
Award Numbers
ACI-1547611

SGCI Incubator Bootcamp
April 24-28, 2017
Randy Heiland

Cybersecurity for
Gateways

2

Center for Trustworthy
Scientific Cyberinfrastructure
The NSF Cybersecurity Center of Excellence

The mission of CTSC is to provide the NSF
community with a coherent understanding of
cybersecurity, its importance to computational
science, and the resources to achieve and
maintain an appropriate cybersecurity program.

NSF ACI-1547272 trustedci.org

Overview

• Cybersecurity is part of Sustainability
• Things can (and do) go wrong
• But lots of things go right!

• Assets and Risks
• Gateways use software. Software needs

to be secure.
• Best Practices for Security
• You’re not alone!

3

Cybersecurity is part of Sustainability

Sustainability requires a high degree of security
and stability. This fails if, for example, your system
is vulnerable, gets hacked and:

• locked up; held for ransom
• data is stolen/erased/tampered with
• defaced (public humiliation)
• …

4

Things can (and do) go wrong

5

…attacks on unsecured instances of MongoDB ... The attacker erased
the database and demanded a ransom be paid before restoring it.
https://www.mongodb.com/blog/post/how-to-avoid-a-malicious-attack-that-ransoms-your-
data?utm_campaign=Int_EM_Monthly%20Newsletter_01_17_WW_Auto_enroll&utm_medium=email&utm_source=Eloqua

6

Library management refused to pay the $35,000
demanded as ransom, and IT staff wiped affected
servers and restored them from available backups.
https://threatpost.com/st-louis-public-library-recovers-from-ransomware-attack/123297/

One bug, one crash… of a $7B rocket that took 10 years to build, due
to a floating point overflow software bug. (June 1996)
https://around.com/ariane.html

NSF TeraGrid compromised (2004)
https://usatoday30.usatoday.com/tech/news/computersecurity/2004-04-14-synchronized-hacking_x.htm

Assets and Risks

Class exercise (~15 mins)
• Sketch your gateway’s & users’ assets
• Sketch the flow of information (arrows)
• Try to prioritize the risks

7

DB

data

PII/IdM

clouds

Unique
hardwaredesktops/

servers
mobile

What’s the big deal about software?

8

• Software is essential for the bulk of science
• About half the papers in recent issues of Science were

software-intensive projects.

• Software is not a one-time effort, it must be sustained
• Development, production, and maintenance are

people intensive.
• Software life-times are long vs hardware.
• Software has under-appreciated value.

http://www.slideshare.net/danielskatz/metrics-citation-for-software-and-data

(drum roll…) Gateways are made of software.

Software Security

9

NSF “CI Framework for 21st century”
(CIF21)

Software must be reliable, robust, and secure;
able to produce trustable and reproducible
scientific results; …

https://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf

10

Story time…

What are some of the worst software-related
disasters in history?

11

Plenty to choose from, sadly…

• Therac-25 radiation therapy machine (1986)
[lack of documentation and sufficient testing]

http://www.cs.umd.edu/class/spring2003/cmsc838p/Misc/therac.pdf

• Ariane-5 (1996) [floating point overflow]

• Blackout for 50M people (2003) [race condition]
http://www.securityfocus.com/news/8016

12

ht
tp

s:
//x

kc
d.

co
m

/5
71

/

Software
Engineering

13

Software
Security

The line between them is fuzzy & almost invisible.

vuln	mgt

SwEng Lifecycle + Security

14

logging

secure	
coding

static	
analysis

dynamic	
analysis

code	
signing

Be	security	conscious	during	each	phase.

IDS

SwEng Lifecycle + Security

15

logging

Be	security	conscious	during	each	phase.

Log activity
on servers

What needs
to be logged?

Incorporate
backups

Simulate
DDoS

Software Security

16

Secure	Software	Engineering

Software	
Assurance

Situational
Awareness

Software Assurance (SwA)

#1) SwA is the level of confidence that software is free from
vulnerabilities, either intentionally designed into the
software or accidentally inserted at any time during its life
cycle, and that the software functions in the intended
manner.

#2) The processes (e.g., secure coding, static analysis)
that help improve this level of confidence.

→ secure coding instruction (https://trustedci.org/trainingmaterials))

17

https://samate.nist.gov/Main_Page.html

Situational Awareness

Being aware of software vulnerabilities and how they might
affect a user community. Offering advice on how to patch or
update vulnerable software.

https://trustedci.org/situational-awareness
https://blog.trustedci.org/2016/08/situational-awareness.html

18

Secure SwEng: Topics

● Repositories/Hosting
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

19

Repositories and Hosting Services

Regardless of the repo/hosting service you
choose, be mindful of security considerations:
• physical security
• server logging
• encrypted access
• granularity of access control
• 2FA
• do not commit sensitive data to public repos

• keep in mind that a currently-private repo may need
to be shared more widely later: keep credentials
separate from code, or you’ll be sanitizing history.

20

Software Testing

● why is it necessary?
• test for “correctness”
• help prevent bugs,

vulnerabilities
• improve usability

● why is it difficult?
● how well does it work?
● can it be made easier?

21

Dynamic Testing

● Regression
• as software is modified, make sure no new (or old)

bugs have been introduced
● Combinatorial

• all combinations of input parameters
● Fuzz

• with random/noisy inputs
● Security

• for Confidentiality, Integrity, Availability (CIA)

22

Testing: think globally, act locally

Acting locally:
Use Assertions in code!

“primary purpose is to instrument code with test probes that
will detect errors as close as possible to their place of
occurrence.” Tony Hoare, 2002

23

Assertions

Assertions are always expected to be True:
assert(condition)

If they are false at runtime, they will throw an error.
(They can be disabled if desired).

C/C++:
assert(ptr);
Assert(x > 0.0);

Java:
Assert.assertTrue((project1.getCreationTime() -

project2.getCreationTime()) > 0);

24

Story time…

How far back does the idea of using assertions in
computer programming go?

25

“...	the	programmer	should	make	assertions	about	
the	various	states	that	the	machine	can	reach.”				
Alan	Turing,	1949

https://pdfs.semanticscholar.org/dfd7/34b2de2cbcce6ac07e909011b0ed6ba32b01.pdf

Secure SwEng: Topics

● Repositories/Hosting
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

26

Static Analysis

Static analysis tools try to find bugs/vulnerabilities
in source code. Bugs are then categorized by
severity.

Q: why doesn’t every software developer use
static analysis tools?

A (typically): hassle (time, learning curve),
false positives, doesn’t catch complex

vulnerabilities, ...

27

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Coverity Scan (free for OSS)

Defect	density is	measured	by	the	
number	of	defects		per	1,000	lines	of	
code

28

e.g.,

SonarQube (sonarqube.com)

29

● OSS
● Used by many

projects
● Can be

integrated with
Eclipse IDE

30

31

Not bugs; just
weakness.
E.g. class too
large;
downcasting.

Static Analysis Plugins:
e.g. IntelliJ IDEA + FindBugs

32

(We	will	re-visit	static	analysis	plugins	for	IDEs	in	
the	Tools	section)

Static analysis as a service: SWAMP

SWAMP - SoftWare Assurance MarketPlace
https://continuousassurance.org/

33

https://continuousassurance.org/

Example: Upload, Build, Analyze

34

Example: Upload, Build, Analyze

35

Describe	
build	
process

Example: Upload, Build, Analyze

36

Example: Upload, Build, Analyze

37

Examples of potential vulnerabilities

•CWE-547:	Use	of	Hard-coded,	Security-relevant	Constants
•CWE-252:	Unchecked	Return	Value
•CWE-571:	Expression	is	Always	True
•CWE-584:	Return	Inside	Finally	Block
•CWE-563:	Assignment	to	Variable	without	Use	('Unused	Variable')
•CWE-478:	Missing	Default	Case	in	Switch	Statement
•CWE-495:	Private	Array-Typed	Field	Returned	From	A	Public	Method

38

cwe.mitre.org - Common	Weakness	Enumeration:		
a	dictionary	of	software	weakness	types.

Secure SwEng: Topics

● Repositories/Hosting
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

39

Vulnerability: Injection flaw (e.g. SQL, LDAP)

A SQL injection attack consists of insertion or
"injection" of a SQL query via the input data from
the client to the application.
A successful SQL injection exploit can read
sensitive data from the database, modify database
data (Insert/Update/Delete), …

Fix: Sanitize user input

(#1 in the OWASP Top 10 handout)
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

40

41

https://xkcd.com/327/

Vulnerable library in your software stack1

• e.g., OpenSSL Heartbleed (2014)
• http://heartbleed.com/

• Fix: update your version to the patched version
(and deal with repercussions)

42

[1] Currently #9 in the OWASP Top 10 handout

Vulnerability	Management

• Preventing them in the first place (previous
slides on developing secure software)

• Detecting them (if they do occur)
• Notifying* appropriate people
• Fixing/Patching
• Testing
• Communicating* fix

patch: a software update that can be applied to an existing
code base in order to eliminate one or more vulnerabilities.

43

* responsibly, hopefully

Vulnerability	Management	(cont’d)

It can be complicated:
• software dependencies
• complex configuration
• mission-critical uptime
• difficult to reach resources

44

LIGO

Story time…

Yes, things can (and do) go wrong, but a LOT of
things go right…

45

e.g., Public Key Infrastructure (PKI)
• Makes e-commerce possible
• Involves asymmetric cryptography

https://blog.vrypan.net/2013/08/28/public-key-cryptography-for-non-geeks/

• Uses number theory; difficulty of factoring very large
semi-prime numbers.

• “New directions in cryptography”, 1976
http://dl.acm.org/citation.cfm?id=2269104

• Turing Award (“Nobel Prize of Computing”) in 2015
https://awards.acm.org/about/2015-turing

46

(Extra point: Who recently won the 2016 Turing Award?)

Secure SwEng: Topics

● Repositories/Hosting
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

47

Release	&	Delivery
How can one help ensure the authenticity
and integrity of software (and data)?

●cryptographic checksums, hashes
●SHA-{1,2,3} (Secure Hash Alg) …
●digital signatures (e.g., GPG)

1) Download a file
2) Compute a hash on it
3) Compare to published hash

48

Your gateway may primarily be a “service”, without much software to download.
However, you may provide clients or SDKs, and those should be signed.

49

Python-3.6.1.tgz.asc
-----BEGIN PGP SIGNATURE-----

iQIzBAABCAAdFiEEDZbfTUEQ5cQ/v7F/LTR+pqplQh0FAljQ2rQACgkQLTR+pqpl
Qh2Mxw/+NoRiLkIaIiERGead3xJKLa//WjCnIBOH9dl0SaZwOUkotzklYOB7+E1C
Ms2Y2h/Ey15JzW4kTfskYanVATKaeeVBGwjQQ1GxT0h9EGHQMQzfcxw40vSLOLkn
B1U3G3NKuKdurxgzG4HSZJFu4ElRxYH8DVgovgshWQJXakaSxt0tQedHDgN857X7
JK7O4SFD/pLpX+eV0aMWRxo3Y+QTy/DE4UYiNdqJH/4itawni7ezuB8mcimyp9M8
Eiw+cVCszpjnOidAdwbsihLayvr3KzaqqqE6OVKSLnGSRatt7IjXNWl/0IVJT3Hl
dHQuMQqabM4MaDRl5eHkxG5oBGQa/QzoBbSiRGQTnXfOSf5iIwBC2CHZR/zabfP1
tQAHBKfq9Y3feGhQih4Q/diQbyjCEOiSPXorqEDB+GVg2ZcNZdLGmrUSkloPmzEm
wnOh9x935tmSD98VxLM8x3DBCXX8T8nz8052qZdcJNCdP7/ETViaKOUfKZJcFQCQ
3VJH4jEp9GyJoq86PFzHX5+72RC87UTZK71xIq03g7HFVNE9bbWBK+2fWXvp/HQE
ntmVS69qBW5sLHfO6gIuCvNXaVzEwDJWnBRfB7t5xWDEzhr4c2vX31j2v6/EuUh9
tcQPOp/A0GReyAMMZRCf4SeqLexdrqHKfhloq5wuIkLi/F9TVds=
=nTdl
-----END PGP SIGNATURE-----

b04ea40152633fe351fc60f82b023700dfd84d06b63e3fda87c95b9d01af0cbb cmake-3.8.0.zip

Secure SwEng: Topics

● Repositories/Hosting
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

50

Coding/Project Tools: Issue Tracking

Courtesy of Apache
Airavata project.

e.g. JIRA (https://www.atlassian.com/software/jira)

Continuous Integration (cloud-based)

Some popular CI tools include:

●Travis - travis-ci.org (limited to)

Meyer,	M.	2014.	“Continuous	Integration	and	Its	Tools.”	IEEE	
Software 31	(3):	14–16.

52

Secure SwEng: Topics

● Repositories/Hosting
● Testing
● Static Analysis
● Vulnerability Management
● Release & Delivery
● Coding/Project Tools
● Documentation

53

54

fro
m

 h
ttp

s:
//x

kc
d.

co
m

/6
88

/

Unfortunately, Software is not!

Some things are
self-explanatory.

Document your code!
For dev/maintenance, usage, and operation.

Hypothetical Gantt chart for code+docs

55

time

Dev A

Dev A’

Dev B

Dev B’

learn

No comments

With comments

Refactor/Extend

Remember the Therac-25 disaster?

56

Documentation

Document design & purpose, not mechanics.
a) Document interfaces and reasons, not

implementations.
b) Refactor code in preference to explaining how it works.
c) Embed the documentation for a piece of software in

that software.

57

Wilson, Greg, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard T. Guy, Steven H. D.
Haddock, et al. 2014. “Best Practices for Scientific Computing.” PLoS Biology 12 (1): e1001745.
dx.doi.org/10.1371/journal.pbio.1001745

Automatic documentation

Tools exist that generate useful docs for your code
if you include that documentation in your code
and follow the tools’ syntactic rules.

• motivation for embedding your documentation
• generates easy-to-navigate HTML/Latex/etc

docs

58

Javadoc: Generates HTML pages of API
documentation from Java source files

/**
* Returns an Image object that can then be painted on the screen.
* The url argument must specify an absolute {@link URL}. The name
* argument is a specifier that is relative to the url argument.
* <p>
* This method always returns immediately, whether or not the
* image exists. When this applet attempts to draw the image on
* the screen, the data will be loaded. The graphics primitives
* that draw the image will incrementally paint on the screen.
*
* @param url an absolute URL giving the base location of the image
* @param name the location of the image, relative to the url

argument
* @return the image at the specified URL
* @see Image
*/
public Image getImage(URL url, String name) {

try {
return getImage(new URL(url, name));

} catch (MalformedURLException e) {
return null;

}
}

getImage
public Image getImage(URL url,

String name)
Returns an Image object that can then be painted on the screen. The url

argument must specify an absolute URL. The name argument is a
specifier that is relative to the url argument.

This method always returns immediately, whether or not the image exists.
When this applet attempts to draw the image on the screen, the data
will be loaded. The graphics primitives that draw the image will
incrementally paint on the screen.

Parameters:
url - an absolute URL giving the base location of the image.

name - the location of the image, relative to the url argument.

Returns:
the image at the specified URL.

See Also:
Image

59

60

Doxygen

“Doxygen is the de facto standard tool for generating
documentation from annotated C++ sources, but it also
supports other popular programming languages such as
C, Objective-C, C#, PHP, Java, Python, IDL, Fortran,
VHDL, Tcl, …”

C/C++: Docs annotation is inserted into headers (.h):
// .NAME classname - brief description
// .SECTION Description
// more detailed description
…

// Description:
// Assign a data object as input. Note that this method ...
void SetInputData(int index, vtkDataObject* obj);

61

62

63

Operational Security

Now that your gateway software is 100% secure1,
what about securely operating it?
• Network communication protocols
• Monitor traffic
• Log activity on servers
• Identity Management
• Assign responsibility for security to someone2

64

1 2 Consider university personnel

Monitoring (IDS1) and Logging

65

• Detect the unexpected/unwanted
• Network traffic (e.g., Bro IDS)
• Log events for later analysis

[1] IDS: Intrusion Detection Systems

Gateway Security Best Practices
Software:
• Use software repos & hosting (e.g. GitHub); use 2FA
• Use Continuous Integration on your repo
• Static analysis on code – and automate it
• Test, test, test – and automate it
• Comment/document – and automate it
• Securely hash/sign (e.g. SHA-2) your code releases
Operation:
• Use https
• Monitor traffic on your gateway (e.g. Snort or Bro)
• Log activity on servers; Perform vulnerability scans
• Consider outsourcing Identity Management1 (e.g. CILogon)

66

[1] https://blog.trustedci.org/2014/04/idm.html

You’re not alone

67

We’re here to help

• This cohort – an ongoing support group
• SGCI and CTSC - join in!

• join mailing lists & webinars
• follow us on social media

• Ask questions!
• Be an active community member!

Additional reading:
https://trustedci.org/trainingmaterials/

68

Discussion time?

69

