and acceleration bounds in the presence of dynamic obstacles. It allows arbitrary

agent trajectories and polygonal models for agent geometry, and it is shown capable not

only of planning time-optimal speed profiles in cluttered scenarios, but also of detecting in-

evitable collision states in deterministic systems. Simulation tests suggest that the planning

system is fast enough for real-time use, with re-planning rates of 10Hz possible on consumer

hardware.

Chapter 3 uses principles of stochastic optimal control theory to derive a generic con-

strained interference minimization principle that can be used to enable shared autonomy

or multi-objective systems to behave in well-defined ways in the presence of uncertainty.

In addition, a specialized safety-constrained variant of the principle is derived and applied

to the specific use case of semi-autonomous collision avoidance systems for automobiles.

Two concrete implementations of the principle are developed: First, a probabilistic collision-

avoidance braking strategy is given that considers uncertainty in vehicle dynamics, sensor

noise, and unpredictable obstacle behavior. Second, a technique is given for determining

safe trajectories for intersection crossings in the presence of state uncertainty. A number of

Monte Carlo simulations demonstrate that using the principle achieves low collision risk and

driver interference in a variety of scenarios.
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Chapter 4 demonstrates that formulating the general problem of multi-agent collision

avoidance in terms of relaxed global optimality can allow the complexity to drop dramati-

cally without losing any guarantees about being able to remain collision free. This can be

accomplished by maintaining non-coordination requirements, which allows independence of

behaviors to be assumed during execution and factors out the interaction effects mentioned

previously. A theory for this factorization is derived from an examination of agent coordi-

nation in a variant of the reciprocal n-body collision avoidance problem. The key insight is

that system dynamics can introduce a requirement for coordination where there otherwise

would be none. The relationship between the coordination requirement and problem com-

plexity is demonstrated in a constructive proof that also provides an existence test for the

coordination requirement that can be used in applications.

Chapter 5 develops and analyzes the Selective Determinism (SD) framework that allows

problem-specific algorithms to be defined that perform planning under factorized behav-

iors. The framework consists of two primary parts: a global guidance controller, and a

local collision avoidance controller that maintains the non-coordination guarantees defined

in Chapter 4. Output from these controllers is blended under the principle presented in

Chapter 3. A sample problem is presented and problem-specific routines were derived under

the SD framework to demonstrate its use. Exploiting the properties of the efficient speed

profile planning algorithm derived in Chapter 2, the solution to the sample algorithm is

demonstrated to be computationally efficient while still tackling a non-trivial problem.

The glossary included at the end of the document provides definitions for some common

terms whose meaning may be unclear or may vary across disciplines. In the electronic version

of the document, the terms are linked to allow the reader to jump between definition and

usage.
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Chapter 2

Path-time planning

Synopsis: This chapter derives an optimal, exact, polynomial-time planner for bounded-

acceleration trajectories along fixed paths in the presence of moving obstacles. The planner

constructs reachable sets in the path-speed-time (PST-space) space by propagating reachable

speed sets between obstacle tangent points in the path-time (PT-space) plane. The terminal

speeds attainable by endpoint-constrained trajectories in the same homotopy class are proven

to span a single interval, so the planner merges contributions from individual homotopy

classes to find the exact range of reachable speeds and times at the goal. A reachability

analysis proves that running time is polynomial given reasonable assumptions, and empirical

tests demonstrate performance.
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Figure 2.1: Top: A non-signalized (i.e. no lights or signs) lane crossing scenario. Bottom:
A plot of the path-time obstacles (shaded) and the optimal path-position profile (curve).

2.1 Introduction

Consider the traffic scenario shown in Figure 2.1 in which a vehicle must cross multiple lanes

in a non-signalized (i.e. no lights or signs) intersection. In order to cross safely, the vehicle

must time its speed along a path in order to maneuver between gaps in traffic. Unsurprisingly,

this particular traffic scenario and others like it (such as non-signalized lefthand turns) pose

significant safety risks to drivers1. In general, any traffic scenario in which paths of travel

cross directly increase the likelihood of an accident [2]. Points at which paths of travel cross

are referred to as conflict points.

In an effort to reduce safety risks encountered on the road, industry and academia alike

have investigated driver assistance functionality that can intervene in emergency situations

1They are the second-highest cause of accidents for elderly drivers in the United States [114]

10



to mitigate or even prevent collisions. Inspired by these efforts, this chapter develops an

algorithm that specifically addresses the problem of conflict point resolution, which addresses

how to safely navigate conflict points. The hope is that such an algorithm can aid in the

development of driver assistance systems.

Building on preliminary work published in Johnson and Hauser [66, 67], §2.2 treats the

conflict point resolution problem as a speed planning problem and introduces definitions and

notations. §2.3 introduces and defines the representations used to solve the problem, and

presents an initial algorithmic solution to the problem, and §2.4 extends that solution to the

general solution. Finally, §2.5 covers empirical results and simulated applications.

2.1.1 Related work

Navigation among moving obstacles is a challenging problem with a long history. This section

provides a brief overview of work related to the algorithms presented in this chapter.

Generally, in problems with moving obstacles, the agent must control its motion through

both space and time, that is, it must plan a path as well as its speed profile along the path.

Unfortunately, these types of problems tend to be computationally intractable: for instance,

the planar motion planning problem among constant-velocity moving obstacles is PSPACE-

hard [126]. To address intractability, randomized techniques have been used. Kindel et al.

[82] employed a variant of Probabilistic Roadmaps [79] with fast replanning to plan arbitrary

trajectories in the presence moving obstacles and sensor uncertainty. The MIT team [91]

for the 2007 DARPA Urban Challenge used Rapidly-exploring Random Trees [88] to plan

vehicle trajectories.

A more restricted class of problems is longitudinal control planning, or speed profile plan-

ning, which is the problem addressed in this chapter. This problem assumes well-defined
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paths are available and that the agent may steer along them with reasonably high accu-

racy [26, 42, 83]. By decoupling spatial path planning and speed profile planning problems,

the overall problem becomes more tractable. The Carnegie-Mellon team in the 2007 DARPA

Urban Challenge exploited path/velocity decomposition for road navigation by computing

optimal paths based on the centerline of the road lanes [150]. Kant and Zucker [74] ad-

dressed the general velocity planning problem with a visibility graph formulation for agents

with bounded velocities but unbounded accelerations. This work extends that approach to

also consider acceleration bounds. Canny et al. [34] presented an exact exponential-time

algorithm for planning optimal motions of a point in a plane among fixed obstacles under

L8 acceleration bounds. Optimal planning along a path with speed and acceleration bounds

along time-varying upper and lower bounds was solved in polynomial time by Ó’Dúnlaing

[116] whose solution is closely related to the channel construction used here.

Discretization-based techniques allow avoiding dynamic obstacles without a fixed path,

but sacrifice exactness and completeness. A global, grid-based method for planning among

moving obstacles under acceleration constraints was presented in the velocity obstacles work

of Fiorini and Shiller [44]. Other work in vehicle collision avoidance has used techniques

like receding horizon control [12] and randomized kinodynamic planning [91, 121] to ex-

plore the vehicle’s action/state space. Another approach is to consider a discrete lattice of

precomputed dynamic maneuvers which allows for deeper exploration using classical search

techniques [38, 92].

2.2 The speed planning problem

Suppose an agent A is given a path P . Let s indicate a scalar-valued position (or arc length)

along P , 9s indicate scalar-valued speed along P , :s indicate scalar-valued acceleration along P ,
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and t indicate time. Define a three-dimensional path-speed-time (PST-space) state space [47]

consisting of dimensions s, 9s, and t. Assume agents are always oriented tangentially to their

paths such that a PST-space point ps, 9s, tq suffices to describe the configuration of an agent2.

The planar path-time (PT-space) and path-speed (PS-space) projections will also be used

in specifying and solving the problem. A trajectory in PST-space is a function that maps a

time value to a point in PST-space. In order to be feasible, trajectories in this space must

satisfy dynamic constraints, which are bounds on position, speed, and acceleration, and they

must also respect obstacle constraints, which forbid the trajectory from entering regions of

space that correspond to simultaneous states of occupancy of agent and obstacle.

Problem 2 defines the speed planning problem addressed in this chapter:

Problem 2. For a path P , obstacle set O, and time horizon T find a feasible trajectory

xptq along P subject to the below system dynamics, constraints, and conditions, whose

parameters are given as input:

System dynamics:

9s1 “

$

’

’

’

&

’

’

’

%

9smin : 9s0 ` :s0t ă 9smin

9s0 ` :s0t : 9s0 ` :s0t P r 9smin, 9smaxs

9smax : 9s0 ` :s0t ą 9smax

(2.1)

System constraints:

9smin P r0,8q (2.2)

:smin ă 0 ă :smax (2.3)

2This is a reasonable assumption for many types of mobile robots, such as automobiles, whose dynamics
can be approximated by a bicycle model.
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Obstacles constraints:

For each state along a trajectory xptq, the geometric model of the agent at state x, Apxq,

must be disjoint from all obstacle models:

@x P xptq, @O P O :: Apxq XO “ H (2.4)

Initial conditions, where s indicates the start, or initial, value:

9ss P r 9ssmin, 9ssmaxs Ď r 9smin, 9smaxs (2.5)

:ss P r:ssmin, :ssmaxs Ď r:smin, :smaxs (2.6)

Goal conditions, where g indicates the goal, or terminal, value:

tg ď T (2.7)

sg “ |P | (2.8)

9sg P r 9sgmin, 9sgmaxs Ď r 9smin, 9smaxs (2.9)

:sg P r:sgmin, :sgmaxs Ď r:smin, :smaxs (2.10)

2.3 The visibility graph solution with axis-aligned PT-space obstacles

Kant and Zucker [74] showed how the version of this problem with speed constraints but with-

out acceleration constraints can be addressed by a visibility graph formulation in PT-space

space. This section extends the visibility graph approach to handle acceleration bounds,

where the nodes of the visibility graph correspond to portions of obstacle boundaries in PT-

space space, and edges indicate that two nodes can be connected by a feasible trajectory.
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It will be shown that the visibility graph can be constructed efficiently, and that a solution

trajectory can be efficiently extracted.

To formulate the solution, the notion of visibility is defined in terms of channels of dynam-

ically feasible homotopic trajectories. Consider two PT-space points p1 and p2. A PST-space

trajectory connects p1 and p2 if it is feasible and has an initial point that projects onto p1

and has a terminal point that projects onto p2. Let trajectories x1ptq and x2ptq be connecting

trajectories between p1 and p2. If x1ptq can be continuously deformed such that it becomes

x2ptq without violating connectivity or passing through obstacles, it is homotopic with re-

spect to x2ptq. Define the region of space that exactly contains all homotopic trajectories

between p1 and p2 as a channel, and say that p2 is visible from p1 if and only if there is a

non-empty channel connecting them. Using the notion of channels, a visibility graph can

be constructed that describes connectivity in PST-space such that feasible trajectories to be

efficiently extracted.

Since only the existence of channels is of interest when determining visibility, it is not

necessary to compute channel bounds explicitly. Instead, sufficient information for defining

visibility is captured by the sets of reachable speeds that trajectories within a channel can

attain.

Problem 3 defines the problem of computing reachable speeds:

Problem 3. Let p1 and p2 be PT-space points. Compute the set of reachable speeds SR at

p2 from p1 under the constraints of Problem 2 and from initial speed 9s1.

By nature, Problem 3 is an optimization problem; however, for several reasons, com-

puting a solution is not as straightforward as applying an existing optimization technique.

Standard constrained optimization approaches, such as formulating according to KKT con-
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ditions [78, 85], are difficult to apply directly because there is no explicit objective function:

the problem is to extremize the boundary value of a function (i.e. a feasible trajectory) that

is only implicitly defined. Solving the problem requires solving for that extremizing function.

Variational calculus3 and optimal control theory4 provide tools for solving such problems,

but the differential-algebraic nature of the problem implies that generic solvers can probably

only approximate the solution [27]. Numeric solvers, e.g. [104, 105], may approximate to

arbitrary precision, or analytical techniques, e.g. the method of saturating functions [54],

may provide closed-form approximations.

Rather than a numeric, or approximate analytic, solution, it will be shown that a visibility

graph can be computed exactly by computing reachable regions in PST-space space. In

addition, it can be computed efficiently and in deterministic time. The remainder of this

section introduces and develops the notion of visibility under dynamic constraints, and then

presents the algorithm for computing visibility in unobstructed space. Finally, the algorithm

is extended to visibility computation in obstructed space, and a full path-time planning

algorithm is defined.

2.3.1 Visibility under dynamic constraints

This section presents visibility computation in unobstructed PST-space.

Definition 2. A P curve is an origin-centered PT-space parabola that defines an arc-length

path offset after a given time span ∆t for given 9so and :so:

P p∆t, 9so, :soq “ 9s∆t`
1

2
:s∆t2

3Problem 3 resembles a state-constrained brachistochrone problem.
4The solution space of trajectories derived in this section implies that Problem 3 could be modeled as a

bang-singular control problem [32].
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Definition 3. For a given PST-space origin point pso, 9so, toq, a P` curve is a PT parabola

that defines the path offset achievable at time t under maximum acceleration:

P`pt, 9sq “ so ` P pt´ to, 9s, :smaxq

Definition 4. For a given PST-space origin point pso, 9so, toq, a P´ curve is a PT parabola

that defines the path offset achievable at time t under minimum acceleration:

P´pt, 9sq “ so ` P pt´ to, 9s, :sminq

Definition 5. For a given PST-space origin point pso, 9so, toq, an L curve is a line that defines

an arc-length path offset for an input time t assuming zero acceleration:

Lpt, 9sq “ P pt´ to, 9s, 0q

Definition 6. Without loss of generality, let P refer to either a P` or P´ curve, and let

t2 be the time coordinate of p2. Define P 2 to be a terminal curve that passes through p2.

Define P 1 to be an initial curve with derivative 9s1 at origin point p1. Define an L curve that

is tangent to the initial and terminal P curves at switching times ts1 and ts2 with derivative
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Path position

Time
Switching time ts2

Switching time ts1

P+ curveP- curve
L curve

Figure 2.2: This plot shows a P´ curve (left parabola, green), an L curve (straight line, blue),
and a P` curve (right parabola, red). A bang-singular trajectory connects the origin PT
point p0, 0q with the upper right PT point p11, 5q by following the P´ curve until switching
time ts1, then following the L curve until switching time ts2, and finally following the P`

curve to the terminal point.

9ss. Define a bang-singular trajectory as:

x1ptq “

$

’

’

’

&

’

’

’

%

P 1pt, 9s1q : 0 ď t ď ts1

Lpt, 9ssq : ts1 ă t ă ts2

P 2pt, 9ssq : ts2 ď t ď t2

Figure 2.2 illustrates Definitions 3–6.

Definition 7. Given a PST-space start point ps “ pss, 9ss, tsq, define the PST-space reachable

region of PS-space space from ps at any point in time t ě ts as Rpt; psq. In other words,

Rpt; psq is the area of the PS-space plane reachable at t from ps via feasible trajectories.

It will be shown that Rpt; psq is a relatively simple convex region in the PS-space plane,

bounded by, at most, six curves of parabolic or linear type [116], yielding three types of

regions. The following assumes the PS-space plane is oriented with the path axis is horizontal,

extending positively to the right, and the speed axis is vertical, extending positively upwards.
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Type I regions Without loss of generality, let ts “ 0. Ignoring speed constraints, the

reachable set Rpt; psq is bounded on the left by a parabola corresponding to bang-bang tra-

jectories at which acceleration is at a minimum for time ts, and then switches to a maximum

for time t´ ts. Let these be as P´P` trajectories. The right boundaries are likewise formed

by P`P´ trajectories. The parametric expressions for the left and right bounds are :

P´P`pt, tsq “

»

–

spt, tsq

9spt, tsq

fi

fl “

»

–

ss ` 9sst` 1
2
p:smin ´ :smaxqt

2
s `

1
2
:smaxt

2

9ss ` p:smin ´ :smaxqts ` :smaxt

fi

fl (2.11)

P`P´pt, tsq “

»

–

spt, tsq

9spt, tsq

fi

fl “

»

–

ss ` 9sst` 1
2
p:smax ´ :sminqt

2
s `

1
2
:smint

2

9ss ` p 9smax ´ 9sminqts ` :smint

fi

fl (2.12)

where ts ranges from 0 to t. Note that traveling at constant maximum acceleration achieves

the upper right vertex of Rpt; psq, while traveling at minimum acceleration achieves the lower

left vertex. Note that both curves are parabolic functions and are monotonically increasing

along the domain. See Figure 2.3a.

Type II regions Now consider the case in which the reachable set exceeds a speed max-

imum before time t. The reachable set boundary in this case adds two segments: a linear

portion at 9s “ 9smax and a parabolic segment corresponding to P`LP´ trajectories that

reach 9smax, travel along it for some time, and then decelerate with :smin. This latter segment

replaces the section of P`P´pt, tsq trajectories that would otherwise exceed 9smax at their

switching time ts.

The state arrives at the boundary by accelerating until 9smax is reached at time tv, pro-

gressing with constant speed until time ts, and then decelerating for time t ´ ts. It is

straightforward to show that this construction maximizes the p value for a given v value

given the constraints. The expression for a P`LP´ boundary curve is:
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P`LP´ “

»

–

sptq

9sptq

fi

fl “

»

–

ss ` 9smaxt´
p 9smax´ 9ssq2

2:smax
` 1

2
pt´ tsq

2:smin

9smax ` :smaxpt´ tsq

fi

fl (2.13)

which can be seen in Figure 2.3b. A similar P´LP` curve is obtained for 9smin.

Type III regions These regions occur when both the speed maximum and minimum

are exceeded, and consist of six boundary curves: two PP segments, two linear, and two

PLP -type segments. See Figure 2.3c.

A simple interpolation lemma proves that Rpt; psq is convex for all t and ps.

Lemma 1. A convex combination xptq “ αxaptq ` p1 ´ αqxbptq, α P r0, 1s of dynamically

feasible trajectories xaptq and xbptq is also dynamically feasible.

Proof. This follows from linearity of the differentiation operator and convexity of the speed

and acceleration bounds. This results also in the the convexity of Rpt; psq.

The following lemma is used to simplify reachability analysis because it implies that only

bang-singular trajectory classes need be examined:

Lemma 2. Any state that is dynamically reachable from ps can be reached by a feasible

bang-singular trajectory.

Proof. Note that all boundary curves of the parabolic type can be reached by PLP or PP

trajectories. Let p “ ps, 9s, tq be dynamically reachable, that is p P Rpt; psq. The argument

considers examining how Rpt; psq changes as the acceleration limits are scaled. Write this

dependence explicitly as Rpt; ps, :smin, :smaxq, and note that the dependence is continuous.

Consider scaling the limits by a factor of γ from γ “ 1 to 0 until p lies on a parabolic
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Figure 2.3: Reachable sets (shaded) in the PS plane at a new path position from an initial
state x0 fall into Types I, II, and III. PP curves that remain within speed limits form
quadratic left and right boundary segments (left). The boundaries of Type II and III sets
also contain horizontal linear segments formed by PPL curves and quadratic segments formed
by PLP curves (middle and right).

boundary segment of Rpt; ps, γ:smin, γ:smaxq. At this value of γ, p can be reached from ps

via a PP or PLP trajectory where the P segments accelerate at rate γ:smin or γ:smax. By

definition, any P or PLP trajectory is a bang-singular trajectory.

Determining reachable speeds

Given the theory derived above, the planner uses the operation SReachpps, sg, tgq to compute

the set of speeds reachable at the goal point psg, tgq from an initial PST-space state xs. In

other words, SReach computes the intersection r 9sgmin, 9sgmaxs ” Rptg; psqXtps, vq | s “ sgu.

As a side effect, it also constructs example trajectories for each extremum of the interval,

which will later be used by the planner. The remainder of the section describes in detail

how to find the maximum reachable speed 9sgmax. Finding the minimum 9sgmin is essentially

symmetric, so it is not covered in detail.

The maximum reachable speed 9sgmax is defined at the intersection of a boundary curve

of Rptg; pgq. There are only two possible intersections due to the monotonicity of Rptg; pgq,
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Figure 2.4: Speed interval propagation in the PT-space plane. Left: SIP finds the interval
of reachable speeds at pg from ps given bounds r 9sgmin, 9sgmaxs on initial speed. Middle: con-
necting the extrema of the initial speeds produces intervals S1, S2. Right: extremizing goal
speeds without imposing initial speed constraint produces intervals S3, S4. The final interval
r 9sgmin, 9sgmaxs bounds all four intervals.

and in fact only these types of boundary curves need be considered: P´P`, P´LP`, and

the linear segment boundary with 9s “ 9smax. To handle the PP case, the switching time

variable ts is determined by substituting p “ pg into Equation 2.11 and solving the resulting

quadratic equation. Similarly, the PLP case is handled by solving for ts after substituing

p “ pg into Equation 2.13. The linear segment case is solved using a PLP scaling method

with unknown scale factor γ (see Lemma 2). After enumerating the cases, the 9s bounds and

validity of switching times are checked. If no trajectory can be found, then this indicates

that Rptg; psq X tps, vq | s “ sgu “ H, so pg is unreachable.

Speed interval propagation

This section presents the speed interval propagation (SIP ) subroutine that forms the back-

bone of the planner. It takes as input a PT-space start point ps and an interval of starting

speeds r 9ssmin, 9ssmaxs, and a goal point pg. It outputs the range of speeds r 9sgmin, 9sgmaxs reachable

from ps for all 9s P r 9ssmin, 9ssmaxs (Figure 2.4, left).

SIP proceeds by computing the reachable goal speed intervals S1 and S2 from minimum

and maximum starting speed: S1 “ SReachppss, 9ssmin, t
sq, pgq, and S2 “ SReachppss, 9ssmax, t

sq, pgq.
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Note that either S1, S2, or both may be empty (Figure 2.4, middle). Next, SIP maximizes

the goal speed without input speed constraint by constructing a parabolic trajectory with

acceleration :smax that interpolates ps and pg. If the initial speed 9ss is in r 9ssmin, 9ssmaxs, it sets

S3 “ t 9sgu, or S3 “ H otherwise. The minimum goal speed interval S4 is similarly computed

using a parabola of acceleration :smin (Figure 2.4, right). If S1 is empty and pg is indeed

reachable, then S3 must be non-empty. Likewise if S2 is empty then S4 must be non-empty.

Finally SIP outputs r 9sgmin, 9sgmaxs which is the smallest interval containing S1, . . . , S4.

The planner also uses two variants of SIP . First, it uses the goal speed interval propa-

gation (GSIP ) subroutine to connect a PT-space point p to the goal position pg with time

and speed constrained within r0, tmaxs and r 9sgmin, 9sgmaxs. The second variant is the reverse

speed interval propagation (RSIP ) subroutine used in the backward pass of the planner.

RSIP determines the range of incoming speeds that reach an interval of goal speeds. Both

are similar to SIP , so they are not discussed in detail.

2.3.2 Reachable sets with one obstacle

The previous section developed a method for computing reachability in unobstructed space,

but if the goal is to plan speed profiles in occupied space, the effect of obstacles on reachability

must be quantified. This section will illustrate how to determine the set of reachable speeds

Sg attainable at a target point pg with a collision-free trajectory from an initial point ps

with initial 9ss P Ss when a single PT-space obstacle occupies the reachable space between

ps and pg. It will be shown that Sg is the union of two speed intervals, each reachable via

trajectories through one of the two homotopy classes (above or below the obstacle), and,

furthermore, that these intervals are fully determined by considering connecting extremizing

trajectories, and by propagating reachable speeds through the vertices of the obstacle.
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Let O be an axis-aligned bounding box in the PT-space plane that represents a forbidden

region that feasible trajectories may not enter. Let SgsÑg Ď r 9smin, 9smaxs denote the interval of

dynamically reachable speeds at pg from ps starting with some set of initial speeds Ss. Note

that SgsÑg Ď Sg. The SIP algorithm computes SgsÑg as well as two example trajectories

xmaxptq terminating in 9smax and xminptq terminating in 9smin. Topologically, the obstacle O

has the effect of splitting the reachable region into at most two distinct channels: CU , which

lies above O, and CB, which lies below O. Now consider computing SgU and SgB, which are

the sets of speeds reachable through CU and CB.

In computing SgU there are three cases to consider:

1. O lies below xminptq or above xmaxptq

2. O is strictly between xminptq and xmaxptq

3. O is above (or intersects) xminptq and intersects xmaxptq

In Case 1 it is trivially true that SgU “ Sg because O does not obstruct the channel formed

by xmaxptq and xminptq. In Case 2 9smax is reachable at pg because xmaxptq connects ps to pg

unobstructed. But it cannot immediately be guaranteed that 9smin is reachable through the

top channel because O is obstructing that part of the reachable space. To compute 9sgmin,

note that pul is a boundary point along CU , so consider trajectories that pass through pul.

The set of reachable speeds at pul is SsÑul “ SIP pps, Ss, pulq and then the set of reachable

speeds at pg from pul is SulÑg “ SIP ppul, SsÑul, p
gq. It will be shown that SulÑg is non-empty

and contains the minimum reachable speed, hence SgU “ rminpSulÑgq, 9smaxs. In case 3, O

intersects xmaxptq, so it cannot be guaranteed that 9smax is reachable. However, as will be

shown, SgU “ SulÑg because any speed attainable at pg can also be attained by a trajectory
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Figure 2.5: Left: Extremizing trajectories (curves) computed by SIP represent visibility
between obstacle vertices with the set of reachable speeds at each vertex visualized as a
wedge. Point 4 can be reached by a disjoint reachable set of speeds due to obstruction.
Right: Reachability represented as a graph where nodes correspond to vertices, and edges
indicate visibility.

that passes through pul. The proofs are special cases of Theorem 1 presented below. The

lower speed interval SgL is computed similarly using the lower-right vertex.

The final reachable set is Sgf “ SgU YS
g
L, which may consist of up to two disjoint intervals,

as seen in Figure 2.5.

2.3.3 Reachable sets with many obstacles

In problems with 9smin ě 0 and without acceleration constraints Liu and Arimoto [94] showed

that optimal collision-free trajectories either connect directly to the goal state or pass tan-

gentially along the convex edges of one or more obstacles, a property which Ó’Dúnlaing

[116] showed also holds with acceleration constraints. So the algorithm searches among

collision-free trajectories that pass along obstacle tangencies, which, in the axis-aligned case,

reduces to the upper-left and lower-right obstacle vertices. The algorithm is first formulated

for a single channel and proven correct, then generalized to arbitrary channels for the full

algorithm.
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Figure 2.6: Incremental construction of reachable sets. By Theorem 1 an incremental reach-
able speed computed by SIP contributes to the final reachable set if its example trajectory
is collision free (solid curves) but can be ignored if not (dotted curves)

Speed interval propagation through channels

For the single channel case, let p1, . . . , pn´1 be the sequence of upper left and lower right

obstacle vertices that bound the channel such that t0 ď si ď tf for all i. Sort the vertices by

increasing t and let pn “ pg. Define the following recursive quantities for all 0 ă k ď n, where

xmaxptq and xminptq are example trajectories computed by the immediately preceding SIP

call, and Collpxptqq is a collision indicator function. Figure 2.6 illustrates this construction.

9siÑkmax “

$

’

’

’

&

’

’

’

%

maxpSIP ppi, Si, pkq if Si ‰ H and

Collpxmaxptqq “ 0

´8 otherwise,

(2.14)

9siÑkmin “

$

’

’

’

&

’

’

’

%

minpSIP ppi, Si, pkqq if Si ‰ H and

Collpxminptqq “ 0

8 otherwise,

(2.15)

9skmax “ max
0ďiăk

9siÑkmax, (2.16)
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9skmin “ min
0ďiăk

9siÑkmin , (2.17)

and

Sk “

$

&

%

r 9skmin, 9skmaxs if 9skmin ď 9skmax

H otherwise.
(2.18)

To connect to pg define 9siÑgoalmax and 9siÑgoalmin similarly to Equations 2.14 & 2.15 except that

the call to SIP is replaced by GSIP . These quantities are used to define the set of reachable

speeds Sg through the channel by application of Equations 2.16, 2.17, & 2.18. The following

two theorems can now be stated.

Theorem 1. Sg “ Sn is the set of speeds attainable at pg over all feasible trajectories in the

channel starting at ps.

Proof. The proof proceeds by induction. The base case is n “ 1, in which case there are no

obstacles and by inspection Sn “ SIP pps, Ss, pgq “ Sg. Now consider the inductive case with

pn “ pg, and compare the true set of reachable speeds Sg against Sn given by Equation 2.18.

Obviously Sn Ď Sg because each of its endpoints is defined by a feasible trajectory; the

converse will now be proven.

The inductive assumption states that the theorem holds for all possible n ´ 2 obstacle

vertices pi with i “ 1, . . . , n´2 and boundary conditions. So Si is the set of speeds reachable

from ps for each obstacle vertex pi for i “ 1, . . . , n ´ 1. Furthermore, for i “ 1, . . . , n ´ 1

denote SiÑn as the set of speeds reachable at pn starting at each obstacle vertex pi with initial

speed interval Si. Note that 9snmin defined by Equation 2.17 is equivalent to the minimum of

9s0Ñn
min and minti“1,...,n´1u minpSiÑnq, while 9snmax defined by Equation 2.17 is the maximum of

9s0Ñn
max and maxti“1,...,n´1u maxpSiÑnq.

Consider any feasible trajectory xptq connecting ps to pg. The proof will show that the
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terminal speed 9sg P Sn as defined by Equation 2.18. Let xmaxptq be the upper example

trajectory for the connection between ps and pn. If xmaxptq is collision free, then 9s0Ñn
max would

be the maximum achievable dynamically feasible speed, and 9sg would satisfy 9sg ď 9s0Ñn
max . If

on the other hand, xmaxptq is in collision with some obstacle, it is possible to construct a

feasible trajectory xγptq “ γxptq ` p1 ´ γqxmaxptq that is a convex combination of xptq and

xmaxptq such that xγptq touches an obstacle vertex, say pi. Since xγp¨q is a feasible path

starting at pi, it is the case that 9sgγ P SiÑk Ď Sn, and therefore 9sgγ ď 9snmax. Since the goal

speed due to the upper bounding trajectory is at least 9snmax, the fact that xγptq is a convex

combination of xptq and xmaxptq implies that goal speed due to xptq is at most 9smmax. Using

symmetry, one can similarly prove the goal speed due to xptq is at least 9snmin. Hence Sg Ď Sn,

and therefore Sg “ Sn. By induction Theorem 1 holds for any n ě 1.

Theorem 2. Sg is the set of terminal speeds reached by feasible trajectories through the

channel, and the time attained at the maximum speed in Sg is precisely the duration of the

minimum-time trajectory.

Proof. The proof is similar to Theorem 1.

2.3.4 P-time visibility graph construction

Theorems 1 & 2 imply a simple method for computing the time-optimal solution: enumerate

all channels and compute the minimal time for each. The minimum over all of the channels

produces the time of the optimal trajectory and its final speed; the trajectory itself is recov-

ered by a backwards search using RSIP . But enumeration is intractable in general because

there are potentially 2n distinct channels for n obstacles, and obstacle configurations that

yield Op2nq channels are not uncommon.
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Instead the planner uses a polynomial-time algorithm that iteratively computes reachable

sets over vertices, and, assuming the number of vertices for each obstacle is bounded by

some constant, there are Opnq vertices for n obstacles. Each iteration accumulates terminal

speed intervals over all equivalent homotopy classes, and then merges the intervals before

proceeding to the next vertex. The backwards search remains the same. Merging is key,

because for any point there are Opnq merged speed intervals (see Theorem 3) but there

are Op2nq homotopy classes. Because merging can be done in polynomial-time, the overall

algorithm can achieve Opn4q running time. The result is a visibility graph over the PT-space

points from which a time-optimal trajectory can be efficiently5 extracted.

The algorithm

For a start point ps with set of initial speeds Ss “ t 9ssu, let ε be a resolution threshold that

allows the algorithm to discard small speed intervals that cannot be reached with confidence;

for example ε may indicate the measurement uncertainty of the speedometer. Theorem 3

will use ε to aid in complexity analysis.

First, sort the upper left and lower right obstacle vertices by increasing t coordinate into

the list p1, . . . , p2n. Create an indexed map Rpiq that for each obstacle vertex point i P r1, 2ns

stores a set Si of reachable speeds at pi annotated by a bit sequence denoting the channel of

the incoming trajectory. Initialize each Si to an empty set. Forward (Algorithm 1) builds

the forward visibility graph by iteratively propagating sets of reachable speeds toward the

goal.

5It is worth noting that, theoretically speaking, the Op2nq enumeration technique is more efficient than
the Opn4q technique for small n; however, it quickly becomes unusable as n grows. For instance, 2n and
n4 are equal for n “ 16, but for n “ 20, 2n is already almost an order of magnitude larger than n4. This
difference is even more magnified in practice because, as shown in Table 2.1, the expected behavior of the
planner is actually closer to Opn2q or Opn3q.
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Algorithm 1 This procedure propagates reachable speed sets forward across PT-space
points in the presence of obstacles. After completion, R contains exactly the speeds reachable
at each point pi.

1: procedure Forward(R, ε)
2: for j “ 1, . . . , 2n do
3: Vj ÐH

4: for i “ 0, . . . , j ´ 1 do
5: Si Ð Rpiq
6: for ra, bs P Si do
7: Propagatepra, bs, pi, pj, Vjq
8: end for
9: end for

10: Rpjq ÐMergepVj, εq
11: for ra, bs P Rpjq do
12: PropagateGoalpra, bs, pjq
13: end for
14: end for
15: end procedure

Algorithm 2 Computes speeds directly reachable at point j starting from point i with
speed 9s P ra, bs, and adds them to the set V with annotation.

1: procedure Propagate(ra, bs, pi, pj, V )
2: ra1, b1s Ð SIP ppi, ra, bs, pjq
3: Let xminptq and xmaxptq be the exemplar trajectories computed by SIP
4: BL Ð Channelpxminptqq
5: BU Ð Channelpxmaxptqq
6: if BL “ BU ‰ H then
7: Insertppra1, b1s, BLq, V q
8: else
9: if BL ‰ H then

10: Insertppta1u, BLq, V q
11: end if
12: if BU ‰ H then
13: Insertpptb1u, BUq, V q
14: end if
15: end if
16: end procedure
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Algorithm 3 Extends speed intervals in S from same homotopy class and outputs the union
of the reachable speeds.

1: procedure Merge(S, ε)
2: S 1 ÐH

3: while S ‰ H do
4: if Dpra, bs, Bq, pra1, b1s, B1q P S such that Suffix?pB,B1q then
5: Remove pra, bs, Bq and pra1, b1s, B1q from S
6: Stmp Ð ra, bs Y ra1, b1s
7: if |Stmp| ě ε then
8: Add pStmp, B

1q to S 1

9: end if
10: end if
11: end while
12: return S 1

13: end procedure

Of the calls made by Forward, PropagateGoal is very similar to Propagate (Algorithm 2)

except GSIP is used instead of SIP . Propagate makes use of the subroutine Channelpxptqq

that returns H if xptq collides, and otherwise outputs a bit sequence b “ pbi, . . . , bjq where

bk indicates 0 if xptkq ă pk in time, and is 1 otherwise; b acts as a signature for the channel.

Merge uses the subroutine Suffix?pB,B1q that returns true if and only if B1 is a suffix of

B.

2.3.5 Complexity analysis

The complexity of Forward depends on how the number of disjoint speed intervals grows

during propagation. To this end, consider the number of disjoint intervals in each Sk. A

näıve bound is 2k because there are at most 2k distinct channels leading to k. Further

analysis produces a linear bound after discarding intervals of width less than ε. Theorem 3

will use Lemma 3 to establish this bound.

Lemma 3. Consider two initial states x “ ps, 9s, tq and x1 “ ps, 9s, tq that differ only in

speed with 9s ă 9s1. Let p “ ps, tq be a PST-space point reachable from x and x1. Let
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S “ SReachpx, p1q and S 1 “ SReachpx1, p1q for t1 ą t and s1 ď p` pt1 ´ tqv. If S and S 1 are

non-empty and disjoint, then

|S|{2c ě

b

a

|S 1|{2c´ |S 1|{2c´
a

|S 1|{2c (2.19)

with c “ pt1 ´ tqpa ´ aq the range of reachable speeds from x at time t1. Furthermore the

bounds |S|{2c ď 1{4 and |S 1|{2c ď p|S|
a

2`
?

2{2cq4 « 11.65p|S|{2cq4 hold.

Proof. The proof is algebraically lengthy, so only the conceptually important points are

provided here. Let Rpt; psq denote the reachable set of speeds from a PT-space point ps.

Up to speed limits, Rpt1;xq and Rpt1;x1q are identical except for an offset in the P and V

axes (see Figure 2.7). Consider the conditions under which |S 1| space lies between the right

boundary of Rpt1; sq and the line of slope 1{pt1 ´ tq underneath (the lower dotted line in

Figure 2.7). Some algebra shows that to obtain this difference, s1 must exceed the leftmost

boundary of Rpt1, xq by at least 2c2p
a

|S 1|{2c´|S 1|{2cq, and the bound in the theorem follows

from algebraic manipulations.

Theorem 3. Each Si contributes Opdq disjoint intervals of width at least ε to Sk, where

d “ 2 log4p´ log2
ε

2 9smax
q ` 2 and 9smax “ tmaxp:smax ´ :sminq bounds the range of achievable

speeds.

Proof. Let 9s1, . . . , 9sr be a sorted list of speeds each from a single disjoint interval of Si, such

that pi`ptk´ tiq 9sq ě pk for all q “ 1, . . . , r. Let S1, . . . , Sr be the sets of reachable speeds at

ppk, tkq respectively starting at ppi, 9s1, tiq, . . . , ppi, 9sr, tiq. Also let 9sik “ ptk ´ tiqp:smax ´ :sminq

be the range of speeds attainable from a single PT-space point after time tk´ ti has elapsed.

By Lemma 3, |Si`1|{2 9sik ď p|Si|
a

2`
?

2{2 9sikq
4. Because |S1{2 9sik| ď 1{4 and

a

2`
?

2 ă 2,
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Figure 2.7: It is difficult to construct a scenario in which d ą 2 disjoint reachable speeds
continue to be disjoint after propagation. Here three initial speeds at pi produce three disjoint
speed intervals at pk. The region denoted with ε demonstrates that the space available for
non-overlapping regions is tiny even with d “ 3.

|Sr|{2 9sik ď p|S1|{2 9sikq
4r´1

ď p1{2q4
r´1

. So if |Sr| ą ε, then

ε{2 9sik ď 2´4r´1

(2.20)

ñr ď log4p´ log2pε{2 9smaxqq ` 1 (2.21)

A similar bound applies for pi`ptk´ tiq 9sq ď pk as well. Since d is at most 2r, this completes

the proof.

Due to the double logarithm, the size of the smallest interval shrinks rapidly as d increases

(Figure 2.7). The 7th and 8th intervals are no larger than 10´26 9smax, which implies that,

in practice, no more than 6 significant disjoint intervals may remain after each propagation.

For further analysis, assume ε ą 0, which makes d constant.

With the ε-bound assumption, the planner has Opn4q time and Opn2q space complexity in
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the number of obstacle vertices. Because each prior point can contribute up to n elements to

Vj at Line 7 of Forward, Vj has Opn2q elements. Propagate is Opj´ iq because determining

channel is Opj ´ iq and all other steps are Op1q. Since Propagate is called Opn2q times,

steps 1-9 of Forward are Opn4q. Using a trie data structure indexed by the reverse of the

bit vector B, Merge takes time Opj3q, so the n merge steps of Forward take time Opn4q

overall. For space complexity, each of the n vertices can have up to n disjoint intervals,

giving Opn2q space complexity.

Of note is that Opn4q is a conservative bound; in practice it is extremely difficult to

construct or encounter a scenario in which the number of disjoint intervals at each node is

actually Opnq. One can typically expect the number to be bounded by some constant, which

is indicated by the empirical results in §2.5. It may also be possible to extend Theorem 3 to

prove this theoretically.

2.4 Extension to polygonal PT-space obstacles

Until now the assumption has been made that PT-space obstacles are axis-aligned rectangles

in the PT-space plane. This simplifies the derivation of the algorithm, but is only a reasonable

approximation of the obstacles if they all cross the agent’s path perpendicularly and have

roughly rectangular geometries that are axis-aligned with the path. To allow for a more

general class of crossing paths, the algorithm can be extended in a straightforward way to

deal with general polygonal PT-space obstacles as shown in Figure 2.8. This section presents

algorithmic extensions that allow propagation in the presence of general polygonal obstacles,

as well as an obstacle construction routine that builds general polygonal PT-space obstacles

given general convex polygonal workspace agent models.
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Figure 2.8: Upper and lower feasible trajectories (curves) at the upper right point, given an
initial speed range of r0, 0sm{s and acceleration bounds of ˘1.5m{s2.

2.4.1 Algorithm extension

To begin, again consider the cases from §2.3.2 for computing reachable speeds in the presence

of a single obstacle, and let xptq be one of the example trajectories computed by SIP . To

deal with general polygonal obstacles, modify the cases to account for intersection with

diagonal obstacle edges in addition to horizontal and vertical:

1. If xptq is collision-free, then it is optimal and SIP operates as before.

2. If xptq collides with a vertical, horizontal, or negatively sloping PT-space obstacle edge,

SIP outputs nothing.

3. If xptq collides with a diagonal edge with positive slope, SIP uses Algorithm 4, defined

below, in order to propagate along one or more edges.

As before, Case 1 is obviously correct. For Case 2 it was shown that either there is

no feasible trajectory or there is an extremizing trajectory that passes through one of the

endpoints of that PT-space obstacle edge. In this latter case, the planner will find the correct
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trajectory by propagating from p1 to that vertex and then from that vertex to p2, and hence

this case reduces to previous treatment. Case 3 requires further examination because it may

be possible for the trajectory to follow the diagonal edge tangentially (Figure 2.8), which

means the planner must consider point/edge propagations. It may also be possible (although

unlikely) for the trajectory to touch several diagonal edges, so it must also consider edge/edge

propagations.

To compute these types of propagations, the planner invokes a recursive procedure that

makes use of the following subroutines, each of which compute example trajectories between

various primitives in the absence of obstacles:

1. PointToEdgepp, S, eq, which accepts an initial point p with speed interval S and edge

e, and builds a time-minimizing trajectory segment p Ñ e that terminates at a point

of tangency on e without crossing.

2. EdgeToPointpe, pe, p2q, which accepts an initial point pe along edge e and builds a

speed extremizing trajectory segment eÑ p2 that does not cross e.

3. EdgeToEdgeppe1 , e1, e2q, which accepts an initial point pe1 along edge e1 and builds

a trajectory segment p1 Ñ e2 that terminates at a point of tangency to e2 without

crossing e1 or e2. The trajectory is constructed such that the time before e1 is departed

is minimized.

A time-minimizing trajectory is used to propagate to edges because the feasible speed of a

trajectory traveling along an edge is exactly the slope of the edge, hence speed is fixed, leaving

time as the free variable. It should be clear that time-minimizing trajectories are correct

for propagating along edges because that maximizes the visibility of the edge. Algorithm 4,
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which computes the example trajectory, is given generically below as extremizing because, as

before, the algorithms for maximizing/minimizing terminal speeds are essentially symmetric.

Algorithm 4 Compute the speed-extremizing trajectory at an edge e from a PT-space point
p1 with initial speed interval S1 and attempt to propagate recursively forward to p2

1: procedure ExtremalSpeed Diagonal(p1, S1, e, p2)
2: T1 Ð PointToEdgeRecursivepp, S, eq
3: if T1 “ H then
4: return H
5: end if
6: Let xf be the terminal state of T1

7: T2 Ð EdgeToPointRecursivepe, xf , pq
8: if T2 “ H then
9: return H

10: end if
11: return ConcatenatepT1, T2q

12: end procedure

Algorithm 4 calls PointToEdgeRecursive that computes a time-minimizing trajectory

from p1 to the diagonal edge e, and EdgeToPointRecursive that computes a speed-extremizing

trajectory from e to p2. Both may call EdgeToEdge that computes a time-minimizing tra-

jectory between two edges e1 and e2. A definition for PointToEdge is given in Algorithm 5.

EdgeToEdge and EdgeToPoint are similar.

Complexity analysis

The complexity class of Forward does not change with the addition of edge propagation;

however, it does add a coefficient to the bounding polynomial. If a diagonal edge is hit,

two or more additional trajectory generation and collision detection routines are called.

In all, Propagate becomes Opknq where k is the number of diagonal edges hit during the

construction. In practice k is a small constant, but in the worst case it may be Opnq. The

resulting complexity is now Opn5q.
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Algorithm 5 Recursively compute a time-minimizing trajectory from p1 to edge e given
initial speed range S

1: procedure PointToEdge(p, S, e)
2: T1 Ð PointToEdgepp1, t1, V1, eq
3: if T1 “ H then
4: return H
5: end if
6: e1 Ð InitialCollidingEdgepT1q

7: if e1 “ H then
8: return T1

9: end if
10: T1 Ð PointToEdgepp1, t1e

1, V1q

11: if T1 “ H then
12: return H
13: end if
14: T2 Ð EdgeToEdgepFinalPointpT1q, e, e

1q

15: if T2 “ H then
16: return H
17: end if
18: return ConcatenatepT1, T2q

19: end procedure

Edge propagation could also be handled by explicitly treating edges as nodes in the

visibility graph, which would lead to a complexity of Opp2nq4q. Informal testing showed the

recursive method to do fewer edge-related propagations in practice.

2.4.2 General PT-space obstacle construction

Computing the exact boundaries of PT-space obstacles is challenging because they may be

arbitrarily curved. Geometrically, the problem is that of computing swept volumes [6, 15].

For arbitrary motions and shapes, computation of swept volumes to arbitrary precision

cannot be done in real-time, but many techniques have been developed for efficient approx-

imations [81, 141, 156]. For building PT-space obstacles, a simple approximation would

discretize PT-space space with resolution τ and test each cell for collision, but this requires

2D discretization resulting in OpT |P |τ´2q cells. Instead, the approach presented here dis-
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cretizes only the time dimension and analytically computes forbidden intervals in the path

dimension. This leads to OpTτ´1q cells, so is more efficient while still being resolution

complete (Figure 2.9).

The algorithm is defined for a single workspace obstacle OW. Consider a uniform grid on

the time dimension 0, τ, 2τ, . . . , tmax. The algorithm computes the leftmost and rightmost

extent of PT-space obstacle Oi within each horizontal strip t P rkτ, pk`1qτ s in the PT-space

plane, resulting in a conservative forbidden rectangle rak, bks ˆ rkτ, pk ` 1qτ s. Figure 2.9c

shows PT-space obstacles constructed at progressively finer resolutions. The rectangles are

then wrapped with a polygon to smooth their jagged edges as shown in Figure 2.9d. This

procedure is defined in Algorithm 6 and relies on two key functions: SweptV olume and

ComputeForbiddenInterval.

Algorithm 6 Computes the PT-space obstacle corresponding to the workspace obstacle OW
following a path PO with a trajectory bounded by xminptq and xmaxptq for time discretization
τ with respect to an agent model A following a path PA

1: procedure BuildPTObstacle(O,PO, τ, tmax, xminp¨q, xmaxp¨q)
2: O ÐH

3: for t “ 0, τ, 2τ, . . . , tmax ´ τ do
4: VO Ð SweptV olumepO,PO, xminptq, xmaxpt` τqq
5: ra, bs Ð ComputeForbiddenIntervalpVO, A, PAq

6: O Ð O Y ra, bs ˆ rt, t` τ s
7: end for
8: return BoundingPolygonpOq
9: end procedure

SweptVolume This function computes a conservative approximation to the region of

workspace VO Ď W swept out by obstacle OW between times kτ and pk ` 1qτ as it fol-

lows a piecewise linear path PO. Let W and W be the workspace regions occupied by OW

at the minimum and maximum possible path extents at times kτ and pk ` 1qτ . When W

and W are on the same piece of the path PO, VO “ ConvpW,W q where Conv denotes the
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convex hull (Figure 2.9a).

When they lie on adjacent segments, additional models Wθ1 and Wθ2 are computed at

the path segment junction, oriented at angles θ1 of the previous segment and θ2 of the next.

This is necessary to account for the intermediate postures of the rotation, because each

vertex of O sweeps out an arc centered at the junction. Tangents of the arc endpoints are

computed for each vertex, and the intersection point of the tangents is added to a set of

points Oθ. When Oθ is computed, let Wθ “ ConvpWθ1 ,S,Wθ2), as in Figure 2.9b. VO is

then the union of of ConvpW,Wθ1q, Wθ, and ConvpWθ2 ,W q. This construction generalizes

easily to multiple traversed path segments.

ComputeForbiddenInterval This function computes the points ak and bk at which the

agent A following a piecewise linear path PA first comes into contact with a swept world

space obstacle VO, and last leaves contact with VO. At each extremum, it is either the case

that a vertex of A lies on an edge of VO, or that a vertex of VO lies on an edge of A. A search

of all vertex-edge combinations will then find all such extrema along each line segment of

PA, and ak and bk are output as the minimum and maximum of these extrema6.

The BoundingPolygon call at the end of the function simply wraps the forbidden rectan-

gles with a polygon and discards interior vertices. This can significantly reduce the number

PT-space obstacle vertices, yielding faster visibility graph construction.

6This treatment assumes the system is not initialized in a collision state
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Figure 2.9: Illustrating PT-space obstacle construction.

41



2.4.3 Complexity analysis

Let k “ Tτ´1 be the number of grid points. Assuming |A| and |O| are bounded by m,

the average case running time for SweptV olume is Opm logm|PO|k
´1q and the average case

running time for ComputeForbiddenInterval is Op|PA|m
2q. BoundingPolygon is Opkq.

Overall, complexity is Op|PA|m
2k ` |PO|m logmq.

2.5 Simulation tests
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Figure 2.10: Left: Three obstacles are arranged randomly, with the reachable sets of speeds
(wedges) at each upper-left and lower-right vertex. Right: Three obstacles are arranged in
a staircase configuration, with the reachable sets of speeds (wedges) at each upper-left and
lower-right vertex.

An implementation of the graph construction and trajectory retrieval algorithms for

axis-aligned obstacles was implemented and evaluated against random (Figure 2.10a) and

pathological staircase (Figure 2.10b) obstacle configurations. In both cases Opn2q speed

Table 2.1: Run Times for Pathological Configurations of Axis-Aligned Obstacles

obstacles 1 5 10 15 „Growth

Random 1 0.233ms 1.66ms 4.21ms 7.98ms Op0.0002n3q

Random 2 0.206ms 1.36ms 3.59ms 5.47ms Op0.012n2q

Random 3 0.055ms 1.08ms 3.09ms 9.50ms Op0.007n3q

Staircase 0.244ms 2.77ms 16.6ms 55.9ms Op0.021n3q
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Figure 2.11: (a) Run times according to increasingly fine τ discretization. (b) Trade-off
between τ discretization and time optimality.

intervals must be propagated, but in the staircase configuration the visibility graph is almost

complete while in the random configurations only 1/3 or 1/5 of possible edges are present.

Running times on a 2.4GHz PC for n “ 1, . . . , 15 axis-aligned obstacles are presented in

Table 2.1. In all cases the data were best interpolated by 2nd- or 3rd-degree polynomials with

small leading coefficients, coming in below the theoretically expected Opn4q.

Figure 2.11 shows empirical performance of general polygonal PT-space obstacle con-

struction and visibility graph construction for a scenario similar to that in Figure 2.12.

Results are averages of 10 runs on a single core of a 2.3GHz PC. In Figure 2.11a the plan-

ner is run with varying levels of discretization in PT-space obstacle construction, showing a

roughly linear relationship. Figure 2.11b shows how discretization affects the optimal goal

arrival time. At coarse discretizations, narrow homotopy channels are occluded and the

planner goes around them. At finer discretizations, these channels open up and the planner

finds faster routes.

Real world scenarios

In this section results are given for simulations of two real world scenarios.
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Figure 2.12: (a) An urban driving scenario involving pedestrians and bicyclists. The car
position, pedestrian and bicycle positions, and their paths are overlaid on the map. (b)
PT obstacles of the stage 1 problem leading to the first stop sign, with the time-optimal
trajectory shown in red. (c) PT obstacles of the stage 2 problem leading to the second stop
sign. Imagery c©2012 DigitalGlobe, GeoEye, IndianaMap Framework Data, USDA Farm
Service Agency

Urban driving The planner is given a simulated urban scenario modeled in Figure 2.12.

The car travels along a downtown section of Kirkwood Avenue in Bloomington, Indiana.

Bicyclists often share the road and pedestrian traffic is heavy, both at and away from cross-

walks. The problem has two stages: 1) reaching the first stop sign, then 2) reaching a second

stop sign. Acceleration bounds are r´10, 8sm{s2 and speed bounds are r0, 13.4sm{s.

Figure 2.12b shows the stage 1 trajectory. The car must avoid a bicycle (obstacle 1)

moving in front of it. The bicycle accelerates from an initial stop, causing its PT obstacle to

be curved initially, and then turns off the road after the stop, so its PT obstacle ends. Near

the stop sign the car must avoid a pedestrian (obstacle 2) that cuts in front of the crosswalk.

Figure 2.12c shows the stage 2 trajectory. The car must now avoid pedestrians in the
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Figure 2.13: Illustration of a collision warning application. (a) An inattentive driver (rect-
angle) is merging onto the southbound lane of a rural highway, but fails to notice oncoming
vehicles (numbered). (b) Given a lead time tr “ 2.5s, an inevitable collision state is detected
within tr after the driver become inattentive and a collision warning is issued. (c) An inat-
tentive driver accelerates too slowly while merging and a warning is issued at tr from the
first IC state.

crosswalk, as well as another bicycle (obstacle 6) that turns into the car’s lane. The optimal

plan has the car accelerate out in front of the bicycle, then decelerate slightly to avoid a

pedestrian (obstacle 7) before going on to the final position.
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Imminent collision detection The planner can also be applied to collision warning sys-

tems for inattentive drivers. Suppose such a system can detect driver inattention and has a

reaction time parameter tr sufficient for a driver to perceive and respond to a warning, but

not so long as to generate unnecessary false positives. The planner can be called repeatedly

to verify that a feasible trajectory exists7, assuming the driver continues his/her current

behavior up to time tr. If not, then the driver is about to enter an inevitable collision state

(ICS) [49], and a warning is issued. In order to do so, the system first collision checks the

driver’s predicted trajectory Tp up to time tr. If a collision is found, a warning is issued.

Otherwise, the planner attempts to find a feasible trajectory starting from the final state of

Tp. If none is found, a warning is issued.

Consider a rural highway intersection scenario. The driver attempts to merge south

onto State Road 37 in Indiana (Figure 2.13a) after crossing two northbound lanes of traffic.

The driver incorrectly judges the speed of a northbound vehicle and begins the merge too

slowly to cross safely. The planner detects an ICS within tr and a warning is issued to

the driver at the point marked in Figure 2.13b. In a second example with different initial

conditions (Figure 2.13c), the driver incorrectly judges the speed of the southbound vehicle

and attempts to merge too slowly. The warning indicates that the driver should either slow

down or stop at the median, or accelerate ahead of the oncoming vehicle.

2.6 Conclusion

This chapter presented a complete, optimal speed planner that operates in the presence

of moving obstacles. It allows arbitrary polygonal models and agent trajectories and was

shown capable of planning time-optimal speed profiles in cluttered scenarios and detecting

7Chapter 3 provides a rigorous framework for such use cases.
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inevitable collision states. Simulation tests suggest that the planning system is fast enough

for real-time navigation among many dynamic obstacles.

On its own, this planner is of limited use for real-world situations: the requirement that

the world evolve deterministically and the assumption that all agent actions are independent

from ego actions is only realistic in so-called asteroid avoidance problems [118] and not in

the presence of other intelligent agents. As will be shown in the following chapters, however,

the properties provided by this algorithm, especially its completeness and efficiency, can

be exploited as part of a broader framework to robustly solve navigation in more general

multi-agent systems.
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Chapter 3

The constrained interference minimization principle

Synopsis: This chapter introduces a general constrained optimization framework and

demonstrates it with the use case of semi-autonomous automobile safety systems. Such sys-

tems must only interfere with driver control when they are extremely confident that it is the

right thing to to. In this use case, the constrained interference minimization principle al-

lows the decision to interfere to be made probabilistically under a stochastic optimal control

framework, thus ensuring a level of confidence in maintaining safety, while also allowing the

system to minimize the magnitude of interference required to maintain that safety confidence.
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3.1 Introduction

This chapter introduces a framework for computing constrained interference minimization

problems. These types of problems occur frequently in shared autonomy and redundant

control robotic systems. For example, a common architecture for such systems is to provide a

backup, or emergency, controller that takes over from, or interferes with, a nominal controller

when the robot enters into states that the nominal controller is not designed to handle. Such

systems need to be able to decide confidently that interference is the proper action, and

when they do interfere they need to minimize the magnitude of that interference such that

the interruption from nominal control is minimized.

The principle presented in this chapter builds on preliminary work presented in Johnson

et al. [68]. It formulates the interference decision problem probabilistically using one or more

given constraints to define the decision boundary. If the decision boundary is crossed, i.e.,

the constraints are violated, then the problem of moving the system state back across the

boundary is formulated as a stochastic optimal control problem that minimizes the distance

in control space necessary to perform that move. §3.2 introduces the necessary background

from stochastic optimal control, and then formulates the general constrained interference

minimization principle. §3.4 presents a concrete example of a framework built with the

principle called the safety-constrained interference minimization principle (SCIMP). §3.5

defines real-world scenarios for which SCIMP formulations are provided and then presents

evaluations of SCIMP on those scenarios. Finally, §3.6 provides summary and conclusions.
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3.2 Stochastic optimal control

This section briefly introduces relevant ideas and notations1 from stochastic optimal control

that will be used in §3.3 to present the constrained interference minimization principle. First

the general solution to the control problem is presented, followed by efficient approximating

solutions that are exploited by the constrained interference minimization principle.

In stochastic optimal control, the goal is to find a control trajectory that drives the

evolution of a stochastic process in a way that minimizes the expected value of some cost

function (equivalently, the problem can be formulated to maximize the expected value of

some reward function). Consider the following stochastic dynamical system:

dx̂ “ fpt,xt,utqdt` dξ (3.1)

where x̂ is a collection of estimated state variables, x is the true and unobservable state, u

is a control, and dξ denotes some stochastic process. Note that the evolution of the system

depends on an unobservable state x, but the value of u is observable and the value of x̂ can

be estimated, and these values can be used to define a belief distribution for the current

state that can be updated recursively using Bayes rule:

ppxt | x̂0:t,u0:tq 9 ppx̂t | xtq ppxt | x̂0:t´dt,u0:tq (3.2)

where ppx̂t | xtq, typically referred to as the measurement probability, is a distribution of

1In this work, notation conventions are mostly taken from Kappen [76].
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known form. Thus, the evolution of the belief depends on the estimated and observed vari-

ables x̂ and u, which means an optimal control trajectory must manage the dual problem

of maintaining progress toward the goal while also maintaining an acceptable belief distri-

bution. To facilitate this, the state space can be augmented with a set of parameters θt

that are sufficient statistics for ppxtq. For convenience, let zt “ px̂t, θtq. The goal of the

control problem is then to determine a control policy π “ pu0, . . . ,uT´1q that defines the

optimal action for each belief state, where for each t P r0, T s the optimal control is given as

u‹t “ πpzt´1q.
2

For the given system, the expected cost Ĉp¨q of a control sequence ut:T is defined as an

expectation (denoted here with angle brackets) over all stochastic trajectories beginning with

an initial belief zt “ px̂t, θtq and terminating in zT “ px̂T , θT q:

Ĉpzt,ut:T q “

B

φT `

ż T

t

Rpτ, x̂τ ,uτ q dτ

F

zt

(3.3)

where φT is a terminal cost, R an immediate cost at time τ , and the subscript zt indicates

that the expectation is taken over all stochastic trajectories originating from zt. The task

is to find ut:T such that Ĉp¨q is minimized. By defining a minimum cost-to-go function Jp¨q

the problem can be formulated as a Bellman recursion:

Jpt, ztq “ min
ut

Ĉpzt,ut:T q “ min
ut

`

Rpt, zt,utq ` xJpt` dt, zt`dtqyzt
˘

(3.4)

2Nominally, ut is dependent on the entire history, as in Equation 3.2; however, Åström [13] showed that
a belief distribution provides a sufficient statistic for the history of Markov processes.
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Applying a Taylor expansion to the J term on the right-hand side and exploiting linearity

of expectation yields:

xJpt` dt, zt`dtqyut
“ Jpt, ztq ` dtBtJpt, ztq ` xdzyztBzJpt, ztq

`
1

2
xdz2

yztB
2
zJpt,ztq (3.5)

xdzyzt “ fpt, zt,utqdt (3.6)

xdz2
yzt “ νpt, zt,utqdt (3.7)

Substituting the above into Equation 3.4 and simplifying yields the stochastic Hamilton-

Jacobi-Bellman equation3 with boundary condition JpT, zT q “ φT :

´BtJpt, ztq “ min
ut

ˆ

Rpt, zt,utq ` fpt, zt,utqBzJpt, zq `
1

2
νpt, zt,utqB

2
zJpt, zq

˙

(3.8)

The solution of Equation 3.8 provides a necessary and sufficient condition for the optimal

control trajectory [22]. As attractive as this general form is, it suffers in practice from being

extremely difficult to compute and generally intractable [95]. Worse, [120] showed that the

problem likely has no efficient online implementation even when arbitrary offline computation

is allowed. Despite this, there are important classes of problems for which efficient exact

solutions are possible, which are detailed in the next sections.

3The Hamilton-Jacobi-Bellman equation is the continuous-time counterpart to the discrete-time Bellman
equation, which is more familiar to economics and decision process theory. The continuous variant is used
here simply because it is common in optimal control formulations. Equivalent results hold for the discrete-
time variant.
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3.2.1 The separation principle and certainty equivalence

Given the general intractability of Equation 3.8, it is often necessary to formulate problems

such that they can be decomposed into tractable sub-problems. A natural way to accomplish

this decomposition is to separate the problems of observation and control. To introduce this,

define a deterministic cost-to-go function Cp¨q as:

Cpxt,ut:T q “ φT `

ż T

t

Rpτ,xτ ,uτ q dτ (3.9)

Equation 3.3 can then be written:

Ĉpzt,ut:T q “ xCpx̂t,utqyzt (3.10)

As noted in the previous section, the optimal general solution to minimizing Equa-

tion 3.10, Equation 3.8, is often difficult, or impossible, to solve, due in part to the need to

compute an expectation over stochastic trajectories. But in some cases the expected cost

over stochastic trajectories is equal to the deterministic cost over the expected trajectory. In

other words, the stochastic expectation in Equation 3.10 can sometimes simply be dropped

and the state estimate x̂ used directly. Systems for which this applies can be solved op-

timally by designing an optimal state estimator and feeding the estimate into an optimal

deterministic controller. Such systems are said to adhere to the separation principle (SP),

because they allow the problem to be separated into estimation and control problems. As

detailed by O’Reilly [117], Bay [16], and Georgiou and Lindquist [51], SP has been proven
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to hold for linear, time-invariant (LTI) systems (provided both estimator and controller are

optimal and stable), which makes them popular in practice as system models.

For a certain class of LTI systems, a stronger, and more constructive, property can be

shown to hold. For LTI systems with quadratic costs and only additive noise, the optimal

stochastic controller is exactly the optimal deterministic controller given the mean state of

an optimal observer. Such problems are said to exhibit certainty equivalence (CE), which

is a stricter form of the separation principle.4 One important class of these problems is the

class of linear-quadratic-gaussian (LQG) problems. Consider a system with the following

dynamics:

dx “ px` uqdt` dξ (3.11)

x̂ “ x` η (3.12)

where η is additive Gaussian noise. For simplicity, assume terminal cost φT “ 0 with the

cost function for the fully observable problem quadratic and of the form:

Cpxt,ut:T q “
1

2

C

T
ÿ

τ“t

pu2
τ ` x2

τ q

G

xt

(3.13)

For the partially observable problem, because state dynamics are linear (Equation 3.11)

and observation noise is additive (Equation 3.12), a Gaussian belief distribution zt “ ppxt | x̂0:t,u0:tq “

N pxt | µt, σ2
t q for xt can be computed analytically using a Kalman filter. An explicit belief

4Unlike CE, the optimal controller satisfying the separation principle is not necessarily the same controller
that is optimal for the same problem without uncertainty [117].
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distribution then allows the expectations to be computed for the partially observable prob-

lem, and, as shown in [76], the associated cost function can be rewritten as an integration

over state hypotheses:

Ĉpx̂t:T ,ut:T q “

ż

zt

Cpxt,ut:T q ppxtq (3.14)

“
1

2

T
ÿ

τ“t

u2
τ `

1

2

T
ÿ

τ“t

@

x2
τ

D

µt,σt

“
1

2

T
ÿ

τ“t

u2
τ `

1

2

T
ÿ

τ“t

pµ2
τ ` σ

2
t q

“ Cpµt,ut:T q `
1

2
pT ´ tqσ2

t

Notice that the second term in the final line of Equation 3.14 is independent of u. This means

that minimizing the deterministic function Cp¨q with x Ð µ is equivalent to minimizing the

expectation Ĉp¨q.

Of course, a guarantee of optimality is not a guarantee of good behavior. As shown by

Simpkins et al. [132], CE controllers (and any controller designed under the separation prin-

ciple) can demonstrate severe instability in practice, particularly when the approximations

used to guarantee their formulation are not well justified. Furthermore, because the problem

is modeled such that the policy is independent of the variance in the noise (Equation 3.12),

the controller has no capability to choose controls that reduce the variance, which is partic-

ularly problematic for Interception problems, where small variance in the terminal state is

crucial [70]. To attempt to guide the controller to low variance states, Simpkins et al. [132]

propose modifying the cost function to penalize large uncertainties, which produces a lazy

adaptive controller that performs exploration as needed. Unfortunately, no comparison to
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other adaptive techniques is provided, so the practical advantages are unclear.

A partial separation of inference and control for problems that do not exhibit CE was pro-

posed by Witsenhausen [165], who stated that the independence of the inference and control

computations can be asserted provided that the optimal control function is derived based on

the conditional PDF of the state estimate. However, no formal guidance for control function

derivation was given. In practice, the use of CE controllers is often justified empirically,

or for the simple reason that no other usable control formulation can be found. However,

as demonstrated by Witsenhausen [163] and Mitter and Sahai [106], one must always be

aware in such circumstances that the CE assumption may lead to distinctly sub-optimal

performance.

3.2.2 Rollout approximations

Both the SP and the CE properties are very powerful, but in many applications, particularly

robotics control, the assumptions required to employ them simply are not justifiable. In such

cases, approximation techniques are often employed that gain flexibility and tractability by

relaxing the optimality requirement. Suppose the optimal cost-to-go function (Equation 3.4)

is replaced with a tractable heuristic function Hp¨q that approximates Jp¨q:

Jpt, ztq “ min
ut

Ĉpzt,ut:T q « Hpt, ztq “ min
ut

Hpt` dt, zt`dtq (3.15)

With this substitution it may be possible to compute a solution that is not optimal, but

still useful. As noted by Bertsekas [24], making this substitution recursively in deterministic

problems often results in good performance. In fact, in many problems the performance
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gain is sequentially improving, that is, strictly non-decreasing over time. For stochastic

problems, similar results can be obtained by using a path integral formulation to compute

Hp¨q [75, 138, 142], but this generally works well only for parameterized control policy

formulations, which limits the representation space. However, Wu et al. [166] and Mansley

et al. [100] demonstrated separately that rollouts applied directly to stochastic problems

generally yield good results.

3.3 The constrained interference minimization principle

This section draws from the control principles described in the previous sections to define the

constrained interference minimization principle. The principle is designed to model control

in shared autonomy systems where controllers can be prioritized. This general method forms

the basis of the SCIMP method, defined later in the chapter, and the Selective Determinism

framework, described in Chapter 5. First the general problem is defined, and then a solution

framework is presented.

For a given stochastic system at time t, the optimal constrained control u‹t is defined

with respect to a desired control udt for a confidence α P r0, 1s as the result of the following

optimization:

u‹t “ arg min
u
µpu,udt q

s.t. P pgood | ut “ uq ě α

(3.16)

In Equation 3.16 µp¨q is a metric function over the control space and ut is a control

executed at time t. P pgood | ut “ uq is the probability that the agent can remain on the

good side of the decision boundary given u as the control executed at time t under belief

57



distribution zt and followed by the control sequence most likely to remain on the good side

of the decision boundary thereafter. If no u meets the α threshold, then u‹t is computed

such that:

u‹t “ arg max
u

P pgood | ut “ uq (3.17)

This principle formulates the optimal cost-to-go function Jp¨q as a probabilistic decision

problem that chooses between open-loop control for values above the confidence threshold,

and closed-loop control for values below. One advantage is that confidence and control

interference can be tuned in a problem-specific way using a single parameter α, with the

resulting control u‹t satisfying the following properties:

1. The input control will be replicated exactly (u‹t “ udt ) if there exists a future sequence

of controls that is good with at least confidence α.

2. If the input control is such that no satisfactory sequence exists, then u‹t will be the

closest control to udt such that the α threshold is achieved.

3. If no control can meet the α threshold, the control that maximizes α is chosen.

The major challenge in implementing a framework utilizing this principle is evaluating

P pgood | ut “ uq because it requires solving a stochastic optimal control problem. Because

of the practicality of implementation and generality of representation, the solution presented

here will use a rollout approximation technique.

The heuristic chosen for the rollout approximation is based on the assumption that

P pgood | ut “ uq can be approximated by integrating over the optimal hypotheses evaluated

under zt by assuming that the underlying state evolution is deterministic. In other words,

this framework assumes that the underlying transition function governing state transitions
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starting from xt is deterministic. This means the stochastic expectation in Equation 3.10

can be dropped, so that the cost-to-go becomes:

Ĉpzt,ut:T q “ P pgood | ut “ uq « φT `

ż

zt

Spx,uq ppx̂tq (3.18)

where Spx,uq “ Cpx̂t,utq specifically denotes a deterministic cost function.

The problem is then to maximize Equation 3.18. Since this is formulated partially as a

decision problem, the deterministic cost function Spx,uq becomes an indicator function that

evaluates whether the system can remain in good states.

As formulated, Spx,uq is a deterministic problem that can be solved using any variety

of optimal control or analytical techniques. But the problem remains of how to compute

the integral in Equation 3.18; in practice it will typically not have analytical solutions.

Thankfully, Monte Carlo methods provide simple, general, and powerful ways to estimate

such integrals [75]. This framework employs such a method in its solution.

The integral in Equation 3.18 is estimated using Monte Carlo integration by sampling

n state hypotheses xp1q, . . . ,xpnq independently and at random according to zpxt “ xq and

evaluating Spxpiq,uq. The value of n required to estimate the probability that P pgood | ut “

uq ě α can be determined using a Bayesian interpretation: Suppose k ď n samples are found

to satisfy Spxpiq,uq “ 1. The outcomes of each test are viewed as coin flips Si for i “ 1, . . . , n

from a Bernoulli distribution with underlying probability of success θ ” P pgood | ut “ uq.

Let the results of these flips be the data D. Assume the prior over θ is given as a Beta

distribution Betapθ; a, bq where a and b are hyperparameters that indicate the prior belief

that a control is good. Given the information D that k of n samples are good, the posterior
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on θ is Betapθ; a ` k, b ` n ´ kq. The probability that the state xt is good is then the

expectation of θ, namely pa ` kq{pa ` b ` nq. For convenience, choose k “ n so that all

samples must be good. The necessary value of n becomes:

n “

R

αpa` bq ´ a

1´ α

V

(3.19)

Note that the hyperparameters a and b can be tuned, or learned, to reflect varying degrees

of optimism with a ą b or pessimism with a ă b. When no prior information is available, the

uninformed prior a “ b “ 1 can be used. Also note that if the problem exhibits CE (§3.2.1),

then the integral over the belief distribution z disappears (as shown in Equation 3.14) and

P pgood | ut “ uq “ Spx,uq. Technically this is equivalent to saying that the sample size n is

always just 1, so the Monte Carlo formulation still applies, but clearly other simplifications

can be made if CE holds.

The next issue is how to optimize Equation 3.16 subject to the probabilistic constraint.

A näıve method would generate n samples of u, sort them in increasing order of µpu,udt q,

then return the first that estimates P pgood | uq ě α. This is simple, but potentially

computationally expensive. Instead, for certain problems it may be possible to extend Spx,uq

so that it also provides the set of good controls Ugoodpxq “ tu | Spx,uq “ 1u. Given such an

extension, the constrained optimal control can be found by sampling n hypothetical states

and solving the problem:

u‹t “ arg min
uPU

µpu,udt q

s.t. u P Xni“1Ugoodpx
piq
q

(3.20)

60



In particular, if the set of feasible controls is convex, then the feasible region is convex as

well and efficient convex optimization approaches can be employed.

3.4 SCIMP: The safety-constrained interference minimization principle

This section introduces SCIMP, which is a specific use case for the constrained interference

minimization principle. A motivation for this formulation is given, followed by its problem

definition. An application to collision avoidance is demonstrated in two scenarios: rear-end

collisions during single-lane driving, and transverse collisions during unprotected intersection

crossings. In both cases only longitudinal control is considered. The intersection case poses

a unique challenge for emergency systems because acceleration may need to be employed

in addition to braking. In both cases SCIMP demonstrates that control can be calculated

quickly using a tractable approximation. The α parameter allows the system to be tuned to

trade off between two performance metrics: collision severity and driver interference. Exper-

iments suggest that SCIMP is more robust than systems that do not consider uncertainty in

their decision-making, and that the α parameter provides an intuitive interface to tune to

desired levels of safety/interference tradeoff.

3.4.1 Motivation

Semi-autonomous collision avoidance and mitigation systems for automobiles are shared au-

tonomy systems that treat a human driver as the nominal controller, and an automated

collision avoidance or mitigation system as the backup controller. As industry races to

develop and deploy these systems, they are also rapidly becoming commonplace. To under-

stand why, consider that over 6.3 million automobile accidents occurred in the U.S. in 2007,

including 1.8 million injury crashes and 37,435 fatalities at a cost of hundreds of billions of
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dollars [113]. Although the numbers of injuries and fatalities per traveled mile have decreased

significantly over the last four decades due to advances in active safety systems for vehicles,

the rate of decline has leveled off over the last two decades. Contemporary active safety sys-

tems attempt to regulate the state of the vehicle without consideration for the state of the

environment around the vehicle, specifically, the other vehicles on the road. Further gains in

safety could be had by reasoning about the state of the vehicle in conjunction with the states

of others on the road. Semi-autonomous safety systems do precisely this by incorporating

information about other vehicles on the road in order to detect emergency situations.

Because they are a shared autonomy system, semi-autonomous safety systems must be

able to recognize emergency scenarios and assess the risk of interfering with the driver’s con-

trol versus the benefit of doing so. Additionally, designers of these systems must also consider

the long-term effect they have on the driver’s habits. In the literature for in-vehicle collision

avoidance warning systems, Alm et al. [8] and Ben-Yaacov et al. [20] observed that a system

considered to be a nuisance might simply be disabled by the driver, whereas Lehto [90] ob-

served that too much automation can lead to inattentive or risk-seeking behavior behind the

wheel. Worse, Fujita et al. [50] found that semi-autonomous collision avoidance systems that

brake harshly can startle the driver and may cause them to lose control. Hence the important

of designing semi-autonomous systems that minimize interference during operation.

Another major challenge for semi-autonomous systems is that of dealing with uncertainty

in the driving environment. Uncertainty arises, for example, due to noisy sensor readings

(from lidar, radar, camera, etc.), unobservable behavior intent of other agents (other traffic,

pedestrians, etc.), errors in actuation due to tire wear and environmental factors, and so

on. SCIMP is presented as a framework for reasoning under the safety constraints and

uncertainty in these systems in a rigorous way, allowing the system and driver to share
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A1 A2
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P(safe) = 0.95 u0.95

u0.50

u0.75
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P(safe) = 0.75
P(safe) = 0.50

Figure 3.1: Left: Hypothetical control set subsets for agent A1 corresponding to varying
safety levels, with safe control u nearest to desired control ud in each subset. Right: Agents
A1, A2, and A3 attempt to navigate a shared space and must choose safe controls to do so.

autonomy in a safe and predictable way.

3.4.2 Related work

Collision-imminent braking systems in some existing Volvo and Mercedes-Benz models use

a variety of sensors to detect collision-imminent scenarios and apply brakes to reduce the

severity of a crash. The interest here is in extrapolating collision-imminent braking to its

inevitable conclusion: collision-prevention braking.

Autonomous driving has recently become a tremendously active field of research, inspired

by major successes such as the DARPA Grand Challenge [144]. Waymo (previously Google

Auto, LLC) alone logged over 635,000 autonomous miles in 2016, suffering only 124 dis-

engagements [109]. Despite these major advances, there is still a major gap between these

systems and human drivers. Although human drivers occasionally err, they are extremely re-

liable in general: a fatality crash occurs approximately once in 100 million miles driven [113].

Even if an autonomous vehicle relies on the human driver input once every 10,000 miles, the

driver must be attentive 99.99% of the time for the system to perform as well as a human

alone.

Active safety systems take control of the vehicle only during an emergency or when a
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potential accident is foreseen in order to mitigate or avoid the consequences of an accident. A

longitudinal collision-mitigation braking strategy was described by Hillenbrand et al. [59] that

gradually applies stronger braking as the collision boundary is approached, which smoothes

the control output and copes with some uncertainty by virtue of being slightly conservative.

Anderson et al. [12] present a 2D hazard avoidance scheme based on model predictive control,

which allows varying levels of autonomy based on risk assessed by control magnitudes, and

Sivaraman [133] adaptively maintains distance from leading and following vehicles to safely

perform cruise control in congested traffic. The approach presented in this chapter introduces

the additional considerations of uncertainty, which provides a more natural definition of

risk. Karlsson et al. [77] introduced a statistical decision rule that applies the brake if the

probability of impact is greater than some threshold α. This approach is advantageous

in the presence of uncertainty. Althoff et al. [11] applied similar thresholding techniques to

autonomous driving in environments mapped using 2D range finders. The SCIMP framework

presented in this work generalizes the probabilistic threshold approach to treat driver inputs

and environmental uncertainty in a unified manner.

3.4.3 Problem definition

Assume an agent A travels along a known path in the presence of one or more moving

obstacles O and that the configuration of A is fully determined by its position along the

path. Suppose that at every time step t, A is given a desired control udt and sensor input

x̂t, which it uses to infer a belief distribution zt over hypothetical agent and obstacle system

states. The control problem A must solve is described below in Problem 4:

Problem 4. For a path P , obstacle set O, time t P T , confidence level α, and desired control

udt , find a control u‹t that attempts to satisfy an ordered set of constraints:

64



1. A is at least α confident that u‹t will not lead to future collision. If no u‹t exists that

is collision free to α confidence, A computes u‹t to maximize confidence.

2. The computed control u‹t should deviate minimally from udt .

By the ordering, Constraint 2 is applied to the satisfying set of Constraint 1.

Problem 4 is the general SCIMP problem. To formulate it as a constrained interference

minimization problem, let the term safe replace the term good, and let it be a descriptor that

indicates that the ego vehicle remains collision free. Define Spx,uq to be a deterministic and

complete control algorithm that serves as an indicator function for whether the ego vehicle

can remain safe starting in state x, executing u, and following the optimally safe policy

thereafter. Finally, because this formulation deals only with one-dimensional longitudinal

control, the metric function is defined simply as the absolute difference between controls:

µpu1,u2q “ |u1 ´ u2|.

3.5 SCIMP application scenarios

This section applies SCIMP to two scenarios: 1) rear-end collisions along a single-lane, and

2) transverse collisions during lane crossing. These are two of the most significant sources

of automobile accidents involving elderly drivers [115]. In both cases, an implementation

of the SCIMP subroutine Spx,uq for evaluating the safety of a control u at a state x and

remaining safe for all deterministic rollouts of x is given. Subroutines to calculate the set of

safe controls U safepxq are also given. The rear-end collision scenario in particular lends itself

to convenient optimization because U safepxq has a simple form. The lane crossing scenario is

more challenging because acceleration may be needed in addition to braking, and multiple

dynamic obstacles may need to be tracked. In this case, the developments of Chapter 2
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are used to furnish an optimal, exact, polynomial-time planner that is used to compute

Spx,uq and U safepxq in lane crossing scenarios. As noted earlier, the control spaces dealt

with here are strictly one-dimensional (they only concern longitudinal controls), but the

principle generalizes to arbitrary controls.

3.5.1 Collision-imminent braking

5Assume a single obstacle, and that the vehicle is moving in the same direction as the

obstacle and that the obstacle does not move in reverse. Assume further that the vehicle is

equipped with odometric and ranging sensors. The behavior of the obstacle is represented

as its acceleration, which the ego vehicle must infer from sensor measurements. In order

to synthesize this information, suppose the ego vehicle runs an Extended Kalman Filter

(EKF), which acts as its perception algorithm, to maintain a belief distribution over the

system states6 [55]. The belief distribution produced by the EKF is then incorporated into

the probabilistic decision rule.

Stochastic dynamics model

The state of the ego vehicle can be described using its position p, velocity v and the maximum

deceleration amin that it can currently apply. Additionally, when an obstacle is present, the

obstacle position po, velocity vo, and acceleration ao are modeled as part of the system state.

The vehicle receives a noisy odometry signal vs and range reading d. The dynamics and

sensing are stochastic, with conservative noise parameters in Table 3.1.

5The work presented in this subsection is due to Yajia Zhang, who developed it for [68].
6For more complex scenes, with multiple objects and/or multiple sensor modalities, more sophisticated

tracking techniques should be used, e.g. [36, 98, 155]

66



Extended Kalman Filter

The ego vehicle is assumed to employ an EKF in order to estimate the state from the

stochastic dynamics and observations. An EKF is a version of the Kalman filter that ad-

dresses nonlinear systems by linearizing about the estimated mean and covariance [159].

While the EKF suffers from problems in highly nonlinear systems, in this case the system is

close to linear and the EKF provides sufficiently accurate performance. For highly non-linear

systems, other and more general estimators can be used, such as particle filters.

For this problem, the dynamics at time step t can be written as:

xt`1 “ fpxt,utq ` wt (3.21)

zt “ hpxtq ` vt (3.22)

wt „ N p0, Qtq (3.23)

vt „ N p0, Rtq (3.24)

Here, xt denotes the joint state pp, v, amin, po, vo, aoq that describes for the ego vehicle the

position, velocity, and minimum acceleration available due to road surface conditions, and

for the obstacle vehicle its position, velocity, and acceleration. ut denotes the braking control

input, zt is the observation pd, vsq at time step k. wt is the process error term with Qt as its

covariance matrix. vt is the measurement noise term with Rt as its covariance matrix. At

each step, the EKF maintains a state estimate x̂t and covariance matrix Pt. Upon reading

the observation zt from the vehicle’s sensors, the EKF performs a Kalman update using the
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Table 3.1: Dynamics and Observation Models

Road Surface Max. applicable acceleration is a random walk
9a 9a „ N p0,∆tq

Actuation Errors Proportional to control and max. deceleration,
9v 9v “ uap1` euq, with εu „ N p0, 0.012q

Object Behavior Random noise with 99.99% within
9ao r´5.0m{s2, 5.0m{s2s,

9ao „ N p0, 1.252q

Speedometer Multiplicative noise on actual velocity,
vs vs “ vp1` εsq, εs „ N p0, 0.0252q

(99.99% within 10% of current velocity)

Range Reading Combined linear and multiplicative noise
d d “ ndL ` ppo ´ pqp1` ndMq,

with ndL, ndM „ N p0, 0.01252q

(99.99% within 5cm + 5% of true distance)

system linearized about x̂t to obtain a new state estimate x̂t`1 and covariance Pt`1.

Because obstacles may move in and out of sensor range, the obstacle state and distance

measurements are included in the EKF update only when an obstacle is detected. When an

obstacle appears for the first time, its position estimate is initialized to the raw range sensor

estimate N pd, p0.0125dq2q. Its velocity is initialized to a broad distribution N pv̂{2, pv̂{2q2q,

and its acceleration is initialized to N p0, p2.5m{s2q2q.

Known-state braking policy

Given known state information, a näıve braking control policy πpxtq is defined in Algo-

rithm 7. Note that πpxtq assumes constant obstacle behavior forward in time and it only

considers a constant headway C. More sophisticated control policies, like the intelligent

driver model [148], or learned behavior models [127], could be used to consider interactive

obstacle behavior and variable headway.

In πpxtq, C is a constant that is used for indicating a nominal headway margin, which in

experiments is set to 1m. p1 is the estimated stopping position of the vehicle if it initiates
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Algorithm 7 This braking policy

1: procedure BangBangPolicy(xt)
2: p1 Ð p` v2{p2aminq ` C
3: t1 Ð v{amin

4: if vo ` aot
1 ě 0 then

5: po
1 Ð po ` vot

1 ` 1{2aot
12

6: else
7: po

1 Ð po ` vo
2{p´2aoq

8: end if
9: if p1 ą p1o then

10: return -1
11: else
12: return 0
13: end if
14: end procedure

maximum braking and t1 the estimated time it will take to reach a stop. p1o defines the

estimated position of the obstacle when the vehicle stops. Because the obstacle is assumed

to not move backwards, line 4 tests whether the obstacle achieves zero velocity after t1 or

before, and then computes p1o accordingly. Finally, if p1 ą p1o, there will be a collision between

vehicle and obstacle, otherwise, no collision.

Using this policy, Spx,uq and Equation 3.20 can be implemented in a straightforward

manner. Note that stronger braking is always guaranteed to be safer, so for each state

sample xpkq all controls lower than πpxq are safe. So, the SCIMP optimization is reduced

to 1) testing if the user’s control is safe, and if not, 2) finding the control policy with the

weakest braking control amin that keeps the system safe with probability α.

3.5.2 Intersection crossing

Intersection crossing requires consideration of both braking and acceleration in order to nav-

igate. It also requires considering the behavior of multiple obstacles, which makes optimal

decision boundaries more complex even in the known-state case. Even so, SCIMP applies
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directly once Spx,uq and U safepxq have been defined. Because the PST-space-planning algo-

rithm derived in Chapter 2 is deterministic and exhibits completeness, it is valid for use in

defining Spx,uq. In this case, the value of Spx,uq is computed by running the planner and

indicating whether any feasible control trajectory exists.

Efficient SCIMP optimization

The visibility graph data structure of the PST-space-planner is useful because it can be used

to propagate visibility forwards and backwards between the goal and regions in PT-space

space. In this case, let Rs pxt; t`∆t, Cq be the PST-space region reachable from a start state

xt at a time t`∆t and under a set of constraints C, and let Rg pt`∆t, Cq be the PST-space

region at time t`∆t and under constraints C that admits feasible trajectories that connect

to the goal region. The intersection R “ Rs X Rg in PST-space space is exactly the region

that is reachable from xt at time t`∆t and that also admits feasible trajectories to the goal.

R also allows straightforward computation of the safe control set necessary for the SCIMP

optimization (Equation 3.20). The computation of Rs and Rg follow straightforwardly from

the algorithms derived in Chapter 2, so they will not be described here. Instead, this section

will focus on how the PST-space planning algorithms are employed to compute u‹.

Recall that the goal is to compute the control that is closest to ud and is safe for all

state samples xp1q, . . . ,xpkq. If no such control exists, the goal is to compute the control

that is maximally safe. The optimization proceeds by iteratively drawing k state samples

and incrementally building an obstacle set O and constraint set C that are guaranteed to

contain and satisfy, respectively, the obstacles and constraints from all satisfying samples so

far. To build O, the algorithm first initializes an empty O and with state sample xpiq grows

the obstacles in Oj P O using a convex hull operation such that each Oi
j Ě O

pi´1q
j . Likewise,
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the minimum acceleration available in C is initialized as Camin
“ ´8 and maintained as

Camin
“ max

´

Camin
, a
piq
min

¯

.

At each iteration the reachable regions Rs and Rg then can be computed using O and

C with the algorithms from Chapter 2, from which R can then also be directly computed.

Once R is computed, the set of feasible speeds F at R can be retrieved, and the control

signals that achieve those speeds can be backed out, yielding U safe. Note that the PST-space

algorithms may generate an F that consists of multiple disjoint intervals (see Chapter 2,

§2.3), leading to a U safe that also consists of multiple disjoint intervals. This means that

computing u‹ is a matter of checking for containment in some sub-interval of U safe, in which

case u‹ “ ud, or choosing as u‹ the sub-interval boundary of U safe nearest ud.

If, during optimization, U safe becomes empty, this indicates that the α threshold cannot

be satisfied and optimization changes to satisfy Equation 3.17. To do this, a Minimum

Constraint Removal [40, 58] problem is formulated to find the fewest samples that must

be discarded in order for U safe to be non-empty. While this problem is NP-Hard, and so

impractical for large sample sets, greedy approximations work well in practice. Once it is

constructed, u‹ is chosen as the control that is maximally distant from any boundary in

U safe. The assumption in doing so is that this is the control that has the most room for error

that may occur during actuation.

3.5.3 Evaluation

A good emergency safety system should be able to achieve low collision risk and low driver

interference. To evaluate performance, the characteristics of collision velocity (CV) and an

interference index (II) that combines several aspects of driver interference are considered. II

attempts to measure deviation from the driver’s desired behavior and is a function of the
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following components:

Discontinuity Time (DT) The amount of excess acceleration experienced. This is com-

puted as the integral of the time over which the acceleration at two subsequent time

steps is greater than a threshold, which is here set to 4m{s2.

Excess Time (ET) The amount of time consumed by excessive interference in a scenario.

A scenario is considered completed if the car reaches a goal, collides with an obstacle,

or, in the braking case, comes to a stop. ET is computed by measuring the policy

completion time and subtracting the completion time for an optimal collision-free policy

with perfect state information. Because some policies can complete a scenario faster

than the optimal policy (e.g., by colliding with an obstacle), ET may be negative.

Stopping Distance (SD) This metric measures the distance to the obstacle after the vehi-

cle stops, or 0 if the scenario is completed in any other manner. SD is only measurable

in braking scenarios 1–3 and 5; it is 0 for all other scenarios.

Given the above components, II is computed as follows, where c1, c2, and c3 are propor-

tionality constants:

II “ c1DT ` c2ET ` c3SD

Based on empirical tuning, the proportionality constraints are to 10 s´1, 1 s´1, and

1/2m´1 respectively. In practice, human subjects experiments could be used to determine

weights that yield an interference index that is better tuned for human drivers.
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Five test scenarios for the braking condition and three for the intersection crossing con-

dition are defined. The scenarios simulate actual environments that an emergency safety

system might face in practice, and the behavior of obstacles and simulation constants are

not known in advance to the ego vehicle. Rather, it must infer them through sensor readings.

The braking scenarios are illustrated in Figure 3.2. They include fixed obstacles, hard-

braking obstacles, transient lane-crossing obstacles, and false positives and negatives. In all

cases, the vehicle starts at 20m{s and the driver’s control maintains a steady velocity. The

intersection crossing scenarios are illustrated in Figure 3.3. In all cases the driver’s control

is a constant acceleration of 4m{s2. In the between obstacles scenario, the car is 22m from

crossing a two-lane road intersection and has an initial velocity of 4m{s. Two obstacles

are approaching from either direction at 8m{s with constant velocity. The two side-impact

scenarios have the following initial conditions: 1) the vehicle collides with the obstacle unless

it brakes, and 2) the obstacle collides head-on with the vehicle unless the vehicle accelerates.

In condition 1, the car’s initial velocity is 4m{s and the obstacle approaches with velocity

7.5m{s, while in condition 2, the car has initial velocity 10m{s and the obstacle approaches

with velocity 7m{s.

The plots above each scenario in Figures 3.2 & 3.3 compare the SCIMP policies with α “

60, 70, 80, 90, 95, and 99, to the ideal omniscient controller (Ideal), which has perfect infor-

mation about the future behavior of the environment; the controller that runs deterministic

optimal control on the most-likely environment state (Basic); and the raw driver’s control

(No control). Monte Carlo evaluations were performed for each policy with 100 samples

under the stochastic sensing and dynamics models.
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Figure 3.2: Five braking scenarios. Results are averaged over 100 trials
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Figure 3.3: Three intersection scenarios. Results are averaged over 100 trials.
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3.6 Conclusion

A generic constrained interference minimization principle has been derived from stochastic

optimal control theory that can be used to enable shared autonomy systems to interact in

well-defined ways in the presence of behavioral and environmental uncertainty. Background

is given on the assumptions underlying the rule so that informed design decisions can be

made during implementation.

In addition, a specialized safety-constrained variant of the principle was derived, which

was applied to the specific use case of semi-autonomous collision avoidance systems for

automobiles. Two concrete implementations of SCIMP are developed: First, a probabilistic

collision-avoidance braking strategy is given that considers uncertainty in vehicle dynamics,

sensor noise, and unpredictable obstacle behavior. Second, a technique for determining safe

trajectories for intersection crossings in the presence of state uncertainty is presented. A

number of Monte Carlo simulations demonstrate that SCIMP achieves low collision risk and

driver interference in a variety of scenarios.
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Chapter 4

Factoring interaction effects in collision avoidance

Synopsis: This chapter examines how dynamics and complexity are related in multi-agent

collision avoidance. Specifically, that interaction effects between agents can, under certain

conditions, be factored out of the problem. Motivated particularly by work in the field of au-

tomated driving, this chapter considers a variant of the reciprocal n-body collision avoidance

problem. In this problem, agents must avoid collision while moving according to individual

reward functions in a crowded environment. The main contribution of this chapter is the

result that there is a quantifiable relationship between system dynamics and the requirement

for agent coordination, and that this requirement can allow interaction effects to be factored

out, thereby changing the complexity class of the problem dramatically: from NEXP, or even

NEXPNP, to P. A constructive proof demonstrates the relationship, and potential applications

are discussed.
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A1 A2

A3

Figure 4.1: Agents A1, A2, and A3 attempt to navigate past each other along fixed paths.
This chapter examines how system dynamics affect the need for them to coordinate their
actions.

4.1 Introduction

In industries as varied as mining, agriculture, health care, and automated driving, many

practical applications in robotics involve navigating through dynamic environments in the

presence of intelligent agents. A large and relatively mature body of literature has been

developed that examines various types of these multi-agent systems and the theoretical

complexity of planning within them. The focus of this work is specifically how system

dynamics interact with problem complexity. For single agent systems, an early result due

to Reif and Sharir [126] showed that adding velocity bounds to one type of motion planning

problem can change its complexity from NP-hard to PSPACE-hard. This result indicates

that system dynamics can play a role in determining complexity class, however, relatively

little attention has been paid to the role that system dynamics play in the complexity of

problems involving systems of multiple agents.

As will be shown, one of the primary factors affecting complexity of multi-agent problems
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is agent coordination. Despite this, agent coordination is often not treated as a primary

factory when mutli-agent problems are approached in the world. Typically, path planning

is addressed first with agent coordination being added in. In many cases, this prioritization

may cause the problem to be modeled in a way that introduces prohibitive amounts of

complexity. Take, for example, the case of an automated vehicle moving along a pre-defined

road network. While it is tempting to model the problem primarily as a path planning

problem, doing so may put in place requirements that make addressing agent coordination

more difficult, specifically, the long planning horizons and precise knowledge of future world

states that path planning tends to require.

As robotics research has moved further from laboratories and into the real world, multi-

agent problems requiring non-trivial coordination have become more important. The team

behind the planner used in the Bertha Benz drive (Ziegler et al. [168]), as well as the winning

teams of the 2007 DARPA Urban Challenge (Urmson et al. [150], Montemerlo et al. [107],

and Bacha et al. [14]) all cite coordination ahead of path planning as an area of future work.

The coordination problem also has deep ties to long-standing problems in optimal control

theory. Mitter and Sahai [106] identified the coordination problem as the primary difficulty

in designing an optimal controller for Witsenhausen’s counterexample [163], which counters

the idea that the optimality properties of linear-quadratic-Gaussian control extend to de-

centralized systems. Given the importance of the coordination problem and that practically

any real-world system must reason under dynamic constraints, it is important to understand

how coordination, system dynamics, and complexity interplay.

Efforts to address coordination in the vehicle domain have explored many avenues. Ex-

plicit coordination among vehicles (V2V) would seem to provide a solution, and much work

has been done to develop the technology and standards. However, it is not likely that the
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availability of the required communication channels can be guaranteed to levels needed for

safety-critical applications [57]. But it is also unclear to what degree that kind of commu-

nication is actually necessary: human drivers navigate successfully with only limited1 forms

of communication, which implies that the coordination they do is also limited. This raises

the question of to what extent coordination is actually required for navigating multi-agent

systems, and it implies that a better understanding of that requirement will lead to the

development of more practical and robust navigation algorithms.

This chapter examines agent coordination in a variant of the reciprocal n-body collision

avoidance problem described by van den Berg et al. [152]. The key insight is that system

dynamics can introduce a requirement for coordination where there otherwise would be

none, and a constructive proof is given that allows the existence of this requirement to be

determined. The importance of the coordination requirement is that once it exists within

a system, the space of appropriate models for the problem changes, which changes the

complexity class of any solutions to the problem. This result demonstrates the existence of

fundamental ties between system dynamics and problem complexity for multi-agent collision

avoidance problems. Preliminary work for this chapter was published in Johnson [69].

4.2 Related work

This section will detail a selection of the large body of relevant work on collision avoidance,

planning, and complexity. Several general theoretical complexity results are described, fol-

lowed by a survey of notable solution techniques for multi-agent collision avoidance and of

solution techniques for hybrid dynamical systems.

1Indicator lights are a common channel of communication, but they are notoriously unreliable. Horns
also provide a form of communication, but are limited by context. Relative positions and speeds can convey
intent, but, as channels of communication, these are very low bandwidth.
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In the absence of dynamic constraints and other moving agents, the problem of planning

a collision-free path through an environment is typically referred to as the mover’s problem,

which is the problem of moving an articulated polyhedral body through a Euclidean space

populated with static polyhedral obstacles. Reif [125] showed the general problem to be

complete for PSPACE and the classical problem, referred to as the piano mover’s problem,

where the moving body is a rigid polyhedron moving in R2 or R3, to be in P under the

condition that geometric constraints can be expressed algebraically. Work by Halperin and

Sharir [56] further showed near quadratic bounds for the R2 case. The multi-body variant of

the piano mover’s problem, known as the warehouseman’s problem, was shown by Hopcroft

et al. [60] to be PSPACE-hard. Reif and Sharir [126] additionally showed that introducing

agents that follow fixed-trajectories into the piano mover’s problem for R3 changes the com-

plexity class of the problem to NP-hard, and that adding velocity bounds makes the problem

PSPACE-hard.

For multiple agents following non-fixed trajectories, the problem is generally formulated

in terms of sequential decision making in a discretized space rather than geometric motion

in a continuous space. When planning among the agents can be done independently while

still achieving a jointly optimal solution, the problem can be formulated as a type of Markov

decision process (MDP), which Papadimitriou and Tsitsiklis [120] showed belongs to com-

plexity class P. As noted by Boutilier [29], independent planning cannot in general guarantee

a globally optimal plan; only joint planning can guarantee global optimality. While joint

planning problems with a central planner that computes motions for all agents can also be

formulated as types of MDP’s, and therefore belong to P, others, such as the unlabeled vari-

ant, where multiple agents must reach multiple goal positions without restrictions for which

agent reaches which goal, were shown by Solovey and Halperin [134] to be PSPACE-hard. For
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decentralized problems Bernstein et al. [21] showed that for cooperative agents (i.e., agents

that share a reward function) this class of problems is at least complete for NEXP in both

the jointly fully-observable (DEC-MDP) and jointly partially observable (DEC-POMDP)

cases. Goldsmith and Mundhenk [53] showed that the partially observable stochastic game

(POSG), which is the non-cooperative version of this problem (i.e., the problem in which

agents do not share a reward function), is complete for NEXPNP.

In the context of collision avoidance in multi-agent systems, Fiorini and Shiller [45] intro-

duced the notion of velocity obstacles to address the pairwise collision avoidance problem. In

their approach the set of velocities resulting in collision between a robot and another moving

agent are computed explicitly, and this set is called the velocity obstacle (VO). Collision

avoidance is then guaranteed by assigning velocities outside the VO to the agent. Fraichard

and Asama [49] described a more general inevitable collision state (ICS) as a “state for which,

no matter what the future trajectory followed by the system is, a collision with an obstacle

eventually occurs.” Similar state descriptors had been proposed by LaValle and Kuffner

[88]. Owing to the inherent computational complexity of the ICS representation, Bekris

[18] examined sampling-based approximation methods. The Optimal Reciprocal Collision

Avoidance (ORCA) framework introduced by van den Berg et al. [152] expanded the ideas

of VO and ICS to driftless, non-inertially constrained multi-agent systems. Later, van den

Berg et al. [154] extended their results to consider systems with inertial constraints. Pair-

wise collision avoidance for holonomically constrained systems was demonstrated by Wilkie

et al. [162] and extended to general multi-agent systems by Alonso-Mora et al. [9]. When

coordination among agents is allowed, Bekris et al. [19] demonstrated that non-collision can

be guaranteed for a broad class of de-centralized motion planning problems. Shoham and

Tennenholtz [130] describe an alternate approach to these types of problems that imposes
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artificial rules, or social laws, on agent coordination in order to remove the need for online

coordination altogether.

The distinction between sequential decision making and continuous geometric motion

planning problems is typically formulated mathematically as the problem of choosing among

a finite number of homotopy channels in some state space (decision making), and generat-

ing actuation commands to navigate those channels (motion planning). In practice, most

problems have characteristics of both problem types, and therefore are hybrid problems with

hybrid solutions. An early solution approach from Kambhampati et al. [73] interleaved graph

and motion planning in pre-defined discrete spaces. Later, Kaelbling and Lozano-Pérez [71]

dealt with uncertainty and introduced sophisticated task description languages. When the

connectivity of the state space is not known beforehand, Alterovitz et al. [10] introduced a

sampling-based approach that can be used to construct roadmaps in the state space.

4.3 Problem description

In this work, the reciprocal n-body collision avoidance problem is extended to allow general

system dynamics, and to make each agent’s task to choose an appropriate control rather

than velocity:

Problem 5. Let A be a set of agents navigating a shared space with a shared reference frame

and assume that collision is never inevitable in the initial system state. Assume each agent

can observe the instantaneous dynamic state of the environment and has limited (i.e. non-

infinite) computational resources. Assume each agent has knowledge of the physical dynamic

properties of the environment and of other agents, but that each agent actuates according

to a unique decision process. Each agent may assume with certainty that other agents
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will prefer both to avoid collision and to avoid causing collision, but otherwise the decision

processes of other agents are not fully observable except through coordination. Agents may

coordinate their decision processes via communication under the following restrictions:

1. Communications are strictly pairwise

2. Agents may only communicate with regard to their own actions (i.e., they may not

relay information)

3. There is always some non-zero cost associated with communication

When |A| ą 2, how can a given agent choose a control with the guarantee that it will be

possible for all agents to remain collision free for some time horizon?

The focus of this chapter is on how system dynamics affect the model space and com-

plexity of Problem 5.

4.3.1 Notations and definitions

Assume all agents operate in a shared workspace W, and let S denote the state space for

all agents. Let Φ denote the set of control trajectories available to an agent A, where for

each φ P Φ the state of A at time t from initial state x P S under control trajectory φ is

xt “ φpx, tq. Let Apxq denote the state and volume of state space occupied by the geometric

model of agent A at state x. Assume agents may be interacting or non-interacting as defined

below.

Definition 8. An interacting agent is one whose dynamic state is a function of the dynamic

state of the system and an internal policy (for example, pedestrians or animals could be

interacting agents).
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Definition 9. A non-interacting agent is one whose dynamic state is a function only of the

dynamic state of the system (for example, trees or rolling rocks could be non-interacting

agents).

Definition 10. The actions of two agents are said to require coordination when the feasibility

the control sequence either agent uses is not independent of the other’s.

Definition 11. For an agent A navigating an environment occupied by a set of interacting

agents and non-interacting agents A, an obstacle O is a member of the set of obstacles O,

which is defined as:

O “ A z A

Definition 12. A state space obstacle (B) is the volume swept out by an obstacle O over a

time T as it evolves from an initial state xi under a control trajectory φi:

B “
ď

tPT

Opφipxi, tqq

Definition 13. An inevitable collision state (ICS) for an agent A is a state from which all

feasible future trajectories of A result in collision:

x is ICS Ø @φ, DBi, Dt :: Apφpx, tqq XBi ‰ H

ICS notations and definitions adapted from Fraichard and Asama [49].
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(a) For a given agent state Apxq and path P , the stopping path
SP pApxq, pq is the minimal set of states A must occupy while coming
to zero velocity from x along P . Here disc agent A starts on the
left and comes to a stop in the upper right. In the illustration the
motion is discretized at fixed time intervals, so the spacing between
steps indicates relative speed.

(b) For a given agent state Apxq and complete set of followable
paths P, the stopping region SRpApxq,Pq is the union of all SPs
over P. This illustration shows the SR for disc agent A from (a).
The region is plotted by sampling agent trajectories generated by
sweeping steering from hard right to hard left.

Figure 4.2: Illustrations of the shapes of an SP (Definition 15) and an SR (Definition 16) for
a disc agent following constant control trajectories with unicycle dynamics on a 2D plane.
The system was initialized with non-zero velocity, bounded deceleration, and bounded yaw
rate.
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It is important to note that, due to Definition 12, the computation of ICS space requires

knowledge of future control trajectories of all obstacles.

Definition 14. A contingency plan is a control sequence that an agent can execute that is

guaranteed to avoid ICS space.

Definitions 15 & 16 below introduce concepts that will aid in the analysis of Problem 5.

While sufficient to derive the results of this chapter, these definitions will be refined in §4.4.5

and §4.4.6 to generalize how dynamic systems can be described.

Definition 15. For a state x and path P , the stopping path SP pApxq, P q is the minimal set

of agent states A must occupy while coming to zero velocity from x along P (see Figure 4.2a).

Definition 16. For a given agent state Apxq let P be the set of all followable paths and let

I be its index set. Define the stopping region SRpApxq,Pq as the disjoint union of all SPs

over P (see Figure 4.2b):

SRpApxq,Pq “
ğ

iPI

SP pApxq, P q

The disjoint union in Definition 16 preserves information about the originating set, which

is useful for algorithmic operations involving SRs (as in Chapter 5).

4.4 Theory

This section will derive the main results of the chapter. First the specific conditions are

derived for which solutions to Problem 5 can make non-collision guarantees with and with-

out agent coordination. An explicit problem formulation for Problem 5 is given and it is
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shown that the complexity of the problem is directly influenced by system dynamics via the

coordination requirement. The section is closed with a discussion of the results.

To aid with the derivation, Assumption 1 makes explicit the assumption in Problem 5

that agents will maintain and invoke contingency plans during navigation

Assumption 1. Agents in a multi-agent system will compute and maintain motion plans

independently of interaction effects with other agents to use as collision avoidance maneuvers.

Conjecture 1 posits that the stopping path is the unique coordination-free contingency

plan available to agents under Problem 5.

Conjecture 1. Stopping paths are the unique category of motion plan that can enable

coordination-free collision avoidance under Problem 5.

Conjecture 1 is often a reasonable assumption, and in this work it is assumed to be true.

It is an interesting, and open, question whether and how Conjecture 1 could be verified in a

multi-agent system. Chapter 6 discusses this as a point of potential future work.

4.4.1 Relating dynamics to coordination

This section derives the relationship between system dynamics and the requirement for agent

coordination under Problem 5.

Lemma 4. In order to guarantee that any system can remain collision free, at least some

reachable subset of ICS space must be computable from any state.

Proof. This follows from Definition 13. In order to guarantee that a system can remain

collision free, it must only move into states that are not in ICS space. To do that, some

subset of the complement of ICS space must be computable. This equivalently means that

some subset of ICS space must be computable.
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Lemma 5. In Problem 5, ICS space is not computable without agent coordination.

Proof. This follows from Definitions 12 & 13: in order to compute ICS space the future

control trajectories of all agents must be fully observable. However, under Problem 5, those

are not fully observable without coordination among the agents.

Theorem 4. In Problem 5, coordination is required in general for each agent to maintain

the ability to remain collision free.

Proof. It follows from Definition 14 that all agents must have a contingency plan at all times

in order to guarantee the system can remain collision free. By Lemma 4 and Definition 14,

computing a contingency plan requires computing some subset of ICS space. By Lemma 5,

computing ICS space requires coordination among agents.

The SR concept from Definition 16 will now be used to frame the coordination require-

ment in terms of system dynamics.

Lemma 6. Consider a system with agent set A “ tA1px1q, . . . , Anpxnqu and a set of follow-

able path sets P “ tP1, . . . ,Pnu, where each Pj contains the followable paths tP 1, . . . , Pmu

for agent Aj. Let i and j be elements of the index set t1, . . . , nu. For each j and all i, define

the union of obstacle SRs as:

SRjpA,Pq “
ď

i‰j

SRpAipxiq,P iq

For each j, also define an intersection set Qj:

SRpAjpxjq,Pjq X SRjpA,Pq “ Qj
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If and only if for all j there exists an SP such that SP pAjpxjq, P jq XQj “ H, then it can

be guaranteed without coordination that no x P tx1, . . . ,xnu is an ICS.

Proof. First, testing SP disjointness with respect to the union of obstacle SRs is valid by Def-

initions 15 & 16 because SPs and SRs are independent of the states of other agents. Second,

the statement that for all agent indices a stopping path exists such that SP pAjpxjq, P jq X

Qj “ H implies that all agents have disjoint stopping paths available. By Definition 15 this

means that all A1px1q, . . . , Anpxnq can come to a stop without intersecting. Therefore, if

the condition in the theorem holds, collision is not inevitable in any state x1, . . . ,xn. This

is also true only if the condition holds because if SP pAjpxjq, P jq X Qj ‰ H, then under

assumption2 of Conjecture 1, agents would otherwise all need to find a unique set of SPs

such that collision is avoided if all agents execute exactly that set of contingency plans. But

because remaining collision free would now rely on each agent executing exactly one control

sequence whose feasibility directly depends on every other agent executing exactly one con-

trol sequence, the system now requires coordination by Definition 10, and so is no longer

coordination free.

The assertion in the proof of Lemma 6 that finding a unique set of non-disjoint SPs

induces a coordination requirement is not just a semantic distinction but probably also brings

a commensurate addition of computational complexity: The general problem of identifying

a unique assignment of SPs is likely reducible to a Unique-SAT problem, which is coNP-

Hard [28]. Conjecture 2 captures this, and Chapter 6 discusses this as a point of potential

future work.

2Breaking this assumption weakens the logical connection in Lemma 6 from a biconditional (if and only
if) to a material condition (if).
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Conjecture 2. There is no efficiently computable (i.e. polynomial-time) solution to identi-

fying a unique set of disjoint stopping paths in a system that does not exhibit SP disjointness.

Theorem 5 now formalizes the result of Lemma 6 and establishes a condition under which

a general system is guaranteed to be able to remain collision free without coordination.

Theorem 5. A multi-agent system is guaranteed to be able to remain collision free without

coordination if and only if each agent has stopping path disjoint from the stopping regions of

all other agents.

Proof. This follows directly from Lemma 6. By Definition 13 a system is capable of remaining

collision free if and only if it is not in an inevitable collision state. By Lemma 6, this is true

if and only if all agents have stopping paths disjoint from the stopping regions of all other

agents.

Clearly, the result of Theorem 5 is closely tied to the notion of ICS space, and it would

be in part equivalent to state that under certain conditions, it is impossible to compute any

subset of ICS space without knowing the future actions of other agents. This idea is related

to the sufficient safety condition for partial motion plans derived by Petti and Fraichard

[121], which states that if the final state of a collision-free trajectory is not an ICS, then no

state along the trajectory is an ICS.

The following definition is made for convenience:

Definition 17. The condition that satisfies Theorem 5, that all agents have at least one

stopping path disjoint from the stopping regions of all other agents, is called SP disjointness.

Theorem 5 states that coordination is unnecessary under SP disjointness. But how, in

practice, could agents maintain that property without coordination? Trivially, if an agent
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modulates its dynamics such that it can always come to a stop without possibly intersecting

the path of any other agent, then the property is satisfied. Agents need no knowledge

of the plans of other agents for this; they simply need knowledge of the dynamics of the

system. This is the approach taken, for example, by Mazer et al. [102] in the Ariadne’s Clew

algorithm. For most inertially constrained systems, however, this behavior would be too

conservative to be useful. Worse, it is possible to specify initial conditions in such a system

such that it is not possible to satisfy the property required by Theorem 5 (see §4.4.4). This is

why, for example, the algorithm for multi-agent collision avoidance for inertially constrained

systems given by Bekris et al. [19] requires coordination in order to maintain its guarantees.

But if Bekris et al. [19] require coordination, why is it that van den Berg et al. [152]

do not? The ORCA framework they present is an efficient collision avoidance algorithm

based on the velocity obstacle (VO) representation that guarantees non-collision for very

complex scenes without the need for agent coordination. One of the immediate and natural

consequences of Theorem 5 is that the requirement for agent coordination for certain systems

can always be dropped. Theorem 6 explores and establishes this possibility:

Lemma 7. In inertially unconstrained systems SRpApxq, pq “ Apxq.

Proof. That A can instantaneously stop means that the minimal set of states A must oc-

cupy while coming to a stop along any path P is exactly Apxq. This implies further that

Ť

PPP SP pA,P q “ Apxq which is equal to SRpAq by Definition 16.

Theorem 6. An inertially unconstrained multi-agent system that is not currently in collision

is guaranteed to be able to remain collision free without coordination.

Proof. Lemma 7 implies that for inertially unconstrained systems, SP disjointness holds for

all non-collision states. By Theorem 5, such a system is guaranteed to be able to remain
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collision free without coordination.

Note that any system described by the VO formulation is necessarily an inertially uncon-

strained system and therefore Theorem 6 applies to it. This means the fact that Bekris et al.

[19] required coordination for their solution and van den Berg et al. [152] did not is directly

a result of the system dynamics they employed: the former described inertially constrained

systems, and the latter unconstrained systems.

At a deeper level, these results speak to the fundamental problems encountered when

ignoring inertial constraints in dynamical systems. The VO representation, for instance, is

an often used approximation for mutual collision avoidance in multi-agent systems because

of its simplicity and elegance. However, Theorem 6 implies that the guarantees it makes are

invalid for systems with inertial constraints. This is demonstrated empirically by Wilkerson

et al. [161] who showed that using the VO representation in a constrained system can result

in collisions, even with theoretical non-collision guarantees. §4.6 in the Appendix gives a

formal proof of this fact.

4.4.2 Collision avoidance as a decision problem

In any practical instance, Problem 5 would be a hybrid decision making/motion planning

problem, so its model would also take a form similar to the hybrid models mentioned in

§4.2. Let R be some sufficiently dense discrete roadmap approximation to S (for instance, a

Stochastic Motion Roadmap Alterovitz et al. [10]), where “sufficiently dense” means dense

enough to allow solutions to be found. Assume each agent is initialized at some vertex of R,

and assume all agents plan at a uniform and aligned frequency. Assume all agents have full

knowledge of system dynamics and of R, and that some efficient method for computing SRs

exists (see §4.5.1). Assume that agents are capable of coordinating their actions if they so
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choose (subject to the restrictions outlined in Problem 5) in a way similar to that presented

in Bekris et al. [19], in which agents negotiate joint contingency plans.

Define G as an instance of Problem 5 in its most general as a POSG:

Problem 6. Let G “ pA, O, C, c0,A, T,Ω, Rq, where:

• A is a set of agents whose states include intent, which defines how the agent’s internal

policy affects its actuation

• O is a set of observations (mapping of observable agent states R)

• C is a set of configurations of the system (mapping of full agent states R)

• c0 is a designated initial configuration

• A is a set of actions that enable transition between any two vertices on R

• T : C ˆAk ˆ C Ñ r0, 1s is the transition probability function, where

T pc, a1, . . . , ak, c
1q defines the probability that configuration c1 P C is reached from

configuration c P C when each agent i chooses an action ai

• Ω : C ˆ I Ñ O is the observation function, where Ωpc, iq is the observation made in

configuration c by agent i. The observation of one other agent may include the result

of a negotiation (a joint contingency plan); for all others the observation includes a

distribution over contingency plans

• R : C ˆ Ak ˆ I Ñ R is a reward function, where Rpc, a1, . . . , ak, iq is the reward for

agent i in configuration c when agents take actions a1, . . . , ak
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4.4.3 Main result

This section shows that Problem 6 can be reduced to an MDP provided the non-coordination

guarantee of Theorem 5 holds, and that it otherwise remains a POSG.

Lemma 8 is given to aid in the derivation of the main result:

Lemma 8. An agent A can assume arbitrary policies for all O P O and maintain the non-

collision guarantee provided the assumed policies maintain SP disjointness.

Proof. This follows from Theorem 5. To guarantee the ability to remain collision free, the

action an agent takes is irrelevant so long as SP disjointness is maintained3.

Now, the reduction of G to an MDP under SP disjointness:

Theorem 7. Under SP disjointness, G can be modeled as an MDP.

Proof. Lemma 8 states that the ability to remain collision free can be assured whenever an

agent A assigns arbitrary polices to other agents so long as SP disjointness is maintained.

This means A does not need to observe anything about the other agents beyond what is

already observable in order to plan and execute motions in the presence of other agents. A is

free to assume arbitrary policies and full observability in future actions and a shared reward

function; it is only important that in the current state the agents can rely on each other not to

violate SP disjointness, and, as discussed previously, this can be done strictly with knowledge

of system dynamics. Under the assumption of full observability, A can then incorporate the

state of other agents into its own transition function, effectively centralizing the decision

process. Thus, G is now equivalent to a fully-observable, centralized, single-agent system.

In other words, G is an MDP.

3The principle of Lemma 8 is intimately related to that exploited by the ORCA framework.
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Now, if SP disjointness cannot be guaranteed, G must remain a POSG:

Theorem 8. Without SP disjointness, G must be modeled as a POSG.

Proof. In order to compute a solution satisfying Problem 5, agents must reason in some

way about the future actions of other agents, but Theorem 5 says that in the absence of

SP disjointness, coordination among agents is required to do so, which means centralized

control cannot be assumed. In the worst case, the agent SRs may intersect in a way that

requires more than two agents to coordinate. Due to communication limitations, however,

this necessarily induces partial observability of the intent of at least one of the agents.

In addition to a partially observable world, reasoning about future actions involving other

agents also requires consideration of non-shared reward functions because they are what

determine the distribution over future actions. Under these conditions, the decision process

is decentralized, multi-agent, and partially observable with non-shared reward functions. By

definition this is a POSG.

Theorems 5, 7, & 8 lead to Assertion 1, which is the thesis of this chapter:

Assertion 1. Interaction effects in multi-agent systems can be factored out, i.e. addressed

independently, of the navigation problem provided that SP disjointness can be maintained

independently by all agents. The process of doing so is called factoring interaction effects.

To summarize, this section has shown that system dynamics alone can be responsible for

moving a problem between two types of problem models. This result demonstrates that the

dynamics of a system can fundamentally change both the complexity class and model space

of the problem.

96



A1 A2

A3

(a) A simple multi-agent system: agents A1, A2,
and A3 are moving along shared paths and must
navigate around each other.

A1 A2

A3

(b) At the branching point in the path, A1 and A2

must make a decision about which branch to follow.

A1 A2

A3ASR3

ASR1 ASR2

(c) In an inertially unconstrained system, the SRs
are invariant to the state of the system, and only ex-
tend longitudinally to the extents of the agents. The
pink regions illustrate the extent of the SR along
the path being followed. In such a scenario, the SP
disjointness property holds for any initial state.

ASR3
ASR1ASR2

A2A1

ASR3 A3

(d) An inertially constrained system with a high ini-
tial velocity results in an initial system state with-
out a guarantee of SP disjointness. SR1 and SR2

extend beyond the median, and SR3 circles the me-
dian. In such a scenario, there is significant overlap
in the SRs for each agent, indicated by the darker
shaded regions.

Figure 4.3: Exemplar problem. SRs are indicated as exaggerated pink regions for each agent
with dashed lines indicating extents.
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4.4.4 Exemplar problem

This section presents a simple multi-agent system that can be manipulated in certain ways

to clearly demonstrate the ideas of this chapter. The problem is as follows: three agents A1,

A2, and A3 move along a fixed path network that has a split around a single median, shown

in Figure 4.3a. A1 and A2 desire to make it past the median, and A3 desires to stay around

the median. As A1 and A2 traverse the path, they reach a point where they must make a

decision about how to proceed (Figure 4.3b). Note that because only the collision avoidance

problem is of concern, it is not a criterion for success that the agents can make it past each

other successfully. Success only requires that they remain collision free, so, for instance, a

deadlock situation satisfies the requirements, even if it is not the most desirable outcome.

Suppose the agents occupy an inertially unconstrained system. In this case, their SRs

are disjoint unless or until they actually collide. Theorem 6 guarantees that, for any initial

velocity, they can all proceed without coordination while maintaining the guarantee that

collision is not inevitable (Figure 4.3c). On the other hand, assume the agents occupy an

inertially constrained system. For a sufficiently high initial velocity, none of the three agents

have an SP that can be guaranteed to be disjoint of all other SRs (Figure 4.3d). It should

be clear both by inspection and by Theorem 5 that maintaining any non-collision guarantee

is only possible in this case if they somehow coordinate.

4.4.5 Stopping regions with reference velocities

A useful extension to the SR model is to explicitly incorporate a reference velocity. This can

be used to incorporate environmental influence into SR computation, or, by introducing an

artificial reference velocity, it can simplify SR computation in systems with high absolute

and low relative velocities. This is due to the fact that stopping regions defined in terms of
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(a) vr “ v (b) vr “ 0.66v (c) vr “ 0.33v (d) vr “ 0

Figure 4.4: For a given agent state Apxq, reference velocity vr, and set of followable paths
P , the stopping region SRpApxq, vr,Pq is the SR computed with respect to the reference
velocity vr. This figure illustrates SRs for various reference velocities in a two agent system.
The two disc agents are traveling on a 2D plane with the same velocity v. In (a) the
reference velocity is taken as v, so the stopping regions are the agents themselves. In (b)-(d)
the reference velocity is taken as progressively smaller fractions of v. Here agents obey the
same dynamics as in in Figure 4.2. It is important to note that these illustrations are 2D
projections of 3D swept volumes, so the overlap in SRs is not quite as severe as it looks.

relative velocities can be much smaller than their absolute counterparts. Extending stopping

regions in this way requires only minor definition changes.

To introduce the reference velocity term, the reference frame used in Problem 5 is ex-

tended to include a velocity:

Definition 18. A reference velocity is a velocity component of the reference frame with

respect to which agent velocities are measured for SP and SR computation.

Rather than computing a stopping velocity with respect to zero velocity in the reference

frame, agents are allowed to choose any reference velocity. Naturally, this introduces a

dependence of the coordination requirement computation on the reference velocity. Lemma 9

extends Theorem 5 to explicitly take into account the notion of a reference velocity:

Lemma 9. A multi-agent system is guaranteed to be able to remain collision free without
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coordination if there exists a reference velocity such that Theorem 5 holds.

Proof. Suppose there exists a reference velocity V such that Theorem 5 holds. Let V be the

velocity component of reference frame. Theorem 5 can now be applied.

Stopping regions with a reference velocity can now be defined:

Definition 19. For a given agent state Apxq, reference velocity vr, and set of followable

paths P , the stopping region, denoted SRpApxq, vr,Pq, is the SR computed for the reference

velocity vr (Figure 4.4).

The stopping path can defined similarly. Note that there is no fundamental incompatibil-

ity between the results derived in this chapter and this extended notion of stopping regions;

the reference velocity chosen for any problem is arbitrary to begin with. Formally including

it in the definition simply acknowledges that fact. This is useful in systems where stopping

regions can be computed in terms of relative velocities between agents, because it means

that all agents can choose reference velocities independently.

4.4.6 Generalizing to soft stopping regions

For systems with low absolute and low relative velocities (such as pedestrian navigation), low-

energy collisions may be permissible, or even unavoidable, and the stopping region concept

can be extended to soft stopping regions. A soft stopping region is a region in which an agent

will either come to a stop or enter into a low-severity collision, where severity is measured

by collision-induced velocity change ∆V [64]. The definitions and lemmas below establish

this concept.
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Definition 20. For a given agent state Apxq, reference velocity vr, collision velocity vc, and

set of followable paths P , the soft stopping region SRpApxq, vr, vc,Pq, is the SR computed

for the reference velocity vr and the target velocity of the stopping paths set to vc.

Definition 20 is only a minor change from Definitions 16 & 19: the target velocity of

the stopping path is now just a parameter. It would seem this could be rolled into the

reference velocity, but it is actually specifying something fundamentally different because it

is dependent on the control policies of the other agents, which complicates the determination

of SP disjointness: if it is impossible to estimate vc for other agents, then it is also impossible

to estimate SP disjointness, and the absence of the coordination requirement can no longer

be guaranteed. In order to use soft stopping regions effectively, then, it is necessary that

agents have some mechanism to measure, or estimate from observation (such as described

in §4.4.7), acceptable values for vc. If such information is available, one simple approach to

dealing with multiple agents is to compute vc such that it satisfies the ∆V threshold for any

potential collision.

4.4.7 Incorporating the environment into dynamics computation

In this chapter, agents are assumed to have no knowledge of how others move aside from

their dynamic capabilities. This could be generalized to give all agents access to a set of

pre-defined rules or social laws [130]. For instance, right-of-way traffic rules could be defined

that allow the need for coordination to be removed from more complex interactions because

the rules guarantee the existence of contingency plans, which enable the SP disjointness

condition to hold. In fact, the SP disjointness condition itself is essentially a pre-defined

rule, but one that is derivable strictly from the physical properties of the system. But if

all agents have access to a shared set of rules and the environment is marked in a way that
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unambiguously indicates which rules to follow at any given time, then it is straightforward

to incorporation this information into the computation of the stopping regions.

Let Γ be a set of rules where each rule r P Γ is a set of parameterized dynamic constraints.

A rule r is applied to an agent A if the constraints of r are applied to the motion model

M of A. Assume all agents have full knowledge of Γ. Let MΓ : pAi, Oq ÞÑ γi be a mapping

of an agent/observation pair to a motion model with a set of active rules γ Ď Γ. In other

words, MΓ is the motion model a given agent follows assuming the rules indicated by a given

observation are followed.

It is now straightforward to incorporate environmental rules into SR computation: there

is simply an additional step during control computations that modifies the dynamic models

of observed agents according to the active rules. These modified models MΓ now affect how

SRs are computed, and the rest of the problem remains the same.

4.5 Practical concerns

For the results of this chapter to have impact in practice, there must exist efficient methods

for computing SRs, testing for collision, and producing motion controls. For motion controls

§4.2 gave results showing P-time complexity for the R2 or R3 piano mover’s problem. In

cases where just online feedback control suffices, there exist many linear- or constant-time

control laws that can be used [119].

The remainder of this section provides a brief survey of techniques that could be used

during SR computation and collision detection.
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4.5.1 SR computation

The problem of SR computation is a specific instance of the more general problem of com-

puting reachable regions of state space. Ó’Dúnlaing [116] gave a P-time algorithm for point

agents and obstacles moving in one dimension under inertial constraints. Chapter 2 gen-

eralized the result to convex agents and obstacles moving along fixed paths in R2 while

maintaining P-time complexity. Sontges and Althoff [135] described an online spatial de-

composition approach that conservatively approximates the region of reachable space.

In higher-dimensional applications or with articulated agents, the problem of computing

reachable regions becomes intractable, so approximation techniques can be employed. Val-

tazanos and Ramamoorthy [151] employed pre-computed reachable region templates that

are composed online in order to plan efficiently. Allen et al. [7] similarly employed machine

learning to efficiently approximate reachable region computation online.

Geometrically, computing SRs is the problem of computing swept volumes [6, 15]. In

general, computation of swept volumes to arbitrary precision cannot be done online, but

many techniques have been developed to allow efficient and practical approximations [81,

141, 156].

In any practical application the method chosen for computing SRs will necessarily be

instance-specific, but a variety of tools exists for performing these types of computations

efficiently.

4.5.2 The collision detection problem

Many motion planning and motion control techniques require explicit collision detection.

Sampling-based techniques in particular, which are commonly used in practice, tend to

spend a majority of their computational budget on collision detection [87]. Because of this,
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and its natural application in video gaming, graphics, and simulation, there is a significant

literature on collision detection techniques and theory [65, 72, 160]. In motion planning, col-

lisions are usually tested between 2D or 3D convex polygons using tools from computational

geometry [128].

For the 2D case, linear- and logarithmic-time intersection test algorithms have been

known for some time [35]. To achieve those low theoretical complexities, however, a signifi-

cant amount of bookkeeping is necessary, often to the extent that the bookkeeping dominates

running time. Simpler algorithms based on the hyperplane separation theorem [39] can be

much faster in practice despite P-time complexity.

Often it is also desirable to have a measure of minimum separating distance in addition

to an intersection test. In the 2D case, again, this can be accomplished with linear time

complexity [52]. But these algorithms are necessarily more complex than strict intersection

tests, so they are often much slower, which is especially burdensome in higher dimensions. In

many situations, collisions are tested over time which means information computed during

one time step may be used to inform computations during the next. Closest feature tracking

techniques, pioneered by Lin and Canny [93], exploit such temporal coherence to achieve

expected constant time performance.

When the geometric models are static or pre-defined, bounding-volume hierarchies [41]

and spatial decompositions [61] can enable extremely fast collision detection and distance

approximations between objects of high geometric complexity, with spatial decompositions

additionally allowing efficient online construction.

Depending on the method chosen for motion control, the choice of collision detection

method may play an important part in maintaining real-time capability for a mobile agent.

Thankfully, the field of collision detection is well studied and understood, and there exist
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many established techniques for efficient collision detection.

4.6 Conclusion

This chapter presents results showing that system dynamics can have a direct impact on both

the theoretical complexity and solution space of multi-agent collision avoidance problems.

The result is based on the fact that a requirement for agent coordination in a multi-agent

system can fundamentally alter the problem model necessary to find a solution, and it was

shown that system dynamics alone can add or remove this requirement. The proof of this

assertion is constructive in nature, which allows the coordination requirement to be tested

empirically, which implies that it is possible for agents to exploit knowledge of the presence

or absence of the requirement. The process of enforcing the absence of this requirement so

that the full space of agent interactions need not be considered during navigation is named

factoring interaction effects by Assertion 1, and an exemplar problem was given to demon-

strate the results. In addition, the Appendix provides a proof that inertially unconstrained

models cannot conservatively approximate inertially constrained systems, and it provides a

re-formulation of the velocity obstacle concept within the ICS family of representations.

As covered in §4.2 the complexity difference between MDP’s and POSG’s is staggering,

with the former falling into complexity class P, and the latter into NEXP in the cooperative

case or NEXPNP in the non-cooperative case. The fact that the complexity of the system

can be manipulated to keep it within a tractable realm simply by controlling the dynamics

is both surprising and powerful, and may provide insight into how humans are capable of

efficiently and successfully navigating complex, multi-agent systems. In the case of roadways,

for instance, the environment constrains the set of motions to such an extent that virtually

any forward motion ensures progress toward the goal, so optimality of the plan is of little
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value. Instead, if agents prioritize maintaining SP disjointness in the system, a planning

problem that is, in principle, wildly intractable becomes comfortably tractable.

Conceptually, this chapter deals with the fundamental question of how to appropriately

model certain problems involving real-world interacting agents. Modeling as optimal decision

making processes enables elegant formulations but requires the use of problem models that

can be intractable to actually solve. This has serious practical implications that tend to be

overlooked in academic literature. Daskalakis and Papadimitriou [37] raised this issue in a

study of complexity in large, multi-agent systems by posing the question: “How can one have

faith in a model predicting that a group of agents will solve an intractable problem?” In the

realm of multi-agent systems, this chapter suggests that such questions may be avoided by

employing models that allow agents to independently modulate the problem complexity.
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Appendix

This section will prove that the velocity obstacle representation cannot conservatively ap-

proximate inertially constrained systems, a result that has important ramifications for safety

guarantees in real-world applications. In addition, it will be shown the the velocity obstacle

representation belongs to the family of ICS representations using the inevitable collision ob-

stacle (ICO) concept. First the ICO and velocity obstacle representations are covered with

relevant definitions and notations, after which proofs will be given.

The inevitable collision obstacle

Here the ICO is introduced and relevant notation given.

Definition 21. An inevitable collision obstacle (ICO) is the set of states of an agent A that

result in collision with Bi for any control sequence φ is applied to A:

ICOpBiq “ tx | @φ, Dt :: Apφpx, tqq XBi ‰ Hu

The ICO is closely related to the ICS concept, both of which were introduced by Fraichard

and Asama [49].

The velocity obstacle

This section recalls the velocity obstacle and relevant properties. We use the definitions from

Fiorini and Shiller [45], and the reader is referred to that work for more detail4.

In this section, assume t P T , where T “ r0,8q is a finite time horizon. Let Φv be the

4To avoid problems in dealing with dynamic constraints Wilkie et al. [162] defined generalized velocity
obstacles that are derived in control space rather than velocity space.
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set of feasible velocity commands for A, and let φvpx, tq denote the state of A after constant

velocity v is applied to initial state x for a time t.

Definition 22. The velocity obstacle for A due to Oi (VOA|Oi
) is the set of velocities such

that A at some point enters into a collision state with O. In other words, given initial state

x, and for all feasible velocity commands v P Φv there is a collision at some time t P T

between Apxq and the state space obstacle Bi due to Oi:

VOA|Oi
“ tv | Dt :: Apφvpx, tqq XBi ‰ Hu

Velocity obstacles and inertially constrained systems

Lemma 10. The velocity obstacles representation cannot guarantee collision avoidance in

inertially constrained systems.

Proof. By Definition 22, the complement of the velocity obstacle is exactly the set of all

velocities that, when instantaneously applied, would avoid collision. However, controlling to

a velocity instantaneously is impossible in an inertially constrained system. Therefore, the

complement of the velocity obstacle is unreachable, and by Lemma 4, it cannot be used to

guarantee non-collision.

Velocity obstacle and inevitable collision obstacle equivalence

The reader will note the similarity between Definitions 21 & 22, and work by Shiller et al.

[129] suggests that a deeper relationship exists. The proof proceeds by exploiting the sim-

ilarity and showing that ICO computations are both necessary and sufficient in order to

compute the VO.
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Definition 23. A velocity ICO (ICOv) for a given state space obstacleBi is an ICO computed

over the velocity control trajectory set Φv:

ICOpBiqv “ tx |@φv, Dt :: Apφvpx, tqq XBi ‰ Hu

Lemma 11. Computing a velocity obstacle is exactly equivalent to computing an inevitable

collision obstacle over a restricted control space.

Proof. For a given obstacle Oi and corresponding state space obstacle Bi, use Definition 22

to perform a variable rewrite on the definition of a velocity ICO (Definition 23):

ICOpBiqv “ tx | @φv, Dt :: Apφvpx, tqq XBi ‰ Hu

“ tx | @φv, v P VOA|Oi
u

Thus, the ICO(B)v and VOA|O are equivalent, which means that the velocity obstacle

representation is equivalent to the ICO representation over a restricted control space.

The result of Lemma 11 provides a simple but formal unification of two common tech-

niques for collision avoidance under the same theoretical framework: that velocity obstacles

are exactly inevitable collision obstacles over a restricted set of the inputs.
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Chapter 5

Selective determinism for guided collision avoidance

Synopsis: This chapter develops a framework for performing guided collision avoidance

in multi-agent systems. Necessary components of the framework are presented as generic

algorithms whose solutions must be computed or conservatively approximated in any problem-

specific algorithm. The framework specifies that algorithms consist of two primary parts:

a local controller that maintains SP disjointness, and a global controller that guides the

controller within the space of SP disjoint controls. As demonstration, a problem-specific

algorithm is developed and analyzed under the framework.
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5.1 Introduction

As established in Chapter 3 computing optimal controls is a generally intractable problem,

and although it may admit efficient approximations, those approximations may or may not be

guaranteed to satisfy required problem constraints, notably collision avoidance. However, for

a broad class of multi-agent systems, Chapter 4 established explicit, computable conditions

for which approximation techniques can be guaranteed to satisfy hard collision constraints.

This chapter builds on those results to define the Selective Determinism (SD) framework

that enables agents to perform goal-directed navigation in stochastic multi-agent systems.

The framework allows the development of robust algorithms with guarantees on both non-

collision and tractability that are impossible under optimal solution techniques.

§5.3 gives the general problem statement that the SD framework is intended to be used

with, and §5.4 defines the SD framework in terms of generic algorithms that address that

problem. §5.5 demonstrates the SD framework by developing a problem-specific solution to

a path network traversal problem and analyzes the statistics of cost variation for SD solutions

under variations in problem initial conditions. §5.6 concludes the chapter.

5.2 Related work

The SD framework builds on the ideas of shared autonomy, or priority blending, introduced

in Chapter 3 and on the ideas of efficient problem models used in Chapter 4. This section

provides a brief survey of control and planning techniques that use related ideas to deal with

multi-agent systems.

In decentralized control theory person-by-person solution techniques are those in which

each agent in a multi-agent system assumes arbitrary control strategies for all other agents
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and optimizes its own actions according to the assumed strategies.1 Described by Rad-

ner [123] and Marschak and Radner [101], the person-by-person optimal control strategy is

similar to the notion of local optimality in optimization theory. As noted by Chapter 4,

such strategies provide no guarantees on any global measure of plan quality, but they are

typically computationally efficient. A complementary technique, known as the designer’s

approach [96, 164], views the control problem from the perspective of a system designer who

attempts to solve the decentralized problem in a centralized fashion by computing control

laws for all agents in open-loop. By using an open-loop strategy the designer’s approach at-

tempts to compute solutions that approach some kind of global optimality without incurring

the computational cost of accounting for future observation input.

The designer’s approach is related to decision process problem models known variously as

open-loop techniques [158], unobservable MDPs [110], or non-observable MDPs (NOMDPs) [30].

Models in this family are otherwise standard partially observable MDPs that have only a sin-

gle ‘null’ observation. As would be expected, the null observation function reduces the prob-

lem complexity significantly from that of the general partially observable case, though lacking

the perfect observation information of an MDP, the NOMDP is still not fully tractable: Pa-

padimitriou and Tsitsiklis [120] showed that the NOMDP decision problem is NP-Complete.

In practice, however, randomized or approximating techniques can often be used to effi-

ciently find reasonable solutions to NP-Complete problems. In general, one may note the

resemblance between open-loop strategies described above and the rollout technique applied

in Chapter 3. As shown by Bertsekas [23] these two techniques are closely related, with

open-loop approaches being special cases of the more general family of rollout strategies.

1This type of strategy is employed by Theorem 7 in Chapter 4 to achieve complexity reduction in the
guided collision avoidance problem.
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Yu et al. [167] gave a theoretical treatment of the types of partially observable systems

most suitable to open-loop planning techniques, noting that problems that can be decom-

posed into global and local action spaces are particularly well suited, and that even though

optimality cannot theoretically be guaranteed, there is typically little loss of quality in prac-

tical robotic systems. From an empirical standpoint, Weinstein and Littman [158] showed

that open-loop techniques can be very effective even in large-scale/high-dimensional robotics

control problems, and Sunberg et al. [140] implicitly used a hierarchical NOMDP model to

plan collision avoidance maneuvers for unmanned aerial vehicles.

This open-loop approach can also be very useful outside the pure control domain. Beard

et al. [17] presented an open-loop approach to the mobile tracking and label assignment

problem in dynamic stochastic domains. The goal was to perform mobile tracking while

simultaneously ensuring that the sensor does not collide with the objects being tracked. The

problem is cast as a POMDP with a cost function that has a blending of terms, one of which

implicitly guarantees SP disjointness, and the problem as a whole is solved with an open-loop

approximation.

In fully observable problems, when both global and local scopes can be expressed as

linear algebraic systems, jointly optimizing global and local controls can still be unwieldy

even if the problems are theoretically tractable. In these cases, the idea of solving global

and local controls separately is implemented through null space optimization, which satisfies

secondary system constraints within the null space of the primary solution. In this way

global and local priorities can be combined without violating hard constraints [80, 137, 139].

113



5.3 Problem definition

The guided collision avoidance problem is defined as an extension to the variant of the

reciprocal n-body collision avoidance problem, Problem 5, given in Chapter 4.

Problem 7. Given a desired goal state xg, how can an agent solve Problem 5 such that the

computed controls blend the following two objectives in order of priority:

1. Preserve SP disjointness.

2. Make progress toward xg.

The solution to addressing the overall problem will be a Selective Determinism (SD)

algorithm that uses theory derived in Chapter 4 to factor the problem into independent sub-

problems that each solve one of the objectives. The key is the ability to factor out interaction

effects by identifying coordination requirements among all agents. Interactions with agents

who do not require coordination can be factored, i.e., the ego agent can assume arbitrary and

independent deterministic2 policies for the factored agents. These assumed policies must be

self-preserving, but can otherwise be defined however is expedient: simple constant velocity

models, or more sophisticated reactive models (e.g. the Intelligent Driver Model [149]).

In some cases it may be desirable to reason selectively about interactions between agents

under a decentralized joint-planning framework (e.g. Alterovitz et al. [10], Kaelbling and

Lozano-Pérez [71], Kambhampati et al. [73]). This could allow sophisticated interactions

to take place between small subsets of agents within a larger system. Alternatively, as will

be demonstrated in §5.5, the planning agent can choose to simply take actions that always

adjust its state such that the coordination requirement is never present.

2The name Selective Determinism refers to this ability to choose deterministic models for modeling agent
behavior.
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5.4 General solution

Note that structure of Problem 7 maps very well to the open-loop hierarchical planning type

defined in Yu et al. [167] that was discussed in §5.2. The problem has a global action space for

the goal direction sub-problem, and a local action space for the SP disjointness (Definition 17,

Chapter 4) preservation problem. Further, as noted in §5.2, open-loop solutions can be

formulated as types of rollout algorithms, which means that the constrained optimization

framework defined in Chapter 3 provides an ideal solution technique. From this, and inspired

by the general solution methodology given in Mahajan and Mannan [97], the SD framework

will compute a solution to Problem 7 by performing the following steps at each decision

point:

1. A global controller computes an error term E in the control space such that minimizing

E will direct an agent to some goal

2. E is given to local controller that computes the control set U that satisfies SP disjoint-

ness

(a) If U ‰ H, then the control u P U minimizing E is issued

(b) Otherwise, u is computed such that SP disjointness can be restored

In a pure optimization-based approach, the sub-problems above would be solved jointly

by a stochastic optimal controller, but, as covered in Chapter 3, there are no practical general

solution frameworks for such problems. However, when the requirement for joint optimality is

dropped, the SCIMP framework defined in Chapter 3 offers a rigorous method for computing

solutions to precisely the class of priority-blended control problems that Problem 7 belongs

to. The mapping is actually direct: the global controller described above computes the
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SCIMP desired input ud, and the local controller performs the SCIMP optimizations of

Equations 3.16 & 3.17. Because the local controller is responsible for maintaining collision

avoidance guarantees and for blending priorities, this section will focus on outlining how

it can be implemented. There are few requirements on the global controller, and for this

chapter a generic, deterministic planning algorithm will be assumed to act as the global

controller.

For the local controller to meet its requirements, it must test for and maintain SP dis-

jointness, which requires the ability to compute factorizations (defined in Assertion 1). Com-

puting factorizations depends on computing SRs, and, as discussed in Chapter 4, the compu-

tation of SRs is highly domain dependent. However, certain properties of the computation

of those regions are universally required in order to maintain the guarantees on collision

avoidance and tractability. This section describes generic algorithms that demonstrate those

properties with the intent that these algorithms be tailored to individual problem instances.

Thus, the SD framework is a collection of these generic algorithms that serve to guide the de-

velopment of problem-specific solutions. The remainder of this section presents these generic

algorithms.

5.4.1 Computing stopping regions

Recall from Definition 16 that an SR is a union over all feasible SPs, and that it is the SPs

that are used to determine SP disjointness. This means that an algorithm computing an

SR must do more than simply compute the reachable region of space for an agent: it must

compute the set of SPs that make up the SR. The following lemma makes clear why this

distinction is important.

Lemma 12. Let SR1 and SR2 be stopping regions, and let SR1 X SR2 “ Q. Let SR11 “
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SR1
SR2

Figure 5.1: Two trivial stopping regions, each of which has only a single SP. Though the
SRs have disjoint subsets, the SP disjointness property does not hold.

SR1zQ and SR12 “ SR2zQ. If SR11 ‰ H and SR12 ‰ H, this implies that portions of SR1

and SR2 are disjoint, but it does not imply SP disjointness.

Proof. This can be shown by counterexample. Let SR1 and SR2 consist of single, straight

line SPs, and assume they intersect at a single point. Clearly, in this case, SR11 and SR12 are

non-empty and disjoint; however, neither SP is disjoint. In this case, SP disjointness does

not hold, and therefore the implication that it holds in general for such cases does not hold.

See Figure 5.1.

Lemma 12 means that in order for SR computation to be useful for detecting and main-

taining SP disjointness, information about the set of SPs must be preserved. This is why

Definition 16 defines SRs explicitly in terms of a disjoint union. Algorithm 8 computes SRs

while preserving path information.

Algorithm 8 computes SRs according to Definition 19 rather than the soft SRs of Definition 20

because, as noted in §4.4.6, the soft SR generalization imposes additional requirements on the

observability of agent decision processes. The sub-routine on Line 3 computes the complete

set of feasible paths that A may follow from start state x under motion model M , and the

sub-routine on Line 5 computes the state space region swept out by A as it follows a path

P to a terminal velocity, which here is the reference velocity of Definition 18, Chapter 4.
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Algorithm 8 Compute an SR for a given agent state, reference velocity vr, and motion
model M (the set of feasible controls is assumed to be derivable from M). As a side effect,
the control sequences that follow all SPs are computed.

1: procedure ComputeSR(Apxq, vr,M)
2: Φ, SRÐH

3: I,P Ð ComputeFeasiblePathsWithIndexSetpApxq,Mq
4: for i P I do
5: φi, SP i Ð ComputeMinimumSweptPathWithControlSetpApxq, vr, P iq

6: Φ, SRÐ Φ
Ů

φi, SR
Ů

SP i

7: end for
8: return I,Φ, SR
9: end procedure

For complexity, Algorithm 8 is at least linear in |P |. Let hp¨q bound the complexity of

the sub-routine on Line 3 and let qp¨q bound the complexity of the sub-routine on Line 5.

The overall complexity can then be written as Ophp¨q ` |P |qp¨qq. Clearly, however, this is

not very informative without more information on the nature of hp¨q and qp¨q. To ensure

the tractability, it is very important that appropriate representations be chosen for SPs and

SRs. In most cases these will be some form of approximating swept volumes, for which many

efficient computation methods exist (see §4.5.1).

As defined, the algorithm assumes that the sets of paths and SPs are discrete and finite.

In reality, these sets will almost always be infinite in size, and each feasible path may ad-

ditionally be infinite in length. In certain problems it may be possible to define paths and

SPs analytically and arrive at closed-form solutions for computing them; however, the set

of instances where this can actually be done is almost certainly exceedingly small. Most

practical applications will require some kind of discreteness and finiteness assumptions to

be ensure computability, which means that SPs and SRs will not be computed exactly. The

next section will describe how to make these assumptions such that factorization guarantees

hold.
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SP1

SP2

SP3

SP4

A1 A2

Figure 5.2: Illustration of the counterexample used in the proof of Lemma 13. Agents A1

and A2 have mutually disjoint SPs available to them, SP 1 and SP 4, and SP 2 and SP 3,
but neither agent has a contingency plan that would not require coordination in order to
guarantee non-collision.

5.4.2 Computing SP disjointness

Assuming that SPs and SRs can be computed, the problem statement for computing SP

disjointness can now addressed. First consider the pairwise problem. A solution algorithm

needs to collect all indices of SPs that intersect both SRs, and return the complement of

that set. Algorithm 9 performs this operation.

Algorithm 9 The pairwise SP disjointness algorithm. Computes and returns a pair of index
sets that contain all SP indices from SR that are disjoint from SR’.

1: procedure DisjointSPs(SR, SR1)
2: I Ð index set from SR
3: QÐ SR X SR1

4: IQ Ð index set from Q
5: return IzIQ
6: end procedure

Algorithm 9 simply implements a relative complement operation. As simple as this is,

it is crucial to computing a correct factorization: it is not sufficient, in general, to check for

the existence of a mutually disjoint subset of SPs between agents. Lemma 13 shows this.

Lemma 13. For stopping regions SR1 and SR2 the existence of mutually disjoint SPs does
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not imply that SP disjointness holds between SR1 and SR2.

Proof. Proof proceeds by counterexample. Consider two agents A1 and A2, where A1 has

SP 1 and SP 2 in its SR, and A2 has SP 3 and SP 4 in its SR. If SP 1 only intersects SP 3

and SP 2 only intersects SP 4, then the stopping paths SP 1 and SP 4, and SP 2 and SP 3

are mutually disjoint between the agents, but neither agent has any stopping path available

that is guaranteed to be disjoint of the other’s SR regardless of the other agent’s future

actions. This is a violation of the condition for non-coordination from Theorem 5, thus, SP

disjointness cannot hold according to Definition 17. See Figure 5.2.

Assuming index sets are sorted, the computational complexity is at least linear in the size

of the SRs due to Line 5, but also strongly depends on the intersection operation on Line 3.

Assuming the complexity of SR intersection is bounded asymptotically by some function

gp¨q, the complexity is Opgp¨q|SR|q. As with Algorithm 8 it is assumed that representations

are suitably chosen such that the intersection operation can be implemented efficiently. For

certain problems, it may also be possible to further simplify the SP disjointness problem and

formulate it purely as a decision problem, i.e., strictly decide whether a disjoint SP exists.

In most systems, however, explicit information about the set of disjoint SPs will be useful.

Algorithm 10 The SP disjointness algorithm. Prunes all SPs P SR that intersect SPs P SR
and returns the pruned SRs.

1: procedure PruneSR(SR,SR)
2: I Ð GetIndexSetpSRq
3: for SRi P SR do
4: I 1 Ð DisjointSPspSR, SRiq

5: Remove all elements in SR with i P I 1

6: I Ð IzI 1

7: end for
8: return I, SR
9: end procedure
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!SR

SP1 SP2

SP*1 SP*2

^

Figure 5.3: This figure illustrates the conservative SP disjointness computation described
by Lemma 14. A conservative SR boundary δxSR it shown for a blue disc agent, along with
stopping path subset that is made up of SP 1 and SP 2. Conservative stopping paths SP ‹1
(red, dashed) and SP ‹2 (green, dotted) are defined such that SP ‹1 Y SP ‹2 covers the volume

bounded by δxSR. This figure best viewed in color.

To compute the full factorization, Algorithm 10 applies DisjointSPs to SR
ŚSR, so

its correctness can be seen by inspection. Assuming elements of an SR are stored in the same

sorted order as the index sets, Line 4 adds linear complexity in |SR| and the sub-routine in

Line 5 for a total complexity of Opgp¨q|SR||SR|q. In practice, there are many techniques that

can be used to reduce the expected running time of the algorithm, for example, hierarchical

spatial decompositions may dramatically reduce the number of time DisjointSPs needs to

be called.

As mentioned in the previous section, SP disjointness need not require exactness: the

property can be guaranteed so long as the SR boundary, δSR, can be conservatively approx-

imated. Lemma 14 shows that a strict subset of SPs associated with a conservative δSR can

be guaranteed to result in a strictly conservative disjointness computation.

Lemma 14. For a stopping region SR1, let δxSR1 be a conservative approximation to the
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boundary of SR1. Let SR11 Ă SR be a strict stopping path subset. For each SP P SR1 let

SP ‹ be SP with its boundary expanded such that the volume enclosed by δSR1 is covered by

all SP ‹ (as shown in Figure 5.3). Let SR‹ be the stopping region composed of all SP ‹. For

any other SR2, if SP disjointness holds between SR‹ and SR2, then it must hold between

SR1 and SR2.

Proof. Assume SR1, SR‹1, and SR2 as defined in the lemma. Let Q “ SR1 X SR2 and

Q1 “ SR‹1 X SR2. Because SR‹ is constructed conservatively, then it must be that Q Ď Q1,

and, by definition, SP 1 Ď SP ‹1. It follows directly that if there exists SP ‹1 P SR
‹
1 such that

SP ‹1 R Q
1, then there must exist SP 1 P SR1 such that SP 1 R Q. Thus, if SP disjointness is

satisfied for Q1, it must also be satisfied for Q.

Thus, discreteness and finiteness assumptions among the SPs are safe to make provided a

conservative approximation to δSR can be computed. This is a powerful tool for constructing

efficient implementations of SD algorithms.

5.4.3 Preserving SP disjointness

In order for agents to efficiently solve Problem 7, they need to maintain the non-coordination

guarantee of Theorem 5. This section presents a generic algorithm for maintaining the non-

coordination guarantee by allowing agents to ensure that disjoint SPs are always available.

To begin, Problem 8 formulates the precise problem to be solved.

Problem 8. Assume the constraints and conditions of Problem 7. Assume an agent A has

a control set U . Given the state of the system at a time t, what is the subset of controls

U‹ Ď U for A that preserves SP disjointness for some time horizon T?
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Algorithm 11 For an agent state Apxq, reference velocity vr, and motion model M , compute
a union of SRs over a time horizon T .

1: procedure ComputeSweptSRs(Apxq, vr,M, T )
2: SRÐH

3: S Ð ComputeReachableStatespApxq,M, T q
4: for x1 P S do
5: SRÐ SRY ComputeSRpApxq, vr,Mq
6: end for
7: return SR
8: end procedure

Algorithm 12 For a set of obstacles O, a given agent state Apxq, a reference velocity
vr, agent motion model M , and obstacle motion models MO, compute the set of control
sequences Φ for A that satisfies SP disjointness for all O over a time horizon T .

1: procedure SPDisjointControls(O, Apxq, vr,M,MO, T )
2: Φ Ð ComputeFeasibleControlSequencespApxq,M, T q
3: for O,MO P O,MO do
4: SRO Ð ComputeSweptSRspO, vr,MO, T q
5: for φ P Φ do
6: for u1, . . . ,un P φ do
7: Apxq Ð ApplyControlpApxq,uiq
8: SRÐ ComputeSRpApxq, vr,Mq
9: SRÐ PruneSRpSR,SROq

10: if SR is H then
11: Φ Ð EraseFrompφ,Φq
12: break
13: end if
14: end for
15: end for
16: end for
17: return Φ
18: end procedure
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It is important to note that Problem 8 makes no mention of the decision processes driving

each agent, which means a solution must account for any decision agents may make within

T . To do this it is necessary to rely on the fact that the magnitude of the state change

due to decision processes is bounded by the magnitude of the state change possible due to

the dynamic model of the system. Therefore, computing disjointness with respect to the

union of SRs over all states that may feasibly be occupied within T suffices to ensure that

SP disjointness is maintained over T . The solution to Problem 8 has two main parts: first,

the set of SRs over a horizon T is computed in Algorithm 11, followed by the control set for

which SP disjointness can be maintained in Algorithm 12.

The goal of Algorithm 12 is to compute the set of control sequences that can be executed

over T for which SP disjointness can be guaranteed to hold, and the inner for-loop is what

accomplishes this. This is a brute force method, so correctness is seen by inspection. Com-

plexity of this algorithm is clearly quite high, but as stated in the introduction, the goal is

to present a generic algorithm that enables correct, problem-specific approximations to be

formulated. In many cases, for instance, the practical and conservative way to approximate

this algorithm is to compute bounding hulls of the swept SRs, and then to compute disjoint-

ness with respect to those. Over small values of T the hulls are often simple to construct,

and for certain types of hulls, particularly convex hulls, intersection tests are quite efficient.

5.4.4 The Selective Determinism framework

This section presents the SD framework, which is formulated employing the above-defined

generic algorithms using the SCIMP framework. In this framework there are two main

components: the computation of a global guidance control, and the computation of an local

collision avoidance control.
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In order to maintain the non-collision guarantees afforded by Theorem 5, the local con-

troller needs to provide some guarantees that it can establish and maintain SP disjointness.

Theoretically such a controller needs to implement Algorithm 12 to compute the set of con-

trols that it uses to minimize input error. Such a controller is a type of trusted controller [140],

which is one that can be relied upon to be correct. Because non-collision guarantees are han-

dled by the trusted controller, the requirements on the guidance control can be significantly

relaxed. In this case any number of approximate path planning algorithms can be used (see

LaValle [87] for a broad survey of methods).

Now, assuming a given guidance controller, only the control space metric µp¨q and Spx,uq

(§3.3) need to be defined in order to formulate an algorithm under the SD framework. As

it stands, Algorithm 12 provides exactly the properties required for Spx,uq, including the

control set computation. Assuming controls are represented as fixed-size vectors, the metric

µp¨q can be computed with any appropriate vector norm. For convenience, define state as

the following vector:

x “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

O
Apxq

vr

M

MO

T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.1)

The local controller for the general SD algorithm is defined Algorithm 13. Line 3 of

Algorithm 13 computes the sample set of the desired size (according to Equation 3.19),

and Line 8 provides an additional check against problem assumptions: if the disjointness
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condition is ever violated, then some belief about the environment or assumption of behavior

of other agents has been violated and collision may be imminent, and a collision mitigation

strategy, such as discussed in Chapter 3 or §4.4.6, must be employed.

Algorithm 13 A local controller based on the Selective Determinism algorithm. For a
given system state x (from Equation 5.1), goal-directed control ud, confidence level α, and
hyperparameters a and b, compute a control u that allows the agent to remain collision free
to confidence level α while simultaneously minimizing distance from ud.

1: procedure ComputeLocalControl(x,ud, α, a, b)
2: Φα Ð SPDisjointControlspxq
3: X Ð ComputeStateSamplespα, a, b,xq
4: for x1 P X do
5: Φα Ð Φα X SPDisjointControlspx

1q

6: end for
7: if Φα is H then
8: α confidence cannot be met. Compute collision mitigation control u‹.
9: else

10: U Ð InitialControlspΦαq

11: u‹ Ð arg minuPU µpu,u
dq

12: end if
13: return u‹

14: end procedure

It is important to note that Algorithm 13 defines only the local controller, taking the

global guidance controller command as input. The implied decoupling between local and

global controllers is actually quite strong. Individual problems will impose their own con-

straints on how these controllers relate to each other, but in principle they need not run

sequentially or with any defined frequency.

5.5 Empirical evaluation

This section introduces the path network traversal problem that will be used to evaluate an

SD navigation algorithm in simulation. The evaluation is done with a Completion Time

Variance (CTV) metric, which this section also defines, that can be used to compare solu-
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tion quality for a given problem under different parameterizations/initializations. CTV is a

measure of the variance in completion time due to variations in the initial conditions of the

problem. This is a generalized form of the Excess Time metric described in §3.5.3, and is cho-

sen because it gives an indication of robustness and stability of SD framework algorithms,

where completeness is interpreted as directly proportional to robustness, and completion

time variance across scenarios is interpreted as inversely proportional to algorithm stability

with respect to its inputs.

The CTV measure is defined first, followed by the PNT problem and the formulation of

its SD solution.

5.5.1 Completion time variance and failure rate

To define CTV, let Γ be some scenario that is parameterized by a vector θ, and let fpΓ, θq be

a function that computes the time it takes an agent to reach a goal state in scenario Γ under

parameter vector θ. Now, let a sequence Θ1, . . . ,Θn be i.i.d. random parameter vectors and

let Ω˚ “ tθ1, . . . , θnu be a sample of size n drawn from Θ1, . . . ,Θn. For n ą 1, the unbiased

estimate of CTV is given in Equation 5.2.

CTV pΩ˚q “
Σn
i“1fpΓ, θiq

2 ´ pΣn
i“1fpΓ, θiqq

2
{n

n´ 1
(5.2)

Samples for which fpΓ, θq is infinite (or exceeds some given threshold), are removed from

Ω˚ prior to CTV computation and added to a failure set Ωˆ. The proportion of failure

samples to total samples |Ωˆ|

|Ω˚|`|Ωˆ|
, called failure rate, is inversely proportional to a notion of

robustness: a lower failure rate indicates greater robustness.
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5.5.2 The path network traversal problem

This section introduces the PNT problem and defines its solution under the SD framework.

The PNT problem is a relatively simple partially observable multi-agent navigation problem

that also exhibits non-trivial interaction complexity. It is defined such that the deterministic

motion planning sub-problem can be solved using the PST-space planner developed in Chap-

ter 2. This planner has very desirable properties for SD problems because it can compute

feasible control sets very efficiently. The PNT problem is described in Problem 9.

Problem 9. Let A be a set of 2D unit square agents navigating a planar graph G “ pV,Eq.

Assume all agents are initialized at some v P V and that collision is never inevitable in the

initial system state. Assume that agents have bounded speeds and accelerations, and that

these bounds are constant and independent of agent state. Assume G is constructed such

that an agent at maximum speed can traverse a maximum of emax edges and can come to a

stop while traversing at most emin edges. Assume each agent can observe the instantaneous

dynamic state of the other agents, but that each agent actuates according to a unique decision

process. Each agent may assume with certainty that other agents will prefer both to avoid

collision and to avoid causing collision, but that otherwise the decision processes of other

agents are not fully observable. For an agent A at a start vertex vs the problem is for A to

navigate to a destination vertex vg without collision and within a given time horizon.

To solve Problem 9, the following sections define problem-specific versions of the generic

algorithms given by the SD framework.

Subroutine: ComputeSR

To implement ComputeSR, the following functions are defined:
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Figure 5.4: The example PNT problem. The agents at the bottom attempt to move to the
top while the agents at the right attempt to move to the left.

ComputeFeasiblePathsWithIndexSet In principle there exist an infinite number of feasible

paths in G; however, in this case, only stopping paths are of interest, which are the

paths that A needs to come to a stop in minimum time. Given the dynamic constraints

of Problem 9, the length of these paths L is fully determined by the A’s state x. Thus,

this function computes and returns all paths of length L that begin at x. The general

problem of computing all paths in a graph is intractable, but the definition of G bounds

the complexity to a small constant because stopping paths are bounded in length to

emin edges.

ComputeMinimumSweptPathWithControlSet This function is trivial to implement. The

control sequences φi are always :smin, and the swept path is fully described by the agent

model and the path position s at the desired offset in φi.

As noted, the complexity of ComputeFeasiblePathsWithIndexSet is bounded by a small

constant, so its complexity is OpCq. The other routine can be computed in constant time

and is called OpCq times. Thus, the total complexity is OpCq.
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Subroutine: ComputeSweptSRs

Defining the ComputeSweptSRs subroutine poses a daunting problem: the computation of

a union of nested swept volumes. For Problem 9, however, the complexity of this problem

can be dramatically reduced through a simple observation. Note that the set of paths that

A can traverse over T is exactly contained by the set of paths traversable by controlling

with :smax until 9smax is reached and maintaining it. Note further that this implies that the

spatial projection of the set of SRs is exactly contained by the spatial projection of the

union of swept volumes along these paths with the SRs computed at their termini. One can

conservatively treat the spatial projections of these regions as if they are occupied for all

T . This significantly simplifies computation, maintains correctness, and, for small T , has

virtually no effect on performance.

Thus, for Problem 9 the ComputeSweptSRs subroutine is given by Algorithm 14.

Algorithm 14 For an agent state Apxq, reference speed 9sr, and motion model M , compute
the maximum reachable paths over a time horizon T as well as the SRs from the terminal
path states.

1: procedure ComputeSweptSRs(Apxq, 9sr,M, T )
2: SRÐH

3: X , I,P Ð ComputeReachablePathsWithIndexSetspApxq,M, T q
4: for i P I do
5: SRÐ SRY ComputeSRpApxiq, 9sr,Mq
6: end for
7: return SR,P
8: end procedure

The ComputeReachablePathsWithIndexSets function computes the maximum number

of paths reachable from a given start state, and its complexity is bounded by OpC1q. As a

byproduct the set of terminal states x P X of those paths is also computed. The union on

Line 5 is of trivial complexity, but the loop itself is linear in ComputeSR, which is OpC2q.

The overall complexity, then, is OpC1 ` C1C2q.
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Subroutine: SPDisjointControls

As with ComputeSweptSRs, the nature of Problem 9 and the properties of the PST-space

planner allow SPDisjointControls to be greatly simplified.

First, assume that all SPs for A are constant length L that is bounded by the maximum

SP length over T given Apxq. From this assumption it follows directly that any control

sequence for an agent A that maintains at least L distance from the obstacles’ swept SRs

satisfies the SP disjointness property.

Algorithm 15 For a set of obstacles (with states) O, a given agent state Apxq, a reference
speed 9sr, agent motion model M , and obstacle motion models MO, compute the set of
control sequences Φ for A that satisfies SP disjointness for all O over a time horizon T .

1: procedure SPDisjointControls(O, Apxq, 9sr,M,MO, T )
2: SRO,PO ÐH

3: for O,MO P O,MO do
4: SR,P Ð ComputeSweptSRspOpxOq, 9sr,MO, T q
5: SRO,PO Ð SRO Y SR,PO Y P
6: end for
7: LÐ ComputeMaxSPLengthpApxq,M, T q
8: OPT Ð ComputeBoundedPaddedPTObstaclespSRO,PO, Lq
9: GV Ð V isibilityGraphPST pO,xq

10: U Ð ComputeFeasibleInitialControlspGV q

11: return U
12: end procedure

Algorithm 15 implements these ideas. There are several new sub-routines introduced in

Algorithm 15. The routine on Line 7 is a trivial law of motion computation. The routine

on Line 9 implements the PST-space planner defined in Chapter 2, and the routine on

Line 10 implements the computation of feasible initial control sets described in detail in

§3.5.2. The PT-space obstacle computation on Line 8 implements the bounded PT-space

obstacle computation of Algorithm 6 (§2.4.2) by computing the minimum and maximum

extents along each P P P each obstacle O can attain according to its motion model MO
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rather than uncertainty (as was shown in Figure 2.9e). In addition, the PT-space obstacle

corresponding to the SRs for each O are computed and added to the set.

From the previous section, Line 4 contributes OpC1 ` C1C2q complexity and, assum-

ing sort order is maintained, Line 5 contributes OpC3q (as noted in §5.5.2, the number of

reachable paths is bounded by a small constant). Under the for-loop, and consolidating

constants, these lines contribute Op|O|Cq total complexity. Line 7 is trivially computable

in constant time, Line 8 is Op|O|p|O|2k ` |O| log |O|qq (where k is a time discretization; see

§2.4.2), Line 9 is Opp|O||O|q5q as is Line 10 (§2.4). All of these terms together lead to a

complexity that is rather long but notably polynomially bounded. Interestingly, in practice,

it is not the Opp|O||O|q5q visibility graph construction that dominates computation, rather

it is the Op|O|p|O|2k ` |O| log |O|qq obstacle construction. Reasons for this are discussed in

Chapter 2.

Subroutine: ComputeLocalControl

With the previous sub-routines defined, the ComputeLocalControl method can be imple-

mented directly as specified in Algorithm 13. For the PNT problem, the routinesDisjointSPs

and PruneSR do not need to be explicitly implemented as their functionality is implicit in

the operation of SPDisjointControls.

As would be expected, ComputeLocalControl is similar to the algorithm specified in

§3.5.2 for computing SCIMP controls for intersection crossing. The primary difference is

that ComputeLocalControl uses PT-space obstacles computed to prevent agent/obstacle

SR intersections rather than agent/obstacle model intersections.
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CTV for the PNT problem

Finally, in order to evaluate solutions to the PNT problem, the CTV metric needs to be

defined for it. Assume as input to the PNT problem a graph G, initial and goal states for

the ego agent, and an obstacle agent count |A|. The remaining inputs are the initial states

of the obstacle agents, which are given by the parameter vector θ. Assume orientations are

included in agent states. To compute CTV, the sample set Ω˚ needs to be defined.

Assume each Θi is normally distributed3 with P pΘq „ N pµθ,Σθq, and assume as ad-

ditional input for the CTV computation a mean parameter vector µθ, covariance Σθ, and

sample count n. The sample set Ω˚ can then be generated with any number of algorithms

for computing samples from multivariate normals (for reference see [31, 111]), and the CTV

computed according to Equation 13, with fpΓ, θq being computed using the PNT-specific

formulation of Algorithm 13 described in this section.

5.5.3 Results & analysis

This section provides results of computing CTV for a PNT problem defined on a graph G,

which is a 6ˆ 6 grid that is 20m to a side. There are 12 agents, including an ego agent, that

attempt to traverse from one side to the other. All agents are unit squares with reference

points at their centers. Speed bounds are r0, 10sm{s and acceleration bounds are r´4, 4sm{s.

All information about G and dynamic constraints is stored in Γ. Mean parameter vector µθ

is initialized with obstacle positions along the outside edges of G oriented inwards toward

the opposite side with initial speeds and accelerations are zero. During sampling of µθ

obstacles poses are independent of other variables and each have σ2
position and σ2

orientation in

Σθ. Obstacle global controllers are random walks over SP disjoint control sequences with

3Any distribution can be used, but for these kinds of tests, a normal is a popular choice.
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Table 5.1: CTV for the PNT grid problem with time limit 10s and step 0.05s

pσ2
position, σ

2
orientationq p0.22, π{8q p0.42, π{4q p0.62, πq p0.82, 3π{4q p1.02, 2πq

CTV 1.1303 1.24601 1.07412 0.749968 0.755286

Failure rate 0 0 0 0 0

positive accelerations. Initial obstacle speeds and accelerations are also independent of other

variables and each have σ2
dyn “ 0 in Σθ. Defining Σθ in this way forces all θi to initialize

the obstacle agents at rest, which guarantees that the system does not initialize in an ICS.

The sample count n chosen for all trials is 100. Results for various values of σ2
position and

σ2
orientation are summarized in Table 5.1.

As can be seen in Table 5.1, the CTV trends down toward „0.75 and then levels off.

This can be attributed to the fact that µθ positions the obstacles in a regular array along the

outer edges of G; however, as σposition increases the obstacles become more evenly distributed

along G. This evens out the flow of traffic along the edges and has the effect of reducing the

expected completion time. The behavior of the CTV measure indicates that the duration of

time required by the algorithm to complete a scenario is directly affected by traffic density,

and that the algorithm is capable of negotiating dense traffic at the expense of completion

time.

Of particular note is the lack of failures. It proved difficult to parameterize the problem

such that interesting failures were produced. In this case, interesting failures would be,

e.g., configurations of agents resulting in a deadlock appearing sporadically during testing.

Failures could be forced by reducing the time limit severely, or organizing the agents in a

pathological way, but this had a mostly binary effect: either all tests passed or all failed.

This can be taken as an indication that, for this problem, the algorithm is relatively robust.

For comparison, giving each agent only the PST-space planner without the surrounding SD
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framework almost always resulted in collision regardless of initial parameterization. This is

because the assumption of determinism used by that algorithm is immediately violated in

this problem, leading agents very quickly into states for which the planner(s) cannot find a

solution. Once that happens, the planners fail and the agents tend to drift into collision.

Of course it must be said that because this test scenario is hand-crafted, there will be

inherent bias in all results. It is difficult to ascertain exactly what the bias is and how it

affects the results, but Bertuccelli [25] covers the general topic of dealing with biased models

in decision processes.

5.6 Conclusion

This chapter presented the Selective Determinism framework that enables efficient and robust

navigation in stochastic multi-agent domains. The framework builds on results presented

in previous chapters to allow application to a wide variety of problems and scenarios while

still being capable of maintaining guarantees on hard constraints and solution confidence. A

sample problem was presented and problem-specific routines were derived under the frame-

work to demonstrate its use. Exploiting the properties of an efficient speed profile planning

algorithm derived in Chapter 2, the solution to the sample algorithm was demonstrated to

be computationally efficient while still tackling a non-trivial problem.
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Chapter 6

Conclusion

This dissertation addresses a general form of the multi-agent navigation problem in which

non-adversarial agents must navigate in the presence of each other, without collision, while

progressing toward some desired goal (Problem 1). The approach taken breaks with the

types of approaches usually used in that it does not attempt to optimally solve under a

global, joint value function. As covered extensively in Chapters 2, 3, & 4, the nature of such

a value function results in intractable problem complexity. Instead, the work presented here

sets up and solves a much simpler online collision avoidance problem, and it puts in place

around it a framework that leverages any available flexibility in the collision free solution

space to choose goal-biased, collision-avoidant controls.

The main contribution of this dissertation is the formulation of a principled theoretical

framework that allows interaction effects in complex multi-agent navigation problems to be

factored out via decomposition into separate collision avoidance and goal direction problems.

This framework is based on two main parts. For the first part, Chapter 3 starts at a low

level and leverages stochastic optimal control theory to formulate a constrained interference

minimization principle as a general framework within which multi-objective control problems

can be formulated and behavior ensured to a defined level of confidence. This principle

considers the problem of performing a minimum distance projection of a desired control
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input onto the manifold of permissible controls. While solving the general problem exactly

is shown to be intractable, a probabilistic, rollout-based approach is presented that can

compute solutions that are correct to a desired confidence level, and it is shown that for CE

problems, the principle naturally produces the correct, exact result.

For the second part, Chapter 4 approaches from a high level and shows that complex,

partially observable multi-agent decision process problems can be factored into independent

goal direction and collision avoidance planning problems under certain assumptions. The

factorization can then bring the problems from intractable complexity classes into tractable

ones. The key insight is that system dynamics alone can determine whether a system re-

quires agent coordination in order to remain collision free. This property allows agents to

independently check for the requirement and adjust their own actions to prevent the require-

ment from appearing in the system. In addition, it allows them to compute the control set

that maintains this non-coordination guarantee. Freed from the requirement to coordinate

actions in order to maintain non-collision guarantees, agents can assume Assertion 1 holds

and perform planning as if the interaction effects of their actions have been factored out.

With those two results in place, Chapter 5 brings them together by recognizing that

the factored sub-problems resulting from Assertion 1 can be directly formulated as a multi-

objective control problem under the constrained interference minimization principle. The

result is a new Selective Determinism (SD) framework that allows deterministic planning

algorithms to be used to efficiently and robustly solve partially observable multi-agent navi-

gation problems while maintaining confidence guarantees on collision avoidance. The chapter

presents the framework and the nominal components necessary to implement navigation al-

gorithms under it. In addition, a problem-specific implementation is derived and tested using

a novel PST-space planner, the derivation of which is given in Chapter 2.
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The PST-space planner computes solutions to the speed profile planning problem for

traversing fixed paths in the presence of transversely moving obstacles. Under the assumption

of deterministic obstacles and agent independence, the planner computes a visibility graph

in a Path-Speed-Time space that accounts for both bounded speed and acceleration as it

searches for collision free trajectories. Exploiting convexity in the sets of reachable speeds,

the planner is able to compute a full visibility graph in low-order polynomial-time.

The PST-space planner is included in this work because it is an ideal candidate for use in

an SD algorithm. As noted in Chapters 2 & 5, the planner on its own is not suitable for use in

multi-agent navigation problems: the requirement for determinism and action independence

are very strong, and even small violations can cause an agent computing controls with the

planner to come into collision. As part of an SD solution, however, control computation using

the planner becomes robust to non-determinism and reactive obstacles while sacrificing very

little in terms of computational efficiency. The result is a robust, real-time capable multi-

agent navigation algorithm.

Overall, the SD framework serves as a foundation for future work examining how best to

address navigation problems. Of specific interest for future work are different interpretations

of how components of the SD framework can be implemented. For instance, in this disserta-

tion the SP disjointness computation is presented in terms of physical geometric quantities

because this is how it can most directly be measured. But in some systems an explicit ge-

ometry may not be necessary to compute SP disjointness. Consider an agent whose only

visibility or model of the world is through a time-to-contact (TTC) measure. For such an

agent, maintaining some minimum time headway may suffice in order to guarantee SP dis-

jointness. Assuming an agent is somehow capable of measuring TTC, this kind of model is

attractive because of its simplicity and because it allows an agent to forgo the extremely diffi-

138



cult and computationally expensive task of computing and maintaining geometric models of

the world. Because TTC can also be measured directly in sensor space (assuming a camera

as a sensor) it allows much closer integration of the perception and planning systems for the

agent. Early works, such as Nelson [112], Camus et al. [33], demonstrated that the approach

holds promise, but was impractical at the time due to the quality of sensor hardware and

perception algorithms. Advances in both of those domains, however, should spur renewed

interest in this approach, as in Forootaninia et al. [46].

Chapter 4 left open two interesting conjectures. The first, Conjecture 1, posits that

stopping paths are the unique coordination-free contingency plans available to agents in a

non-adversarial and self-preserving multi-agent system. While intuitively appealing, and

probably safe to make in practice, it does not seem straightforward to show this rigorously,

or to determine what properties of a system are necessary to do so. It is an important

question to answer, though, because it would yield insights into whether and how the results

of Chapter 4 could be applied to systems with drift, or to other types of systems where it is

difficult, or impossible, for agents to actually come to a stop. The second, Conjecture 2, posits

that the definition of coordination used in this work (Definition 10) is not only a semantic

distinction between what does and does not constitute coordination, but also a computational

theoretic one. The proposition is that the problem of finding a unique set of contingency

plans in a non-SP disjoint system cannot be solved efficiently, which is an inherent property of

coordination. Resolving this conjecture would further solidify the foundations of the results

in Chapter 4.

Ultimately, this work is designed to advance robotics one more step toward a full solution

to the general multi-agent navigation problem described in Problem 1. But it also recog-

nizes that these results address only a small part of the whole problem. Solely from a AI
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standpoint, an arguably larger problem than that of planning and control is that of percep-

tion, i.e., the segmentation and labeling of the environment in semantically meaningful ways.

Outside the realm of AI there is also the reality that, to be useful, these algorithms need to

run on physical systems. This brings into play myriad mechanical and electrical issues, all

of which (thankfully) fall far outside the scope this dissertation. The hope, however, is that

the work presented in these chapters inspires new work, new insights, and new interest in

the arena of multi-agent navigation.
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Glossary

Agent (n.) Symbol: A. An entity that interacts in some non-trivial way with its environ-

ment. Also referred to as robot. 1–8, 11–14, 34, 39, 40, 46, 47, 57, 62–64, 77–102,

104–111, 113–116, 118, 119, 121, 122, 124–139

Agent state (n.) Symbol: Apxq. A state representation containing both the dynamic state

of an agent A and the volume of workspace it occupies at state x. 14, 84, 86, 87, 92,

99, 100, 107, 117, 122, 124, 129, 130

Bang singular trajectory (n.) Without loss of generality, let P refer to either a P` or

P´ curve, and let t2 be the time coordinate of p2. Define P 2 to be a terminal curve

that passes through p2. Define P 1 to be an initial curve with derivative 9s1 at origin

point p1. Define an L curve that is tangent to the initial and terminal P curves at

switching times ts1 and ts2 with derivative 9ss. Define a bang-singular trajectory as:

x1ptq “

$

’

’

’

&

’

’

’

%

P 1pt, 9s1q : 0 ď t ď ts1

Lpt, 9ssq : ts1 ă t ă ts2

P 2pt, 9ssq : ts2 ď t ď t2

17, 18, 20, 21

Belief distribution (n.) Symbol: z. “A belief distribution assigns a probability (or density

value) to each possible hypothesis with regards to the true state. Belief distributions
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are posterior probabilities over state variables conditioned on the available data.” [143].

plural 50–60, 64, 66

Certainty equivalence (n.) Abbreviation: CE. When the expected utility of a control

policy that ignores uncertainty is equal to one that does not, the system is said to

exhibit certainty equivalence. 53–56, 60, 136

Complete (adj.) An algorithm is said to be complete when it computes a satisfying solu-

tion if and only if such a solution exists. 46

Completeness (n.) The property of being complete. 12, 70

Configuration (n.) Symbol: c. “The configuration of a robot is a set of independent

parameters of minimal cardinality which uniquely defines the position and orientation

of every point of the robot” [48]. 13, 64

Contingency plan (n.) A contingency plan is a control sequence that an agent can execute

that is guaranteed to avoid ICS space. 85, 87, 89, 90, 93, 94, 101, 119, 138

Control (n.) Symbol: u. A command that an agent can execute to change its state or

configuration. 2, 5–7, 11, 50–71, 73, 83–85, 88, 90, 108, 110, 111, 113–115, 117, 122,

124, 125, 130, 132, 135, 137

Control policy (n.) Symbol: π. A mapping of states to controls that is optimal with

respect to some cost function. 5, 51, 57, 68, 69, 100

Control set (n.) Symbol: U . The set of all controls available to an agent. 60, 63, 65, 70,

71, 114, 122, 123, 125, 127, 130, 136
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Coordination (n.) The actions of two agents are said to require coordination when the

feasibility the control sequence either agent uses is not independent of the other’s. 2,

8, 77, 79, 80, 82–84, 87–92, 94, 95, 98–101, 104, 113, 119, 121, 136, 138

Ego (adj.) Of or pertaining to the agent under control of a single-agent planning algorithm.

47, 65–67, 73, 113, 132

Exact (adj.) An algorithm is said to be exact if it solves a problem with zero approximation

error. 38

Feasibility (n.) The condition of being feasible. 84, 90

Feasible (adj.) A path, trajectory, or velocity profile is said to be feasible if it does not

violate constraints. 13–16, 18, 20, 24, 27, 28, 35, 36, 46, 60, 70, 71, 85, 106, 107,

115–117, 127, 128, 130

Feasibly (adv.) In a way that is feasible. 123

Guided collision avoidance (n.) Guided collision avoidance describes the strategy of choos-

ing goal-directed motions from the space of collision avoiding controls in order to nav-

igate to a goal while satisfying collision constraints. 4, 6, 109, 111, 113

Homotopic (adj.) Two trajectories are homotopic if there exists a homotopy between

them. 15

Homotopy (n.) A continuous deformation between two functions 9, 23, 29, 31, 43

Horizon (n.) Symbol: T . The bound on the period of time over which a plan is, or is

intended to be, defined. 13, 14, 38, 39, 42, 51–56, 59, 64, 79, 85, 122–124, 127, 129,

130
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Inevitable collision state (n.) An inevitable collision state (ICS) for an agent A is a state

from which all feasible future trajectories of A result in collision:

x is ICS Ø @φ, DBi, Dt :: Apφpx, tqq XBi ‰ H

ICS notations and definitions adapted from Fraichard and Asama [49]. 46, 82, 85, 88,

89, 91, 105, 106, 133

Interacting agent (n.) An interacting agent is one whose dynamic state is a function of

the dynamic state of the system and an internal policy (for example, pedestrians or

animals could be interacting agents). 84, 85, 105

L-curve (n.) For a given PST-space origin point pso, 9so, toq, an L curve is a line that defines

an arc-length path offset for an input time t assuming zero acceleration:

Lpt, 9sq “ P pt´ to, 9s, 0q

17–22

Linear, time-invariant (adj.) Abbreviation: LTI. A descriptor used for systems whose

response is linear in the input and invariant with respect to time, that is, the response

of the system is a linear function of the input, and it does not depend on when the

input is given. 53, 54

Longitudinal (adj.) Along the current direction of travel. For example, longitudinal ve-

locity is the magnitude of an agent’s velocity vector. 11

144



Motion model (n.) A model (typically a system of differential equations) that describes

how an agent can undergo spatial state changes. 101, 102, 116, 117, 122, 124, 129, 130

Non-interacting agent (n.) A non-interacting agent is one whose dynamic state is a func-

tion only of the dynamic state of the system (for example, trees or rolling rocks could

be non-interacting agents). 84, 85

Non-signalized (adj.) Indicates that a particular road traffic scenario, e.g. an intersection,

has no signs or lights to direct traffic. 10

Obstacle (n.) For an agent A navigating an environment occupied by a set of interacting

agents and non-interacting agents A, an obstacle O is a member of the set of obstacles

O, which is defined as:

O “ A z A

1, 7, 9–14, 23–30, 34–36, 38–46, 64–73, 76, 81, 82, 85, 89, 92, 94, 102, 105–108, 122,

124, 130–133, 137

P`-curve (n.) For a given PST-space origin point pso, 9so, toq, a P` curve is a PT parabola

that defines the path offset achievable at time t under maximum acceleration:

P`pt, 9sq “ so ` P pt´ to, 9s, :smaxq

17–20, 22

P´-curve (n.) For a given PST-space origin point pso, 9so, toq, a P´ curve is a PT parabola
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that defines the path offset achievable at time t under minimum acceleration:

P´pt, 9sq “ so ` P pt´ to, 9s, :sminq

17–20, 22

Path (n.) Symbol: P . A sequence of configurations. Used in this work to describe curves

in C. 9–14, 16–18, 21, 28, 34, 38–41, 44, 64, 79, 81, 86, 87, 89–92, 96, 97, 99, 100, 116,

117, 127–131, 137

P -curve (n.) A P curve is an origin-centered PT-space parabola that defines an arc-length

path offset after a given time span ∆t for given 9so and :so:

P p∆t, 9so, :soq “ 9s∆t`
1

2
:s∆t2

16–22

Planning (n.) The process of determining a sequence of configurations or states that brings

an agent from a start state to a goal state. 11–13, 78–83, 93, 103, 105, 136

Polynomial-time (adj.) Describes the class of decision problems solvable in polynomial

time by a Turing machine [1]. 7, 9, 29, 65, 90, 137

PS-space (n.) A two dimensional space composed of a path position dimension and a speed

dimension. 13, 18, 21

PST reachable region (n.) Given a PST-space start point ps “ pss, 9ss, tsq, define the

PST-space reachable region of PS-space space from ps at any point in time t ě ts as
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Rpt; psq. In other words, Rpt; psq is the area of the PS-space plane reachable at t from

ps via feasible trajectories. 18–20, 32

PST-space (n.) A three dimensional space composed of a path position dimension, a speed

dimension, and a time dimension. 9, 12, 13, 15–18, 21, 31, 70, 71, 127, 130, 133, 136,

137

PT-space (n.) A two dimensional space composed of a path position dimension and a time

dimension. 9, 13–18, 22–24, 29, 30, 32, 34, 35, 37–41, 43, 70, 130, 131

Resolution complete (adj.) An algorithm is said to be resolution complete for some res-

olution parameter ε when it is complete in the limit as εÑ 0. 39

Separation principle (n.) Abbreviation: SP. The principle that certain stochastic sys-

tems admit an optimal feedback controllers that solve optimal observation and control

problems independently. 53–56

SP disjointness (n.) The condition that satisfies Theorem 5, that all agents have at least

one stopping path disjoint from the stopping regions of all other agents, is called SP

disjointness. 89–92, 94–97, 100, 101, 105, 109, 112–116, 118–123, 130, 137

Speed (n.) Longitudinal velocity. 7–33, 35–38, 42, 44, 46, 71, 127, 129, 130, 132–134, 137

State (n.) Symbol: x. A configuration at a specific time. plural 7, 13–15, 18, 21, 24, 26–28,

30, 31, 35, 37, 39, 50, 51, 53–55, 58–60, 62, 64–70, 72, 73, 76, 79, 82–92, 94, 95, 97, 99,

100, 106–108, 113, 116, 117, 122–125, 128–130, 132, 134

State space (n.) Symbol: S. The space of all configurations for an agent augmented with
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dimensions for time and potentially one or more derivatives of a configuration dimen-

sion 12, 82–84, 93, 102, 116

State space obstacle (n.) A state space obstacle (B) is the volume swept out by an ob-

stacle O over a time T as it evolves from an initial state xi under a control trajectory

φi:

B “
ď

tPT

Opφipxi, tqq

85, 106–108

Stopping path (n.) For a state x and path P , the stopping path SP pApxq, P q is the min-

imal set of agent states A must occupy while coming to zero velocity from x along P

(see Figure 4.2a). 86–92, 98, 100, 109, 115–121, 128, 130, 132, 138

Stopping region (n.) For a given agent state Apxq let P be the set of all followable paths

and let I be its index set. Define the stopping region SRpApxq,Pq as the disjoint union

of all SPs over P (see Figure 4.2b):

SRpApxq,Pq “
ğ

iPI

SP pApxq, P q

86, 87, 89, 91–93, 95, 97–103, 115–123, 129–131

Trajectory (n.) Symbol: xptq. A mapping of time to state. Used in this work to describe

curves in S. 7, 9, 11, 13–16, 18–30, 35–39, 42, 44, 46, 51, 53, 70, 81, 84–86, 88, 137

Visibility graph (n.) A visibility graph is a graph in which two nodes are connected if

and only if there is an obstructed path between them. 12, 14–16, 29, 38, 40, 43, 70,
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131, 137

Workspace (n.) Symbol: W. The space in which the agent is operating. Typically some

space in the physical world (or some representation thereof in the case of simulation).

34, 39, 84
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[119] Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli.

A survey of motion planning and control techniques for self-driving urban vehicles.

CoRR, abs/1604.07446, 2016. URL http://arxiv.org/abs/1604.07446.

[120] Christos Papadimitriou and John N. Tsitsiklis. The complexity of markov decision

processes. Mathematics of Operations Research, 12(3):441–450, August 1987. ISSN

0364-765X. doi: 10.1287/moor.12.3.441.

169

http://dx.doi.org/10.1007/BF01840370
https://books.google.com/books?id=pny3E8ovkrwC
https://books.google.com/books?id=pny3E8ovkrwC
http://dx.doi.org/10.1017/S0263574700000151
http://arxiv.org/abs/1604.07446
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