
General PKI Workload Description 
 
We describe the PKI workload for different workflow cases: 
 

1) A website achieves an SSL secure state from non secure state. 
 

2) The process of browser identifying if an apparent SSL secure website is trusted or 
not. 

 
3) In detail description of the process mentioned in point 2. 

 
1. Scenario where a website achieves an SSL secure state 
Actors​: Website(site admin), Certificate Authority involved 
Objects​: SSL Certificate 
 
We would elaborate the whole process to identify the labels involved and the queries made to 
identify the state of the actors. 
 

a. A website exists with no SSL certificate installed. 
 

b. The website(site admin) submits a certificate signing request to the certificate 
authority. 

 
c. The certificate authority vets the the certificate signing request. 

 
d. Once verified, the certificate authority generate an a signed X509 certificate for the 
website and sends it to the website for installation. 

 
e. On receiving the certificate, the website(site admin) installs the certificate on the 
website. 

 
f. The website achieves an SSL secure state. 

 
 
2. Scenario where a browser identifies if an apparent SSL secure website is trusted. 
 
Actors​: Web browser, User 
Objects​: SSL Certificate 
 

a. User tries to access a URL from the web browser. Considering only SSL secure URL 
in our model. 

 



b. The web browser queries an SSL secure website and is presented with the installed 
SSL certificate chain. 

 
c. The browser checks for every certificate in the certificate chain to be valid and 
genuine. 

 
d. If every certificate in the certificate in the certificate chain is valid and genuine, the 
browser identifies the website as genuine and trusts it. 

 
e. If the common name or DN of the certificate matches with the URL queried, it means 
that the certificate belongs to the URL queried. 

 
f. Browser displays a visual cue(padlock) for secured connection on the website. 

 
Now, lets try to elaborate the above discussed scenarios to identify the underlying steps 
involved in a path validation process. 
 
The inputs to this process are: The certificate path to be validated, current date/time, Certificate 
policy OIDs and trust anchor of the certificate path. 
 
The following steps are performed on every certificate in a certificate chain: 
 

a. Check the public key algorithm and public key parameters of the certificate. 
 

b. Check the current date and time to ensure that the certificate is not expired. 
 

c. Check the status of certificate for revocation. 
 

d. Check the name constraints so that the subject name is in the permissible subtrees 
and not the excluded subtrees( subtrees are as defined in RFC 5280) 

 
e. Check the issuer name such that it should be the same as that of the subject name of 
the previous certificate in the certificate path. 

 
f. Check the path length so that it is the same as is asserted by the certificate. 

 
g. Key usage extension is checked to ensure signing of certificate. 

 
h. Other checks like policy constraints and Certificate OIDs are checked so that they 
don’t violate any explicit policy requirements to avoid man in the middle attacks. 

 
Once this procedure validates the above steps for every certificate in the certificate chain, we 
can assert that the path validation for this particular certificate chain was successful. 



PKIX Workload 
 
To define a workload we identified sets and some naming conventions for those sets. 
 
E : Endpoints 
 
We coined the term endpoint for an abstract entity at the other end of the certification process 
which is supposed to be the one the client(in this case the browser in question) should be 
actually talking to. 
 
N : Names 

I ⊆ N:Issuer Names 
S ⊆ N: Service Names 

 
I denotes issuer name and S denotes service name 
 
B: Browsers 
 
T - Times 

T​now​ ϵ T 
T​issue​ ϵ T 
T​exp​ ϵ T 

 
Times at three events are  

T​now​: Time T at the current moment 
T​issue​: Time at the issuance of the certificate 
T​exp​: Expiration time of the certificate 

 
Certs: I x N x T​issue​ x T​exp 

 
This statement represents that a cert (certificate) is an entity consisting of some issuer , name 
and Tissue and Texp. 
 
CA State: 
 
To model the Certificate Authority state we proposed two sets containing certificates in issued 
state or revoked state. 
 
Issued ⊆ Cert 
Revoked ⊆ Cert 
 
 



 
Website State: 
 
To model the website state we agreed upon two sets that would let us perform the necessary 
operations. 
 
Holds ⊆ E x Cert 
 
This state is an abstract binding for an endpoint to a certificate that correctly represents the 
endpoint. The endpoint is the entity the browser wants to connect to. 
 
Browser State: 
 
Trusted ⊆ B x Cert 
 
The browser in our model holds a set of trusted certificates. In the above representation of the 
state, it states that it contains entries with some browser with some certificate. 
 
Operations: 
 
issue(I, E ,N, Tissue, Texp) 

add <I, N, Tissue, Texp> = C (to issued set) 
add <E, C> (to holds set) 

 
This operation issues a certificate. The actions to be taken are adding the certificate to the 
issued set and creating the holds binding 
 
revoke (I, C) 

if C.I = I 
add C to the revoked 

 
This operation revoked a certificate. It involves adding C to revoked set. 
 
addRootCert(B, C) 

add <B, C> to trusted 
 
Adds root certfiicate to browser’s trusted state. 
 
removeRootCert(B, C) 

remove <B, C> from trusted 
 
Removes root certificate from browsers trusted state. 
 



 
Queries: 
 
isAuthorized checks for two conditions: 

1) Is the name in the certificate same as the service requested by the browser 
2) is the certificate chain valid 

 
isValid checks: 

1) every certificate in the certificate chain is valid 
2) In the certificate chain, the current certificate’s Issuer is the same as the current 

certificate’s parent(next as we traverse) in the chain 
 
isRevoked checks if the certificate is not revoked 
 
isTemporalValid checks if the certificate is temporally valid i.e. currentTime is between issued 
time and expiration time 
 
certValid checks if a certificate is not revoked, is temporally valid and is in Issued set. 
 
isAuthorized(B, E, S, C​+​) 

if C​0​.N = S ∧ <E, C​0​> ϵ Holds 
isValid (B, C​+​) 

else 
false 

 
isValid(B, C​+​) 

for C​i​ ϵ C​0​ … C​n-2 

if C​i​.I ≠ C​i+1​.N ∨ !certValid(B, C​i​) 
false 

if <B, C​n+1​> ϵ Trusted ∧ certValid(B , C​n-1​) 
true 

else 
false 

 
isRevoked(C) 

C ϵ Revoked 
 
isTemporalValid(C) 

C.T​issue​ ≦ T​now​ ≦ C.T​exp 

 
certValid(C) 

C ϵ Issued ∧ !isRevoked(C) ∧ isTemporalValid(C) 
 



Certificate Pinning 
 
Pinning is the process of associating a host with their ​expected X509. In other words we hard                 
code in the client the certificate which is known to be used by the server. 
How does it work? 
When we try and reach a website we try and make calls to the server over SSL. If the server we                     
hit is known then, we can stop to rely on the CA to validate the certificate provided by the web                    
server. This can be done by pinning the certificate to a host (web server). Hence, when a host                  
provides the user with a different certificate than what is pinned at the client side, then the user                  
knows to not trust the host. 
example: Say we pin a host(URL). The fingerprint of the certificate is stored at the client end. In                  
addition to normal certificate verification when we try and reach the web server, we can use                
pinning to validate the certificate (basically acts a input to the validation method).  
Say cert A has a validity for 1 year. Host = abc.com. When a user tries to access abc.com the                    
normal procedure to determine if a certificate is valid proceeds. In addition to that we use                
pinning to validate. If a certificate changes before its validity (say after 5 months in this case) the                  
validation fails and a warning could be issued to the user. 
Points to consider: 

● Certificates can be pinned to a host on the client side while development. For example,               
google Chrome comes bundled with certificates for ​www.google.com​. These certificates          
are bundled in the client browser when they are developed. 

● Certificates can also be pinned at first time use. 
● One entity can have many certificates. 
● Every certificate has a validity period. Once a certificate expires the browser has to be               

updated to load the new certificates. (Frequent issues of new certificates might be an              
issue). 

● When we pin a certificate, we don’t pin the CA’s certificate; we pin the one at the end of                   
the chain. 

●  
 
 
Adoption: 
CA pinning: Mozilla work in progress  
Dynamic Public Key Pinning: Google work in progress 
References: 
1. ​http://www.ietf.org/proceedings/82/slides/websec-1.pdf 
2. ​http://tack.io/draft.html 
3. ​https://www.imperialviolet.org/2011/05/04/pinning.html 
4, ​http://tools.ietf.org/html/draft-evans-palmer-hsts-pinning-00 (They talk about un-pinning in this        
doc but wrt public keys instead of certificates) 
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11  
 

1 

http://www.google.com/
http://www.google.com/
http://www.ietf.org/proceedings/82/slides/websec-1.pdf
http://tack.io/draft.html
https://www.imperialviolet.org/2011/05/04/pinning.html
http://tools.ietf.org/html/draft-evans-palmer-hsts-pinning-00
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11


 
 
Static Public - Key Pinning 
 
Notes:  

● SPKI Fingerprint is defined as the output of a known cryptographic hash algorithm             
whose input is the DER-encoded ASN. 
SubjectPublicKeyInfo  ::=  SEQUENCE  { 
       algorithm            AlgorithmIdentifier, 
       subjectPublicKey     BIT STRING  } 
AlgorithmIdentifier  ::=  SEQUENCE  { 
       algorithm            OBJECT IDENTIFIER, 
       parameters           ANY DEFINED BY algorithm OPTIONAL  } 

● Upon receipt of the Public-Key-Pins response header field, the UA notes the host as a               
Pinned Host, storing the Pins and their associated directives in non-volatile storage (for             
example, along with the HSTS metadata). 

●   
1. The UA MUST note the Pins if and only if it received the Public- Key-Pins               

response header field over an error-free TLS connection. 
2. The UA MUST note the Pins if and only if the TLS connection was authenticated               

with a certificate chain containing at least one of the SPKI structures indicated by              
at least one of the given SPKI Fingerprints. 

3. The UA MUST note the Pins if and only if the given set of Pins 
      contains at least one Pin that does NOT refer to an SPKI in the 
      certificate chain. 

● Validation:  
○ When a UA connects to a Pinned Host, if the TLS connection has errors, the UA                

MUST terminate the connection without allowing the user to proceed anyway 
○ A UA SHOULD perform Pin Validation whenever connecting to a Known Pinned            

Host, but MAY allow Pin Validation to be disabled for Hosts according to local              
policy. For example, a UA may disable Pin Validation for Pinned Hosts whose             
validated certificate chain terminates at a user-defined trust anchor, rather than a            
trust anchor built-in to the UA. 

○ the UA will compute the SPKI Fingerprints for each certificate in the Pinned             
Host's validated certificate chain, using each supported hash algorithm for each           
certificate. 

○ The UA will then check that the set of these SPKI Fingerprints intersects the set               
of SPKI Fingerprints in that Pinned Host's Pinning Metadata. If there is set             
intersection, the UA continues with the connection as normal. Otherwise, the UA            
MUST treat this Pin Failure as a non-recoverable error. 

 
 
 

2 



 
 
 
Terminology: 

● Subject Public Key Info: This field is used to carry the public key and identify the                
algorithm with which the key is used. [1] 

● Subject Public Key Info Fingerprint: The fingerprint is the SHA-1 or SHA-256 hash of the               
DER-encoded ASN.1 representation of the SubjectPublicKeyInfo (SPKI) field of the          
X.509 certificate. [2] 

●  
 
Endpoint State 
Key ⊆ E × K x Cert Chain (each tuple accessible only by corresponding E) 

● In each endpoint’s local state, they have a private key K corresponding to a certificate               
Cert. 

 
CA State 
Issued ⊆ Cert 
 
Browser State 
Trusted ⊆ B x Cert (accessible only by B)  
PinnedKeys ⊆ B x SubjectPublicKeyInfo fingerprint 
 
//?Check  (Pin validation = True) 
 
issue(CA, endpoint, service name, pubkey, times) 

Have CA issue to endpoint a certificate binding service name to pubkey with for given               
time period. Modifies EndPoint state. 

 
getpubkey(endpoint address) 

Do SSL/TLS handshake, returns pubkey and cert chain. After this call, browser believes             
it is talking to the owner of the private key corresponding to pubkey. 

 
?chainValid(trusted CAs, chain) 

Do RFC 5280 path validation, return True if successful, False otherwise. 
 
?certRevoked(cert) 

Checks if a certificate is revoked. Return True if revoked, False otherwise. 
We will have different implementations for CRLs and OCSP. 
Usage: After chainValid, we walk the chain and check revocation for each certificate.             
This could be via CRL OCSP. 

 
// Adds the pin of an endpoint address to list of pinned addresses.  

3 



addPin(endpoint address) 
Host with max-age directive (expiration date) comes bundled with the browser or            

compare the domain name with HSTS host domain name. When compared if there is a               
superdomain match or congruent match then the host must not be added again else add host. 
// This function is to determine if the SPKI fingerprint provided by the known endpoint address is                 
valid or not 
?pinCheck(chain, metadata) 

Compute SPKI fingerprint of every certificate in the certificate chain. Compare them with             
SPKI metadata. If matched then valid pin else invalid (pinCheckOutput). 
 
// This function is to unpin an endpoint address from the list of known pins.  
unPin(SKPI) 

Max-age directive = 0 || max-age directive < current date → Un-piin 
 
?isAuthorized(endpoint address, chain, pubkey, pinCheckOutput) 

Return True if entity owning pubkey is allowed to represent the given endpoint address. 
Usage: This is the top-level “call” that orchestrates the others. Chain is used as evidence               
to make the decision. 
 

Orchestration (Website is pinned/not pinned): 
1. Initial state/maintenance: 

a. Browser is configured with ​trusted CAs 
b. Browser is maintaining a set of CRLs 
c. Browser maintains a set of SKPI fingerprint metadata. 

2. addPin(endpoint address) is called to pin a host in the browser.​(This function has to be               
called even when the website is not pinned. This is because it compares the              
domain name(endpoint address) in order to determine if the pin has to be added              
or not) 

3. User requests a secure webpage at ​endpoint address 
4. Browser calls getpubkey(​endpoint address​ ) -> ​pubkey​ , ​cert chain 
5. Browser calls isAuthorized(​endpoint address​ , cert chain, pubkey) 

a. isAuthorized calls chainValid(​trusted CAs​ , ​cert chain​ ) to do 5280 validation. 
b. pinCheck(SPKI) is called to validate the pins. 
c. isAuthorized calls certRevoked(​cert for ​cert in ​cert chain​ ) to check for revoked            

certificates. 
d. isAuthorized calls unPin(​SPKI​ ) to check for unpinned hosts. 
e. Other schemes may do other stuff here, e.g. check CT logs. 

 
 
References: 
[1] ​http://www.ietf.org/rfc/rfc3280.txt 
[2] ​http://tools.ietf.org/html/draft-evans-palmer-key-pinning-00 
[3] ​http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11  

4 

http://www.ietf.org/rfc/rfc3280.txt
http://tools.ietf.org/html/draft-evans-palmer-key-pinning-00
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11


CRL Scheme 
 
Scheme Description: ​ Revoked certificates are maintained as Certificate revoked lists. These lists are stored in 
the browser and are broadcasted by the CA to the browsers regularly as well as on revocation of a certificate. 
 
Endpoint State 
Key ⊆ E × K x Cert Chain (each tuple accessible only by corresponding E) 

● In each endpoint’s local state, they have a private key K corresponding to a certificate 
Cert. 

 
CA State 
Issued ⊆ Cert 
 
Browser State 
Trusted ⊆ B x Cert (accessible only by B) 
 
Note: We return temporary data, for “permanent” changes, we modify state. 
 
issue(CA, endpoint, service name, pubkey, times) 

Have CA issue to endpoint a certificate binding service name to pubkey with for given 
time period. Modifies EndPoint state. 

 
getpubkey(endpoint address) 

Do SSL/TLS handshake, returns pubkey and cert chain. After this call, browser believes 
it is talking to the owner of the private key corresponding to pubkey. 

 
?chainValid(trusted CAs, chain) 

Do RFC 5280 path validation, return True if successful, False otherwise. 
?certRevoked(cert) 

Checks if a certificate is revoked. Return True if revoked, False otherwise. 
We will have different implementations for CRLs and OCSP. 
Usage: After chainValid, we walk the chain and check revocation for each certificate. 
This could be via CRL OCSP. 

?isAuthorized(endpoint address, chain, pubkey) 
Return True if entity owning pubkey is allowed to represent the given endpoint address. 
Usage: This is the top-level “call” that orchestrates the others. Chain is used as evidence 
to make the decision. 
 
 

Orchestration (CRL version): 
1. Initial state/maintenance: 

a. Browser is configured with ​trusted CAs 



b. Browser is maintaining a set of CRLs 
2. User requests a secure webpage at ​endpoint address 
3. Browser calls getpubkey(​endpoint address​ ) -> ​pubkey​ , ​cert chain 
4. Browser calls isAuthorized(​endpoint address​ , cert chain, pubkey) 

a. isAuthorized calls chainValid(​trusted CAs​ , ​cert chain​ ) to do 5280 validation. 
b. isAuthorized calls certRevoked(​cert​  for ​cert​  in ​cert chain​ ) to check for revoked 

certificates. 
c. Other schemes may do other stuff here, e.g. check CT logs. 

 



OCSP Scheme 
 
Scheme Description: ​ The status of the certificate can be determined by querying the OCSP servers. This 
indicates if a certificate is revoked or not revoked. 
 
Endpoint State 
Key ⊆ E × K x Cert Chain (each tuple accessible only by corresponding E) 

● In each endpoint’s local state, they have a private key K corresponding to a certificate 
Cert. 

 
CA State 
Issued ⊆ Cert 
 
Browser State 
Trusted ⊆ B x Cert (accessible only by B) 
 
OCSP Server State 
Cert x Status 
 
Note: We return temporary data, for “permanent” changes, we modify state. 
 
issue(CA, endpoint, service name, pubkey, times) 

Have CA issue to endpoint a certificate binding service name to pubkey with for given 
time period. Modifies EndPoint state. 

 
getpubkey(endpoint address) 

Do SSL/TLS handshake, returns pubkey and cert chain. After this call, browser believes 
it is talking to the owner of the private key corresponding to pubkey. 

 
?chainValid(trusted CAs, chain) 

Do RFC 5280 path validation, return True if successful, False otherwise. 
?certRevoked(OCSPServerURL,cert) 

Checks for the certificate status online with an OCSP server. The server returns the 
status of the certificate , say True for Revoked else False. 
Usage: After chainValid, we walk the chain and check status of each certificate.  

?isAuthorized(endpoint address, chain, pubkey) 
Return True if entity owning pubkey is allowed to represent the given endpoint address. 
Usage: This is the top-level “call” that orchestrates the others. Chain is used as evidence 
to make the decision. 
 
 

 



Orchestration (OCSP version): 
1. Initial state/maintenance: 

a. OCSP server has  a state that maintains certificate and their status​. 
2. User requests a secure webpage at ​endpoint address 
3. Browser calls getpubkey(​endpoint address​ ) -> ​pubkey​ , ​cert chain 
4. Browser calls isAuthorized(​endpoint address​ , cert chain, pubkey) 

a. isAuthorized calls chainValid(​trusted CAs​ , ​cert chain​ ) to do 5280 validation. 
b. isAuthorized calls certRevoked(OCSPServerURL,​cert​  for ​cert​  in ​cert chain​ ) to 

check for certificate status on the online OCSP server. 
 



CT Scheme 
 
Scheme Description: ​ The authenticity of the certificate is determined by the presence in certificate log services. 
Certificate log services are network services that maintain the record of every certificate issued. A certificate is said to 
be conflicting or misbehaved if it is not accompanied by an log entries or if the log entries for the same certificate are 
conflicting with other log entries. Then, this certificate is marked to be revoked. Certificate Transparency does not 
handle revocation and hence depends on other scheme to handle revocation for itself. 
 
Endpoint State 
Key ⊆ E × K x Cert Chain (each tuple accessible only by corresponding E) 

● In each endpoint’s local state, they have a private key K corresponding to a certificate 
Cert. 

 
CA State 
Issued ⊆ Cert 
 
Browser State 
Trusted ⊆ B x Cert (accessible only by B) 
 
Log State 
Cert x log 
 
Note: We return temporary data, for “permanent” changes, we modify state. 
 
issue(CA, endpoint, service name, pubkey, times) 

Have CA issue to endpoint a certificate binding service name to pubkey with for given 
time period. Modifies EndPoint state. 

 
getpubkey(endpoint address) 

Do SSL/TLS handshake, returns pubkey and cert chain. After this call, browser believes 
it is talking to the owner of the private key corresponding to pubkey. 

 
?chainValid(trusted CAs, chain) 

Do RFC 5280 path validation, return True if successful, False otherwise. 
?certRevoked(cert) 

Usage: After chainValid, we walk the chain and check validity of each certificate.  
We call isCertToBeRevoked(cert) to mark all the certificate that should be revoked. 
If ever isCertToBeRevoked(cert) return True, the function return False and reports the 
certificate for revocation. 

?isCertToBeRevoked(cert) 
Usage:Checks for the audit proof entry for a certificate on online certificate logs . 
If the certificate is accompanied by audit proof entry in the certificate logs, then the 



certificate is valid. 
It also checks to see if a log misbehaves for a particular certificate where the audit proofs 
are not consistent with each other. 
Return: If certificate audit proof is found return False else return True. 

 
?isAuthorized(endpoint address, chain, pubkey) 

Return True if entity owning pubkey is allowed to represent the given endpoint address. 
Usage: This is the top-level “call” that orchestrates the others. Chain is used as evidence 
to make the decision. 
 
 

Orchestration (CT version): 
1. Initial state/maintenance: 

a. Certificate log services maintain certificate audit proofs for certificates issued and 
audited. 

2. User requests a secure webpage at ​endpoint address 
3. Browser calls getpubkey(​endpoint address​ ) -> ​pubkey​ , ​cert chain 
4. Browser calls isAuthorized(​endpoint address​ , cert chain, pubkey) 

a. isAuthorized calls chainValid(​trusted CAs​ , ​cert chain​ ) to do 5280 validation. 
b. isAuthorized calls certRevoked(​cert​  for ​cert​  in ​cert chain​ ) to check for certificate 

status on the certificate log service and revocation status by the CA. 
 



Acknowledgements 
	
This work was supported in part by the National Science Foundation through the 
awards 1228668 and 1228697. We thank and acknowledge contributions from 
students at Indiana University: Rohan Mathure, Veer Singh, and Rahul Sinha. 
	


	PKI-ASAF-design-docs
	GeneralPKIWorkload
	PKIWorkloadasagreed
	CertificatePinning
	CRLScheme
	OCSPScheme
	CTScheme

	Acknowledgements

