CENTER FOR TRUSTWORTHY
SCIENTIFIC CYBERINFRASTRUCTURE

Suggested Security Practices for SciGaP:
A Preliminary Report

June 15, 2014

For Public Distribution

Randy Heiland, Jim Basney, Von Welch



About CTSC

The mission of the Center for Trustworthy Scientific Cyberinfrastructure (CTSC, trustedci.org) is
to improve the cybersecurity of NSF science and engineering projects, while allowing those
projects to focus on their science endeavors. This mission is accomplished through one-on-one
engagements with projects to solve their specific problems, broad education, outreach and
training to raise the practice-of-security across the community, and looking for opportunities
for improvement to bring in research to raise the state-of-practice.

Acknowledgments

CTSC’s engagements are inherently collaborative; the authors would like to thank the SciGaP
team for the collaborative effort that made this document possible.

This document is a product of the Center for Trustworthy Scientific Cyberinfrastructure (CTSC).
CTSC is supported by the National Science Foundation under Grant Numbers OCI-1234408. For
more information about the Center for Trustworthy Scientific Cyberinfrastructure please visit:
http://trustedci.org/. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

Using & Citing this Work

This work is made available under the terms of the Creative Commons Attribution 3.0 Unported
License. Please visit the following URL for details:
http://creativecommons.org/licenses/by/3.0/deed.en_US

Cite this work using the following information:
R. Heiland, J. Basney, and V. Welch, “Suggested Security Practices for SciGaP: A Preliminary
Report,” Center for Trustworthy Scientific Cyberinfrastructure, trustedci.org, June 2014.

More information about this engagement can be found at the following URL:
http://trustedci.org/scigap

Suggested Security Practices for SciGaP | CTSC


http://trustedci.org/
http://trustedci.org/
http://trustedci.org/
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://trustedci.org/scigap

Introduction
Differences Between Applications and Gateways
The Science Gateway Security Model
Suggested Security Practices
Comprehensive and Simple SDK
Use of Encryption and Server Authentication (HTTPS)
Science Gateway Authentication
Third-party Application Authentication
Authentication of Privileged Users
Community Education
Software Security
Development Support for Applications
Application Identification
Trust Model
Glossary
Related Links
References

Suggested Security Practices for SciGaP | CTSC 3



Introduction

The Science Gateway Platform (SciGaP, scigap.org) will provide services to help science
domain communities create new and maintain and improve existing Science Gateways.
SciGaP, via Apache Airavata', will use the Apache Thrift framework (thrift.apache.org), a
language-independent, statically typed interface definition language (IDL), to generate the
services, as well as the client software development kits (SDKs) to access those services.
Several languages are supported: C/C++, Java, PHP, Python, Ruby, and more.

Thrift, originally developed internally at Facebook, became open sourced in 2007 and went on
to become a top-level project at the Apache Software Foundation in 2010. As with any Apache
project, it encourages and promotes community participation and has a well-defined process for
developers who want to contribute code.

Even though Thrift is still a relatively new project, it is used by some well-known applications,
including Facebook and Evernote (evernote.com). In another report, we have provided an
overview and best practices for the use of Thrift in Evernote. Figure 1 depicts a high-level use
case diagram of the Evernote and SciGaP architectures.

' Airavata is a toolkit for managing workflows for computational resources.

Suggested Security Practices for SciGaP | CTSC 4


http://scigap.org/
http://thrift.apache.org/
https://evernote.com/
http://hdl.handle.net/2022/20620

{ustpo uiL)
Jasmolq

Figure 1. High-level use case scenarios of SciGaP

Differences Between Applications and Gateways

The main difference between an application/thick client and a gateway is that end users (and
other entities, perhaps malicious) have access to applications and can decompile or otherwise
reverse engineer them. This means that applications, unlike gateways, are not suitable entities

for holding secrets or other sensitive information that should not be available to the user of the
application.

In practice, this means sensitive information should be stored in services invoked by the
application, with the service acting on behalf of the application in an authorized manner based
on the authenticated identity of the application user.

Another difference is that science gateways can use browser-based authentication methods,
such as OpenID Connect (OAuth) and SAML/InCommon, while thick clients must either use
non-browser authentication (password, Kerberos, etc.) or launch a web browser for
authentication (i.e., the thick client could launch a web browser to establish OAuth tokens that
can subsequently be used by the application outside the browser).

Suggested Security Practices for SciGaP | CTSC

5



Additionally, the science gateway introduces a layer between SciGaP and the client, so SciGaP
is not able to directly authenticate the user at the client. Instead, SciGaP must trust the science
gateway to properly authenticate the user, and the science gateway must delegate credentials
to SciGaP as needed so SciGaP can act on the user’s behalf.

The Science Gateway Security Model

A key component of the science gateway security model is the science gateway acting as a
middle tier that mediates the user’s access to valuable resources (such as supercomputers).
Rather than interacting with the supercomputer directly via the command-line (Figure 2), the
user may interact with the science gateway web portal via a web browser (Figure 3). Science
gateways can also support thick clients (Figure 4). To maintain the science gateway model, the
thick client interacts with a “middleware server”, rather than connecting directly from the thick
client to the supercomputer. The portal in Figure 3 and the middleware server in Figure 4 serve
the same role in the model, namely, to mediate access (i.e., provide a gateway) to the
underlying valuable resource. Figure 4 also illustrates how a portal can be layered on top of the
middleware server to provide both thick client and browser interfaces to the same science
gateway services, which appears to match closely the SciGaP Thrift model. The GridChem
science gateway (www.gridchem.org) also combined a thick client and middleware server in this
way.

supercomputer
supercomputer
T 4
supercomputer portal middleware ortal
-+ P
server
T T 4 T
command-line browser thick client browser
Figure 2: traditional Figure 3: gateway portal Figure 4: thick-client gateway (plus portal)

Suggested Security Practices

Comprehensive and Simple SDK

The (SciGaP/Airavata) code generated by Thrift (both services and SDKs) should be enhanced
to handle as much security as possible, as simply as possible, in order to maximize good
security practices by the community using it. Ideally, it would handle all security transparently,
only requiring users with exceptional needs to have to override or change its behavior.

Suggested Security Practices for SciGaP | CTSC 6


http://www.gridchem.org/

Use of Encryption and Server Authentication (HTTPS)

Use of encryption and server authentication (HTTPS presumably) is recommended for all
communications to provide privacy and security. Clients must properly authenticate the server
identity (i.e., via standard TLS server certificate checks) to ensure the encrypted channel is
established with the proper server and not a man-in-the-middle.

Science Gateway Authentication

As shown in Figure 1, SciGaP will have two main use cases, thick clients and science gateways
(web portals). For science gateways, there is already a variety of authentication methods in use
as described in [1]. A challenge here may be that supporting all these different methods is
difficult and SciGaP may need to select a subset to focus on and implement well.

Third-party Application Authentication

Authentication by a third-party application is inherently different than by a science gateway since
end-users (and other parties) will have access to the third-party application and can decompile
or otherwise reverse engineer it. This means that storing long-term secrets and other sensitive
in the third-party application is infeasible from a security perspective.

The typical approach is to have the user of the application authenticate through the application
to the service run by SciGaP, the result of that authentication being a token of some sort that
provides authentication while relieving the user of having to repeated enter their password.
Explicitly, storing of the user’s password by the application is not recommended.

A common mechanism to implement this approach is to use OAuth, with the application acting
in the role of an OAuth client to authenticate the user to the Science Gateway (acting as an
OAuth service provider). Note that the best practice for this case is to store the OAuth client
token on the SciGaP service and have it accessed indirectly by the application [4].

Authentication of Privileged Users
We recommend that privileged users for SciGaP and science gateways utilize two-factor
authentication to provide resistance to password compromise.

Community Education

No matter how comprehensive the SDK is, there will be some security practices that the
community will need to follow operationally and on which they should be educated. Many of
these are described in Section V of [3].

Software Security

All components of the system - applications, Science Gateways, and the SciGaP services -
should have proper software implementation to be resilient to attacks. From a practical
standpoint, the prioritization, from most to least important, would be SciGaP services, followed
closely by Science Gateways and then applications. The SciGaP services and science
gateways, by their nature of being online are more susceptible and likely to be attacked. For this

Suggested Security Practices for SciGaP | CTSC 7



reason, we suggest that the SciGaP team perform routine web application scanning (Qualys
provides one such application). Applications need to be resilient to malicious services and
man-in-the-middle attacks, which are harder to implement. An attack on an application also only
impacts a single user.

Since SciGaP involves considerable software development, we recommend the following
software security practices:

e follow “standard” software engineering best practices, e.g., architecture design,
continuous integration (including unit testing), peer review, etc.

e be mindful of secure programming and use an IDE/plugin(s) that can offer static analysis
of code, e.g. Eclipse/FindBugs (rf.
https://www.owasp.org/index.php/Source_Code_Analysis_Tools)

e run static analysis tool(s) on entire code base?

Regarding this last bullet point, there are several options available, both commercial and open
source. We list a few in the Related Links section at the end. For example, CTSC took a
snapshot of the Airavata code (from github) in March 2014, uploaded it to the SWAMP site and
ran the PMD tool (http://pmd.sourceforge.net/) against it. The results included over 40000
“‘weaknesses” (http://cwe.mitre.org/) that included:

CWE-398 : Indicator of Poor Code Quality

CWE-547: Use of Hard-coded, Security-relevant Constants

CWE-252: Unchecked Return Value

CWE-571: Expression is Always True

CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined
CWE-584: Return Inside Finally Block

CWE-563: Assignment to Variable without Use ('"Unused Variable')

CWE-478: Missing Default Case in Switch Statement

CWE-495: Private Array-Typed Field Returned From A Public Method

Most of the weaknesses were labeled as either “low” or “medium” in severity. However, there
were also some labeled as “high”. CTSC recommends that developers examine and, if
necessary, improve code that a static analyzer designates as being highly vulnerable.

For web-based Science Gateways, a web application security scanning tool should be used. A
list of both commercial and open source tools can be found at OWASP
(https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools).

2 The SWAMP (https://continuousassurance.org/) offers some of these tools. (Disclaimer: some of the
authors of this report are also affiliated with the SWAMP).

Suggested Security Practices for SciGaP | CTSC 8


https://www.owasp.org/index.php/Source_Code_Analysis_Tools
http://pmd.sourceforge.net/
http://cwe.mitre.org/
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://continuousassurance.org/

Development Support for Applications

Evernote and other services support developers of applications by providing a development
environment that allows the application to be developed and tested without putting production
services and data at risk due to a possibly immature application. SciGaP should implement a
similar development service for application and gateway developers alike.

Application Identification

A situation may arise where a fielded application may be determined to be insecure. By having
applications identity themselves to SciGaP services, those services can be configured to
recognize such insecure applications and advise users to upgrade and even deny service to
applications if the situation warrants.

Trust Model

Defining a trust model, that is a definition of the privileges and responsibilities of all the
components of the SciGaP ecosystem, will help both in its design and in the education of the
user community making implementation.

Glossary

e IDL - Interface Definition Language. A high-level specification language for defining the
interface between software components that need to communicate. From the IDL, client
and server implementation stubs can be generated for multiple programming languages.

e Thrift - a software framework (from Apache) that generates client (SDKs) and
server/services code (for multiple languages) from an IDL.

e Evernote - a commercial note-taking, archiving, sharing cloud service that uses Thrift for
its services and SDKs.

e OAuth - an open standard for authorization. It specifies a process for resource owners to
authorize third-party access to their server resources without sharing their credentials.

Related Links

https://www.owasp.org - Open Web Application Security Project

https://cwe.mitre.org/ - Common Weakness Enumeration (for software)
https://scan.coverity.com/ - static analysis for C/C++ and Java (free for open source projects)
https://continuousassurance.org/ - Software Assurance Marketplace (SWAMP)
http://brakemanscanner.org/ - static analysis for Ruby on Rails applications
https://issues.apache.org/jira/browse/THRIFT/?selectedTab=com.atlassian.jira.jira-projects-plugi
n:issues-panel - issues for Thrift developers

http://docs.travis-ci.com/user/languages/javal/ - Travis for continuous integration of Java code
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6702697
http://cxsecurity.com/issue/WLB-2014010087
https://www.owasp.org/index.php/Category:OWASP_Java_Project

Suggested Security Practices for SciGaP | CTSC 9


https://www.owasp.org/
https://cwe.mitre.org/
https://scan.coverity.com/
https://continuousassurance.org/
http://brakemanscanner.org/
https://issues.apache.org/jira/browse/THRIFT/?selectedTab=com.atlassian.jira.jira-projects-plugin:issues-panel
https://issues.apache.org/jira/browse/THRIFT/?selectedTab=com.atlassian.jira.jira-projects-plugin:issues-panel
http://docs.travis-ci.com/user/languages/java/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6702697
http://cxsecurity.com/issue/WLB-2014010087
https://www.owasp.org/index.php/Category:OWASP_Java_Project

http://shiro.apache.org/ - Apache Shiro Java Security Framework
http://architects.dzone.com/articles/how-secure-and-apache-thrift - blog on writing a more

secure Thrift server & client (in Java)

References

1.

3.

Jim Basney, Rion Dooley, Jeff Gaynor, Thejaka Amila Kanewala, Suresh Marru, Marlon
Pierce, and Joe Stubbs, "Integrating Science Gateways with XSEDE Security: A Survey
of Credential Management Approaches," XSEDE Conference, July 2014, Atlanta, GA
http://hdl.handle.net/2142/49302

Thejaka Amila Kanewala, Suresh Marru, Jim Basney, and Marlon Pierce, "A Credential
Store for Multi-Tenant Science Gateways, "International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), May 2014, Chicago, IL http://hdl.handle.net/2022/17379
Jim Basney and Von Welch, "Science Gateway Security Recommendations," Science
Gateway Institute Workshop, September 2013, Indianapolis, IN
http://www.ncsa.illinois.edu/People/jbasney/201309-gwsec.pdf

Nicolas Viennot, Edward Garcia, and Jason Nieh, “A Measurement Study of Google
Play,” Proceedings SIGMETRICS ‘14, June 2014, Austin, TX
http://www.cs.columbia.edu/~nieh/pubs/sigmetrics2014_playdrone.pdf

Suggested Security Practices for SciGaP | CTSC


http://shiro.apache.org/
http://architects.dzone.com/articles/how-secure-and-apache-thrift
https://conferences.xsede.org/xsede14/
https://conferences.xsede.org/xsede14/
http://hdl.handle.net/2142/49302
http://hdl.handle.net/2022/17379
http://www.ncsa.illinois.edu/People/jbasney/201309-gwsec.pdf
http://www.cs.columbia.edu/~nieh/pubs/sigmetrics2014_playdrone.pdf

