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“ Tiger got to hunt,

Bird got to fly;

Man got to sit and wonder, “Why, why, why?"

Tiger got to sleep,

Bird got to land;

Man got to tell himself he understand.

”Cat’s Cradle , Kurt Vonnegut
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The widespread use of social media helps people connect and share their
opinions and experiences with millions of others, while simultaneously bringing
new threats. This dissertation aims to provide insights into analysis of online
conversations and mechanisms that might be used for their manipulation. The
first part delves into the effect of geography on information dissemination and
user roles in online discourse. I study trending topics on Twitter to highlight
mechanisms governing the diffusion of local and national trends. My analysis
points to three locally geographic regions and one cluster that contains trend-
setting cities coinciding with major travel hubs. When factors limiting informa-
tion spread are considered, censorship mechanisms mandated by governments
are found to be ineffective and even show a correlation with increasing popu-
larity. I also present an analysis of spatiotemporal characteristics and distinct
user roles in the Gezi movement. Next, I discuss different forms of social media
manipulation. Malicious entities can employ promotion campaigns and social
bots. We build machine learning frameworks that exploit features extracted
from network, content, and users to train accurate supervised learning models.
Our system for early detection of promoted social media trends harnesses mul-
tidimensional time series signals to reveal subtle differences between promoted
and organic trends. In my research on social bots, I carried out the largest study
of the human-bot ecosystem to date. Our estimates suggest that between 9 and
15% of active Twitter accounts are bots. I present distinct behavioral groups
and interaction strategies among human and bot accounts. This body of work
contributes to a more comprehensive understanding of online user behavior and
to the development of systems to detect online abuse.
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CHAPTER 1

Introduction

“ “Begin at the beginning,” the King said, very gravely, “and go on till you

come to the end: then stop.”

”Lewis Carroll, Alice in Wonderland

1.1 Motivation

Communication is a central part of society and crucial for human evolution [171]. All forms of

living develop or inherit ways to interact with each other [304]. Shannon’s ground-breaking

work formally defines components of efficient communication systems and introduces con-

cepts about information, noise, and bandwidth [253]. Throughout human history, we can

see all forms of communication: verbal, written, and artistic expressions. Even the simplest

form of communication, drawing, serves as records to communicate with future generations.

The formation of signals and invention of languages are inevitable for evolving groups and

systems to transfer information [261]. Over the centuries, technology helped us to develop

more efficient models of communication. The invention of the telegraph and the telephone

overcame the difficulty of transmitting information to distant places. These peer-to-peer

communication systems mirror our natural interactions.
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Each communication system consists of three main components: sender, receiver, and

media for dissemination. In most cases transmission between the sender and the receiver

is not perfect and this can be attributed to the noise interfering in the media or how in-

formation is encoded and decoded by the sender and the receiver respectively. It has also

been observed that the sender adjusts its language and style to align with its audience [92].

Examples of language and style matching can be seen in language mimicry observed in

the context of power differentials between discussants [89] and prediction of message pop-

ularity [269]. In social psychology, there has been a large body of work on persuasion and

social influence [63,71,306] that talks about various cognitive theories and psychological pro-

cesses behind how people convince and persuade each other. Guadagno and Cialdini discuss

persuasion and compliance in the context of Internet-mediated communications, especially

textual messages [144].

As the information within our reach grows exponentially, attention becomes the limiting

factor in the consumption of the information. Human communication is limited due to evo-

lutionary pressure to focus attention and use our resources efficiently [108]. Herbert Simon

introduced the term attention economy to explain human attention as a scarce commodity

and economic theory behind the various information processing strategies [260].

To overcome attention and noise limitations, we invent different modes of communication.

When popularity and influence of the content are taken into account, information producers

should adapt different strategies to convey their messages or use a medium that supports

broader dissemination. To save time when sharing the same content, we broadcast to larger

audiences. Broadcasting information in large-scale introduces new one-to-many channels for

information dissemination. Radio, television, and newspapers are examples of one-to-many

communication.

The unprecedented increase in social media use may be the result of our limited attention
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and desire to reach information fast. Using the Internet, we can access vast amounts of

information anytime we want. We can also prioritize, filter, and endorse relevant context.

Researchers emphasize the importance of the Internet to study mass communication and

how theories about communication can be applied to this new medium [211]. The Internet

provides a reliable infrastructure to access and disseminate information. In this dissertation,

I draw some parallels between existing theories and their correspondence in social media

analysis.

The concept of diffusion is not new. We can think of diffusion as information transferred

between individuals. Everett Rogers studied diffusion of innovations [244]. His ground-

breaking work laid out the properties of each elements necessary for a successful diffusion

system: innovation, adopter, communication channel, time, and social system.

Every communication system has a certain level of noise and disruption that impacts

the efficiency of the overall system. Temporal durability of message and limited attention of

the receivers may be some of the significant challenges for earlier communication systems.

Recently, we have been facing more serious problems: deception, censorship, and abuse.

Volume and velocity of the online data facilitate manipulation and targeting strategies to-

ward certain groups with a higher rate of success. Researchers study these problems and

develop systems to prevent unwanted consequences. Efforts to educate Internet users are

also a great endeavor to prevent the dissemination of unreliable and misleading news.

Politics in broad terms can be defined as the process of making decisions that apply to

all members of the groups, or alternatively, politics can be defined as the person who tries

to influence the way a country is governed. To obtain such power and influence, politicians

work towards obtaining trust and persuading oppositions to change their attitudes. To reach

their goals, they use available technologies efficiently.

In the political system, we have been observing the impact of different communication
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Figure 1.1: Timeline of US politics and its relation with the technological developments.
Some of the key events are selected. The top panel presents influence of traditional commu-
nication media such as newspapers, radio and television. The bottom panel starts with the
invention of the Web and presents some key events of US politics on the Internet.

media and how politicians adapt their strategies to influence and persuade voters and cit-

izens [59]. We depicted a timeline representation of technological development and how

politicians adopt these trends in Fig. 1.1.
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In the early days, newspapers and telegraph were important to diffuse news [41, 111].

These technologies accelerated the information diffusion rate from days to hours. Organiz-

ing public speeches in parks and squares became more convenient because organizing and

informing a broader audience became possible in the early 19th century. Important policy

decisions and public affairs could also be shared more conveniently.

The invention of the telephone and the radio, in the 1870s and 1920s respectively, created

opportunities for politicians to reach out to larger groups. Television changed political

campaigns significantly [24,259,300]. Only ten years after the first news aired on the BBC,

President Truman gave his presidential speech live on TV in 1947. This trend was followed by

the first TV advertisement by Eisenhower in 1952 and the first presidential debate between

Kennedy and Nixon in 1960. One estimate of President Truman’s campaign indicates that

he could travel more than 31k miles and meet 500k voters in person. Almost four years later,

Eisenhower reached millions through television advertisements [102]. It is also important

to note that those political contacts during campaigns also changed to become carefully

engineered and studied.

The information age has transformed our experience in various ways. The Internet turns

out to be a valuable resource to study and answer valuable questions about communication

in general [211]. Politicians have become active users of the social media. They can engage

with their constituents and campaign on social networks. According to an analysis by the

Pew research center, 65% of US adults are actively using social media [233].

Observation and deliberate consideration of problems on social networks point to the

challenging questions: What are the implications of censorship on social media? How do

users behave during social upheavals? Can we detect online campaigns? How can we identify

and characterize social bots? This dissertation aims at providing a systematic analysis of

online discourse in terms of trend diffusion, censorship, and user behavior during a social
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upheaval. Manipulation of online discourse is also studied for detecting online campaigns

and social bots. The work presented in this dissertation is expected to have implications for

many fields, including social media analysis, online marketing, and prevention of abuse on

social media.

1.2 Research Questions and Overview

Studies of online discourse and its manipulation have great societal impact. We are using

social networks and online platforms in nearly every part of our lives. We reach out for

information, interact with friends and during all these processes we leave digital fingerprints

about our activities and behaviors. In this work, we are interested in how underlying systems

foster information diffusion for daily communication and are affected by external influences

such as censorship and social protests. The dynamic landscape of online networks is vulner-

able to attacks by malicious entities. Groups continuously try to influence public opinion,

to pollute public discourse, and to promote their ideas. Orchestrated campaigns and social

bots are ways to gain power on social networks.

In Part I, I present a study of information diffusion where geographic constraints are

introduced. We analyzed information diffusion in the context of popular memes such as

trends. In parallel, we analyzed social media censorship when popular or important content

is prevented from reaching a broader audience as a result of governmental requests. In

addition, we studied a social protest from Turkey. We characterized the role of users and

how exogenous events and collective behavior affect events as they unfold.

In Part II, I discuss the important problem of identifying social media campaigns. Social

media provide channels to propagate messages to people of interest. Some of this content

might be promoted by advertisements and gain artificial popularity. In this work, we analyze

Twitter trends and promoted hashtags to evaluate our system to detect campaigns.
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Part III focuses on social bots with several goals: (i) building a machine learning frame-

work that identifies bots with high accuracy; (ii) estimation of social bot presence on social

media; (iii) characterization of human-bot ecosystem and behaviors of social bots. The next

section introduces the general research questions examined in each part of this dissertation.

1.2.1 Part I: Analysis of Online Discourse

Starting from the geography of information diffusion in the context of trends and censorship,

we can ask the following research questions:

• What is the relation between geography and trends?

• Is censorship in a particular country sufficient to prevent diffusion of sen-

sitive content?

The work on trend diffusion is motivated by the observation of same or similar hashtags

emerging from different geographic regions before reaching country level popularity. We

identified three distinct geographical clusters in the US information flow (east coast, mid-

west, and southwest) as well as global patterns in the flow corresponding to main air traffic

hubs. We uncovered two distinct dynamics of diffusion: localized diffusion of popular con-

tent and global spread through major hubs. We showed that travel hubs act as trendsetters,

generating topics that eventually trend at the country level, then driving the conversation

across the country [116]. Analysis of censorship shows that withholding content from a par-

ticular country is not sufficient to eliminate diffusion of sensitive topics. Accounts following

censored discourse and censored users spread censored content by finding alternative ways

to breach those geographic limitations to reach and promote content [281].

We study information diffusion and user roles during social upheaval in Turkey. We

explore the following question to understand the dynamics of social protests and user roles:

• Is online user behavior affected by external factors and do such factors

cause the emergence of collective behavior?
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Our work on the Gezi protests analyzes spatio-temporal characteristics of how events

unfold. We identified user roles based on their activity and involvement in information

creation. Our analysis reveals that the conversation becomes more democratic as events

unfold, with a redistribution of influence over time in the user population. We conclude by

observing how the online and offline worlds are tightly intertwined, showing that exogenous

events, such as political speeches or police actions, affect social media conversations and

trigger changes in individual behavior [224,284].

1.2.2 Part II. Detection of Campaigns

Social discourse can be controlled and manipulated through orchestrated campaigns. In

this part of my dissertation, I analyzed promoted content on Twitter as a proxy for social

media campaigns. Our work on campaign classification and detection addresses the following

questions:

• How well can we distinguish promoted trends from organics ones?

• Can we detect campaigns in their early stages on Twitter?

In this work, we designed a machine learning framework to tackle this problem. Our su-

pervised learning framework exploits hundreds of time-varying features to capture changing

network and diffusion patterns, content and sentiment information, timing signals, and user

meta-data [117,283].

1.2.3 Part III. Analysis of Social Bots

Conversations on social media can also be manipulated by users controlled by automated

scripts called bots. This part of the dissertation analyzes social bots and their behaviors in

detail. We make the following contributions and answer several research questions:

• Can we build a highly-accurate framework to detect and study social bots?
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• What are some heuristics that we can use to detect social bots?

• What fraction of Twitter accounts are social bots?

• Can we quantify strategies adopted by social bots?

In this work, we start building a social bot detection system called BotOrNot1 and

an API for other researchers to use our system [94]. Leveraging the lessons learned from

BotOrNot we participated in the DARPA social bot detection challenge and we finished

this competition as the second fastest and the third most accurate team [266]. Using our

framework, we analyze a large-scale collection of active Twitter users to estimate the fraction

of active bot population on Twitter [282].

1Our system will soon be renamed BotOMeter.
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CHAPTER 2

Related Work

“ Nearly everything is really interesting if you go into it deeply enough.

”Richard P. Feynman,

The unprecedented increase in social media use brings many opportunities and threats

at the same time. Social media help people to connect and share their opinions and ex-

periences with millions of others. We can consider social media as a microscope for the

online world which magnifies individual and group behaviors. Using social media as a tool

researchers can study online protests, political debates, and changes in user behaviors. The

adoption of online systems has been changing the communication landscape; diffusion of

online information has exceeded the limits of earlier methods of communications such as

newspapers, radio, and television. These media all have an important role in information

diffusion. Nowadays the Internet provides instantaneous reach to information, but it also

enables the creation of misinformation. Malicious intentions can be observed in the form of

orchestrated campaigns and promotion of content with the help of social bots. Detection of

misinformation campaigns and social bots is crucial for our modern society. This chapter

summarizes and reviews existing literature on social media studies.
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Figure 2.1: Some of the notable examples of propaganda posters: “Uncle Sam" [123], “Daddy,
what did YOU do in the Great War?" [81], “We Can Do It!" [275], and a propaganda poster
from the USA against Nazis and Japanese during the WWII [124].

2.1 Propaganda and Campaigns on Traditional Media

Traditional communication channels like newspapers, radio, and TV changed how political

campaigns have been organized and how campaign money has been spent to use those

platforms most efficiently. In the introduction, we provide some examples from US politics,

but these observations are applicable to most countries. Here we will delve into campaign

strategies adopted on traditional media channels.

Advertisement has a significant role in reaching voters and the goal of a successful cam-

paign is to choose the right approach to win the election. The most successful campaigns

have the most memorable themes and visuals that help sway public opinion and win elec-

tions.

Persuasion is the main tool in traditional campaigns. All forms of the campaign (posters,

TV ads., etc.) are the products of carefully engineered themes and messages. How public

opinion is created and shaped in advertisement campaigns is explained by Edward Bernays

in his seminal work “Crystallizing public opinion” with various examples [32].

Earlier engineered persuasion campaigns used printed media such as posters and news-

paper advertisements to reach targeted audiences. Common themes in these posters are
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depicting an enemy as evil or portraying yourself to look righteous [194]. Some of the

most memorable posters target different personal traits and moral foundations as well (see

Fig. 2.1). For instance, the “I Want You” poster presents Uncle Sam as a way to manifest

patriotic emotion, which is used to recruit soldiers for both first and second world wars.

A similar example of recruitment propaganda is released by the British government during

WWI, which shows a daughter posing a question to her father, “Daddy, what did YOU do

in the Great War?”. This poster is trying to manipulate an able man with guilt associated

with not volunteering for wartime service. “We Can Do It!” is another wartime propaganda

used to boost worker morale during WWII that later became popular to promote feminism

and other political issues [152, 256]. An example of a poster that demonizes the enemy is

presented in Fig. 2.1.

Perhaps not surprisingly, we observe an increase in comic book sales during interna-

tional conflicts [212]. Comic books are predominantly used as propaganda tools by using

visual cues to present cultural ideas embodied in flesh-and-blood characters. Ideas about

nationalism, societal stability, and feminism were best presented by Superman, Batman,

and Wonderwoman respectively [64].

Themes and motives used in television advertisements show common parallels with the

propaganda posters used during the Second World War. An analysis of over 800 TV adver-

tising spots between 1960 and 1988 shows that negativity in advertisements mostly appeals

to voters’ fears [163]. We observe shared components such as triggering fear and emotions,

nationalism, and demonizing the enemy. Tony Schwartz, a media consultant, created two

of the most memorable election advertisements in US politics. “Daisy” spot were aired only

once in 1964, but later replayed several times in other news outlets because of its emotional

impact. In this short clip, the association between a countdown for the atomic bomb and a

young girl counting daisy petals triggers emotional response and fear.
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Using the power of television, politicians reach out to larger crowds and drive their

attention as they choose [30,102,106,149]. Advertisements play the important role of putting

the “typical citizen” on the spot and setting norms and important questions. Politicians use

advertisement to make an effective campaign by either supporting their own campaigns or

attacking the policies of their opponents [24, 259]. One of the first examples of this effort

was known as the “Eisenhower answers America” campaign, where the President answered

question recorded in a studio that contained important messages for his campaign.

Similarly, advertisements also use celebrities who have an influence on people. Creating

associations between admired celebrities with certain ideologies is another strategy used in

political campaigns. McAllister discussed personalization of politicians and how political

priming works through television [196].

Persuasion is a broad term that covers different types of influence. We talked about how

advertising is used to influence political beliefs. However, influence through advertisement

is not the only type that affects and changes belief systems [72]. Most engineered persuasion

campaigns contain a certain level of misinformation [258]. Fake news and conspiracy theories

are examples of such campaigns.

Since ancient Greek times, rhetoric and elocution have been recognized as the highest

standard for a successful politician. Aristotle’s rhetoric describes three main mechanisms for

persuasion: ethos, pathos, and logos [13]. Ethos is an appeal to an authority or credibility

of the presenter. If a presenter has credibility and shares certain moral values, these moral

values can be used to support message. Examples of such campaign were common during

cigarette advertisements that used actors dressed as doctors mislead audiences. Pathos is

an important component, which appeals to the emotions of audience. Pathos might use

not only positive emotions like hope and gratitude but also negative emotions like fear and

threats. Lastly, logos is the logical appeal or the simulation of it. It is commonly used with
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facts and figures to support claims by the presenter. It is commonly used together with

ethos.

Most persuasion campaigns use strategies that present content along with conflicted

facts and distorted claims by authorities [78, 312]. Conspiracy theories are one of the most

extreme but persistent examples of misinformation. They appeal to the psychological urge to

explain that mysterious things happen for a reason [132,268]. Successful conspiracy theories

emerge from a group of supporters, who believe in the sinister aims of higher entities such

as governments, religious groups or even extraterrestrial life forms [141].

Censorship is a practice to repress dissemination of the truth. Historically, we observed

practices like collecting printed media, preventing the release of movies or manipulating

pictures or news to hide facts. Censorship of various newspapers was protested by printing

censored content in blank [80]. Examples of such counter-censorship tactics can be seen

in French, Australian, and Palestinian media. Nazis and Stalin collected books and other

printed media and burned them during political repressions [134]. Such practices inspired

dystopian novels like Fahrenheit 451 [49].

2.2 Social Media: Microscope for World

2.2.1 Memes and Trends

The meme concept was first proposed by Richard Dawkins in his influential book “The

Selfish Gene" [95]. Dawkins defines the meme as “a unit of cultural transmission, or a unit

of imitation". Nowadays we have adopted this concept to represent hashtags, keywords, and

URLs on the internet.

Tracking and grouping similar concepts is easier when they are presented as quantifiable

units. Memes serve this purpose. Most of the studies that analyze the content generated

online isolate memes as starting points for their initial datasets.
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There has been a large body of work in the area of information diffusion through net-

works. Several early models for information diffusion were inspired from classical disease

propagation models in epidemiology, such as SIR and SIS [16]. There has also been exten-

sive work on modeling the adoption or spread of an idea, content or product in a social

network. Well known classes of models in this domain include Threshold [142] and Cascade

models [135], that specify how a node adopts a particular idea or product based on the

adoption pattern prevalent in its neighborhood. The concept of diffusion was initially intro-

duced by social scientists and theory was developed to study how innovations and novelties

spread [244]. Studies also define different categories for adopters such as innovators, early

adopters, majority, and laggards based on their rank in involvement. Other related diffusion

models for product marketing included the Bass [22] model that is based on an S-shaped

adoption curve [122].

In recent work, Goel et.al proposes a formal measure, structural virality, of the degree

to which a cascade reaches its audience through broadcast-like mechanisms vs. viral mecha-

nisms [131]. The authors conduct a large scale empirical study of a billion diffusion events for

news, videos, images and petitions on Twitter and observe a wide range of diverse cascading

structures with varying structural virality, and show a low correlation between popularity

and structural virality. The authors then show how a simple SIR model can capture several

of the empirically-observed properties of the cascades. However, they note that their model

could not explain the large variance in structural virality that they observed empirically.

Trends represent interesting collective communication phenomena: they are user-generated,

continually changing and mostly ungoverned (although orchestrated hijacking attempts have

been observed [52,240,241]). Different information diffusion mechanisms may determine the

trending dynamics of hashtags and other memes on social media. Exogenous and endogenous

dynamics produce memes with distinctive characteristics [116, 119, 181, 216, 263]: external
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events occurring in the real world (e.g., a natural disaster or a terrorist attack) can generate

chatter on the platform and therefore trigger the trending of a new, unforeseen hashtag;

other topics (e.g., politics or entertainment) are continuously discussed and sometimes a

particular conversation can garner lots of attention and generate trending memes. So far,

trends have been studied as a proxy to detect exogenous real-world events discussed in social

media [5,23,87,246], emerging topics, or news of interest for the online community [60,183].

Recent work analyzes emerging topics, memes, and conversations triggered by real world

events [5,23,60]. Studies of information dissemination reveal mechanisms governing content

production and consumption [73] as well as prediction of future content popularity. Cheng et

al. study the prediction of photo-sharing cascade size [65] and recurrence [66] on Facebook.

2.2.2 Geography of Information Diffusion

It has been suggested that social media may overcome the spatio-temporal limitations of

traditional communication: technologically-mediated systems make it possible to ignore

physical and geographic distances [75, 217]. This, however, does not imply that commu-

nication patterns on social media are not affected by physical distances and geographic

borders [209,227].

Trends are also strongly localized in space and time: the temporal and geographic di-

mensions play a crucial role to determine the success of a trend in terms of spreading

and longevity. Unveiling the spatio-temporal dynamics that drive trending conversations

on social media is instrumental for many purposes: from designing successful advertising

campaigns, to understanding virality and popularity that characterize some topics. Recent

studies took advantage of platforms such as Yelp and Foursquare, which provide customized

services to their users based on their physical location (e.g., recommendations of events or

places), to study geographic user activity patterns [221, 247–249]. Others have used plat-
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forms such as Twitter and Facebook, that enrich user profiles with geographic information

and accompany user generated content with location-based data, to map user demograph-

ics [174,206].

Onnela et al. [227] noted that, although the probability of observing a tie between two

individuals in a social network (in that case, a mobile phone call network) decreases as a

power law with physical distance, the geographic spread of social groups quickly increases

with the size of the group; even groups of modest dimensions (≈ 30 members) are able to

span hundreds of kilometers, suggesting that, in technologically-mediated social systems,

there exist distinctive social dynamics that govern the communication among individuals.

Geographic locations and physical distances have been found to be correlated to friendship

behaviors in online social networks [187], to determine patterns in human mobility networks

[51,137], and to affect collaboration schemes in science networks [228].

Geographic factors have also been recently found to be crucial in the adoption of lan-

guages and dialects [209], and in the expression of sentiment [207, 236, 237] in online social

media. Mocanu et al. [209] showed how social media data can be used to characterize lan-

guage geography at different levels of granularity, to highlight patterns such as linguistic

homogeneity and linguistic mixture in multilingual regions.

2.2.3 Proxy to Analyze Human Behaviors

Studies by Mitchell et al. suggests that the adoption of online social media content can

be instrumental to describe emotional, demographic, and geographic characteristics of users

of these socio-technical systems; in particular, they investigated Twitter users active in

the US in terms of happiness and individual satisfaction [125,207]. A study of happiness on

Twitter led to a hedonometer project, in which the authors study temporal changes of global

happiness and the relation between local low and high points with real-world events [107].
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People use social media to reflect their emotions and events affecting their lives through

social media. The mismatch between the social representation and real state of the user

can pose challenges for research that leverages social media data because many individual

worries about their online representations and conform online norms [109, 151]. However,

our behaviors on social networks still carry a lot of information about personality, cultural,

political and sexual preferences [133,238,239].

The use of social media also shows strong correlation with public health measures [98,

230]. Researchers have been studying several health related topics using social media

data [85,96,97,99,225,226] and search logs [229,231,301].

Similarly, services for online shopping have rich information about our preferences and

tastes. We use health monitoring devices to track our work-out routines and sleep qual-

ity [143, 200]. Location based services like Foursquare, AirBnB and Yelp track our eating

habits and navigation history [1, 167,201,257].

2.2.4 Detection of Emerging Topics

Another recent research line related to our work is that of the detection of emerging trends,

topics, memes, and events in online social networks and social media [5, 23, 60, 87, 114, 183,

195,246].

Social media data can be used to make educated guesses on the outcome of real-word

events, such as elections or competitions [104]. Ciulla et al. [75] combined trends and

geographic information of Twitter data to demonstrate that online social media can be

exploited to predict social events in the real-world. They collected trending hashtags and

phrases related to contestants of the popular TV show American Idol, mapping the fan

base of each candidate to different geographic regions inside and outside the US, to identify

spatial patterns in attention allocation and preferences expressed on the online platform.
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These signals were then combined and used to predict voting behaviors of fans achieving

good accuracy.

2.3 Social Media: Online Discourse Platform

Technologically mediated communication systems, like social media platforms and online

social networks, support information sharing and foster the connectivity of hundreds of

millions of users across the world every day [48, 288]. The adoption of these platforms has

been associated with profound changes in 21st-century society: they affect how we produce

and consume information [11,44,218], shifting the paradigm from a broadcasting model (one-

to-many, like radio and TV) to a peer-to-peer (many-to-many) distribution system. They

have also altered the ways we seek information to understand societal events surrounding

us [203,204], and how we interact with our peers [61,62].

People participate in social media for many different reasons. Some join social media

with the intention to socialize with friends or to meet new people. Others participate to

promote a cause, or to gain fame as an authority or expert in their topics of interest. Much

prior research has documented the many reasons why people choose to participate on social

networks, such as communicating with real-world friends or making new contacts [162,177],

connecting with colleagues and building professional relationships [105,168], and connecting

with users that act as information providers [158].

2.3.1 Social Media Use During Protest

Ease of access to online services creates opportunities to freely discuss and share opinions and

to debate different points of view. Political discussions are the most influential for individuals

and consequential for society. Recently, researchers have been studying political uprisings

and social protest around the world using data collected from various online platforms.
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Examples of social protests and movements that have used social mobilization include the

revolution in Egypt [68], the anti-capitalist Occupy Wall Street movement [56,67,83,84,101],

and social upheavals in Spain [45,139] and Turkey [53,155,224,284]. The benefits resulting

from the adoption of social media include lowered barriers to participation, increased ease

with which small-scale acts can be aggregated, the rapid propagation of logistic information

and narrative frames, and a heightened sense of community and collective identity [28,

29, 214, 279, 307]. These events provide evidence of the impact of social media and their

importance for free speech. Protecting these resources from disruption is important for the

continuous free flow of information in society.

Social media have played a pivotal role in the development and increasing frequency

of social movements [28, 128, 214]. Using survey methodology, Tufekci and Wilson [271]

found that the use of social media in the Egyptian protests allowed people to make informed

decisions about participation in the movement, provided new sources of information outside

of the regime’s control, and increased the odds that people participated in the protests

on the first day. Another survey found Facebook use for news and socializing in Chile’s

youth movement to be positively associated with participation in the protests [278]. Chief

among social platforms used for protests is Twitter that, with more than a half billion users,

provides a high-visibility window on real-world events and an active forum for discussion

of political and social issues. The mostly ungoverned nature of this platform ensures a

democratic, peer-to-peer discussion, aiming at both creating a framing language to set goals

for the protest, and as a vehicle for mobilizing resources and social capital to sustain it

[3,83,153,190]. Individuals and organizations can discuss and share information on Twitter

about the movement’s political and social objectives [26, 27]. They can also coordinate to

marshal the resources needed to carry out on-the-ground activities like encampments or

marches [159,198].
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González-Bailón et al. [139] collected a large corpus of tweets related to the Spanish so-

cial and economic ‘Indignados’ protest that unfolded during May 2011. Their work provides

evidence that Twitter played a role in the recruitment of new individuals to the protest

movement as well as in the dissemination of information related to mass mobilization activ-

ities.

Choudhary et al. [68] analyzed the aggregate tweet sentiment during the 2011 Egyp-

tian revolution, observing that fluctuations in positive and negative sentiment were closely

correlated with the sentiment expressed by influential users worldwide. The authors also

observed that users tweeting about the Egyptian revolution were distributed both inside and

outside Egypt. Baños et al. [20, 21] highlighted the role of social media users in the diffu-

sion of information related to mass political mobilizations, unveiling the presence of hidden

influentials who foster large cascades. The authors also observed how the topology of the

communication network during such events reflects underlying dynamics like information

diffusion and group emergence.

In a study of the Occupy Wall Street uprising, Conover et al. focused on the geospatial

characteristic of the protest [83]. They observed that highly-localized discussions mirrored

individual attempts to organize and coordinate mobilization on the ground. Interstate dis-

cussion channels driving long-distance communications fostered the collective framing pro-

cess that imbues social movements with a shared language, purpose and identity. A lon-

gitudinal analysis [84] revealed that users did not change their connectivity, interests and

attention patterns with respect to baseline activity prior to the beginning of the protest.

These findings left open the question whether Occupy had any long-lasting effect on its

online community of participants.
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2.3.2 Censorship

In some societies, governments have responded to the growing phenomenon of political

mobilization by either terminating access to the online services or developing laws to restrict

the exchange of information [313]. China, Iran, North Korea, and Turkey are examples of

countries applying internet censorship widely. These countries are monitoring social media

and news to control online discourse. If discussions turn to sensitive topics, concerned

governments intervene and attempt to control information dissemination [7, 170].

Platforms like Facebook and Twitter have been censored by limiting internet access at the

country level. Social media companies have recently created specialized legal departments

to address requests from governments and provide continuous service for their users in

censored countries. Periodical transparency reports are released by technology companies

like Facebook,1 Twitter,2 Microsoft,3 and Google.4 These reports contain the statistics of

requests received from different governments and disclosures of information released. The

increasing trend in government requests for disclosure of user information and censorship

requests are worrisome.

Many censorship regulations are developed to control or limit dissemination of political

discussions. A recent study highlights a significant rate of content removal on Weibo [19].

When compared to the volume of politically relevant keywords, the authors estimated that

16% of political posts were deleted by authorities on Weibo. The content analysis of cen-

sorship on Weibo points to the discrepancy between the Chinese Communist Party and the

oppositions [289]. The lag time between content creation and censorship indicates a distinc-

tion between relevant and dangerous topics from the viewpoint of Chinese censorship. The

political impact of micro-blogging platforms is analyzed by comparing Twitter and Weibo
1govtrequests.facebook.com
2transparency.twitter.com
3microsoft.com/en-us/about/corporate-responsibility/reports-hub
4google.com/transparencyreport
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use in China [267].

In another analysis of Weibo, researchers studied the mechanism of Weibo’s trending

topic detection system to track sensitive viral discussions [315]. The authors also showed

the mechanism behind filtering by tracking sensitive users [316]. They found that the trend

of a viral topic is short-lived, which points to the effectiveness of Weibo’s censorship on

sensitive topics. We also observed a small but significant decrease in median censorship

time. On Twitter, censorship requires legal documents and process time unlike Chinese

social media, which has centralized control of censorship.

Technical challenges against censorship can be supported by using technologies like VPN

services or TOR project.5 Researchers also built services to quantitatively measure the

censorship problem [54] and analyzed examples of country-wide Internet outages [88,287].

2.4 Social Media: Medium for Abuse

Through social media platforms, we are exposed to a tremendous amount of information.

Still, we have been facing a significant problems of misinformation [113] and trapping in-

side an echochambers [2, 82]. Some governments are also taking precautions by applying

censorship to the Internet, which eventually terminates users’ right to access information.

2.4.1 Misinformation and Manipulation

Individuals and their opinions are increasingly influenced by information spreading on social

media. Twitter, among others, conveys hundreds of million messages per day and plays a

crucial role in the timely diffusion of news and information. Examples of Twitter conversa-

tion topics include coordinated social mobilization [84,139] and political debates [44]. Social

media content is mostly ungoverned and therefore it can be manipulated. This often results
5torproject.org
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Figure 2.2: Persuasion defined according to the mode of propagation and the entities behind
it.

in the diffusion of spam, misinformation, rumors, and deceptive messages [176,235]. Persua-

sion campaigns and other types of engineered social media conversations aim at challenging

or changing reader beliefs, opinions, or ideas. The appearance of an organic movement can

be created variations of the original message. Artificial means like social bots or fake ac-

counts can be used to rebroadcast such variants [154]. When a deceptive message produced

this way is believed to be genuine by real users, it can spread virally and reach a large au-

dience [50]. Detecting engineered or artificially sustained communication in its early stage

is therefore of paramount importance to avoid deception at scale.

Figure 2.2 illustrates two dimensions along which we can distinguish between different

classes of conversation observable on social media: the mode of information diffusion and

the entities behind the conversation.

Persuasion campaigns can be enacted by promoting content, typically by advertising.

This way the content will have higher visibility and reach. This is in contrast to organic

diffusion, which stems from spontaneous collective attention toward a topic. Persuasion
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can also occur by employing artificial agents using fake or compromised accounts, including

social bots, to give the impression that real people are paying attention to a topic or person.

Based on these two dimensions, we can identify three classes of persuasion campaigns, each

distinct from grassroots conversations.

Astroturf is a peculiar form of persuasion often observed in social media in the context

of politics and social mobilization [241]. It aims at simulating a grassroots conversation

through an orchestrated effort. The entity who attempts to generate such orchestrated

campaigns generally exploits fake accounts or social bots [154, 290]. These artificial means

allow the generation of a large volume of content and simulate the online activity of real

users. Cases of massive astroturf campaigns have been observed during political races such

as the US senate [213] and presidential elections [204].

The use of advertising is possibly the most common form of persuasion in social media.

The intent to promote is transparent. This method aims at attracting attention toward a

given entity (e.g., a brand). Advertising campaigns are an ideal use-case for our study, since

promoted content is clearly labeled as such on Twitter.

Complex persuasion campaigns employ a mix of the patterns discussed above. Com-

plex campaigns might exhibit a mixture of promoted and organic content. Conversations

that start as promoted might pick up audience attention and mutate into organic topics

of discussion. Alternatively, the spark to initiate a conversation might occur naturally and

later involve social bots that engage in the discussion. Complex persuasion campaigns may

have large societal impact if not detected early: successful campaigns can affect users by the

thousands.
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2.4.2 Social Bots

As opposed to social media accounts controlled by humans, bots are controlled by software,

algorithmically generating content and establishing interactions. While not all social bots

are harmful, there is a growing record of malicious applications of social bots. Some emulate

human behavior to manufacture fake grassroots political support [35,240], promote terrorist

propaganda and recruitment [31, 118], manipulate the stock market [113], and disseminate

rumors and conspiracy theories [34].

Discussion of social bot activity, the broader implications on the social network, and

the detection of these accounts are becoming central research avenues [46, 113, 115, 180].

The magnitude of the problem is underscored by a social bot detection challenge recently

organized by DARPA to study information dissemination mediated by automated accounts

and to detect malicious activities carried out by these bots [266].

Also known as sybil accounts, social bots can pollute online discussion by lending

false credibility to their messages and influence other users [6]. A recent study shows to

what extent automated systems produce content and dominate discussions about electronic

cigarettes on Twitter [76]. Social bots also vary greatly in terms of their behavior, intent,

and vulnerabilities. A recent study proposed a categorization scheme for bot attacks on

social network [208].

Most of the previous work on detecting bot accounts has operated from the perspective

of the social network platform operators, i.e., with full access to all data. These techniques

focus on large-scale data to either cluster behavioral patterns of users [292] or classify ac-

counts using supervised learning techniques [180,311]. For instance Beutel et al. decomposed

event data in time, user, and activity dimensions to extract similar behaviors [37]. These

techniques are useful to identify coordinated large-scale attacks directed at a common set

of targets at the same time, but accounts with similar strategies might also target different
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groups and operate separately from each other.

An alternative approach to study social bots and sybil attacks is to understand what

makes certain groups and individuals more appealing as targets. Wald et al. studied the

factors affecting the likelihood of a users being targeted by social bots [291]. This approach

points to effective strategies that future social bots might develop.

Structural connectivity may provide important cues. However, Yang et al. studied

large-scale sybil attacks and observed sophisticated sybils that develop strategies for build-

ing normal-looking social ties, making themselves harder to detect [311]. Some sybil attacks

analyze the social graph of targeted groups to infiltrate specific organizations [110]. Sybil-

Rank is a system developed to identify attacks from their underlying topology [57]. Alvisi

et al. survey the evolution of sybil defense protocols that leverage the structural properties

of the social graph [10].

Social bot detection tools use learning models trained with data collected from human

and bot accounts. Chu et al. built a classification system identifying accounts controlled

by humans, bots, and cyborg accounts [69, 70]. Wang et al. analyzed sybil attacks using

annotations by experts and crowd-sourcing workers to evaluate consistency and effectiveness

of different detection systems [293]. Clark et al. labeled 1,000 accounts by hand and found

natural language text features to be very effective at discriminating between human and

automated accounts [77]. Lee et al. used a honeypot approach to collect the largest sample

of bot accounts available to date [180].

2.4.3 Fake News

The term fake news is not new, but the prevalence of fake news in social media introduce

serious problems. Fake news websites deliberately publish hoaxes, propaganda, and misin-

formation pretending to be legitimate news sources. Unlike satirical news, they often aim
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to mislead readers in exchange for political and financial gain.

A large amount of misinformation spreads online and its prevalence and persuasiveness

can affect serious decisions around vaccination [55, 166, 223], elections [8] and stock market

behavior [58, 179] among other issues. A recent study suggests that misinformation is just

as likely to go viral as reliable information [254]. Dissemination of fake news is promoted

by copycat websites. Once an untrustworthy source releases some content online, those

copycat websites duplicate the original content. Corrections on the original source are no

more relevant and useful since many other media outlets are already affected. We can make

an analogy between dissemination of fake news through multiple media outlets to a disease

spreading in groups.

Recent research efforts focus on modeling the diffusion of misinformation [34, 36, 100,

127, 160]. Algorithmic efforts for detecting rumors and misinformation are also crucial to

prevent the spread of campaigns with malicious intents [117,205,235,242].

To hinder the dissemination of fake news, both journalists and readers have great respon-

sibilities. Online websites like FactCheck6, PolitiFact7, and Snopes8 provide fact-checking

services to debunk fake news. Fact-checking provided by online services influences opinions

of voters and provides a guide to politicians in judging what news might be fake before dis-

seminating them [126,222]. To automate fact-checking, researchers are working on designing

systems that can evaluate the credibility and truthfulness of claims [74,309].

The problem with fake news can be partially resolved by educating Internet users. News

literacy is important and everyone should learn how to detect fake news. Recently, we

have been observing a growing community of fact-checkers. Poynter is one of these orga-

nizations, which has released “International Fact-Checking Network fact-checkers’ code of
6factcheck.org
7politifact.com
8snopes.com
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principles”9 to promote excellence in fact-checking. Another noteworthy example is First

draft.10 These organizations not only provide fact-checked information about popular claims

but also monitor political campaigns and elections. Collaboration between different fact-

checking organizations is promoted by proposing an integrated system to share fact-checking

information.

2.5 Perspective for Designing Better Systems

The influence of external factors on the US presidential election in 2016 was a controversial

topic. Recent research shows evidence supporting the involvement of social bots in political

discourse [35]. Bessi et al. estimate nearly 15% of the accounts and 20% of the tweets having

involvement by social bots from both sides of the political spectrum. The participation of

social bots in political conversations does not necessarily need to be sophisticated. Social

bots are also known as disrupting conversations by flooding content to a particular conversa-

tion channel. The pollution of conversation on social media makes it intractable for humans

looking for useful information. An example of such channel disruptions was observed in

Mexico recently [265], where different hastags are flooded by social bots and force people to

move discussion to alternative channels.

Through social media and anonymity, targeted attacks are possible in orchestrating a

large army of social bots, trolls [199] and bullies [25, 243]. Examples of extremist activities

on social media have alarmingly increased and many platforms take precautions for early-

detection and prevention of such activities. Recent studies also point to social media use for

recruitment to terrorist organizations on social media [31,118,193].

We have been observing the societal impact of fake news. An increasing number of online

news websites and social networks are producing implausible content. The production of
9poynter.org/fact-checkers-code-of-principles/

10firstdraftnews.com
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fake news has been increasing, but the major problem is the consumption of fake news

articles. It is valuable to understand the roots of the problem before proposing solutions.

Herbert Simon’s work on attention economy might explain some of our mental shortcuts;

we tend to believe a content based on our opinions about our friend who shared the content.

Confirmation bias is considered one of the factors [220]. According to this hypothesis, people

tend to believe and seek information supporting their initial opinions. However, people tend

to believe nonpartisan opinions.

Traditionally people access credible information through legitimate sources. However, in

the Internet age, popular users have a stronger influence on widely consumed information

sources. Most of the news articles follow a journey starting from their original source to

copycat websites, social media accounts, and finally to their readers. These long chains

of content cause some problems, for instance corrections made on original articles rarely

propagates to the latest venue. News consumers are also not aware of the original source.

Researchers studied when readers pay attention to the source of content [165]. They found

that users tend to believe the content considering only the source from which they obtained

news unless the subject is really important to them. This problem can be solved by focusing

on news literacy. When educated online users can access fact-checking tools, it is possible

to stop fake-news.

There are significant efforts to preserve the social ecosystem. Researchers develop tools

like BotOrNot11 [94, 282] to detect social bots on Twitter, Hoaxy12 [254] to study dissem-

ination of fake news, and TweetCred13 [145] to evaluate credibility of tweet content. The

Jigsaw lab of Alphabet has also devoted significant efforts to tackle some of the global

security challenges.14 They design systems and tools to prevent censorship and online ha-
11truthy.indiana.edu/botornot
12hoaxy.iuni.iu.edu
13twitdigest.iiitd.edu.in/TweetCred
14jigsaw.google.com
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rassment. Considering the impact of technology on the dissemination of misinformation, we

share a great responsibility to work together. Computer scientists, social scientists, jour-

nalists and industry partners must collaborate to implement policies and systems against

online threats.
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CHAPTER 3

Concepts and Methods

“ Give me a place to stand and with a lever I will move the whole world.

”Archimedes,

3.1 Twitter Data

This dissertation presents studies that use datasets collected from Twitter. In our lab,

we have elevated access through Twitter Streaming API,1 which approximately includes a

sample of 10% of the public tweets. Our lab also built a service, called OSoMe, to share

derived data with researchers and citizen scientists [93].

Twitter is a popular micro-blogging platform that is available to millions of people all over

the world. Users can interact by creating social ties (friend/follower relations), retweeting

content of others to disseminate content among their followers, and mentioning other users

(using @ sign before a username, for instance, @onurvarol) in their posts. Twitter users

can post up to 140 characters per tweet including URLs for external media content, such as

pictures and videos, alongside text. Hashtags — keywords preceded by # sign — included

in tweets are used as keywords to summarize a discussion topic or to convey a message in a

shortened format.
1http://dev.twitter.com/docs/streaming-apis
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Figure 3.1: JSON hierarchy of tweet and user objects.

Twitter has a rich API to provide access information about local and global trends, user

social network, and several other meta-data as shown in Fig. 3.1. Some of this additional

information has been used in this dissertation such as trending topics for studying the spa-

tiotemporal nature of information diffusion and withheld tweets for analysis of censorship on

Twitter. Censored tweets contain the fields [withheld_scope] and [withheld_in_countries]

to indicate how content is censored and where censorship is active.
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Figure 3.2: Relation between users through friendship or information flow. Posts produced
during the process can be related to each other through co-occurrence or topical relevance.

3.1.1 Information Mining

Using data available on Twitter, we can extract information about the temporal evolution

of user properties such as number of friends, followers, and tweets posted. We can also

construct relationships between those users through retweet and mention ties. In terms of

conversations, we can construct co-occurrences of hashtags and compute volume of activity.

All this information, depicted in Fig. 3.2, can be extracted from a collection of tweets, which

are essential to build systems described in this dissertation.

In the case of social protest or topically focused events, we can collect data through

the Twitter Streaming API by keywords of interests. Users on Twitter adopt hashtags to

promote communication about the events. For instance during the Gezi movement the

#direngezi hashtag was used commonly. We collected live stream during events to learn

other relevant keywords to expand our set of hashtags. Tweets that contained these hashtags

were later collected from our 10% stream.
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3.1.2 Feature Extraction

Using the information obtained from tweets, we can extract several features in different

categories: network structure and information diffusion, language and sentiment, temporal,

and user meta-data. Systems described in this dissertation use subsets of these features

collected separately for each user or campaign.

3.1.2.1 Network

Twitter actively fosters interconnectivity. Users are linked by means of follower/followee

relations. Content travels from person to person via retweets. Tweets themselves can be

addressed to specific users via mentions. The network structure carries crucial information

for the characterization of different types of communication. In fact, the usage of network

features significantly helps in tasks like astroturf detection [240]. Structure and modularity

of networks are also shown to be useful to maximize information dissemination [219]. We can

construct three types of networks: (i) retweet, (ii) mention, and (iii) hashtag co-occurrence

networks.

Retweet and mention networks have users as nodes, with a directed link between a pair

of users that follows the direction of information spreading — toward the user retweeting

or being mentioned. In tweet meta-data, information about the user posting the tweet is

presented in the [user] field. If a tweet is retweeted, the original tweet is preserved in

the [retweeted_status] field. In case of mentions and replies, tweets pointed to users can

be accessed via using [entitites][user_mentions] and [in_reply_to_user_id] respec-

tively.

The hashtag co-occurrence network has undirected links between hashtag nodes when

two hashtags have occurred together in a tweet. In each tweet, the [entities][hashtags]

field contains hashtags used in the tweet.
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All networks are weighted according to the number of interactions and co-occurrences.

Using these networks, several network statistics such as the number of nodes and edges,

density, and average clustering coefficient, can be computed. Node-specific properties such

as strength, clustering coefficient, and centrality measures can be studied through their

distributions.

3.1.2.2 Language and Sentiment

Many recent papers have demonstrated the importance of content and language features

in revealing the nature of social media conversations [47, 90, 184, 197, 209]. Textual infor-

mation in the tweet is located in the [text] field. Users can also provide some free-text

content about themselves such as a description and location in the [user][description]

and [user][location] fields, respectively.

From the tweet texts, we extract language features by applying the Part-of-Speech (POS)

tagging techniques using the NLTK package [39], which identifies different types of natural

language components. Additional language and content features such as length of the text,

number of words, URLs, mentions, and hashtags can be extracted from a tweet. User

language is also available in the [lang] field by ISO language codes.

Sentiment analysis is a powerful tool to automatically describe the attitude or mood

of an online conversation. We adopt several sentiment extraction techniques to generate

various sentiment features, including happiness score [172], arousal, valence and dominance

scores [295], polarization and strength [305], and emoticon score [4].

3.1.2.3 User Meta-data

User meta-data is crucial to classify communication patterns in social media [115,206]. In a

tweet the [user] field contains information about a user such as number of friends, followers,

and posts, profile image, profile description, user language, and time-zone. Temporal changes

36



of the friend, follower, and post counts provide valuable information about user behaviors.

3.1.2.4 Temporal

The temporal dimension associated with the production and consumption of content may

reveal important information about campaigns and their evolution [129]. Each tweet contains

meta-data about creation time of the tweet and user account in the [created_at] and

[user][created_at] fields respectively. The most basic time-related feature that can be

considered is the number of tweets produced in a given time interval. Inter-event time

distributions also carry important signals about the progression of events.

3.2 Graph Theory

The structure of a network is commonly depicted as a graph. A graph consists of mainly

two sets of objects: nodes (N = {n1, · · · , nN}) and edges (E = {eij |i, j ∈ V }). Each edge

is represented as a pair of nodes and directionality is important if the graph is directed.

Connectivity of the graph can also be represented as an adjacency matrix A, in which each

element of the matrix Aij represents the weight of an edge between nodes ni and nj . For

instance a graph representation in Fig. 3.3 has 6 nodes and 9 directed edges. I use this

toy-example to describe some of the important network measures below.

Degree: A number of edges connected to a node represents the degree. In directed

networks, incoming and outgoing edges differ and one denoted as in- and out-degree. For

instance node-3 in the network in Fig. 3.3 has in-degree 1 and out-degree 2.

Weight: The weight of an edge represents importance or strength of relation between

nodes. The weight of the edge eij can be represented as wij . For instance in the toy-network

the weight of the edge e31 is w31 = 5.

Strength: It is the sum of the weights of all edges adjacent to a node ni. The strength
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Figure 3.3: Example representation of a graph consisting of 6 nodes and 9 directed edges.
Node-3 is highlighted to provide examples in definitions.

of node can be denoted as in- and out-strength if the network is directed. For instance the

in-strength of node-3 is 1 and the out-strength is equal to 8.

Density: The density of a graph represents the fraction of edges that exist in the graphs

compared to the maximum possible number of edges. Complete graphs have a density 1 and

our example graph has density 0.3. For directed graphs the density is computed as follow:

d =
|E|

|V | (|V | − 1)

Clustering coefficient: It is a measure of the degree to which nodes in a graph tend

to cluster together. There are two versions of this measure: global and local clustering

coefficients. The global clustering coefficient is the average of the local clustering coefficients

across all nodes in the network. Local clustering coefficient computes how close a node’s

neighbors are to being a clique for each node. For instance, in our toy-network node-3 has

3 neighbors. Among node-3’s neighbors, 2 out of 3 possible edges are realized, which yields

0.66 clustering coefficient for node-3.

38



3.3 Machine Learning Methods

Every second of our lives, we observe the world and make assumptions and predictions

about our environment. When these subsequent events and observations are recorded, we

can also automatize these processes. We approximate the processes that explain the data by

constructing models. These models might not be able to describe processes completely, but

they might be useful and accountable to detect certain patterns and regularities. Machine

learning explores such methods and techniques that can learn from and make predictions

on data.

Techniques employed in machine learning tasks are typically classified into three broad

categories: supervised, unsupervised, and semi-supervised [9]. In this dissertation, we com-

monly used supervised techniques to classify and detect particular patterns in the data and

unsupervised techniques to explore and identify instances with high similarities.

In the following, I will describe off-the-shelf methods and evaluation techniques used in

different part of this dissertation. The Python library Scikit-learn is used to apply most of

these methods [232].

3.3.1 Supervised Learning

In supervised learning problems, data are presented in a form of a set of features extracted

from the dataset and a corresponding label. Given a set of N training examples of the form

{(x1, y1), · · · , (xN , yN )}, xi is a feature vector of the i-th example and yi is its label. A

learning algorithm seeks to find a function that maps the input space X onto the output

space Y . In terms of binary classification, relationships between features of the training

dataset are learned to map any instances of the test examples to a binary value {0, 1} as

predicted label.

Random forest is the most commonly used technique for classification and regression
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tasks in this dissertation. Using a random subset of training data and a bagging mechanism

(random selection of feature subset) several decision trees are constructed by algorithm [150].

Classification decision for a test instance relies on voting between generated decision trees.

3.3.2 Unsupervised Learning

Unsupervised learning aims to infer a function that describes hidden structure from un-

labeled datasets. Clustering is one of the most common approaches to describe features

presented in the data, by grouping data points with relates characteristics.

The hierarchical clustering method, which uses agglomerative clustering, is a commonly

used unsupervised technique in this work. Agglomerative hierarchical clustering uses a

“bottom-up” approach: each observation starts in its own cluster, and pairs of similar clusters

are merged as one moves up the hierarchy. The resulting clustering of the data is usually

presented in a dendrogram.

3.3.3 Evaluation Techniques

In most of the analysis with data, evaluation is a critical part of the experimentation. In

supervised learning, algorithms produce predicted labels P = {p1, p2, · · · , pN} for instances

in the dataset for testing against ground-truth labels Y = {y1, y2, · · · , yN}. To overfitting

noise in the training dataset, the classifier is evaluated using a scheme called cross validation.

This common practice requires splitting data into k different folds; classifiers are trained

using data in k− 1 folds and tested on the remaining fold; this process repeats k times until

each fold is used for testing. Average results of these k-fold are reported in the experiments.

The outcomes of any binary classification task can be presented in a 2x2 table called

confusion matrix. Columns and rows of this matrix represent numbers of items in predicted

and true conditions. Terms true positive (TP) and true negative (TN) represents when

40



Correct
label

Predicted label
p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

Table 3.1: Example confusion matrix representation.

predicted and true labels are matched (see Fig 3.1).

Using this confusion matrix representation, we can define measures to evaluate the per-

formance of the classifier. Some of the commonly used measures are:

Accuracy: Fraction of correctly labeled items among all test instances:

accuracy =
TP + TN

TP + TN + FP + FN

Precision: Fraction of positive classifications that are correctly classified:

precision =
TP

TP + FP

Recall: Fraction of positive instances that are correctly classified:

recall =
TP

TP + FN

F1 score: Harmonic mean of precision of recall:

F1 =
2 · precision · recall
precision+ recall
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AUC: Area under the received Receiver Operating Characteristic (ROC) curve is a

measure of accuracy. ROC plots the true positive rate (TPR = TP
TP+FN ) versus the false

positive rate (FPR = FP
FP+TN ) at various threshold settings. A random-guess classifier

produces the diagonal line where TPR equals FPR, corresponding to a 50% AUC score.

Classifiers with higher AUC scores perform better and the perfect classifier in this setting

achieves a 100% AUC score. AUC is a good measure when the dataset has a class imbalance,

because AUC is not biased by this imbalance.

NMI: “Normalized Mutual Information” is a technique to evaluate the quality of cluster-

ing outcomes using an information theoretical approach [91]. It assumes the availability of

a ground truth that represents the correct clusters. Let A be the correct cluster assignment,

and suppose that it contains cA clusters. Let B be the output of a clustering algorithm

operating on the same data and producing cB clusters. We can define a cA × cB confusion

matrix N, whose rows correspond to the clusters in A and whose columns represent clusters

in B. Each entry Nij of this confusion matrix reports the number of elements of the correct

i-th cluster that happen to be assigned to the j-th cluster by the clustering algorithm. The

Normalized Mutual Information is defined as

NMI(A,B) =

−2

cA∑
i=1

cB∑
j=1

Nij log

(
NijN

Ni·N·j

)
cA∑
i=1

Ni· log

(
Ni·
N

)
+

cB∑
j=1

N·j log

(
N·j
N

)

where Ni· (resp., N·j) is the sum of the elements in the i-th row (resp., j-th column) of the

confusion matrix, and N is the sum of all elements of N. The output of this measure is

normalized between zero (when the clusters in the two solutions are totally independent),

and one (when they exactly coincide). Therefore, the higher the value of NMI, the better

the quality of the clusters found by the algorithm. NMI assumes non-overlapping clusters.
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A variant of NMI, called LFK-NMI after its authors (Lancichinetti, Fortunato, Kertész) is

proposed to measure the quality of overlapping clusters [178].

3.4 Limitations of Tools and Data

Many research projects including the ones presented in this dissertation, have limitations

and biases introduced by data, methods or tools used for analysis. Some of these limitation

can be improved by using more sophisticated techniques, but others have more fundamental

roots. Researchers should always be aware of these limitations and interpret their results

considering the effects of these limitations. Here I discuss some short-comings of our dataset

and techniques.

3.4.1 Twitter Dataset

In this dissertation, we mainly used Twitter data collected from a public stream that corre-

sponds to a random sample of 10% of the public tweets. We also used the Twitter REST

API to crawl the most recent tweets produced by certain groups of users.

Limitations and biases of Twitter samples have been studied before [140]. Analysis of

different Twitter samples show that the search API over-represents the more central users.

Beside the level of activity, researcher should also consider to what extend the population

on Twitter represents the actual demographics of the population under study. A study

from 2014 shows that the Twitter population is a highly non-uniform sample of the US

population [206].

3.4.2 Annotations and Labeled Data

Supervised machine learning algorithms rely on ground-truth data to learn underlying pat-

terns. These labels can be obtained from existing systems or generated by observations.
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Human annotation tasks are required in different domains to create ground-truth or train-

ing labels. Examples of human-annotation task to create reliable labeled data can be found

in building lexicon for word-emotion associations [210], annotating named entities [121], de-

tecting objects on images and videos [264], and many other domains. In this dissertation,

we used human annotations to build labeled dataset of human and bot accounts on Twitter.

Crowdsourcing tasks consist of group of a human annotators performing the same or

similar tasks. A recent analysis addresses common misconceptions about crowdsourcing

tasks [14]. For instance the authors show that disagreement between annotators is not the

result of poor quality in the annotation task, but a signal about the difficulty of the task.

Agreement between annotators can be used not only to measure the quality of the performed

task, but also to identify instances with high disagreement to improve systems.

3.4.3 Methods

When researchers address a new problem, they first consider methods and techniques ap-

plicable to the problem. In most of the cases, these methods are the ones that researchers

are already familiar with. However, it is always important to know the advantages and

limitations of a methodology before implementing it to address a research question.

In this dissertation, we used methods to analyze emotions through off-the-shelf sentiment

analysis techniques. Most of these methods rely on lexicons to compute a score for a given

text. However, they are not sophisticated enough to identify sarcasm or negation. There

exist more sophisticated techniques to learn more nuanced details about the text. Recently,

deep learning and vector embedding techniques have become popular. They outperform

existing methods, but they have also their own limitations. Vector embeddings for instance,

have been shown to be biased on gender due to the nature of the training data [43].
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CHAPTER 4

Information Diffusion and Online Discourse

4.1 Diffusion of Trends

Trends represent interesting collective communication phenomena: they are user-generated,

continually changing and mostly ungoverned (although orchestrated hijacking attempts have

already been observed [52, 240, 241]). So far, trends have been studied as a proxy to detect

exogenous real-world events discussed in social media, [5, 23, 87, 246], emerging topics, or

news of interest for the online community [60,183].

But trends are also strongly localized in space and time: the temporal and geographic

dimensions play a crucial role to determine the success of a trend in terms of spreading

and longevity. We argue that unveiling the spatio-temporal dynamics that drive trending

conversations on social media is instrumental to many purposes: from designing successful

advertising campaigns, to understanding virality and popularity that characterize some top-

ics. In this work we characterize the relation between trends and geography by tracking and

analyzing trending topics on Twitter in 63 main locations of the United States and at the

country level, for a period of 50 days in 2013 [116].

In this section we discuss the methodology we followed to generate a dataset of Twitter

trends, and the derived temporal dependence network that allows us to unveil the dynamics

of trend production and consumption.
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Table 4.1: The list of the 63 trend locations in the United States and the relative total
number of trends (thousands) they generated in the period between April, 12th and the end
of May 2013.
Albuquerque 6.7 Atlanta 5.1 Austin 5.8 Baltimore 5.8
Baton Rouge 6.5 Birmingham 6.1 Boston 5.0 Charlotte 5.2
Chicago 5.2 Cincinnati 5.8 Cleveland 5.4 Colorado Springs 6.7
Columbus 6.0 Dallas-Ft. Worth 5.3 Denver 6.1 Detroit 4.8
El Paso 6.5 Fresno 6.6 Greensboro 5.8 Harrisburg 6.3
Honolulu 6.5 Houston 5.1 Indianapolis 5.9 Jackson 6.8
Jacksonville 6.0 Kansas City 5.7 Las Vegas 5.4 Long Beach 6.5
Los Angeles 5.2 Louisville 5.9 Memphis 6.5 Mesa 6.6
Miami 5.5 Milwaukee 5.8 Minneapolis 5.6 Nashville 6.0
New Haven 5.6 New Orleans 6.2 New York 4.4 Norfolk 6.0
Oklahoma City 5.8 Omaha 6.4 Orlando 5.8 Philadelphia 5.1
Phoenix 5.9 Pittsburgh 5.8 Portland 6.4 Providence 5.9
Raleigh 5.3 Richmond 6.2 Sacramento 5.9 Salt Lake City 6.4
San Antonio 5.8 San Diego 6.2 San Francisco 5.7 San Jose 6.6
Seattle 5.9 St. Louis 5.7 Tallahassee 6.3 Tampa 5.6
Tucson 6.6 Virginia Beach 6.8 Washington 4.7

4.1.1 Trends Dataset

To build our dataset we monitored in real-time all trends appearing on Twitter for a period

of 50 days, starting from April, 12th until the end of May 2013.

The Twitter homepage provides a trends box that contains the top 10 trending hash-

tags or phrases at any given moment, ranked according to their popularity. Oftentimes, a

promoted trend is shown in 1st position — for our analysis we disregarded promoted trends

since their popularity is artificially inflated by the advertisement.

Each Twitter user can monitor the trends at the worldwide, country, or city level. Twitter

has identified 63 locations in the United States, displayed in Figure 4.4, for which it is possible

to follow local trends. The full list of locations is reported in Table 4.1. It is worth noting

that some areas are over-represented (for example the East coast and California), while some

states (namely, North and South Dakota, Montana, Wyoming, Idaho, and Alaska) are not

represented at all.1

We deployed a Web crawler to check at regular intervals of 10 minutes the trends of each

of these 63 locations and, in addition, those at the country level. We ended up collecting
1This has to do with the fact that the activity on Twitter in those states is very low.
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11,402 different trends overall: 4,513 hashtags and 6,889 phrases. Table 4.1 also reports how

many trends have been observed in each location.

4.1.2 Trend Pathway Backbone Network

To investigate where trends usually start and how they propagate from city to city, we built

a temporal dependence network of the 63 locations of the United States represented in our

dataset.

This network is directed and weighted: each node corresponds to one of the 63 cities,

and the weight of an arc eij from node i to node j is increased every time location i exhibits

a trend before location j. The weight of arc eij therefore represents the extent to which city

i precedes city j in adopting a trend: the higher the weight, the more often location i sets

the trends that location j will later adopt.

Due to the fact that the adopted dataset contains a large number of trending hashtags

and phrases, the network obtained using the procedure described above is fully-connected.

This makes the extraction of relevant connections hard, as each location is connected with

all the others and only the weight of the connections vary.

To ease the analysis we applied to this network an edge filtering technique known as

multiscale backbone extraction [252]. The goal of this procedure is to retain only those

connections that are statistically significant, by removing all edges whose weight does not

deviate sufficiently from a null model. The significance level of an edge is determined by a

threshold parameter α. Lowering α progressively removes edges and eventually causes the

disruption of the network. We tuned α to obtain the backbone network with the minimum

number of edges that suffices to maintain all 63 nodes connected (α = 0.3). The resulting

multiscale backbone of the network is used for the analysis of pathways of trend diffusion,

and to investigate trendsetting and trend-following dynamics.
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Figure 4.1: Histogram of the number of trends appearing in different number of places.
Inset: y-axis reported in a log-scale.

Figure 4.2: Lifetime of a trend. Left: as function of the number of cities in which a trend
has appeared. Right: as function of its entropy. In both plots, the dark blue line is the
average across trends while the standard error is depicted in light blue.

4.1.3 Spatio-temporal Trend Analysis

In our first experiment we aim to give a statistical characterization of trends: in particular,

we start investigating in how many different cities trends appear. In Figure 4.1 we report

the number of trends appearing in a given number of distinct locations. Trends follow a

bimodal distribution, typically appearing either in one or few locations, or in all or most of

them. We can identify three behaviors: (i) a large fraction of trends are localized and not

sustained enough to spread from their originating place to others; (ii) another comparably

large fraction of trends diffuse all over the cities generating a global phenomenon across
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Figure 4.3: Shared trend similarity and hierarchical clustering of the 63 locations.
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the country; and (iii) the small remainder diffuse from the originating place to some other

places, but fail to achieve global popularity.

The lifetime of trends is broadly distributed: short-lived topics trending for less than 20

minutes amount for more than 68% of the total, and overall trends shorter than six hours

cover more than 95% of our sample. Sporadically some trends happen to live a much longer

time, with only 0.3% surviving for more than a day.

We now focus on the spatio-temporal dimension of trends, aiming to determine how

much time each trend spends in one or several locations. In particular, we calculate the

average lifetime of a trend (the average amount of time a given hashtag or phrase is trending

somewhere) as a function of the number of cities in which it appears. Figure 4.2 (left panel)

reflects the intuition that trends reaching more places live longer.

Another way to determine the relation between the geographic spread of trends and their

temporal patterns is to measure their lifetime as a function of entropy, defined as Sj =

−∑i P
j
i logP j

i , with P
j
i =

tji∑
k tjk

, where tji is the time topic j has been trending in location

i. The entropy is low if the trending topic is concentrated in a few places, and maximal if the

topic trends for equal durations of time in all places. Figure 4.2 (right panel) shows that for

trends with low entropy (i.e., those concentrated in a single location), the expected lifetime is

very short. The lifetime increases significantly (five-fold) for the maximum observed entropy.

This analysis reveals a key ingredient for global trend popularity: the trending time of a

topic is not only determined by its lifetime in a single location, but also by its geographic

spread across many locations.

4.1.4 Geography of Trends

Let us examine the geographic patterns of trends, namely whether geographically close cities

share more similar trends than cities that are physically far apart. To determine if this
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Figure 4.4: geographic representation of the 63 locations and respective clusters.

locality effect exists, we first isolate, for each location i, the set of trends Ti that appeared

in that location. Then, for each pair of locations i and j we compute the pairwise Jaccard

similarity

Sij =
|Ti
⋂
Tj |

|Ti
⋃
Tj |

. (4.1)

The Jaccard similarity ranges between 0 and 1: the higher the value, the more similar the

trends exhibited by two different cities. These values of similarity are subsequently passed

to a hierarchical clustering algorithm after being transformed in distances: dij = 1 − Sij .

This is done to determine whether it is possible to isolate clusters of locations that exhibit

similar trends, and, if so, whether these locations are geographically close or spread all over

the country. The result is showed in Figure 4.3 and discussed next.

4.1.4.1 Locality Effects

Figure 4.3 is constituted by two parts: a heat-map representing the pairwise Jaccard similar-

ity among locations, and a dendrogram generated according to an agglomerative hierarchical
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clustering algorithm using complete linkage. Analyzing the dendrogram we can identify three

distinct clusters, whose members (reported in different colors: green, yellow and red) share

a high internal similarity in the trends exhibited during the observation period. This cluster

emerges applying a cut to the dendrogram for a distance value of 0.5. We can also identify a

fourth cluster (in purple, emerging with a dendrogram cut corresponding to a distance value

of 0.75) that exhibits a lower internal similarity and whose members show a low similarity

with those of other clusters. The four clusters are reported in Table 4.2, and displayed in

Figure 4.4.

From the figure we observe that the green, yellow and red clusters are somewhat geo-

graphically localized, while the purple one is spread more or less all over the country. In

detail, the green cluster, with the highest internal similarity, roughly corresponds to the

Southwest of the country. The yellow cluster follows, representing the Midwest and South.

The red cluster, which is less localized, matches many locations in the East coast and Mid-

west. The purple cluster includes several major metropolitan areas [302].

Table 4.2: Clusters of cities according to trend similarity.
Green Yellow Red Purple
Long Beach Memphis St. Louis Washington
Fresno Salt Lake City San Antonio New York
Mesa Harrisburg Milwaukee Detroit
Tucson New Orleans Tampa Boston
Albuquerque Baton Rouge Pittsburgh San Francisco
Virginia Beach Portland New Haven Cleveland
San Jose Tallahassee Seattle Minneapolis
Colorado Springs San Diego Cincinnati Las Vegas
Jackson Kansas City Austin Houston
Honolulu Oklahoma City Orlando Charlotte
El Paso Birmingham Baltimore Raleigh
Omaha Louisville Greensboro Los Angeles

Jacksonville Nashville Dallas-Ft. Worth
Norfolk Chicago
Providence Philadelphia
Denver Miami
Richmond Atlanta
Phoenix
Sacramento
Columbus
Indianapolis
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4.1.4.2 Significance of Geographic Clustering

To determine the statistical significance of the clustering obtained by using the previous

method we proceeded as follows: we first computed the distribution of similarity values

among all pairs of locations belonging to the same cluster (intra-cluster similarities); then,

we did the same for the pairs belonging to different clusters (inter-cluster similarities). After

that, we applied a kernel smoothing technique known as Kernel Density Estimation [147] to

estimate the probability density functions for our similarity distributions, plotted in Figure

4.5 (the distribution of each cluster is represented by its color corresponding to Table 4.2).

We applied a t-test to determine if any given pair of distributions of intra- and inter-

cluster similarity might originate from the same distribution, assessing that all distributions

(and, therefore, the clusters) are significant at the 99% confidence level.

We also compared the result of the hierarchical clustering with that of two network

clustering algorithms (namely, Infomap [245] and the ‘Louvain method’ [40]) applied to the

trend pathway backbone network. We obtained consistent results in all cases: the only

difference was that Seattle was placed in the purple cluster by both network clustering

methods.

Figure 4.5: Kernel Density Estimation of intra- and inter-cluster similarity of the four clus-
ters.
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Figure 4.6: Trend pathways in Twitter. Trends spread in the direction from blue to red.

4.1.5 Trend Pathway Analysis

To establish where trends start and what pathways they follow to diffuse in the country,

we analyze the multiscale trend pathway backbone network and represented in Figure 4.6

by using a divided edge bundling technique [250]. This visualization strategy has been

successfully applied to other geographic networks such as the US airport traffic network (cf.

[250]). In this node-link representation the edges are bundled taking into account directions

and weights. The thicker the bundle, the higher the sum of the weights of connections

wrapped in the bundle. In our case, this yields a network visualization that highlights the

pathways followed by trends as they flow across the country. In this figure the direction of

edges represents the information flow: the tails of the bundles (in blue) show where trends

start, the heads of the bundles (in red) point to where the trends arrive. From Figure

4.6 we can draw two observations: first, the presence of a massive backbone that carries

the trend flow from the East coast to the West coast and vice-versa. Second, we observe a

negligible North-South flow, except for that connecting Florida to the East coast. Moreover,
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the fact that the East-to-West flow is well balanced by the that in the opposite direction

suggests that we are not simply observing an artifact of the time-zone effect: the West coast

contributes to shaping the country trends to a similar extent that the East coast does.

In the backbone network the cities that often generate trends are those with higher

fractions of outgoing edges (that is, those that spread their trends to most of the other

cities); henceforth we will call them sources. Vice-versa, we will call sinks those cities with

higher fraction of incoming edges. More precisely, since the network we deal with is weighted,

we compute the weighted source-sink ratio ω(n) for each node n as

ω(n) =
sout(n)

sin(n) + sout(n)
, (4.2)

where sin(n) (resp., sout(n)) is the in-strength (resp., out-strength) of that node. We report

in Table 4.3 the top 5 sources and the top 5 sinks of the backbone network. Four out of

the five top sources (all but Cincinnati) also happen to be major metropolitan areas. On

the other hand, all sinks belong to the Southwest and Midwest parts of the country. Los

Angeles and New York (among our top sources) have also been reported in the top 5 hashtag

producers worldwide in the recent work by Kamath et al. [164].

4.1.6 Trendsetters and Trend-followers

The source-sink analysis presented above triggered our interest in the dynamics of trend

popularity. In the following we study trendsetting and trend-following patterns, driven by

Table 4.3: Left: top 5 sources (i.e., trendsetters). Right: top 5 sinks (i.e., trend-followers).
Location Rank ω(n) Location Rank ω(n)
Los Angeles 1st 0.806 Oklahoma City 63rd 0.101
Cincinnati 2nd 0.736 Albuquerque 62nd 0.109
Washington 3rd 0.718 El Paso 61st 0.235
Seattle 4th 0.711 Omaha 60th 0.305
New York 5th 0.669 Kansas City 59th 0.352
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the following question: Are trending topics that become popular at the country level produced

uniformly by all cities, or preferentially by some of them?

To answer this question we selected from our dataset all those trends that at some point

in time became trending at the country level. This left us with 1,724 hashtags and 2,768

phrases that achieved the highest popularity in the United States, appearing in the top 10

trending topics at the country level. We then selected the set of cities that exhibited each

of these trends, and divided them in two categories: those cities in which the hashtag or

phrase was trending before it became trending at the country level, and those cities that

adopted it after it became trending at the country level. This allows us to determine what

are the cities that contribute more to shaping the trends at the country level, and what are

the cities that are more influenced by these global trends: in other words, we can identify

trendsetters and trend-followers.

Figure 4.7: Trendsetting vs. trend-following cities. The x-axis shows the number of times a
topic trending in a particular city later trends at the country level, while the y-axis shows
the number of times of the reverse effect. The inset shows a Gaussian Mixture Model
highlighting the two different trendsetting dynamics; the contours represent the standard
deviations of each Gaussian distribution. In the main plot, two linear regressions are reported
with the corresponding coefficient of determination R2. City colors correspond to the cluster
assignment in Table 4.2.

Figure 4.7 shows the result of this analysis for the hashtags. We can immediately identify
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two different classes of cities: the majority of them (i.e., all those in the upper-left part of

the main plot) appear to influence country-level trends roughly to the same extent to which

they are influenced by the global trends; a second class of cities seem to have a much stronger

trendsetting role toward the country.

To assess if these two classes can be significantly distinguished, we use the Expectation

Maximization algorithm to learn an optimal Gaussian Mixture Model (GMM); to determine

the appropriate number of components of the mixture we perform a 5-fold cross-validation

using Bayesian and Akaike information criteria as quality measures, by varying the number

of components from 1 to 10. The outcome of the cross-validation determines that the optimal

number of components is two, according to both criteria, matching our expectations.

The result of the GMM is showed in the inset of Figure 4.7: each point is assigned to

one of the two components yielding two different clusters composed respectively of 11 trend-

setting cities (red dots) and 52 trend-following cities (blue stars). The list of trendsetters

includes (in ascending order of impact) Raleigh, Detroit, Philadelphia, Houston, New York,

Dallas-Ft. Worth, Boston, Denver, Atlanta, Los Angeles, and Seattle. All of them are major

metropolitan areas.

To highlight the existence of these two different dynamics we applied a regression analysis

approach by fitting two different linear regressions to the points belonging to the classes of

trendsetters (coefficient of determination R2 = 0.9455, p-value p = 3.9 · 10−7) and trend-

followers (R2 = 0.7063, p < 10−10). This points out the proportionality that exists between

incoming and outgoing trend flows.

We repeated this analysis by making the model even more realistic: for example, we

introduced the effect of the time lag, discounting the reward given to those cities that adopt

a trend later with respect to the initiators; also, we rewarded only the initiators of each

trend, rather than any city that exhibits a given trend before the trending point at the
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country level. Making the scenario more realistic did not affect the outcome: in all cases we

obtained comparable results.

The fourth, purple cluster identified in clustering analysis deserves further discussion.

Differently from the others, this cluster is not geographically well defined (cf. Figure ??) —

it contains metropolitan areas spread all over the country. Is the effect of city size sufficient

to explain why these metropolitan areas are more influential than others, in the sense that

they produce more national trends? It is not obvious that large populations would lead

to more national trends: while a larger city produces more tweets and possibly more topic

competing for popularity, the number of trends for each city at a given time is bounded

to ten, irrespective of the city size. In cities with larger content production, hashtags (or

phrases) must appear in more tweets to be listed as a trend, whereas a lower number of

tweets is sufficient in cities with smaller content production. As a result, the effect of sheer

volume is discounted by construction in the definition of Twitter trends.

Why, then, do the metropolitan areas in the purple cluster play such a trendsetting role?

A possible interpretation is offered by noticing the presence in this cluster of some of the

major airport hubs of the United States, such as Atlanta, Chicago, and Los Angeles. The

list of top US airport hubs [303] is shown in Table 4.4, where we aggregated the traffic by

metropolitan area. Surprisingly, 16 out of the 17 locations that constitute the cluster appear

in the top 20 air traffic hubs — all of them but Cleveland. On the other hand, some cities

in the cluster that do not belong in the top 30 metropolitan areas by population (Charlotte,

Raleigh, Las Vegas), do appear among the major air traffic hubs.

The presence of major air traffic hubs among the special class of cities that act as

trendsetters suggests an intriguing conjecture, drawing a parallel with the spread of diseases:

Does information travel faster by airplane than over the Internet? In other words, do

conversations and trends spread following social interaction dynamics, like social butterflies
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Table 4.4: Top 20 cities ranked according to the total volume of flight traffic.
City Cluster Rank Total traffic
New York (JFK, EWR, LGA) purple 6th, 14th, 20th 54,374,758∗

Atlanta (ATL) purple 1st 45,798,809
Chicago (ORD, MDW) purple 2nd, 25th 41,603,539∗

Miami (MIA, FLL, PBI) purple 12th, 21st, 54th 33,228,913∗

Dallas-Ft. Worth (DFW, DAL) purple 4th, 45th 31,925,398∗

Washington (BWI, IAD, DCA) purple 22nd, 23rd, 26th 31,431,854∗

Los Angeles (LAX) purple 3rd 31,326,268
Denver (DEN) red 5th 25,799,832
Charlotte/Raleigh (CLT, RDU) purple 8th, 37th 24,521,523∗

Houston (IAH, HOU) purple 11th, 32nd 24,082,666∗

San Francisco (SFO) purple 7th 21,284,224
Las Vegas (LAS) purple 9th 19,941,173
Phoenix (PHX) red 10th 19,556,189
Orlando (MCO) red 13th 17,159,425
Seattle (SEA) red 15th 16,121,123
Minneapolis (MSP) purple 16th 15,943,751
Detroit (DTW) purple 17th 15,599,877
Philadelphia (PHL) purple 18th 14,587,631
Boston (BOS) purple 19th 14,293,675
Salt Lake City (SLC) yellow 24th 9,579,836
(∗) Sum of the traffic volume of different airports in the same area.

that pass from person to person at the local level, or do they diffuse using traveling people

as vectors, similarly to epidemics that take advantage of human mobility [18,79]?

Further work is needed to explore this conjecture. One possibility would be to measure

the correlation between trend overlap among pairs of cities and the corresponding air traffic.

4.2 Spatiotemporal Analysis of Censorship

Many countries want to control online services, if possible, and otherwise apply censorship

on content or users. China is one counties that applies strict regulations on social media.

The majority of the related research focused on Weibo platform, since the Great Firewall of

China prevents foreigner social media services. Here we studied censorship on Twitter and

analyzed withheld content. The present work, to the best of our knowledge, is the first to
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explore global scale censorship on Twitter.

A well-known example of internet censorship is the Great Firewall of China, which

applies broader censorship than any other regulations and has developed its own platforms

to control content produced by its citizens. Sina Weibo is the most active social networking

site in China and also a replacement for Twitter in the face of China’s strict censorship

policies. Censorship on the Weibo platform has been studied in terms of identifying topics

of censored content, temporal characterization of content deletions, and different censorship

practices [19,315,316].

Social media platforms are receiving an increasing number of requests for content removal

and account closures. When these requests are rejected, some governments simply terminate

access to these services. Twitter is one such platform receiving censorship requests and

being censored. To respond to censorship requests, Twitter developed a system to withhold

tweets and users from particular locations based on the internet protocol (IP) addresses of

users. Twitter’s approach limits access to content from particular locations as requested by

governments while protecting the rights of other users to access content.

This work reports the results of a study exploring the effectiveness of Twitter’s censorship

policy [281]. As part of our study we also characterized the behavior of users and the effects

of censorship on information diffusion. To the best of our knowledge, this paper is the first

study exploring censorship applied on Twitter

4.2.1 Twitter Withheld Content

Twitter is a popular micro-blogging platform that is available to millions of people all over

the world. Users can interact by creating social ties (friend/follower relations), retweeting

content of others to disseminate that content among their friends, and mentioning other

users in their posts. Twitter users can post up to 140 characters per tweet including URLs
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Figure 4.8: Example of withheld tweet (top) and user (bottom) when they are accessed from
censored country.

and external media content, such as pictures and videos, alongside text.

Some of the content shared on Twitter might not be legal under applicable laws in various

countries such as copyright, pornography, threatening messages, and insults to other users.

Twitter receives requests for removal of content and users from various governments and law

enforcement agencies. If removal requests are submitted properly by authorized entities,

Twitter grants censorship to these requests.

Another practice applied by Twitter is censoring content by withholding it under certain

criteria. They can limit access to a particular tweet or user when requested by some country.

Withheld tweets are censored only by the country that makes such a request to Twitter.

Users from countries in “withhold scope” see a notification message about censored tweets

in their timelines or in their profiles. Similarly, user accounts can also be withheld under

certain conditions and all content created by those users will not be accessible from censoring

countries. Examples of notification messages for withheld tweets and users are shown in

Fig. 4.8. To apply content censorship, Twitter determines the user locations based on IP

addresses. Extensive details about how Twitter processes these requests are found in the

Twitter support page.2

Twitter also issues quarterly reports with information about the number of requests
2https://support.twitter.com/articles/20169222
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Table 4.5: Descriptions for Twitter censorship decision organized in three categories: with-
held, unwithheld, and denied or objected requests. We used explanations from the Twitter
transparency pages for each case [273].
Country Status Explanation
Turkey withheld Court orders directing Twitter to remove content in Turkey regarding

violations of personal rights and defamation of both private citizens
and/or government officials.

Russia withheld Requests received from the Federal Service for Supervision in the
Sphere of Telecom, Information Technologies and Mass Communica-
tions (Roskomnadzor) regarding content implicating Federal Law 139
and Federal Law 398. This law allows Russian authorities to restrict
access to content that is deemed to be extremist or that leads to mass
actions.

Germany withheld Request received from courts and Jugendschutz (child protection) about
defamation and usage of prohibited symbols and illegal discriminatory
content.

Turkey unwithheld Twitter unwithheld content on two separate occasions: when Turkey
ban on access to Twitter on March 2014 and Twitters objections to
previously censored content were accepted by the courts.

Brazil unwithheld Tweets were censored after the request of the Constitutional Court for
violating local electoral law and later unwithheld.

Pakistan unwithheld Twitter reversed their censorship to content previously withheld due to
demand made by the Pakistan Telecommunication Authority for vio-
lating local blasphemy law.

Turkey objected Twitter filed legal objection with Turkish courts in response to their
requests when Twitter believed the order interfered with freedom of
expression law or had other deficiencies.

Russia denied Twitter denied Russia’s requests on silencing popular critics of the Rus-
sian government and limiting speech about non-violent demonstrations
in Ukraine.

received and summarizes the reasons behind each decision made in a particular country.3

Examples of these explanations are shown in Table 4.5.

4.2.2 Data Collection

To study censored content on Twitter, we first extracted all withheld tweets and their

retweets from our collection (approximately a 10% random sample of all public tweets

streamed in real time) starting from June 2013 to December 2015. Twitter API provides

meta-data information about withheld tweets. In real-time stream, censorship information
3https://transparency.twitter.com/removal-requests
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Table 4.6: Dataset statistics.
Censored tweets 53,028
Retweets of censored content 99,643
Avg. retweets for censored tweets 64.2
Censored tweet for copyright 310
Unique user created censored content 716
User tweet or retweet censored content 29,619

is not available for the original tweets. We detect censorship through observing retweets of

original tweet after the censorship. We identify withheld tweets by monitoring first occur-

rence of withheld information from the meta-data of retweets. This collection consists of

29,619 unique users who were tweeting and retweeting censored content and 716 of these

accounts created at least one censored tweet. We analyzed 2,787 users who tweeted or

retweeted at least 3 censored messages and 325 who created at least one censored tweet. We

then collected all their tweets, retweets and retweets of their tweets. Basic statistics about

our dataset are summarized in Table 4.6.

4.2.3 Censored Tweets

Twitter has been accepting requests for content removals starting from 2012. Since that time

several countries have been submitting requests. Consequently, thousands of tweets have

been withheld temporarily or permanently. We collected those censored tweets and their

retweets. The amount of censored content by countries is shown in Fig. 4.9. We observe

consistent statistics with Twitter transparency reports as Turkey (TR), Russia (RU) and

Germany (DE) are listed as top countries. We also notice that not all the country codes map

a particular geographic location. For instance XZ and XY represent international waters

and copyright, respectively.

To characterize the temporal changes of censorship, we study the volume of censored

content and their corresponding countries. In Fig. 4.10, we observe a rapid increase in the

volume of censored tweets starting from January 2014. The number of censored tweets
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Figure 4.9: Distribution of withheld tweet frequencies by countries

Figure 4.10: Time series of weekly frequencies of withheld content.

reveals an increasing trend. We also observe seasonal changes for the amount of withheld

content due to the activity rate of some popular accounts. Active accounts receive more

attention as a result of the political discussion that occurred in some countries during that

period. For instance Turkey’s censorship requests were highest in January 2015 and Russia

had more censorship requests during July 2015.

The distribution of censored content per user follows a power law behavior as shown in

Fig. 4.11. There are a few users with more than one thousand withheld tweets, but usually
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we observe per users 10 to 100 censored tweets. Highly censored users are usually targeted

by governments. As a result, users create more content after their first experience of being

censored and increase their activity, resulting in more censored content.

Figure 4.11: Distribution of withheld content per user.

4.2.4 Geographical Censorship

To investigate the effectiveness of IP-based censorship, we analyzed user language and time-

zone preferences as proxies for user location. We investigated the relationship between

censored countries and time zone and language preferences of retweeting users. In Twitter,

users can choose their preferred language, but the language choosen does not necessarily

match the language of the content of the tweets. In Figure 4.12, we show co-occurrence

between censored country codes and the primary language of users. In this analysis, we

can see a relationship between countries and languages due to their political and cultural

relevance. For instance the majority of users retweeting censored content in Brazil list their

languages as Portuguese, Spanish, and English. Similarly censored content in Russia is

retweeted by mostly Ukrainian, Russian, and English-speaking users and content in Turkey

is retweeted by Turkish, English, and Arabic speakers. We can also note that English and
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Spanish are common languages for users in most of the withheld countries.

An alternative analysis can be carried out using time-zone preferences as a proxy for

user location. As we show in Fig. 4.12, users have diverse time-zone preferences regardless

of where the content is being censored. For instance in Turkey and Russia, majority of the

retweets are created by users from UTC+2 and UTC+3 time zones, which correspond to

these countries’ local time zones.

These analysis of language and time-zone preferences indicate that the audience of cen-

sored content is not bound by geographic location. It is known that citizens of countries

with strict internet regulations adopt strategies against censorship by using VPN services

or changing DNS settings to access censored sites.

4.3 Roles of Users During Gezi Movement

In this work we focus on the Gezi Park protest, a social uprising whose events unfolded

during May and June 2013 in Turkey [224, 284]. Political and policy issues related to this

movement have been recently discussed in the social science literature [136, 175]. Here

instead we present an empirical analysis of the conversation about Gezi Park that occurred

on Twitter. Our goal is to gain insight to the protest discussion dynamics. In particular,

we aim at exploring three different aspects of this conversation: (i) its spatio-temporal

dimension, to determine whether it was concentrated only in the country of inception, or if

it acquired significant attention worldwide, and to assess how it started and what trends it

generated; (ii) what roles individuals played in this conversation and what influence they

had on others, and whether such roles changed over time as information was diffused and

the protests unfolded; (iii) and how the online behavior of individuals changed over time in

response to real-world events. To the best of our knowledge, this is the first study to explore

the temporal evolution of online user roles and behaviors as a reflection of on-the-ground
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Figure 4.12: Co-occurrence relations for censorship countries (columns) shown for retweeting
user’s language (left panel) and utf-offset (right panel). Observed frequencies are normalized
by shared countries to highlight the distribution of retweeting users.

events during a social upheaval. We do so by means of computational tools and data-driven

analyses.
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4.3.1 Background of the Protest

In this section we provide some background information about the Gezi Park movement,

explaining the context of the protests, the triggers for the mobilization, the timeline of

events, and the ways which those events unfolded.

The protests began quietly in an already politically divided Turkey on May 28, 2013

with about 50–100 environmental activists who gathered for a sit-in at Gezi Park in Taksim

Square, Istambul. They were there to demonstrate against the destruction of one of the last

public green spaces in central Istanbul. The government had slated the space for the con-

struction of a replica of an Ottoman-era barracks that would be the site of luxury residences

and a shopping mall. The peaceful encampment successfully resisted the demolition of the

park by bulldozers when demonstrators refused to leave. At dawn on the morning of May

30, and then again the next morning, the protesters were attacked by the police using tear

gas and water cannons, triggering clashes between authorities and the demonstrators that

lasted until the end of the park occupation on June 15. During that time period, the size

of the groups of demonstrators escalated to about 10,000 on both the European and Asian

sides of the Bosphorus and many thousands more in major cities across the country. The

focus of the protests grew from upset over Gezi Park’s potential destruction to widespread

criticism of the government’s increasingly authoritarian practices and intrusions into the

private lives of its citizens. As the New York Times reported,

In full public view, a long struggle over urban spaces is erupting as a broader fight
over Turkish identity, where difficult issues of religion, social class and politics
intersect. [12]

Throughout the struggle, the protesters, who mostly consisted of middle-class secular Turks

but also included some members of left-wing groups and nationalists, used social media to

alert others to their plans, urge others to join them, warn participants of police attacks and

potential danger spots, provide information about makeshift medical assistance locations,
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Table 4.7: List of relevant events during the protest divided in three categories.
Code Event date Event description

G
ov
er
nm

en
t A1 2013-05-29 Prime minister Erdogan’s statement: “No matter what you

do, we took our final decision about Gezi Park.”
A2 2013-06-02 Erdogan refers to protesters as marauders (çapulcu).
A3 2013-06-03 Erdogan says “There is 50 percent, and we can barely keep

them at home. But we have called on them to calm down”
before his trip to Morocco.

P
ol
ic
e

B1 2013-05-30 Police forces raids Gezi Park by using tear gas and destroys
tents of protesters without any notice.

B2 2013-06-03 Official statements about the first death and many injuries
all around Turkey.

B3 2013-06-11 Riot police enters Taksim square with water cannons and
uses tear gas against the protesters.

B4 2013-06-15 Police clears Gezi Park and takes out the protesters. Police
starts to stake out Gezi Park.

P
ro
te
st
s

C1 2013-06-04 A library is built by the protesters in Gezi Park.
C2 2013-06-13 Mothers join protests after Huseyin Mutlu’s (Governor of

Istanbul) calls to mothers to bring their children home.
C3 2013-06-17 Silent protest in Taksim square held by a standing man.

Many others gather after his protest.

and announce their goals. A poll of about 3,000 activists found that the motivation of the

demonstrators was their anger with Prime Minister Erdogan and not his political party

or his aides. More than 90% of the respondents said they took to the streets because of

Erdogan’s authoritarian attitude [276].

A detailed timeline of the Gezi Park protests’ major events during this period is provided

in Table 4.7.

4.3.2 Data Collection

Our analysis is based on data collected from Twitter. Twitter users can post tweets up to

140 characters in length, which might contain URLs and media alongside text. Users can

also interact with each other through various means, including the creation of directed social

links (follower/followee relations), retweeting content (i.e., rebroadcasting messages to their

followers), and mentioning other users in their posts. Tweets may also contain hashtags,

that are keywords used to give a topical connotation to the tweets (like #direngeziparki and
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#occupygezi). Multiple hashtags might co-occur in the same tweet.

The dataset collected for our study comes from a 10% random sample of all tweets

streamed in real time, which was stored, post-processed and analyzed in-house. The obser-

vation period covers 27 days, from May 25th to June 20th, 2013: this time window started

four days prior to the beginning of the Gezi Park events, and fully covered the three weeks

during which the main protests unfolded. The short period prior to the protest inception is

used as baseline to define user activity and interests.

Our sample not only contains information about the tweets, but also meta-data about

the users, including their screen names, follower/followee counts, self-reported locations, and

more. Additionally, for content posted with a GPS-enabled smartphone, we have access to

the geographic location from which the tweets were generated.

To isolate a representative sample of topical discussion about Gezi Park events, we

adopted a hashtag seed-expansion procedure [82]: first, we hand-picked the most popu-

lar Gezi Park related hashtag (#diregeziparki) and we extracted all tweets containing this

hashtag during our 27-day long period of interest. We then built the hashtag co-occurrence

list, and we selected the top 100 hashtags co-occurring with our seed (#diregeziparki). We

generated our final list of hashtags of interest to include the set of commonly co-occurring

hashtags and expanded our dataset collecting all tweets containing any of these hashtags.

These hashtags were manually divided in three categories: general-interest hashtags, local

protest related ones, and finally those used by government supporters. A detailed list con-

taining the top general-purpose, local-protest, and government-support hashtags are listed

in Table 4.8.

Overall, we collected 2,361,335 tweets associated with the Gezi Park movement, gener-

ated by 855,616 distinct users and containing a total of 64,668 unique hashtags. Among

these 2.3 million tweets, 1,475,494 are retweets and 47,163 are replies from one users to
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Table 4.8: Set of hashtags commonly used by protesters and government supporters.
Common hashtags Local protest hashtags Gov. supporters’ hashtags
#direngeziparki #bizeheryertaksim #direnankara #dunyaliderierdogan
#occupygezi #gezideyim #direnbesiktas #seviyoruzsenierdogan
#eylemvakti #7den77yedireniyoruz #direnizmir #seninleyizerdogan
#occupyturkey #siddetidurdurun #direntaksim #seninleyiztayyiperdogan
#direngezi #korkakmedya #direnadana #youcantstopturkishsuccess
#tayyipistifa #hukumetistifa #direndersim #weareerdogan
#bubirsivildirenis #dictatorerdogan #direnistanbul #yedirmeyiz
#wearegezi #direnrize

another. Also, 43,646 tweets have latitude/longitude coordinates. We adopt this subset of

geolocated tweets to study the spatio-temporal nature of the protest.

To study type of information carried through conversation and identify roles of partici-

pating users during protest, we randomly selected users from our collection. In this work,

135 users and content they created (tweets) and broadcasted (retweets) were extracted for

annotation. We annotated 5126 tweets according to rules in our codebook.

Each tweet in our collection was annotated to highlight the message conveyed by the

context. Textual information contained in the tweets was studied mainly in three annotation

classes:

• Purpose categorizes motivation of user for sharing particular content. This annotation

highlights motivation behind creating tweets or in broadcasting a particular message.

• Position groups different opinions toward particular events or discussions.

• Information share classifies type of information conveyed through messages.

In this annotation task, distribution of labels within each category are summarized in

Table 4.10. Occurrence of those labels are not homogenous within the categories and some

labels are used more frequent than others. If the annotator can not find a match between

annotation labels and tweets, they assign those tweets to “others” category.

During the same 27-day long observation period, we monitored the Twitter trends oc-

curring at the country level in Turkey, and at the metropolitan area level in 12 major cities

as provided by Twitter, namely: Adana, Bursa, Istanbul, Izmir, Kayseri, Gaziantep, Di-
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Table 4.9: Trends in Turkey (country level) and in 12 Turkish cities during the observation
period.
Trend Location Top 5 trending hashtags/phrases
Turkey Turkey, Necati Şaşmaz, #DirenGeziSeninleyiz, #OyunaGelmiyoruzTakipleşiy-

oruz, #ProvokatörlereUYMA
Istanbul Turkey, Necati Şaşmaz, #DirenGeziSeninleyiz, Bruno Alves, #OyunaGelmiy-

oruzTakipleşiyoruz
Ankara Turkey, Necati Şaşmaz, Bruno Alves, #DirenGeziSeninleyiz, #Provokatör-

lereUYMA
Izmir Turkey, Necati Şaşmaz, #DirenGeziSeninleyiz, #TatilöncesiTakipleşelim,

#ProvokatörlereUYMA
Bursa Turkey, #TatilöncesiTakipleşelim, Necati Şaşmaz, #KızlarTakipleşiyor, #ça-

pulcularTakipleşirse
Adana Turkey, #çapulcularTakipleşirse, #TatilöncesiTakipleşelim, Necati Şaşmaz,

#DirenGeziSeninleyiz
Gaziantep Turkey, Necati Şaşmaz, #SesVerTürkiyeBuÜlkeSahipsizDeğil, #DirenGeziS-

eninleyiz, #OyunaGelmiyoruzTakipleşiyoruz
Konya #TatilöncesiTakipleşelim, Turkey, #BizimDelilerTakipleşiyor, Necati Şaşmaz,

#SesVerTürkiyeBuÜlkeSahipsizDeğil
Antalya Turkey, #KızlarTakipleşiyor, #CapulchularTakipleşiyor, #Türkiye-

BaşbakanınınYanında, Necati Şaşmaz
Diyarbakir Turkey, Necati Şaşmaz, #DirenGeziSeninleyiz, #OyunaGelmiyoruzTakipleşiy-

oruz, #ProvokatörlereUYMA
Mersin #HayranGruplarıTakipleşiyor, Turkey, #TatilöncesiTakipleşelim,

#TürkiyemDireniyor, #direnankara
Kayseri Turkey, Necati Şaşmaz, #DirenGeziSeninleyiz, #Seni_Görünce, #Provokatör-

lereUYMA
Eskisehir Turkey, Necati Şaşmaz, #DirenGeziSeninleyiz, #OyunaGelmiyoruzTakipleşiy-

oruz, #ProvokatörlereUYMA

yarbakir, Eskisehir, Antalya, Konya and Mersin. The list of top 10 hashtags and phrases

trending both at the country level and at the city level were pulled from the platform at reg-

ular intervals of 10 minutes. This method [116] is used in our analysis to define the similarity

of topical interests and the patterns of collective attention towards Gezi Park conversation

in the country. During this period we also monitored worldwide trends to determine if and

when the discussion about the protest achieved global visibility. A detailed list of the top

popular trending hashtags and phrases for each location and at the country level is provided

in Table 4.9.
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Annotation
category

Category description # of T # of T+RT

Purpose

Sharing specific information heard about 849 1559
Opinion statement 292 506
General information 289 467
Links to outside information 230 354
Support for movement 103 239
First person witness 130 226
Ask for help or warn 81 209
Provide direction 110 184
Hashtag 86 142
Information dissemination 62 135
Media coverage 52 80
Emotional statement 16 29

Position

General opinion 485 710
Anger against govt/PM/police 244 435
Support for movement / motivational 214 363
Praise or support for groups / individuals 91 183
Critical statement about people / business or organi-
zation of demon

84 161

Pro-government / police or anti-Gezi opinion 59 80

Info share

Locations of police Tomas, arrests, beatings, info
about weapons

414 638

Scheduled demonstration places, actions of demonstra-
tors

373 596

Specific info medical, legal, technical, food, safe places 161 297
Info about specific groups, unions, gays, missing,
politicians, etc.

147 215

About media and availability 103 163

Table 4.10: Descriptions of available annotation categories and their observed frequencies in
our dataset. Number of tweets (T) and retweets (RT) for each category excluding “others”
category reported.
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Figure 4.13: Geographic distribution of tweets in our sample related to the discussion of
Gezi Park events. The histograms represent the total volume by latitude and longitude.
Content production crossed the Turkish national boundaries and spread in Europe, North
and South America.

4.3.3 Spatio-temporal Cues of the Conversation

Our first analysis aims at determining the extent to which the discussion about Gezi Park

attracted individual attention inside the national boundaries of Turkey, where the movement

began, and how much of this conversation spread worldwide.

We focus on the subset of tweets in our dataset that have geo-coordinates attached

(in the form of latitude/longitude). Such tweets are likely to be posted by GPS-enabled

devices (like smartphones) and represent only a small fraction of total tweets (≈ 1.84% of

our sample), which is consistent with similar studies [83]. Yet they provide a very precise

picture of the geospatial dynamics of content production. Figure 4.13 maps the sources of

these tweets. The figure also shows histograms on the horizontal and vertical axes, that

illustrate the distribution of tweets occurring in the corresponding locations, binned by

latitude and longitude. From this figure the global nature of the discussion about Gezi Park

events clearly emerges. Although a large fraction of tweets originated in Turkey, a significant

amount was produced in Europe, North and South America (especially the United States
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Figure 4.14: Distribution of top 10 languages in tweets about the protest. Language infor-
mation was extracted from the tweet meta-data.

Figure 4.15: Left: Trend similarity matrix for 12 cities in Turkey. From the dendrogram
on top we can isolate three distinct clusters. Right: Location of the cities with trend
information, labeled by the three clusters induced by trend similarity.

and Brazil). Other noteworthy countries involved in the discussion are the Philippines,

Bahrain, Qatar and the United Arab Emirates.

Attention abroad was signaled by the presence of trending hashtags and phrases in the

worldwide Twitter trends. Among these, the main protest hashtag, #direngeziparki, trended

several times between May 31st and June 2nd, 2013; #TayipIstifa, invoking Erdogan’s

resignation, appeared on June 6th, 2013. Worldwide attention is also evident in the variety

of languages exhibiting hashtags related to the Gezi Park events, as displayed in Figure 4.14.

After Turkish, the most popular languages were English, Spanish, and Portuguese.
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We also explored the local dimension of the conversation, focusing on the discussion inside

the Turkish borders. Our goal was to determine whether any patterns of discussion of similar

topics of conversation emerged. In Figure 4.15 we show the trend similarity matrix computed

among the sets of trending hashtags and phrases occurring in each of the 12 cities where

Twitter trends are monitored. Each location is described by a frequency vector of occurrences

of the observed trends. The similarity between pairs of cities is calculated as the cosine

similarity of their trends frequency vectors. Above the matrix we show the dendrogram

produced by hierarchical clustering, where it is possible to appreciate the separation in

three clusters. Such clusters neatly correspond to three different geographic areas of Turkey.

Physical proximity seems to play a crucial role in determining the similarity of topical

interests of individuals, consistent with other recent results [116].

The clusters found with our trend similarity analysis also seem to match the Turkish

geopolitical profiles. Eskisehir, Kayseri and Gaziantep (in the red cluster) are all central

Anatolian cities where the president’s party (AKP) has a stronghold (though the CHP

opposition party edged out the AKP in the March 2014 mayoral race); they are more

culturally conservative and homogeneous. Izmir, Istanbul, Bursa, Ankara, and Adana (green

cluster) are the largest cities in Turkey with diverse populations. Finally, Antalya and Mersin

(blue cluster) are seacoast cities that are known for supporting the one of the main opposition

parties (CHP or MHP). Further work is needed to understand why Konya is assigned to this

cluster, as it is considered a major religiously conservative center (where the AKP mayoral

candidate secured more than 64% of the vote in the 2014 mayoral elections) that has little

in common with the Mediterranean cities.

Let us explore the temporal dimension of the Gezi Park discussion. We wanted to de-

termine whether the activity on social media mirrored on-the-ground events, and whether

bursts of online attention coincided with real-world protest actions. We analyzed the time
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Figure 4.16: Hourly volume of tweets, retweets and replies between May 30th and June
20th, 2013 (top). The timeline is annotated with events from Table 4.7. User (center) and
hashtag (bottom) hourly and cumulative volume of tweets over time.

series of the volume of tweets, retweets and replies occurring during the 27-day-long obser-

vation window, as reported in Figure 4.16 (top panel). The discussion was driven by bursts

of attention that largely corresponded to major on-the-ground events (cf. Table 4.7), similar

to what has been observed during other social protests [84]. It is also worth noting that the

numbers of tweets and retweets are comparable throughout the entire duration of the con-

versation, suggesting a balance between content production (i.e., writing novel posts) and

consumption (i.e., reading and rebroadcasting posts via retweets). In the middle panel of

Figure 4.16 we report the number of users involved in the conversation at a given time, and

the cumulative number of distinct users over time (dashed red line); similarly, in the bottom

panel of the figure, we show the total number of hashtags related to Gezi Park observed

at a given time, and the cumulative number of distinct hashtags over time. We note that

approximately 60% of all users observed during the entire discussion joined in the very first
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few days, whereas additional hashtags emerged at a more regular pace throughout a longer

period. This suggests that the conversation acquired traction immediately, and exploded

when the first on-the-ground events and police action occurred.

4.3.4 User Roles and Their Evolution

Our second experiment aims at investigating what roles users played in the Gezi Park conver-

sation and how they exercised their influence on others. We also seek to understand whether

such roles changed over time, and, if so, to what extent such transformation reshaped the

conversation.

Figure 4.17 shows the distribution of social ties reporting the two modalities of user

connectivity, namely followers (incoming) and followees (outgoing) relations. The dark cells

along the diagonal indicate that most users have a balanced ratio of ingoing and outgoing

ties. Users below the diagonal follow more than they are followed. Note that most users are

allowed to follow at most 1000 people. Finally, above the diagonal, we observe users with

many followers. Note the presence of extremely popular users with hundreds of thousands

or even millions of followers. The number of followers has a broad distributions and seems

largely independent of the number of followees.

The presence of highly followed users in this conversation raises the question of whether

their content is highly influential. Following a methodology inspired by González-Bailón et

al. [138], we determined user roles as a function of their social connectivity and interactions.

Figure 4.18 gives an aggregated picture of the distribution of user roles during the Gezi Park

conversation. The y-axis shows the ratio between number of followees and followers of a given

user; the x-axis shows the ratio between the number of retweets produced by a user and

the number of times other users retweet that user. In other words, the vertical dimension

represents social connectivity, whereas the horizontal dimension accounts for information
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Figure 4.17: Distribution of friends and followers of users involved in the Gezi Park conver-
sation.

diffusion. We can draw a vertical line to separate influential users on the left (i.e., those

whose content is most often retweeted by others) and information consumers on the right

(those who mostly retweet other people’s content). Influential users can be further divided

in two classes: those with more followers than followees (bottom-left) and those with fewer

followers (top-left), which we call hidden influentials. Similarly, information consumers can

be divided in two groups–rebroadcasters with a large audience (bottom-right), and common

users (top-right).

Figure 4.18 shows a static picture of aggregated data over the 27-day observation period.

To study how roles evolve as events unfold, we carried out a longitudinal analysis whose

results are provided in Figure 4.19. This figure shows the average displacement of each role

class, and the number of individuals in each class (circles), for each day. The displacement is

computed in the role space (that is, the space defined by the two dimensions of Figure 4.18).

Larger displacements suggest that individuals in a class, on average, are moving toward

other roles.

Various insights emerge from Figure 4.19: first, we observed that the classes of informa-
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Figure 4.18: Distribution of user roles as function of social ties and interactions.

tion producers (influentials and hidden influentials) are relatively stable over time; together

they include more than 50% of users every day, suggesting that many individuals in the

conversation had large audiences, and the content they produced was heavily rebroadcasted

by others (information consumers as well as other influentials). On the other hand, informa-

tion consumers show strong fluctuation: starting from an initial configuration with stable

roles (May 29–31), common users and rebroadcasters subsequently exhibit large aggregate

displacements in the role space (June 1–4). We also note a redistribution of the users in each

role: at the beginning of the protest a large fraction represents common users and rebroad-

casters, while, as time passed and events unfolded, these two classes shrank. This suggests

that common users and rebroadcasters acquired visibility and influence over time: some

fraction of these users moved from the role of information consumers to that of influentials,

such that their content wass consumed and rebroadcasted by others. In other words, the

discussion became more democratic over time, in that the control of information production

was redistributed to a larger population, and individuals acquired influence as the protests

unfolded.
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Figure 4.19: Average displacement of roles over time for the four different classes of roles.
The size of the circles represents the number of individuals in each role.

4.3.5 Clustering User Roles Using Annotated Data

Clustering users based on their social connectivity and production of content provides overall

view about dynamics and behavior. Using information obtained from annotated content,

we can further identify users with different roles. In this section, we are using unsupervised

clustering framework to identify groups of users that produce or broadcast similar contents

according to our annotated dataset.

We can study individuals by their content production and consumption preferences. In-

dividuals share various content based on their motives about participating the protests.

Analyzing those content helps us to obtain crucial information about users. We compared

users by annotations of their tweets. Each user is represented as a vector of tweet anno-

tations where each category and their observed frequencies represent a feature. We also

consider tweets and retweets separately to highlight differences between information need

and creation. To compare users, we compute cosine similarity of their vector representations.

We considered 3 different annotations of tweets, namely “purpose”, “position”, and “in-

formation share”. Combinations of those 3 type of annotation is also considered.
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We clustered users by annotations of their contents using hierarchical clustering. In this

technique, distance between each pair of items used to compute clusters from bottom up by

agglomerating similar users in each step. In this analysis, we used complete linkage to merge

clusters in the hierarchy. One of the advantages of using hierarchical clustering is to tuning

threshold to decide number of clusters. We explored different threshold values to observe

outcomes of clustering algorithm. In Figure 4.20, we presented clusters of users in distance

matrix and hierarchy of clusters. In this analysis annotations on information share, purpose

and position were used together.

Figure 4.20: Hierarchical clustering of the users by using their similarities based on content
annotations.

Once we explore alternative clustering outcomes, we can select most appropriate cluster-

ing by looking distance matrix and dendrogram in hierarchical clustering shown in Fig.6. In
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this representation, we can choose 5 clusters as represented by different colors and branches

in dendrogram.

We can further explore content created or shared by average users in each group. We

can observe differences between average behaviors of groups. In Table 4.11, we summarized

most common annotation types for each group. For instance group 1 has only 4 users and

represent smallest group among 5 clusters. In this small group, we observe tweets related to

witnessing and information related to on-the-ground events. Users in this group seem very

active for protests. Another dimensions that we can investigate differences between groups

are annotation category and message type. Groups 2 and 4 mostly create their original

content, but 3rd and 5th groups tend to broadcast content produced by others. Content

from information share category, which aim to inform others about scheduled events and

locations of police mostly created by group 4 and broadcasted by group 5. Groups 2 and

3 are explicitly announcing their position and opinions about protests. All these groups

produce or broadcast particular type of content. Some of those contents overlap between

groups, but amount of contents differ.

4.3.6 Online Behavior and Exogenous Factors

Our concluding analysis focused on the way on-the-ground events affected online user behav-

ior. While analyzing our dataset we noticed an abnormal number of screen name changes,

as reported in Figure 4.21 (the screen name, not to be confused with the user name, is the

name displayed in one’s Twitter account). Many users changed their screen names five or

more times. This was an unusual observation that attracted our attention.

Further investigation revealed a collective synchronization process, as displayed in Fig-

ure 4.22. The changes in screen names represent reactions of users involved in the Gezi

Park conversation to external events: these users changed their Twitter screen names to
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ID (Size) Category Description Value

C1 (4)

purpose First person witness 11.75 (T)
info_share Locations of Police Tomas, Arrests, Beatings, Info about

Weapons
7.0 (T)

info_share Scheduled Demon Places, Actions of Demonstrators 5.75 (T)
purpose Hashtag 4.0 (T)
purpose Links to outside information 1.5 (T)

C2 (16)

purpose Others 0.75 (T)
position General Opinion 0.38 (T)
purpose Sharing specific information heard about 0.31 (T)

info_share Locations of Police Tomas, Arrests, Beatings, Info about
Weapons

0.25 (T)

position General Opinion 0.25 (R)

C3 (33)

position General Opinion 0.18 (T)
purpose Sharing specific information heard about 0.18 (T)
purpose Others 0.15 (R)
purpose Sharing specific information heard about 0.15 (R)

info_share Scheduled Demon Places, Actions of Demonstrators 0.12 (T)

C4 (28)

purpose Sharing specific information heard about 0.32 (T)
info_share Scheduled Demon Places, Actions of Demonstrators 0.18 (T)
info_share About Media and availability 0.14 (T)
purpose Links to outside information 0.14 (T)

info_share Locations of Police Tomas, Arrests, Beatings, Info about
Weapons

0.11 (T)

C5 (25)

purpose Opinion statement 0.32 (T)
purpose Sharing specific information heard about 0.32 (R)
purpose General information 0.28 (R)

info_share Locations of Police Tomas, Arrests, Beatings, Info about
Weapons

0.2 (R)

purpose Support for movement 0.2 (T)

Table 4.11: Average behavior of users in each cluster. Most common 5 activity reported for
each group along with their amount and type of share (being retweet or tweet)
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Figure 4.21: Distribution of the number of screen name changes among users during the
Gezi Park events.

Figure 4.22: Among the many users who changed screen names, this chart plots the fractions
who adopted different nicknames over time in respons to external events.

reflect sobriquets attributed to them by their political leaders. One example is the adoption

of “TC” (standing for Turkiye Cumhuriyeti — Turkish Republic). As a reaction to iden-

tity issues, several users started using TC in front of their screen names. Another relevant

example is Erdogan’s speech of June 2, during which he referred to protesters as maraud-

ers (çapulcu), marginals (marjinal or drunks (ayyas). Individuals responded by changing

their screen names to include such nicknames as a sign of protest against the government’s

attempt to discredit the protest participants and minimize the relevance of their actions.

This phenomenon illustrates how online and offline worlds are tightly interconnected, deeply

affecting each other.
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CHAPTER 5

Early Detection of Promoted Campaigns

An increasing number of people rely, at least in part, on information shared on social media

to form opinions and make choices on issues related to lifestyle, politics, health, and prod-

ucts purchases [17, 44, 226]. Such reliance provides a variety of entities — from single users

to corporations, interest groups, and governments — with motivation to influence collec-

tive opinions through active participation in online conversations. There are also obvious

incentives for the adoption of covert methods that enhance both perceived and actual pop-

ularity of promoted information. There are abundant recently reported examples of abuse:

astroturf in political campaigns, or attempts to spread fake news through social bots under

the pretense of grassroots conversations [35, 115, 240]; pervasive spreading of unsubstanti-

ated rumors and conspiracy theories [34]; orchestrated boosting of perceived consensus on

relevant social issues performed by governments [255]; propaganda and recruitment by ter-

rorist organizations, like ISIS [31,118]; and actions involving social media and stock market

manipulation [277].

The situation is ripe with dangers as people are rarely equipped to recognize propaganda

or promotional campaigns as such. It can be difficult to establish the origin of a piece of

news, the reputation of its source, and the entity behind its promotion on social media,

due both to the intrinsic mechanisms of sharing and to the high volume of information that

competes for our attention. Even when the intentions of the promoter are benign, we easily
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interpret large (but possibly artificially enhanced) popularity as widespread endorsement of,

or trust in, the promoted information.

There are at least three questions about information campaigns that present scientific

challenges: what, how, and who. The first concerns the subtle notion of trustworthiness of

information, ranging from verified facts [74], to rumors and exaggerated, biased, unverified or

fabricated news [34,240,314]. The second considers the tools employed for the propaganda.

Again, the spectrum is wide: from a known brand that openly promotes its products by

targeting users that have shown interest, to the adoption of social bots, trolls and fake or

manipulated accounts that pose as humans [76,115,148,282]. The third question relates to

the (possibly concealed) entities behind the promotion efforts and the transparency of their

goals. Even before these question can be explored, one would need to be able to identify an

information campaign in social media. But discriminating such campaigns from grassroots

conversations poses both theoretical and practical challenges. Even the very definition of

“campaign” is conceptually difficult, as it entangles the nature of the content (e.g., product

or news), purpose of the source (e.g., deception, recruiting), strategies of dissemination (e.g.,

promotion or orchestration), different dynamics of user engagement (e.g., the aforementioned

social bots), and so on.

This paper takes a first step toward the development of computational methods for the

early detection of information campaigns. In particular, we focus on trending memes and on

a special case of promotion, namely advertisement, because they provide convenient opera-

tional definitions of social media campaigns. We formally define the task of discriminating

between organic and promoted trending memes. Future efforts will aim at extending this

framework to other types of information campaign.
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Table 5.1: Summary statistics of collected data about promoted and organic trends on
Twitter.

Promoted Organic
Dates 1 Jan– 31 Apr 2013 1–15 Mar 2013
No. trends 75 852

mean st. dev. mean st. dev.
Avg. no. tweets 2,385 6,138 3,692 9,720
Avg. no. unique users 2,090 5,050 2,828 8,240
Avg. retweet ratio 42% 13.8% 33% 18.6%
Avg. reply ratio 7.5% 7.8% 20% 21.8%
Avg. no. urls 0.25 0.176 0.15 0.149
Avg. no. hashtags 1.7 0.33 1.7 0.78
Avg. no. mentions 0.8 0.28 0.9 0.35
Avg. no. words 13.5 2.21 12.2 2.74

5.1 The Challenge of Identifying Promoted Content

On Twitter, it is common to observe hashtags — keywords preceded by the # sign that

identify messages about a specific topic — enjoying sudden bursts in activity volume due

to intense posting by many users with an interest in the topic [181,215,310]. Such hashtags

are labeled as trending and are highlighted on the Twitter platform. Twitter algorithmically

identifies trending topics in a predetermined set of geographical locations. Although Twitter

recently included personalized and clustered trends, the ones in the collection analyzed

here correspond to single hashtags selected on the basis of their popularity. Unfortunately,

detailed knowledge about the algorithm and criteria used to identify organic trends is not

publicly available [274]. Other hashtags are exposed prominently after the payment of

a fee by parties that have an interest in enhancing their popularity. Such hashtags are

called promoted and often enjoy subsequent bursts of popularity similar to those of trending

hashtags, therefore being listed among trending topics.

Of course, once Twitter labels a hashtag as trending, it is not necessary to detect whether

or not it is promoted — this information is disclosed by Twitter. However, since it is

difficult to manually annotate a sufficiently large datasets of campaigns, we use organic

and promoted trending topics as a proxy for a broader set of campaigns, where promotion

mechanisms may be hidden. Our data collection methodology provide us with a large
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Figure 5.1: Time series of trending hashtags. Comparison of the time series of the volume
(number of tweets per hour in our sample) relative to promoted (left) and organic (right)
trends with similar temporal dynamics.

source of reliable “ground truth” labels about promotion, which represent an ideal testbed

to evaluate detection algorithms. These algorithms have to determine whether or not a

hashtag is promoted based on information that would be available even in cases where the

nature of a trend is unknown. We stress that our goal of distinguishing mechanisms for

promoting popular content is different from that of predicting viral topics, an interesting

area of research in its own right [65,66,297].

Discriminating between promoted and organically trending topics is not trivial, as Ta-

ble 5.1 illustrates — promoted and organic trending hashtags often have similar character-

istics. One might assume that promoted trends display volume patterns characteristic of

exogenous influence, with sudden bursts of activity, whereas organic trends would conform

to more gradual volume growth patterns typical of endogenous processes [181, 216, 263].

However, Fig. 5.1 shows that promoted and organic trends exhibit similar volume patterns

over time. Furthermore, promoted hashtags may preexist the moment in which they are

given the promoted status and may have originated in an entirely grassroots fashion. It is

therefore conceivable for such hashtags to display features that are largely indistinguishable

from those of other grassroots hashtags about the same topic, at least until the moment of

promotion.
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Figure 5.2: Cumulative fraction of tweets as a function of time. On average, only 13% of
the tweets in the organic class and 15% of the tweets in the promoted class are produced
prior to the trending point. The majority of tweets are observed after the trending point,
with a rapid increase around trending time.

The analysis in this paper is motivated by the goal of identifying promoted campaigns

at the earliest possible time. The early detection task addresses the difficulty of judging

the nature of a hashtag using only the limited data available immediately before trending.

Fig. 5.2 illustrates the shortage of information available for early detection. It is also con-

ceivable that once the promotion has triggered interest in a hashtag, the conversation is

sustained by the same mechanisms that characterize organic diffusion. Such noise around

popular conversations may present an added difficulty for the early detection task.

The major contribution of this paper, beyond formulating the problem of detection of

campaigns in social media, is the development and validation of a supervised machine learn-

ing framework that takes into consideration the temporal sequence of messages associated
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Figure 5.3: Screenshot of Twitter U.S. trends taken on Jan. 6, 2016. The hashtag #CES2016
was promoted on this date.

with a trending hashtag on Twitter and successfully classifies it as either “promoted” (adver-

tised) or “organic” (grassroots). The proposed framework adopts time-varying features built

from network structure and diffusion patterns, language, content and sentiment information,

timing signals, and user meta-data. In the following sections we discuss the data we collected

and employed, the procedure for feature extraction and selection, the implementation of the

learning framework, and the evaluation of our system.

5.2 Data and Methods

5.2.1 Dataset Description

The dataset adopted in this study consists of Twitter posts (tweets) that contain a trending

hashtag and appeared during a defined observation period. Twitter provides an interface

that lists trending topics, with clearly labeled promoted trends at the top (Fig. 5.3). We
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crawled the Twitter webpage at regular intervals of 10 minutes to collect all organic and

promoted hashtags trending in the United States between January and April 2013, for a

total of N = 927 hashtags. This constitutes our ground-truth dataset of promoted and

organic trends.

We extracted a sample of organic trends observed during the first two weeks of March

2013 for our analysis. While Twitter allows for at most one promoted hashtag per day,

dozens of organic trends appear in the same period. As a result, our dataset is highly

imbalanced, with the promoted class more than ten times smaller than the the organic

one (cf. Table 5.1). Such an imbalance, however, reflects our expectation to observe in

the Twitter stream a minority of promoted conversations blended in a majority of organic

content. Therefore we did not balance the classes by resampling, to study the campaign

detection problem under realistic conditions.

Hashtags may trend multiple times on Twitter. However, those in our collection only

trended once during our observation period. For each trend, we retrieved all tweets con-

taining the trending hashtag from an archive containing a 10% random sample of the public

Twitter stream. The collection period was hashtag-specific: for each hashtag we obtained

all tweets produced in a four-day interval, starting two days before its trending point and

extending to two days after that. This procedure provides an extensive coverage of the

temporal history of each trending hashtag in our dataset and its related tweets, allowing us

to study the characteristics of each trend before, during, and after the trending point.

Given that each trend is described by a collection of tweets over time, we can aggregate

data in sliding time windows [t, t + `) of duration ` and compute features on the subsets

of tweets produced in these windows. A window can slide by time intervals of duration δ.

The next window therefore contains tweets produced in the interval [t + δ, t + ` + δ). We

experimented with various time window lengths and sliding parameters, and the optimal
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performance is often obtained with windows of duration ` = 6 hours sliding by δ = 20

minutes.

We have made the IDs of all tweets involved in the trending hashtags analyzed in this

paper available in a public dataset (carl.cs.indiana.edu/data/ovarol/trend-dataset.

tar.gz).

5.2.2 Features

Our framework computes features from a collection of tweets in some time interval. The

system generates 487 features in five different classes: network structure and information

diffusion patterns, content and language, sentiment, timing, and user meta-data. The classes

and types of features are reported in Table 5.2 and discussed next. All of the feature time

series in this study are available in our public dataset.

5.2.2.1 Network and Diffusion Features

Twitter actively fosters interconnectivity. Users are linked by means of follower/followee

relations. Content travels from person to person via retweets. Tweets themselves can be

addressed to specific users via mentions. The network structure carries crucial information

for the characterization of different types of communication. In fact, the usage of network

features significantly helps in tasks like astroturf detection [240]. Our system reconstructs

three types of networks: retweet, mention, and hashtag co-occurrence networks. Retweet

and mention networks have users as nodes, with a directed link between a pair of users

that follows the direction of information spreading — toward the user retweeting or being

mentioned. Hashtag co-occurrence networks have undirected links between hashtag nodes

when two hashtags have occurred together in a tweet. All networks are weighted according

to the number of interactions and co-occurrences. For each network, a set of features is
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Table 5.2: List of 487 features extracted by our framework.

N
et

w
or

k
(†

) Number of nodes Number of edges
(*) Strength distribution (*) In-strength distribution
(*) Out-strength distribution (*) Distribution of connected components size
Network density Density of the largest connected component
Mean shortest path length of the LCC

U
se

r

(*) Sender’s follower count (*) Sender’s followee count
(*) Sender’s number of favorite tweets (*) Sender’s number of statuses
(*) Sender’s number of lists subscribed to (*) Originator’s follower count
(*) Originator’s followee count (*) Originator’s number of favorite tweets
(*) Originator’s number of Twitter statuses (*) Originator’s number of lists subscribed to

T
im

in
g Number of tweets appeared in a given window (*) Time between two consecutive tweets

(*) Time between two consecutive retweets (*) Time between two consecutive mentions

C
on

te
nt (*) Number of hashtags in a tweet (*) Number of mentions in a tweet

(*) Number of URLs in a tweet (*,**) Frequency of POS tags in a tweet
(*,**) Proportion of POS tags in a tweet (*) Number of words in a tweet
(*) Entropy of words in a tweet

S
en

ti
m

en
t

(***) Happiness scores of aggregated tweets (***) Valence scores of aggregated tweets
(***) Arousal scores of aggregated tweets (***) Dominance scores of single tweets
(*) Happiness score of single tweets (*) Valence score of single tweets
(*) Arousal score of single tweets (*) Dominance score of single tweets
(*) Polarization score of single tweets (*) Entropy of polarization scores of single

tweets
(*) Pos. emoticons entropy of single tweets (*) Neg. emoticons entropy of single tweets
(*) Emoticons entropy of single tweets (*) Ratio between pos. and neg. score of sin-

gle tweets
(*) Number of pos. emoticons in single tweets (*) Number of neg. emoticons in single tweets
(*) Total number of emoticons in single tweets Ratio of tweets that contain emoticons

†We consider three types of network: retweet, mention, and hashtag co-occurrence networks.
* Distribution types. For each distribution, the following eight statistics are computed and used as
individual features: min, max, median, mean, std. deviation, skewness, kurtosis, and entropy.
** Part-of-Speech (POS) tag. There are nine POS tags: verbs, nuns, adjectives, modal auxiliaries,
pre-determiners, interjections, adverbs, wh-, and pronouns.
*** For each feature we compute mean and std. deviation.
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computed, including in- and out-strength (weighted degree) distribution, density, shortest-

path distribution, and so on. (cf. Table 5.2).

5.2.2.2 User-based Features

User meta-data is crucial to classify communication patterns in social media [115,206]. We

extract user-based features from the details provided by the Twitter API about the author

of each tweet and the originator of each retweet. Such features include the distribution

of follower and followee numbers, and the number of tweets produced by the users (cf.

Table 5.2).

5.2.2.3 Timing Features

The temporal dimension associated with the production and consumption of content may

reveal important information about campaigns and their evolution [129]. The most basic

time-related feature we considered is the number of tweets produced in a given time interval.

Other timing features describe the distributions of the intervals between two consecutive

events, like two tweets or retweets (cf. Table 5.2).

5.2.2.4 Content and Language Features

Many recent papers have demonstrated the importance of content and language features

in revealing the nature of social media conversations [47, 90, 184, 197, 209]. For example,

deceiving messages generally exhibit informal language and short sentences [50]. Our system

extracts language features by applying a Part-of-Speech (POS) tagging technique, which

identifies different types of natural language components, or POS tags. The following POS

tags are extracted: verbs, nouns, adjectives, modal auxiliaries, pre-determiners, interjections,

adverbs, pronouns, and wh-pronouns (for details and examples see www.comp.leeds.ac.uk/

ccalas/tagsets/upenn.html). Tweets can be therefore analyzed to study how such POS
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tags are distributed. Other content features include the length and entropy of the tweet

content (cf. Table 5.2).

5.2.2.5 Sentiment Features

Sentiment analysis is a powerful tool to describe the attitude or mood of an online conversa-

tion. Sentiment extracted from social media conversations has been used to forecast offline

events, including elections and financial market fluctuations [42, 272], and is known to af-

fect information spreading [119,207]. Our framework leverages several sentiment extraction

techniques to generate various sentiment features, including happiness score [172], arousal,

valence and dominance scores [295], polarization and strength [305], and emotion score [4]

(cf. Table 5.2).

5.2.3 Feature Selection

Our system generates a set I of |I| = 487 features (cf. Table 5.2) designed to extract

signals from a collection of tweets and distinguish promoted trends from organic ones. Some

features are more predictive than others; some are by definition correlated with each other

due to temporal dependencies. Most of the correlations are related to the volume of data.

Analysis of feature correlations illustrated in Fig. 5.4. As we can see, many pairs of features

are highly correlated. For instance the two most correlated features immediately prior to the

trending point are the size of the hashtag cooccurrence network and the size of its largest

connected component (Pearson’s ρ = 0.75). This is why it is important to perform feature

selection to eliminate redundant features and identify a combination of features that yield

good classification performance.

There are several methods to select the most predictive features in a classification task

[146]. We implemented a simple greedy forward feature selection method, summarized as
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Figure 5.4: Pairwise correlation between features averaged across trends (top) and histogram
of correlation values (bottom).
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follows: (i) initialize the set of selected features S = ∅; (ii) for each feature i ∈ I−S, consider

the union set U = S∪{i}; (iii) train the classifier using the features in U ; (iv) test the average

performance of the classifier trained on this set; (v) add to S the feature that provides the

best performance; (vi) repeat (ii)–(v). We terminate the feature selection procedure if the

AUC (cf. Sec. 5.2.5) increases by less than 0.05 between two consecutive steps. Most of

the experiments terminate after selecting fewer than 10 features. The time series for the

selected features are passed as input to the learning algorithms. In the next subsections we

provide details about our experimental setting and learning models.

5.2.4 Experimental Setting

Our experimental setting follows a pipeline of feature selection, model building, and per-

formance evaluation. We apply the wrapper approach to select features and evaluate per-

formance iteratively [161]. During each iteration (Fig. 5.5), we train and evaluate models

using candidate subsets of features and expand the set of selected features using the greedy

approach described in Sec. 5.2.3. Once we identify the set of features that performs best,

we report results of experiments using only this set of features.

In each experiment and for each feature, an algorithm receives in input a time series

with L = 35 data points to carry out its detection. The length of the time series and its

delay D with respect to the trending point are discussed in Sec. 5.3; different experiments

will consider different delays.

A set of feature time series is used to either train a learning model or evaluate its

accuracy. The learning algorithms are discussed in the next subsection. For evaluation,

we compute a Receiver Operating Characteristic (ROC) curve, which plots the true positive

rate (TPR) versus the false positive rate (FPR) at various thresholds. Accuracy is evaluated

by measuring the Area Under the ROC Curve (AUC) [112] with 10-fold cross validation,
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and averaging AUC scores across the folds. A random-guess classifier produces the diagonal

line where TPR equals FPR, corresponding to a 50% AUC score. Classifiers with higher

AUC scores perform better and the perfect classifier in this setting achieves a 100% AUC

score. We adopt AUC to measure accuracy because it is not biased by the imbalance in our

classes (75 promoted trends versus 852 organic ones, as discussed earlier).

5.2.5 Learning Algorithms

Let us describe the learning systems for online campaign detection based on multidimen-

sional time-series data from social media. We identified an algorithm, called K-Nearest

Neighbor with Dynamic Time Warping (KNN-DTW), that is capable of dealing with multi-

dimensional time series classification. For evaluation purposes, we compare the classification

results against two baselines: SAX-VSM and KNN. These three methods are described next.

5.2.5.1 KNN-DTW Classifier

KNN-DTW is a state-of-the-art algorithm to classify multidimensional time series, illus-

trated in Fig. 5.5. During learning, we provide our model with training and testing sets

generated by 10-fold cross validation. Time series for each feature are processed in parallel

using dynamic time warping (DTW), which measures the similarity between two time series

after finding an optimal match between them by “warping” the time axis [33]. This allows

the method to absorb some non-linear variations in the time series, for example different

speed or resolution of the data.

For efficiency, we initially apply a time series coarsening strategy called piece-wise ag-

gregation. We split each original time series into p equally long sections and replace the

time-series values by the section averages, reducing the dimensionality from L to L′ = L/p.

For trend i and feature k, we thus obtain a coarsened time series f ik = {f ik,1, f ik,2, · · · , f ik,L′}.
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Figure 5.5: Wrapper method description for KNN-DTW. We present the pipeline of our
complete system, including feature selection and model evaluation steps. Input data feed
into the system for training (green arrow) and testing (blue arrow) steps.
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Then, DTW computes the distance between all pairs of points of two given trend time series

f ik and f jk . Each element of the resulting L′×L′ distance matrix isM ij
k (t, t′) = (f ik,t−f

j
k,t′)

2.

Points closer to each other are more likely to be matched. To create a mapping between

the two time series, an optimal path is computed over the time-series distance matrix. A

path must start from the beginning of each time series and terminate at its end. The path

between first and last points is then computed by minimizing the cumulative distance (γ)

over alternative paths. This problem can be solved via dynamic programming [33] using the

following recurrence: γ(t, t′) = M(t, t′)+min{γ(t−1, t′−1), γ(t−1, t′), γ(t, t′−1)} (indices

i, j, k dropped for readability). The distance γijk is used as the ij-th element of the N ×N

trend similarity matrix Γk.

The computation of similarity between time series using DTW requires O(L′2) opera-

tions. Some heuristic strategies use lower-bounding techniques to reduce the computational

complexity [169]. Another technique is to re-sample the data before adopting DTW. Our

coarsening approach reduces the computational costs by a factor of p2. We achieved a sig-

nificant increase in efficiency with marginal classification accuracy deterioration by setting

p = 5 (L′ = 7).

In the evaluation step, we use the K-Nearest Neighbor (KNN) algorithm [86] to assign

a class score to a test trend q. We compare q with each training trend i to obtain a DTW

distance γiqk for each feature k. We then find the K = 5 labeled trends with smallest

DTW distance from q, and compute the fraction of promoted trends sqk among these nearest

neighbors. We finally average across features to obtain the class score s̄q. Higher values

of s̄q indicate a high probability that q is a promoted trend. Class scores, together with

ground-truth labels, allow us to compute the AUC of a model, which is then averaged across

folds according to cross validation.
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5.2.5.2 SAX-VSM Classifier

Our first baseline, called SAX-VSM, blends symbolic dimensionality reduction and vector

space models [251]. Time series are encoded via Symbolic Aggregate approXimation (SAX),

yielding a compact symbolic representation that has been used for time series anomaly and

motif detection, time series clustering, indexing, and more [188, 189]. A symbolic represen-

tation encodes numerical features as words. A vector space model is then applied to treat

time series as documents for classification purposes, similarly to what is done in information

retrieval. In our implementation, we first apply piece-wise aggregation and then use SAX

to represent the data points in input as a single word of L′ letters from an alphabet ℵ. This

choice and the parameters |ℵ| = 5 and L′ = 4 are based on prior optimization [251], and

variations to these settings only marginally affect performance. Each time-series value is

mapped into a letter by dividing the range of the feature values into |ℵ| regions in such

a way as to obtain equiprobable intervals under an assumption of normality [189]. In the

training phase, for each feature, we build two sets of words corresponding to organic and

promoted trends, respectively. In the test phase, a new instance is assigned to the class with

the majority of word matches across features. In case of a tie we assign a random class.

For further details about this baseline and its implementation, we refer the reader to the

SAX-VSM project website (github.com/jMotif/sax-vsm_classic).

5.2.5.3 K-Nearest Neighbors Classifier

Our second baseline is an off-the-shelf implementation of the traditional K-Nearest Neighbors

algorithm [86] for time-series classification. We used the Python scikit-learn package [232].

We selected KNN because it can capture and learn time-series patterns without requiring

any pre-processing of the raw time-series data. We created the feature vectors for each

trend by concatenating into a single vector the continuous-valued time series representing
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each feature. The nearest neighbor classifier computes the Euclidean distance between pairs

of single-vector time series. For a test trend, the class score is given by the fraction of

promoted trends among the K = 5 nearest neighbors.

5.3 Results

In this section, we present results of experiments design to evaluate the ability of our ma-

chine learning framework to discriminate between organic and promoted trends. For all

experiments, each feature time series consists of 120 real-valued data points equally divided

before and after the trending point. Although in principle we could use the entire time series

for classification, ex-post information would not serve our goal of early detection of social

media campaigns in a streaming scenario that resembles a real setting, where information

about the future evolution of a trend is obviously unavailable. For this reason, we consider

only a subset consisting of L data points ending with delay D since the trending point;

D ≤ 0 data points for early detection, D > 0 for classification after trending. We evaluate

the performance of our detection framework as a function of the delay parameter D. The

case D = 0 involves detection immediately at trending time. However, we also consider

D < 0 to examine the performance of our algorithms based on data preceding the trending

point; of course the detection would not occur until D = 0, when one would become aware

of the trending hashtag. Time series are encoded using the settings described above (L = 35

windows of length ` = 6 hours sliding every δ = 20 minutes).

5.3.1 Method Comparison

We carried out an extensive benchmark of several configurations of our system for campaign

detection. The performance of the algorithms as a function of varying delays D is plotted

in Fig. 5.6.
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In addition, we introduce random temporal shifts for each trend time series to test the

robustness of the algorithms. In real-world scenarios, one would ideally expect to detect a

promoted trend without knowing the trending point. To simulate such scenarios, we designed

an experiment that introduces variations that randomly shift each time series around its

trending point. The temporal shifts are sampled from gaussian distributions with different

variances. We present the results of this experiment in Fig. 5.7.

KNN-DTW and KNN display the best detection accuracy (measured by AUC) in general.

Their performance is comparable (Fig. 5.6). The AUC score is on average around 95% for

detecting promoted trends after trending. In the early detection task, we observe scores

above 70%. This is quite remarkable given the small amount of data available before the

trending point. KNN-DTW also displays a strong robustness to temporal shifts, pointing

to the advantage of time warping (Fig. 5.7). The KNN algorithm is less robust because it

computes point-wise similarities between time series without any temporal alignment; as the

variance of the temporal shifts increases, we observe a significant drop in accuracy. SAX-

VSM benefits from the time series encoding and provides good detection performance (on

average around 80% AUC) but early detection accuracy is poor, close to random for D < 0.

A strong feature of SAX-VSM is its robustness to temporal shifts, similar to KNN-DTW.

Our experiments suggest that temporal encoding is a crucial ingredient for successful

classification of time-series data. Encoding reduces the dimensionality of the signal. More

importantly, encoding preserves (most) information about temporal trends and makes an

algorithm robust to random shifts, which is an importance advantage in real-world scenarios.

SAX-VSM ignores long-term temporal ordering. KNN-DTW, on the other hand, computes

similarities using a time series representation that preserves the long-term temporal order,

even as time warping may alter short-term trends. This turns out to be a crucial advantage

to achieve both high accuracy and robustness.
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Figure 5.6: Methods comparison. Classification performance of different learning algorithms
on encoded and raw time series. The AUC is measured for various delays D. Confidence
intervals represent standard errors based on 10-fold cross validation.
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Figure 5.7: Temporal robustness. AUC of different learning algorithms with random tempo-
ral shifts versus the standard deviation of the shifts. We repeated the experiment for various
delay values D. Significance levels of differences in consecutive experiments are marked as
(*) p < 0.05 and (**) p < 0.01.
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Using AUC as an evaluation metric has the advantage of not requiring discretization

of scores into binary class labels. However, detection of promoted trends in real scenarios

requires binary classification by a threshold. In this way we can measure accuracy, precision,

recall, and identify misclassified accounts. Fig. 5.8 illustrates the distribution of probabilistic

scores produced by the KNN-DTW classifier as a function of the delay for the two classes of

trends, organic and promoted. The scores are computed for leave-out test instances, across

folds. An ideal classifier would separate these distributions completely, achieving perfect

accuracy. Test instances in the intersection between two distributions either are misclassified

or have low-confidence scores. Examples of misclassified instances are discussed in Sec. 5.3.3.

For D < 0, KNN-DTW generates more conservative scores, and the separation between

the organic and promoted class distributions is smaller. For D > 0, KNN-DTW scores

separate the two classes well. To convert continuos scores into binary labels, we calculated

the threshold values that maximize the F1 score of each experiment; this score combines

precision and recall. Trends with scores above the threshold are labeled as promoted. The

best accuracy and F1 score are obtained shortly after trending, at D = 20.

5.3.2 Feature Analysis

Let us explore the roles and importance of different features for trend detection. To this

end, we identify the significant features using the greedy selection algorithm described in

Sec. 5.2.3, and group them by the five classes (user meta-data, content, network, sentiment,

and timing) previously defined. We focus on KNN-DTW, our best performing method.

After selecting the top 10 features for different delays D, we compute the fractions of top

features in each class, as illustrated by Fig. 5.9. We list the top features for experiments

D = 0 (early detection) and D = 40 (classification) in Table 5.3.

The usefulness of content features does not appear to change significantly between early
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Figure 5.8: Distributions of KNN-DTW classifier scores. We use Kernel Density Estimation
(KDE), a non-parametric smoothing method, to estimate the probability densities based on
finite data samples. We also show the threshold values that separate the two classes yielding
an optimal F1 score.
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Figure 5.9: KNN-DTW feature analysis. Stacked plot showing how different feature classes
are represented among the top 10 selected features.

and late detection. In the early detection task, user features seem to contribute significantly

more than any other class, possibly because early adopters reveal strong signals about the

nature of trends. As we move past the trending point, signals from early adopters are flooded

by increasing numbers of participants. Timing and network features become increasingly

important as the involvement of more users allows to analyze group activity and network

structure patterns.

5.3.3 Analysis of Misclassifications

We conclude our analysis by discussing when our system fails. In Fig. 5.10, we illustrate

how some key features of misclassified trends diverge from the majority of the trends that

are correctly classified. We observe that some misclassified trends follow the temporal char-

acteristics of the other class. This is best illustrated in the case of volume (number of

tweets).

An advantage of continuous class scores is that we can tune the classification threshold

to achieve a desired balance between precision and recall, or between false positives and
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Table 5.3: Top 10 features for experiments with different values of D.
Delay Features Classes
40 Number of tweets Timing

Max. proportion of pronouns in a tweet Content
Entropy of hashtag cooccurrence network degree Network
Entropy of time between two consecutive mentions Timing
Mean time between two consecutive tweets Timing
Entropy of emoticon scores Sentiment
Median time between two consecutive tweets Timing
Max. originator’s followers count User
Kurtosis of mention network degree distribution Network
Entropy of pre-determiner POS frequency in a tweet Content

0 Max. hashtag cooccurrence network degree Network
Entropy of number of originator’s friends count User
Max. originator’s statuses count User
Median time between two consecutive tweets Timing
Skewness of time between two consecutive mentions Timing
Median of sender’s lists count User
Min. originator’s lists count User
Median of mention network out-degree Network
Min. frequency of adjective POS in a tweet Content
Mean frequency of noun POS in a tweet Content

false negatives. False negative errors are the most costly for a detection system: a promoted

trend mistakenly labeled as organic would easily go unchecked among the larger number

of correctly labeled organic trends. Focusing our attention on a few specific instances of

false negatives generated by our system, we gained some insight on the reasons triggering

the mistakes. First of all, it is conceivable that promoted trends are sustained by organic

activity before promotion and therefore they are essentially indistinguishable from organic

ones until the promotion triggers the trending behavior. It is also reasonable to expect a

decline in performance for long delays: as more users join the conversation, promoted trends

become harder to distinguish from organic ones. This may explain the dip in accuracy

observed for the longest delay (cf. Fig. 5.6).

False positives (organic trends mistakenly labeled as promoted) can be manually filtered

out in post-processing and are therefore less costly. However, analysis of false positives

provides for some insight as well. Some trends in our dataset, such as #watchsuitstonight

and #madmen, were promoted via alternative communication channels (television and radio),

rather than via Twitter. This has become a common practice in recent years, as more and
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Figure 5.10: Comparison between feature time series of misclassified and cor-
rectly classified trends. Time series of the top five features (columns) for pro-
moted (top) and organic (bottom) trends in the D = 40 detection task. The
black lines and gray areas represent the average and 95% confidence intervals of
time series for correctly classified trends. Time series of misclassified trends are
shown in red. Misclassified organic trends (false positives) are: #whyiwatchsuits,
#watchsuitstonight, #bobsantigoldlive, #evildead, #galaxyfamily, #gethappy,
#madmen, #makeboringbrilliant, #nyias, #oneboston, #stingray, #thewalkingdead, and
#timeto365. Misclassified promoted trends (false negatives) are: #1dmemories, #8thseed,
#20singersthatilike, #mentionsomeonecuteandbeautiful, #bnppo13, #ciaa, #expowest,
#jaibrooksforpresident, #justintimberweek, #kobalt400, #nyc, #realestate, #stars,
#sxsw, #wbc, and #wcw.

more Twitter campaigns are mentioned or advertised externally to trigger organic-looking

responses in the audience. Our system recognized such instances as promoted, whereas

their ground-truth labels did not. Those campaigns were therefore wrongly counted as false

positives, penalizing our algorithms in the evaluation. We find it remarkable that in these

cases our system is capable of learning the signature of promoted trends, even though the

promotion occurs outside of the social media itself.

5.4 Related Work

Recent work on social media provides a better understanding of human communication

dynamics such as collective attention and information diffusion [296], the emergence of

111



trends [116,183], social influence and political mobilization [44,83,84,284].

Different information diffusion mechanisms may determine the trending dynamics of

hashtags and other memes on social media. Exogenous and endogenous dynamics produce

memes with distinctive characteristics [116, 119, 181, 216, 263]: external events occurring in

the real world (e.g., a natural disaster or a terrorist attack) can generate chatter on the

platform and therefore trigger the trending of a new, unforeseen hashtag; other topics (e.g.,

politics or entertainment) are continuously discussed and sometimes a particular conversa-

tion can accrue lots of attention and generate trending memes. The promotional campaigns

studied here can be seen as a type of exogenous factor affecting the visibility of memes.

The present work, to the best of our knowledge, is the first to investigate the early

detection of promoted content on social media. We focus our attention on advertisement,

which can play an important role in information campaigns. Trending memes are considered

an indicator of collective attention in social media [181,308], and as such they have been used

to predict real-world events, like the winner of a popular reality TV show [75]. Although

emerging from collective attention, communication on social media can be manipulated, for

example for political gain, as in the case of astroturf [204,240].

Recent work analyzes emerging topics, memes, and conversations triggered by real world

events [5,23,60]. Studies of information dissemination reveal mechanisms governing content

production and consumption [73] as well as prediction of future content popularity. Cheng et

al. study the prediction of photo-sharing cascade size [65] and recurrence [66] on Facebook.

Machine learning models can predict future popularity of emerging hashtags and content

on social media [191, 270]. Features extracted from content [157], sentiment [119, 173],

community structure [298, 299], and temporal signatures [120, 234, 294] are commonly used

to train such models. In this paper we leverage similar features, but for the novel task

of campaign detection. Furthermore, our task is more challenging because we deal with
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dynamic features whose changes over time are captured in high-dimensional time series.

Another topic related to our research is rumor detection. Rumors may emerge organically

as genuine conversation and spread out of control. They are characterized and sustained

by ambiguous contexts, where correctness and completeness of information or the meaning

of a situation is not obviously apparent [103]. Examples are situations of crisis or topics

of public debate [202]. Existing systems to identify rumors are based mostly on content

analysis [176, 235] and clustering techniques [114, 156]. An open question is to determine if

rumor detection might benefit from the wide set of feature classes we propose here.

The proposed framework is based on a mixture of features common in social media data,

including emotional and sentiment information. The literature has reported extensively on

the use of social media content to describe emotional and demographic characteristics of

users [119, 206, 207]. The use of language in online communities is the focus of two recent

papers [90, 197]: the authors observe that the language of social media users evolves, and

common patterns emerge over time. The language style of users adapts to achieve better

fitness in the conversation [92]. These findings suggest that language contains strong signals,

in particular if studied in conjunction with other dimensions of the data. Our study confirms

the importance of content for campaign detection.

Finally, our system builds on network features and diffusion patterns of social media

messages. Network structure and information diffusion in social media have been studied

extensively [15,182]. Network features are highly predictive of certain types of social media

abuse, like astroturf, that attempt to simulate grassroots online conversations [115, 240,

241, 282]. Such artificial campaigns produce peculiar patterns of information diffusion: the

topology of retweet or mention networks is often a stronger signal than content or language.

The present findings are consistent with this body of work, as network features are helpful

in detecting promoted content after trending.
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5.5 Conclusions

As we increasingly rely on social media to satisfy our information needs, it is important

to recognize the dynamics behind online campaigns. In this paper, we posed the problem

of early-detection of promoted trends on social media, discussed the challenges that this

problem presents, and proposed a supervised computational framework to attack it. The

proposed system leverages time series representing the evolution of different features char-

acterizing trending campaigns. The list includes features relative to network structure and

diffusion patterns, sentiment, language and content features, timing, and user meta-data.

We demonstrated the crucial advantages of encoding temporal sequences.

We achieved good accuracy in campaign detection. Our early detection performance is

remarkable when one considers the challenging nature of the problem and the low volume

of data available in the early stage of a campaign. We also studied the robustness of the

proposed algorithms by introducing random temporal shifts around the trending point,

simulating realistic scenarios in which the trending point can only be estimated with limited

accuracy.

One of the advantages of our framework is that of providing interpretable feature classes.

We explored how content, network, and user features affect detection performance. Extensive

feature analysis revealed that signatures of campaigns can be detected early, especially

by leveraging content and user features. After the trending point, network and temporal

features become more useful.

The availability of data about organic and promoted trends is subject to Twitter’s recipe

for selecting trending hashtags. There is no certain way to know if and when social media

platforms make any changes to such recipes. However, nothing in our approach assumes

any knowledge of a particular platform’s trending recipe. If the recipe changes, our system

could be retrained accordingly.
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This work represents an important step toward the automatic detection of campaigns.

The problem is of paramount importance, since social media shape the opinions of millions

of users in everyday life. Further work is needed to study whether different classes of

campaigns (say, legitimate advertising vs. terrorist propaganda) may exhibit characteristics

captured by distinct features. Many of the features leveraged in our model, such as those

related to network structure and temporal attributes, capture activity patterns that could

provide useful signals to detect astroturf [240]. Therefore, our framework could in principle

be applied to astroturf detection, if longitudinal training data about astroturf campaigns

were available.
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CHAPTER 6

Social Bots

Increasing evidence suggests that a growing amount of social media content is generated

by autonomous entities known as social bots [115]. As opposed to social media accounts

controlled by humans, bots are controlled by software, algorithmically generating content

and establishing interactions. While not all social bots are harmful, there is a growing record

of malicious applications of social bots. Some emulate human behavior to manufacture fake

grassroots political support [240], promote terrorist propaganda and recruitment [31, 118],

manipulate the stock market [113], and disseminate rumors and conspiracy theories [34].

Discussion of social bot activity, the broader implications on the social network, and

the detection of these accounts are becoming central research avenues [46, 113, 115, 180].

The magnitude of the problem is underscored by a social bot detection challenge recently

organized by DARPA to study information dissemination mediated by automated accounts

and to detect malicious activities carried out by these bots.

In this section, I will describe: (i) our approach, ranked third worldwide, on detecting

social bots for DARPA challenge [266]; (ii) BotOrNot system on social bot detection and

estimation of social bot population on Twitter [94,282]; (iii) analysis of Twitter human-bot

ecosystem [282].
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6.1 DARPA Social Bot Detection Challenge

In 2015, DARPA conducted a competition on social bot detection. Task of the challenge is

to identify influence bots supporting pro-vaccination discussion on Twitter. During the task

organic activity of the anti-vaccine community and automated posts by pro-vaccine bots are

mixed.

In this challenge, our team designed a system to track, store and process the streaming

data in real-time, while creating and updating the profiles of the accounts involved in the

conversation, along with their corresponding features. As a result our team successfully

identified all bots a week before the competition ended. We ranked as second fastest and

third most accurate team worldwide [266].

Our approach consist of three steps:

• Extraction of user-based features

• Filtering search space based on various heuristics

• Human assisted inspection of suspicious users and activities through visualizations and

interactive data exploration.

6.1.1 Feature Extraction

Our system builds a dynamic profile for each user participating in the conversation, for

rapid data access, analysis, and classification. The system also generates feature vectors

describing user profiles, updated every 6 hours, for classification purposes.

We adopt subset of features designed for our Twitter bot detection system BotOrNot.

The features can be summarized in five classes: user metadata, content, sentiment, network,

and temporal features. These features were carefully selected to reflect hand-crafted rules

designed to identify suspicious activity. Examples of such rules include: (i) low entropy of

topics of interest of the account, to identify thematically-focused users; (ii) anomalous levels
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of retweets or mentions, to capture users attempting to attract attention; (iii) anomalous

connectivity patterns, to detect suspicious cliques; (iv) coordinated attempts to address spe-

cific human users, to identify orchestrated targeting; (v) suspicious growth-rate in followers,

following, or content production levels; (vi) suspicious temporal patterns, as opposed of nat-

ural human circadian activity; (vii) high-volume of near-duplicate content; (viii) high-degree

of sentiment polarization; and (ix) interactions focused on users in the target population, as

opposed to external users.

As the stream of data was “replayed", our system periodically re-computed the user

feature vectors. The pairwise cosine similarity between the feature vectors highlights the

most similar pairs of users. Once we started to identify bots in the conversation, matching

the users most similar to the detected bots allowed for timely detection of new bots. In

Fig. 6.1 we show the distribution of the pairwise cosine similarity between pairs of feature

vectors characterizing bots, as opposed to bot-human pairs. The similarity between bots

tends to be higher than between bots and humans. The bot-bot similarity exhibits a bimodal

distribution that reflects the presence of two types of bots designed by two red teams: bots

designed by same team are more similar to each other.

6.1.2 Heuristic Filtering

In the earlier stage of the competition, we developed various heuristic techniques to narrow

the search space. Specifically, three strategies worked well: (i) analysis of the hashtag

co-occurrence network; (ii) duplicate-image search; and (iii) dynamic tracking of network

growth.

118



Figure 6.1: Distribution of cosine similarity between pairs of accounts.

6.1.2.1 Hashtag Co-occurrence Network

Starting from a provided list of vaccine-related hashtags, we collected all tweets appear-

ing in the competition stream that contained at least one of those hashtags. The system

constructed a hashtag co-occurrence network, where each node represents a unique hashtag

and edges between two nodes are weighted by the number of times these two hashtag are

observed together in a tweet (see Fig. 6.2).

Using the hashtag co-occurrence networks, we were able to identify other campaign-

related hashtags to enrich the list of competition-relevant keywords. These were later used

to separate users into categories of pro- and anti-vaccine. The proportion of tweets users

posted containing any of these hashtags resulted in a strongly predictive feature.

6.1.2.2 Image Search

A common approach to create realistic bot profiles is to impersonate other users by cloning

information such as descriptions, names, and profile pictures. We built an algorithm to
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Figure 6.2: Hashtag co-occurrence network of vaccine discussions

detect duplicate user pictures using an online image search service1. Seven out of 39 bots

were detected using this heuristics. These bots used images from the Wikipedia domain as

their profile pictures.

6.1.2.3 Network Growth

In the competition dataset, a friendship network snapshot was provided every week. We

studied the topological changes of these temporal networks and identified users that created

suspicious levels of connections with anti-vaccine activists.
1www.tineye.com
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6.1.3 Interactive Data Exploration

Information visualization is a crucial part of the our decision system. Expert knowledge is

still required to conclude that a particular user is a social bot while limiting the number of

false positives. We developed a web application similar to the Twitter platform to create

and populate user profile information and timelines in real time (see Fig. 6.3). This inter-

face includes charts to monitor temporal changes in user metadata, such as the number of

followers, friends, and posts.

Figure 6.3: Interactive web interfaces designed to analyze user and content data.
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6.2 BotOrNot: Social Bot Detection System

In this section, we present BotOrNot, our platform to evaluate whether a Twitter account

is controlled by human or machine. This service is publicly available via the website2 or via

Python or REST APIs.3,4 BotOrNot takes a Twitter screen name, retrieves that account’s

recent activity, then computes and returns a bot-likelihood score. For website users, this

score is accompanied by plots of the various features used for prediction purposes as shown

in Fig. 6.4.

Figure 6.4: BotOrNot web interface

In the following part I would like to describe technical aspects of the system. We later

used BotOrNot system to analyze Twitter ecosystem and estimate amount of social bots in

the active Twitter population.

Let us first introduce our bot detection framework, which evaluates more than one thou-

sand features from a target user’s Twitter account, as well as from accounts of the target’s
2truthy.indiana.edu/botornot
3github.com/truthy/botornot-python
4truthy.indiana.edu/botornot/rest-api.html
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followers and followees (friends). These features are used to compare the target’s behavior

to that of known social bots. We later train and evaluate our initial model by using an

available social bot dataset and off-the-shelf learning algorithms.

6.2.1 Feature Extraction

We distill 1,150 features in six different classes using the Twitter API. The classes and types

of features are reported in Table 6.1 and described more in detail below.

6.2.1.1 User-based Features

Features extracted from user meta-data have been used to classify users and patterns be-

fore [115,206]. We extract user-based features from meta-data available through the Twitter

API. Such features include the number of friends and followers, the number of tweets pro-

duced by the users, profile description and settings (cf. Table 6.1).

6.2.1.2 Friends Features

Twitter actively fosters interconnectivity. Users are linked by following each other. Con-

tent travels from person to person via retweets. Tweets themselves address specific users

via mentions. We consider four types of friends (contacts): retweeting, mentioning, being

retweeted, and being mentioned users. For each group separately, we extract features about

language use, local time, popularity, etc. (cf. Table 6.1). Note that, due to limits of Twit-

ter’s REST API, we do not use the follower/followed relation beyond the total number of

each as mentioned in the previous section.

6.2.1.3 Network Features

The network structure carries crucial information for the characterization of different types

of communication. In fact, the usage of network features significantly helps in tasks like
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political astroturf detection [240]. Our system reconstructs three types of networks: retweet,

mention, and hashtag co-occurrence networks. Retweet and mention networks have users as

nodes, with a directed link between a pair of users that follows the direction of information

spreading: toward the user retweeting or being mentioned. Hashtag co-occurrence networks

have undirected links between hashtag nodes when two hashtags occur together in a tweet.

All networks are weighted according to the frequency of interactions or co-occurrences. For

each network we compute a set of features, including in- and out-strength (weighted degree)

distributions, density, clustering (cf. Table 6.1).

6.2.1.4 Time Features

Prior research suggests that the temporal signature of content production and consumption

may reveal important information about online campaigns and their evolution [117,129,283].

To extract this signal we measure several temporal features of user activity. The most basic

of these metrics is the rate of tweet production over various time periods. In addition, we

capture the distribution of time intervals between events (cf. Table 6.1).

6.2.1.5 Content and Language Features

Many recent papers have demonstrated the importance of content and language features

in revealing the nature of social media conversations [47, 90, 92, 184, 197, 209]. For example,

deceiving messages generally exhibit informal language and short sentences [50]. Our system

collects statistics about length and entropy of tweet text. Additionally, we extract language

features by applying the Part-of-Speech (POS) tagging technique, which identifies different

types of natural language components, or POS tags.5 Tweets are therefore analyzed to study

how POS tags are distributed (cf. Table 6.1).
5See: www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
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6.2.1.6 Sentiment Features

Sentiment analysis is a powerful tool to describe the emotions conveyed by a piece of text,

and more broadly the attitude or mood of an entire conversation. Sentiment extracted from

social media conversations has been used to forecast offline events including financial market

fluctuations [42], and is known to affect information spreading [119, 207]. Our framework

leverages several sentiment extraction techniques to generate various sentiment features,

including arousal, valence and dominance scores [295], happiness score [172], polarization

and strength [305], and emotion score [4] (cf. Table 6.1).

6.2.2 Model Evaluation

To train our system we initially used a publicly available labeled dataset consisting of 15K

manually verified social bots and 16K legitimate (human) accounts identified via a honeypot

approach [180]. We collected the most recent tweets produced by those accounts using the

Twitter Search API.6 We limited our collection to 200 public tweets from a user timeline

and up to 100 of the most recent public tweets mentioning a user. This procedure yielded a

dataset of 2.6 million tweets produced by manually verified social bots and 3 million tweets

produced by users labeled as human. This bootstrap dataset helped us evaluate and compare

the performance of several machine learning algorithms and the contributions of different

feature sets.

We benchmarked our system using several off-the-shelf algorithms provided in the scikit-

learn library [232]. In a generic evaluation experiment, the classifier under examination is

provided with numerical vectors, each describing the features of an account. The classifier

returns a numerical score in the unit interval. A higher score indicates a stronger likelihood

that the account is a bot. A model’s accuracy is evaluated by measuring the Area Under the
6dev.twitter.com/rest/public
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Table 6.1: List of 1150 features extracted by our framework.
U

se
r

m
et

a-
d
at

a
Screen name length

S
en

ti
m

en
t

(***) Happiness scores of aggregated tweets
Number of digits in screen name (***) Valence scores of aggregated tweets
User name length (***) Arousal scores of aggregated tweets
Time offset (sec.) (***) Dominance scores of single tweets
Default profile (binary) (*) Happiness score of single tweets
Default picture (binary) (*) Valence score of single tweets
Account age (days) (*) Arousal score of single tweets
Number of unique profile descriptions (*) Dominance score of single tweets
(*) Profile description lengths (*) Polarization score of single tweets
(*) Number of friends distribution (*) Entropy of polarization scores of single tweets
(*) Number of followers distribution (*) Pos. emoticons entropy of single tweets
(*) Number of favorites distribution (*) Neg. emoticons entropy of single tweets
Number of friends (S/R and rel. change) (*) Emoticons entropy of single tweets
Number of followers (S/R and rel. change) (*) Pos. and neg. score ratio of single tweets
Number of favorites (S/R and rel. change) (*) Number of pos. emoticons in single tweets
Number of tweets (per hour and total) (*) Number of neg. emoticons in single tweets
Number of retweets (per hour and total) (*) Total number of emoticons in single tweets
Number of mentions (per hour and total) Ratio of tweets that contain emoticons
Number of replies (per hour and total)
Number of retweeted (per hour and total)

F r
ie

n
d
s

(†
)

Number of distinct languages

N
et

w
or

k
(‡

)

Number of nodes
Entropy of language use Number of edges (also for reciprocal)
(*) Account age distribution (*) Strength distribution
(*) Time offset distribution (*) In-strength distribution
(*) Number of friends distribution (*) Out-strength distribution
(*) Number of followers distribution Network density (also for reciprocal)
(*) Number of tweets distribution (*) Clustering coeff. (also for reciprocal)
(*) Description length distribution
Fraction of users with default profile
Fraction of users with default picture

C
on

te
nt (*,**) Frequency of POS tags in a tweet

T
im

in
g (*) Time between two consecutive tweets

(*,**) Proportion of POS tags in a tweet (*) Time between two consecutive retweets
(*) Number of words in a tweet (*) Time between two consecutive mentions
(*) Entropy of words in a tweet

†We consider four types of connected users: retweeting, mentioning, retweeted, and mentioned.
‡We consider three types of network: retweet, mention, and hashtag co-occurrence networks.
* Distribution types. For each distribution, the following eight statistics are computed and used as
individual features: min, max, median, mean, std. deviation, skewness, kurtosis, and entropy.
** Part-of-Speech (POS) tag. There are nine POS tags: verbs, nuns, adjectives, modal auxiliaries,
pre-determiners, interjections, adverbs, wh-, and pronouns.
*** For each feature, we compute mean and std. deviation of the weighted average across words in
the lexicon.

receiver operating characteristic Curve (AUC) with 5-fold cross validation, and computing

the average AUC score across the folds, as shown in Fig. 6.5. The best classification perfor-

mance of 0.95 AUC was obtained by the Random Forest algorithm. In the rest of the paper

we use the Random Forest model trained using 100 estimators and the Gini coefficient as a
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Figure 6.5: Classification performance of our system for four different classifiers. Accuracy
is computed by five-fold cross validation and measured by the area under the ROC curve.

Figure 6.6: Performance across feature classes.

criterion of measuring the quality of splits.

To analyze the importance of each feature class, we can train the classifier using only

the corresponding subset of features. We repeated the performance evaluation experiments

considering only user, friends, network, content, temporal, and sentiment feature classes.

In Fig. 6.6 we present the performance of classifiers using the different feature subsets. We

achieved best performance with user meta-data features; content features were also shown
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to be effective for the classification of social bots. Other feature classes yielded acceptable

performance above 0.8 AUC.

6.3 Online Human-Bot Interactions: Detection, Estimation, and Char-

acterization

In this section, we use our bot detection system to evaluate a large-scale collection of users.

The performance of our detection system is evaluated against both an existing public dataset

and an additional sample of manually annotated Twitter accounts. We enrich the models

trained using existing bot data with the new annotations and investigate the effects of

different datasets and classification models. We also classify a sample comprising millions of

English-speaking active users. We use different models to estimate the percentage of Twitter

accounts exhibiting social bot characteristics.

6.3.1 Model Improvement Using Manually Annotated Data

To obtain an updated evaluation of the accuracy of our classifier, we constructed an addi-

tional, manually annotated collection of Twitter user accounts. We leveraged these manual

annotations to evaluate the model trained using the honeypot dataset and then to update

the classifier’s training data, producing a merged dataset to train a new model with better

generalization for more sophisticated accounts.

6.3.1.1 Data Collection

Our data collection focused on active users producing content in English, as inferred from

profile meta-data. We identified active users by monitoring a large Twitter stream, account-

ing for approximately 10% of public tweets, for 3 months starting in October 2015. Sampling

from the public stream allows us to focus on active users while avoiding the biases of other
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methods such as snowball and breadth-first sampling [130], which rely on the selection of

an initial groups of users.

To restrict our sample to recently active users, we introduce the further criteria that

they must have produced at least 200 tweets in total and 90 tweets during the three-month

observation window (one per day on average). From our original sample, 14 million user

accounts meet both criteria.We consider users in the highlighted area as active users. For

each of these accounts, we collected their tweets through the Twitter Search API.7 We

restricted the collection to the most recent 200 tweets and 100 mentions of each user, as

described earlier. Owing to Twitter API limits, this greatly improved our data collection

speed. However this limitation adds noise to the features, due to the scarcity of data available

to compute them.

6.3.1.2 Manual Annotations

We computed classification scores (defined in the unit interval) for each of the active accounts

using our initial classifier trained on the honeypot dataset. We then grouped accounts by

their bot scores, allowing us to evaluate our system across the spectrum of human and bot

accounts. We randomly sampled 300 accounts from each bot score decile, yielding a balanced

set of 3000 accounts. These were manually annotated by inspecting their public Twitter

profile pages. In some cases there are obvious flags about bots, such as when an account

uses a stock profile image or retweets every message of another account within seconds. In

general, however, there is no simple set of rules to assess whether an account is human

or bot. Each annotator analyzed profile appearance, content produced and retweeted, and

interactions with other users in terms of retweets and mentions. The final decision reflects

each annotator’s opinion and are restricted to: human, social bot, or undecided. Accounts

labeled as undecided were eliminated from further analysis.
7http://dev.twitter.com/rest/public/search
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Figure 6.7: Accuracy of the model using the human annotations as the ground truth. Agree-
ment is the average pairwise agreement of human annotators, presented with standard errors.

One author and four volunteers, familiar with Twitter, annotated all 3000 accounts.

Each annotator was assigned a random sample of accounts from each decile. We enforced

a minimum 10% overlap between annotations to assess the reliability of each annotator.

This yielded an average pairwise agreement of 75% and moderately high inter-annotator

agreement (Cohen’s κ = 0.41). We also computed the agreement between annotators and

classifier outcomes, assuming that a classification score above 0.5 is interpreted as a bot.

This resulted in an average pairwise agreement of 79% and moderate κ = 0.5.

6.3.2 Evaluating Models Using Annotated Data

To evaluate our classification system trained on the honeypot dataset, we examined the

classification accuracy separately for each bot-score decile. In Fig. 6.7, we present the

accuracies of the model and inter-annotator agreements for annotated accounts in each bin.

We achieved classification accuracy greater than 0.9 for the accounts in the (0.0, 0.4) range,

which includes mostly human accounts. We also observe accuracy above 0.7 for scores in the

(0.8, 1.0) range (mostly bots). Accuracy for boundary accounts ranges between 0.6 and 0.8.
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Figure 6.8: ROC curves of models trained and tested on different datasets. Accuracy is
measured by AUC.

Intuitively, this range contains the most challenging accounts to label, making it difficult

both for human annotators and for machine learning to achieve very high accuracy. When

the accuracy of each bin is weighted by the population density in the large-scale sample, we

obtain 86% accuracy overall.

We also compare annotator agreement scores for the accounts in each bot-score decile.

We observe that agreement scores are higher for bins containing human accounts and lower

for bots, indicating that it is more difficult for human annotators to identify social bots.

6.3.3 Dataset Effect on Model Accuracy

We can update our classification models by combining the manually annotated accounts

with the honeypot dataset. We hypothesize that the recently collected bots in the annotated

dataset may be more sophisticated than the ones obtained years earlier with the honeypot

method. Fig. 6.8 illustrates the results of experiments designed to investigate our capability

to detect such bots. The baseline ROC curve is obtained by testing the honeypot model,

described in Sec. 6.2.2, on the manually annotated dataset. Unsurprisingly the baseline
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Figure 6.9: Distribution of classifier score for human and bot accounts in the two datasets.

accuracy (0.85 AUC) is lower than that obtained testing on the honeypot data (0.95 AUC),

because the model is not trained on the newer bots. We created multiple balanced datasets

and performed 5-fold cross-validation to evaluate the accuracy of the corresponding models:

• Annotation: We trained this model by only using annotated accounts and labels

assigned by the majority of annotators. Our framework yields 0.89 AUC, a reasonable

accuracy considering that the dataset contains recent and possibly sophisticated bots.

• Merged: We merged the honeypot and annotation datasets. The resulting classifier

achieves 0.94 AUC, only slightly worse than the honeypot model although the dataset

contains a variety of more recent and possibly sophisticated bots.

• Mixture: Using mixtures with different ratios of accounts from the annotated and

honeypot datasets, we obtain an accuracy ranging between 0.90 and 0.94.

In Fig 6.9, we plot the distributions of classification scores for human and bot accounts

according to each dataset. The mixture model trained on 2K annotated and 10K honeypot

accounts is used to compute the scores. Human accounts in both datasets have similar

distributions, peaked around 0.1. The difference between bots in the two datasets is more

prominent. Classifiers produce larger scores peaked around 0.9 for the simpler bots in the
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Figure 6.10: Comparison of prediction scores for different models. Each account is rep-
resented as a point in the scatter plot with a color determined by its ground-truth label.
Additional test points are randomly sampled from our large-scale collection. Pearson corre-
lations between scores are also reported, along with estimated thresholds and corresponding
accuracies.

honeypot dataset; the newer bots have smaller scores, peaked around 0.6, supporting our

hypothesis that they are more sophisticated, exhibiting some characteristics more similar to

human behavior yielding lower scores on average. This distinction emphasises the impor-

tance of setting proper boundaries between human and bot accounts to discriminate them

accurately.

We compared predicted scores by pairs of models for labeled human, bot and a random

subset of users (see Fig. 6.10). As expected, both models assign lower scores for humans

and higher for bots. High correlation coefficients indicate agreement between the models.

To infer a suitable threshold in classification score that separates human and bot accounts

for a given model, we computed classification accuracies for varying thresholds considering

all accounts scoring below each threshold as human.
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6.3.4 Estimation of Bot Population

In a 2014 report by Twitter to the US Securities and Exchange Commission, the company

put forth an estimate that 8.5% of their user base consists of bots.8 We would like to

offer our own assessment of the proportion of bot accounts as measured with our approach.

Since our framework provides a continuous bot score as opposed to a discrete bot/human

judgement, we must first obtain an estimate of the bot-score threshold separating human

and bot accounts to estimate the proportion of bot accounts.

We computed estimations for the population of social bots using different models. This

approach allows us to identify lower and upper bounds for the prevalence of social bots.

Models trained using the annotated dataset alone yield estimates of up to 15% of accounts

being social bots. Recall that the honeypot dataset was obtained in 2011 and therefore does

not include newer, more sophisticated bots. Thus models trained on the honeypot data alone

are less sensitive to these sophisticated bots, yielding a more conservative estimate of 9%.

Mixing the training data from these two sources results in estimates between these bounds

depending on the ratio of the mixture, as illustrated in Fig. 6.11. Taken together, these

numbers suggest that estimates about the prevalence of social bots are highly dependent on

the definition and sophistication of the bots.

Some other remarks are in order: first, we do not exclude the possibility that very

sophisticated bots exist that can systematically escape a human annotator’s judgement.

These complex bots may be active on Twitter, and therefore present in our datasets, and

may have been incorrectly labeled as humans, making even the 15% figure a conservative

estimate. Second, increasing anecdotal evidence suggests the presence on social media of

hybrid human-bot accounts (sometimes referred to as cyborgs) that perform a broad range

of automated actions with some human supervision and intervention [70, 77]. Some have
8www.sec.gov/Archives/edgar/data/1418091/000156459014003474/twtr-10q_20140630.

htm
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Figure 6.11: Estimation of bot population obtained from models with different sensitivity
to sophisticated bots. The main charts show the score distributions based on our dataset
of 14M users; accounts identified as bots are highlighted. The inset plots show how the
thresholds are computed by maximizing accuracy. The titles of each subplot reflect the
number of accounts from the annotated and honeypot datasets, respectively.

been allegedly used for terrorist propaganda and recruitment purposes. It remains unclear

how these accounts should be labeled, and how pervasive they are.

6.3.5 Characterization of User Interactions

Let us next characterize social connectivity, information flow, and shared properties of users.

We analyze the creation of social ties by accounts with different bot scores, and their inter-

actions through shared content. We also cluster accounts and investigate shared properties
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Figure 6.12: Distributions of bot scores for friends (top) and followers (bottom) of accounts
in different score intervals.

of users in each cluster. Here and in the remainder of this paper, bot scores are computed

with a model trained on the merged dataset.

6.3.5.1 Social Connectivity

To characterize the social connectivity, we collected the social networks of the accounts in

our dataset using the Twitter API. Resulting friend and follower relations account for 46

billion social ties, 7 billion of which represent ties between the initially collected user set.

Our observations on social connectivity are presented in Fig. 6.12. We computed bot-

score distributions of friends and followers of accounts for each score interval. The dark line

in the top panel shows that human accounts (low score) mostly follow other human accounts.
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Figure 6.13: Distribution of reciprocity scores for accounts in different score intervals.

The dark line in the bottom panel shows a principal peak around 0.1 and a secondary one

around 0.5. This indicates that humans are typically followed by other humans, but also

by sophisticated bots (intermediate scores). The lines corresponding to high scores in the

two panels show that bots tend to follow other bots and they are mostly followed by bots.

However simple bots (0.8–1.0 ranges) can also attract human attention. This happens

when, e.g., humans follow benign bots such as those that share news. This gives rise to the

secondary peak of the red line in the bottom panel. In summary, the creation of social ties

leads to a homophily effect.

Fig. 6.13 illustrates the extent to which connections are reciprocated, given the nature

of the accounts forming the ties. The reciprocity score of a user is defined as the fraction

of friends who are also followers. We observe that human accounts reciprocate more (dark

line). Increasing bot scores correlate with lower reciprocity. We also observe that simple bot

accounts (0.8–1.0 ranges) have bimodal reciprocity distributions, indicating the existence of

two distinct behaviors. The majority of high-score accounts have reciprocity score smaller

than 0.2, possibly because simple bots follow users at random. The slight increase as the
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Figure 6.14: Bot score distributions of users mentioned (top) and retweeted (bottom) by
accounts with different scores.

reciprocity score approaches one may be due to botnet accounts that coordinate by following

each other.

6.3.5.2 Information Flow

Twitter is a platform that fosters social connectivity and the broadcasting of popular content.

In Fig. 6.14 we analyze information flow in terms of mentions/retweets as a function of the

score of the account being mentioned or retweeted.

Simple bots tend to retweet each other (lines for scores in the 0.8–1.0 ranges peak around

0.8 in the bottom panel), while they frequently mention sophisticated bots (peaking around

0.5 in the top panel). More sophisticated bots (scores in the 0.5–0.7 ranges) retweet, but
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do not mention humans. They might be unable to engage in meaningful exchanges with

humans. While humans also retweet bots, as they may post interesting content (see peaks

of the dark lines in the bottom panel), they have no interest in mentioning bots directly

(dark lines in the top panel).

6.3.5.3 Clustering Accounts

To characterize different account types, let us group accounts into behavioral clusters. We

apply K-Means to normalized vectors of the 100 most important features selected by our

Random Forests model. We identify 10 distinct clusters based on different evaluation criteria,

such as silhouette scores and percentage of variance explained. In Fig 6.15, we present a

2-dimensional projection of users obtained by a dimensionality reduction technique called

t-SNE [192]. In this method, the similarity between users is computed based on their 100-

dimensional representation in the feature space. Similar users are projected into nearby

points and dissimilar users are kept distant from each other.

Let us investigate shared cluster properties by manual inspection of random subsets of

accounts from each cluster. Three of the clusters, namely C0–C2, have high average bot

scores. The presence of significant amounts of bot accounts in these clusters was manually

verified. These bot clusters exhibit some prominent properties: cluster C0, for example,

consists of legit-looking accounts that are promoting themselves (recruiters, porn actresses,

etc.). They are concentrated in the lower part of the 2-dimensional embedding, suggesting

homogeneous patterns of behaviors. C1 contains spam accounts that are very active but

have few followers. Accounts in C2 frequently use automated applications to share activity

from other platforms like YouTube and Instagram, or post links to news articles. Some of

the accounts in C2 might belong to actual humans who are no longer active and their posts

are mostly sent by connected apps.
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Figure 6.15: t-SNE embedding of accounts. Points are colored based on clustering in high-
dimensional space. For each cluster, the distribution of scores is presented on the right.

Cluster C3 contain a mix of sophisticated bots, cyborg-like accounts (mix of bot and

human features), and human users. Clusters of predominantly human accounts, namely

C4–C9, separate from one another in the embedding due to different activity styles, user

popularity, content production and consumption patterns. For instance, accounts in C7

engage more with their friends, unlike accounts from C8 that mostly retweet with little

other forms of interaction. Clusters C5, C6, and C9 contain common Twitter users who

produce experiential tweets, share pictures, and retweet their friends.
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6.4 Conclusions

Social media make it easy for accounts controlled by hybrid or automated approaches to

create content and interact with other accounts. Our project aims to identify these bots.

Such a classification task could be a first step toward studying modes of communication

among different classes of entities on social media.

In this article, we presented a framework for bot detection on Twitter. We introduced

our machine learning system that extracts more than a thousand features in six different

classes: users and friends meta-data, tweet content and sentiment, network patterns, and

activity time series. We evaluated our framework when initially trained on an available

dataset of bots. Our initial classifier achieves 0.95 AUC when evaluated by using 5-fold

cross validation. Our analysis on the contributions of different feature classes suggests that

user meta-data and content features are the two most valuable sources of data to detect

simple bots.

To evaluate the performance of our classifier on a more recent and challenging sample of

bots, we randomly selected Twitter accounts covering the whole spectrum of classification

scores. The accuracy of our initial classifier trained on the honeypot dataset decreased to

0.85 AUC when tested on the more challenging dataset. By retraining the classifier with

the two datasets merged, we achieved high accuracy (0.94 AUC) in detecting both simple

and sophisticated bots.

We also estimated the fraction of bots in the active English-speaking population on

Twitter. We classified nearly 14M accounts using our system and inferred the optimal

threshold scores that separate human and bot accounts for several models with different

mixes of simple and sophisticated bots. Training data have an important effect on classifier

sensitivity. Our estimates for the bot population range between 9% and 15%. This points

to the importance of tracking increasingly sophisticated bots, since deception and detection
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technologies are in a never-ending arms race.

To characterize user interactions, we studied social connectivity and information flow

between different user groups. We showed that selection of friends and followers are corre-

lated with accounts bot-likelihood. We also highlighted how bots use different retweet and

mention strategies when interacting with humans or other bots.

We concluded our analysis by characterizing subclasses of account behaviors. Clusters

identified by this analysis point mainly to three types of bots. These results emphasize that

Twitter hosts a variety of users with diverse behaviors; this is true for both human and bot

accounts. In some cases, the boundary separating these two groups is not sharp and an

account can exhibit characteristics of both.
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CHAPTER 7

Conclusions

Social media are important tools and their efficient use promotes information dissemina-

tion, fosters connectivity between individuals, and helps accessibility and transparency of

knowledge. In the Internet age, we are endowed with the capability to observe activities of

the millions, to model interactions between individuals, and to discover unknown properties

of society. Using techniques from network science, computer science, and social science,

I presented studies of properties of socio-technical systems and built tools to ensure their

robustness against malicious intentions.

This dissertation presents several studies on the topics of information diffusion, online

discourse, and detection of campaigns and social bots. Our analysis on trend diffusion

shows that geography still plays a significant role in information dissemination. Analysis

on censorship reveals that withheld tweets foster curiosity of readers and yield increases

in popularity of censored user and content. Similar effects have been observed in printed

media, where editors leave censored content blank in their publications to draw attention

to the removed content. Our campaign detection framework also points to the importance

of user features to distinguish promoted content. I also built a system to detect social bots

and analyze their interactions on Twitter.
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7.1 Summary and Discussion of Contributions

In Chapter 2, I discuss the relationships between work presented in this dissertation and

existing social science literature. The following sections summarize the contributions of

Chapters 4, 5, and 6 and discuss their implications for future work.

7.1.1 Online Discourse

Online discourse is a broad topic that we discussed in this dissertation. I studied online

discourse from different perspectives: geography of information diffusion, effects of censor-

ship, and characterization of user roles during social protests. We learned lessons about how

geography plays a role on local trends, but national trends and censorship rely on global

ties. Our analysis of the Gezi movement highlights the importance of collective behavior

and points to the interplay between external events and online activities. Here I summarize

observations from our analysis of trend diffusion and online censorship.

• We describe a procedure to build a directed and weighted temporal dependence net-

work to infer the trendsetting and trend-following relationships among locations. We

provide a statistical characterization of trends, describing how they are distributed in

space and time.

• We describe two different dynamics that govern popularity of trends at the country

level, one for cities in each local geographic area and one for metropolitan areas.

We conclude by highlighting that the major metropolitan areas shape the country

trends significantly more than all other locations. We propose an interpretation for

the trendsetting role of major metropolitan areas, by noting their correspondence

with air traffic hubs and conjecturing that trends travel through air passengers, just

as infectious diseases.
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• We explore the spatio-temporal characteristics of censorship, that is, which govern-

ments requested censorship and how the volume of these requests changed over time.

• We show that IP-based censorship on Twitter is not an effective mechanism. We

analyze language and timezone preferences of the retweeting users as a proxy to user

location and show that the diffusion of the censored content is not limited to the

boundaries of the requesting governments, but spans larger populations.

• We point to an important observation on how the amount of censorship correlates with

the changes of user behavior. We observe an increase in the number of friends and

attention paid to censored content for those users targeted by increasing censorship.

Our analysis of social protests in Turkey helps us understand the dynamics of social

protests and user roles:

• We present methods to extract topically focused conversations about the social uprising

surrounding Gezi Park and related trending topics of conversation on Twitter.

• We explore the spatio-temporal characteristics of the conversation; that is, where

tweets about Gezi Park originated and what locations shared most similar topics and

trends. This analysis yields clusters of cities that are mostly consistent with the

country’s geopolitics.

• We analyze the emerging characteristics of users involved in the conversation about

Gezi Park protests on Twitter, the roles they played in this context, and how these

roles evolved as the protest unfolded. We find that influence was redistributed in the

user population over time, making the conversation more democratic.

• We show that online user behavior was affected by external factors, such as speeches

by political leaders or police action to hinder or suffocate the protests.

• We focus on leveraging hand-coded data with automated techniques to identify distinct

behavioral groups. We have learned that the primary role for users was in information
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dissemination to other participants in the demonstrations, but few messages indicated

any leadership role and users who tweeted directive messages did not do so consistently.

This section of the dissertation mainly addresses studies of information dissemination

and geography. I studied the role of geography on information diffusion to show that ge-

ography still plays a role in information diffusion. One can study the multiplex structure

of information and social networks to reveal hidden branches of diffusion trees. My analy-

sis of censorship shows interesting parallels with the historic practices of censorship, where

censorship promotes reader curiosity and motivates them to search for details.

We also studied social protest to investigate how different user roles emerge and evolve

over time. Emergent behavior in social systems yields interesting group dynamics: polariza-

tion, marginalization, and social upheavals. To study socio-technical systems, it is crucial

to understand group behaviors shaped by social norms. In future work, one can identify

the latent factors shaping group membership and changes in personal position for a cause.

Social media can influence and shape public opinion, and misinformation and social bots

play a significant role in affecting belief systems. I also want to test how public discourse

by politicians on social media can be used to direct limited attention to less important

conversations. I want to study persuasion and deception in the age of limited attention.

7.1.2 Campaign Detection

Online discourse can be manipulated and controlled. To study online campaigns, we focus on

trending memes on Twitter and on a special case of promotion, namely advertising, because

it provides a convenient operational definition of social media campaign. We formally define

the task of discriminating between organic and promoted trending memes. We built a

machine learning framework that exploits hundreds of social media signals over time to

capture signatures of orchestrated campaigns. This approach takes a first step toward the
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development of computational methods for the early detection of information campaigns.

We make the following contributions:

• We explore different methods for encoding feature time series. Using millions of tweets

containing trending hashtags, we achieve 75% AUC score for early detection, increasing

to above 95% after trending.

• We studied the robustness of systems to random shifts on temporal signals and pointed

to the strength of algorithms that capture patterns in time series.

• One of the advantages of our framework is that of providing interpretable feature

classes. We explored how content, network, and user features affect detection per-

formance. Extensive feature analysis revealed that signatures of campaigns can be

detected early, especially by leveraging content and user features. After the trending

point, network and temporal features become more useful.

The lessons learned from this project can be used to study complex persuasion. Adver-

tisers and political campaign organizers are actively developing strategies to reach out and

communicate with their targeted audience. Efforts in designing viral online campaigns yield

tools for modern marketing strategies. Unfortunately, entities with malicious intentions

can also benefit from such systems and adopt them to achieve their goals. Traditionally,

successful campaigns rely on carefully designed messages and punctual timing. Experts in

social psychology can identify possible concepts to frame campaigns for targeted groups.

The abundance of digital data and developments in personalization might facilitate targeted

campaigns and the ability to rapidly evaluate the effects of different strategies and frames.

In future work, one can build automated techniques to identify campaigns by detecting

behavioral anomalies at the conversation, account, or tweet level. Observations of account

activities at the group level can provide insightful details about coordination.
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7.1.3 Social Bots

Increasing evidence suggests that social bots have become a major problem for communica-

tion systems. We propose a framework to extract a large collection of features from data and

meta-data about social media users, including friends, tweet content and sentiment, network

patterns, and activity time series. We use these features to train highly-accurate models to

identify bots. For a generic user, we produce a [0, 1] score representing the likelihood that

the user is a bot. Our research on social bots was timely and we made important contri-

butions in this area. We published a highly cited review paper on social bots and released

an online bot detection system for academic and public use. Our research on social bots

yielded the following contributions:

• We participated in the DARPA bot detection challenge and completed the task as the

second fastest and third most accurate team.

• We classified a sample comprising millions of English-speaking active Twitter users.

We used different models to infer thresholds in the bot score that best discriminate

between humans and bots. We estimated that the percentage of Twitter accounts

exhibiting social bot behaviors is between 9% and 15%.

• We characterized friendship ties and information flow between users that show be-

haviors of different nature: human and bot-like. Humans tend to interact with more

human-like accounts than bot-like ones, on average. Reciprocity of friendship ties is

higher for humans. Simple bots target users more or less randomly, while sophisticated

bots can choose targets based on their intentions.

• Clustering analysis revealed certain specific behavioral groups of accounts. Manual

investigation of samples extracted from each cluster points to three distinct bot groups:

spammers, self promoters, and accounts that post content from connected applications.

• Our social bot classification framework was released online for public use. Since its
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release date we received millions of requests.

The intents and strategies of malicious entities such as social bots and orchestrated

campaigns are either fully automated by software or directed by motivated human agents.

Armies of social bots and misinformation campaigns are executed to promote ideas, advertise

products, or sway public opinion. We have been observing social bots that attempt to

persuade, influence, and deceive. Recent advances in deep-learning technologies accelerate

fake persona generation [38, 185] and conversation models for social bots [186, 262]. Such

technologies make social bots difficult to detect and provide an advantage in this arms race.

In future work, I want to use my experience in the identification of social bots and

early detection of campaigns to isolate those activities and study their strategies in depth.

I am interested in building detection systems that can evolve to lead in this arms-race by

exploring behavioral signatures of users and characterizing their strategies.

Another important direction that is worth taking is studying the phenomenon called

account recycling. My guess is that active Twitter accounts remove all their content and

start a new persona for different campaigns or agendas. In this way, these accounts appear

to have a history and maintain their followers during the transition. This could be easily

monitored by tweet deletion notices.

7.2 Other Areas of Future Work

I am excited about the opportunities to mine social signals for gaining new insights about

human behavior and society. The world we have been experiencing is changing and we

have more accurate data with higher temporal resolution, as well as reflecting a detailed

picture of individual lives. The ethical collection of multi-modal data about individuals will

be instrumental in understanding human behaviors. In the future, I want to develop new

models and tools to study complexity in terms of analyzing behaviors of individuals. The
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Figure 7.1: As a future work, expertise gained by studying mobility, social networks and
knowledge networks can be applied to important problems around mental health, micro-
biome, and dream research.

most significant questions can be answered through connecting relevant problems that lie in

organized complexity. Interdisciplinary research is crucial to connect existing knowledge to

discover novel synthesis. I trained as a physicist and computer scientist that direct me to

study in domains of EEG signal processing [280], modeling group behaviors using statistical

mechanics, and analyzing fluctuations of proteins [286]. I always try to combine different

school of thoughts when approaching a novel problems.

My long-term research goal is to develop models that describe dynamically changing

intents and actions of individuals and groups. Network analysis, causal inference, and sta-

tistical learning techniques are core methods and I also want to employ deep learning models

as predictive models in my research. Some of these models have advantages in terms of ac-

curacy. However, certain sensitive domains require models with high interpretability and

explanations of outcomes. Combinations of models and awareness of their limitations are

important to study behaviors of individuals.

Modeling and detecting strategies employed by users is crucial for many reasons: under-

standing intents behind their actions, improving their well-being, and characterizing inter-

150



actions between groups. Deviations from the regular patterns can also point to important

events and pre-cursors of significant transitions. Understanding changes in behavior helps

to study mood changes and to identify significant life events. I believe that my research

has potential implications for improving individual well-being, discovering new knowledge

on how diseases and mental health problems progress, and understanding the nature of con-

flicts between groups. In the following, I describe several future directions I am excited to

pursue (Fig. 7.1).

Identifying the intents of individuals and improving their well-being. One of

the applications of ego-centric network research is to model mental health problems. In this

domain, I would like to infer whether a user has issues like bipolar disorder and depression

based on prior online interactions. To improve such inferences, I am studying the transfer of

knowledge about users across platforms and datasets by employing deep learning, statistical

learning, and causal inference. My goal is to build models for interconnected data sources

to highlight the relationships between user attributes and behavioral markers. I am not

only interested in studying social networks, communication, and mobility, but also health

related precursor signals collected from biological data, personal logs, and other ego-centric

measurements. Once a particular group of people is selected on one platform, users with

similar characteristics can be identified on other platforms. Additional features about the

group can be extracted from these platforms to improve the inference model and predict user

behaviors. Developing ethical methods and tools is an important challenge of this project.

I want to study how privacy of the users can be preserved while research efforts are devoted

to learning about human behaviors. My goal is to formulate new hypotheses about disease

progression and develop mechanisms for support.

Studying dreams to decipher the unconscious mind. I want to pursue a per-

sonal interest in dreams by building collaborations with clinical psychologists. Previously, I
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worked on multi-cultural analysis of dream interpretations to highlight global archetypes and

cultural differences [285]. Recently, I have been analyzing individual dream journals. Data

driven research to understand the meaning of dreams and their implications on real life can

be further improved by controlled experiments and data collection through mobile devices.

Collaborative work in this area, in my opinion, will be greatly rewarding to understand

unconscious behaviors.
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to functionally important residues in Myosin II”, PROTEINS: Struc-
ture, Function, and Bioinformatics 82(9):1777-86, 2014

Conference Proceedings
C.13 Varol O., Davis C., Ferrara E., Menczer F., Flammini A. “Online Human-

Bot Interactions: Detection, Estimation, and Characterization”,
ICWSM’17

C.12 Olteanu, A., Varol, O., Kiciman, E. “What Does Social Media Say
about the Outcomes of Personal Experiences”, CSCW’17

C.11 Ferrara E., Wang W., Varol O., Flammini A., Galstyan A. “Predicting
online extremism, content adopters, and interaction reciprocity”,
SocInfo’16

C.10 O Varol, “Spatiotemporal Analysis of Censored Content on Twit-
ter”. WebScience’16

C.9 A Das, S Gollapudi, E Kiciman, O Varol, “Information Dissemination
in Heterogeneous-Intent Networks”. WebScience’16

C.8 E. Ferrara, O Varol, F Menczer, and A Flammini. “Detection of Pro-
moted Social Media Campaigns”. ICWSM’16

C.7 A Olteanu, O Varol, E Kiciman. “Towards an Open-Domain Frame-
work for Distilling the Outcomes of Personal Experiences from
Social Media Timelines”. ICWSM’16

C.6 C Davis†, O Varol†, E Ferrara, A Flammini, F Menczer “BotOrNot: A
System to Evaluate Social Bots”. WWW’16 Developers Day

C.5 O Varol, E Ferrara, C Ogan, F Menczer, and A Flammini. “Evolution
of online user behavior during a social upheaval”. ACM Web Science
Conference 2014 (Best paper award)

C.4 O Varol and F Menczer. “Connecting Dream Networks Across
Cultures”. WWW 2014 workshop on ”Connecting Online & Offline Life”
(COOL)

C.3 Ferrara, E., Varol, O., Menczer, F. & Flammini, A. “Traveling Trends:
Social Butterflies or Frequent Fliers?”, ACM Conference on Online
Social Networks (COSN 2013)

C.2 E Ferrara, M JafariAsbagh, O Varol, V Qazvinian, F Menczer, A Flammini
“Clustering Memes in Social Media”, ASONAM 2013

C.1 Yasemin Alban; Tuba Ayhan; Onur Varol; Müştak Erhan Yalçın “A Fea-
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