
Volume 150B, number 6 PHYSICS LETTERS 24 January 1985 

THE NEUTRINO AS A TACHYON 

Alan CHODOS 1, Avi I. HAUSER 
Physics Department, Yale University, New Haven, CT 06511, USA 

and 

V. Alan KOSTELECK5 ) 

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM87545, USA 

Received 30 October 1984 

We investigate the hypothesis that at least one of the known neutrinos travels faster than light. The current experimental 
situation is examined within this purview. 

The idea that faster-than-light particles, or 
" t a c h y o n s ' ,  might exist has at tracted some attention 
in the literature over the past two decades [1], follow- 
ing the realization [2] that such particles are not ne- 
cessarily incompatible with the tenets of  special rela- 
tivity. Impetus for research has been lacking, however, 
in view of  the apparent experimental  fact that no 
tachyon has ever been detected. In this paper, we 
wish to raise the possibility not only that tachyons 
exist, but that they have been known for several de- 
cades. The hypothesis we shall examine is that at 
least one of  the presently known species of  neutrino 
is in fact a tachyon. 

In the standard model of  the strong and electro- 
weak interactions, the neutrinos are massless. Each 
neutrino has a kinetic energy term in the lagrangian 
density, which may be writ ten in the form 

LKE = i C b f f ,  (1) 

subject to the Weyl constraint 

75 ~ = - 4  • (2) 

Due to eq. (2), however, the kinetic energy term 
could also have been written as 

LK E = i~75 i~ff. (3) 
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At the level of  the standard model  with massless neu- 
trinos, eqs. (1) and (3) are indistinguishable. 

Let us suppose that at least one neutrino gains a 
small mass, due to some short distance interaction 
such as is present in a GUT. One then removes the 
constraint (2), and one adds a mass term either to eq. 
(1), 

L = i ¢ ~  - m u ~ ,  (4) 

or to eq. (3), 

L ' =  i~75 bff - m v ~ ¢ .  (5) 

At this point,  however, there is an important  differ- 
ence between L and L ' :  eq. (4) describes a normal 
Dirac neutrino, while eq. (5) describes a tachyon * 1 

We are not claiming that L '  serves as a satisfactory 
starting point for the construction of  a consistent 
quantum field theory of  tachyonic neutrinos. Indeed, 
as yet  there does not exist a completely satisfactory 
quantum field theory of  any type of  tachyon [3]. 
Also, most work to date [4] has been concerned with 
scalar tachyons, because the little group for spacelike 
momenta  is noncompact  and, hence, its unitary repre- 
sentations are either one-dimensional (the scalar case) 

t l  We are indebted to Gregg Gallatin for suggesting eq. (5). 
To our knowledge, L' is the first example of a hermitean 
lagrangian describing tachyonic fermions. 
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or infinite-dimensional. Therefore, the Fock space o f  
the theory given by eq. (5) involves a nonunitary rep- 
resentation of  the Lorentz transformations. A related 
problem is that straightforward quantization of  the 
field theory can be shown to imply negative norm 
states in the Hilbert space, resulting in serious difficul- 
ties with the interpretation of  the theory. Essentially, 
tiffs occurs because 3'5 has both positive and negative 
eigenvalues, so that the kinetic energy term of the 
right-handed component of  ff will appear with the 
wrong sign in the hamiltonian. The problem is fore- 
shadowed even at the level of  quantum mechanics: 
the conserved current is 

/'# = ~75")'# 4 ,  (6) 

so that the probability density J0 is not positive definite. 
In our view, such difficulties cannot be used Io ex- 

clude a priori the existence of  tachyons. Rather, they 
suggest that more theoretical work is required to deter- 
mine physically acceptable modifications of  the usual 
non-tachyonic quantum field theory. Such efforts 
would surely be forthcoming, if convincing experi- 
mental evidence were presented that at least one of  
the neutrinos is a tachyon. In fact, despite the cata- 
logue of  disasters listed in the previous paragraph, it is 
interesting that 3'5 makes a natural appearance in the 
theory of  the tachyonic neutrino given by L'.  To 
zeroth order in the neutrino mass, this means that the 
(1 - 75) projection operator occurring in the standard 
model neutrino couplings is just what is required to 
prevent the interaction of  the negative-norm compo- 
nent of  the neutrino field. We shall elaborate on this 
point below. 

Let us consider possible experimental tests of  the 
nature of  the neutrino. Perhaps the simplest concep- 
tually is a direct time-of-flight measurement. Experi- 
ments comparing the neutrino, antineutrino, and 
muon velocities have in fact been performed [5], but 
no firm conclusions can be drawn at the current level 
of  precision. The most precise tests, for the electron 
neutrino, involve the study of  nuclear beta decay [6]. 
Although there are published data [7] bounding the 
mass of  the electron neutrino between 14 and 46 eV, 
the result is not generally viewed as conclusive [8]. 
We wish to point out that the data, as usually analyzed, 
are much less sensitive to the presence of  a tachyonic 
mass parameter than to that of  an ordinary mass. This 
is because the energy of  a non-tachyonic neutrino 
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Fig. 1. Kurie plot of  the electron energy spect rum near the 
upper end point,  showing the expected behavior for massless 
neutrinos,  for non- tachyonic  neutrinos,  and for tachyonic  
neutrinos.  Note that  the  end point  values have been chosen 
equal. 

cannot be less than its mass my, so that the location of  
the end point of  the electron energy spectrum changes 
with m v. For a tachyonic neutrino this is no longer 
true, since it can have zero energy for any mv. The 
effect of  this may be seen in the Kurie plot [9] of  
fig. 1, in which the quantity 

K(Ee) = { rE(Z, Ee)PeEe] -1 dN/dEe )X/2 , (7) 

is plotted versus E e near the upper end point. Here, 
Pe and E e denote the momentum and energy of  the 
emitted electron, dN/dE e denotes the density of final 
states per unit range of  total energy, and F(Z, re) de- 
notes the Coulomb correction factor. In terms of  the 
deviation D from the upper end point energy, the spec- 
trum near the upper end point energy is as follows: for 
massless neutrinos 

K(Ee) ~ D ; (8) 

for non-tachyonic neutrinos, 

K(Ee) ~ (D + mv)l/2(D2 + 2mvD)l/4 ; (9) 

and, for tachyonic neutrinos, 

K(Ee) ~ O1/2( ° 2  + '"vy~2~l/4 . (10) 

From fig. 1, it is evident that the electron energy spec- 
trum data [7] bounding the electron neutrino mass 
also provide a weaker bound on the tachyon mass pa- 
rameter. 

Since the magnitude o f  the momentum of a 
tachyonic neutrino is bounded from below by my, a 
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Fig. 2. Kurie plot of the neutrino momentum spectrum near 
the upper end point, showing the expected behavior for mass- 
less neutrinos, for non-tachyonic neutrinos, and for tachyonic 
neutrinos. Note that the end point values have been chosen 
equal. 

more sensitive test for the tachyonic case is obtained 
by plotting the number of  events as a function of  the 
neutrino momentum. We illustrate this in fig. 2. We 
have conservatively chosen to plot the curves as 
though all of  the end points were at zero neutrino 
momentum, q = 0. If  an experiment is done that can 
measure the location of  the end point, then the 
tachyonic curve will be displaced relative to the others 
and the difference will be even more pronounced. 

Unfortunately, the neutrino energy is much easier 
to determine experimentally than its momentum 
because, in the limit of  infinite nuclear mass, the re- 
coiling nucleus carries an unknown amount of  momen- 
tum but absorbs no kinetic energy. Thus, increased 
sensitivity to the existence o f  a tachyonic neutrino 
requires an experiment capable of  determining the 
momentum of  the recoiling nucleus. Also, since the 
tachyonic and non-tachyonic cases have the same 
qualitative shape, both the electron energy spectrum 
and the neutrino momentum spectrum are required 
to distinguish conclusively between the two types of  
neutrino. 

The experiments that yield the most precise results 
on the muon neutrino mass involve the study of  the 
reaction n + -+/a+v. Essentially, the method involves 
determining the momentum Pu of the emitted muon 
in the rest frame of  the pion and using known values 
of  the pion mass, r n ,  and muon mass, mu,  to obtain, 
the neutrino mass rn~: 

2 2 + 2_2m~(p2. u +m2~l/2u ~ m v = m ,  m u (1 1) 

The square o f m  v is calculated, so this method is less 
sensitive to small neutrino masses than the method 
involving the end point spectrum. We find the weighted 
average ~ of  four independent experimental results 
[10] to be 

rn 2 = 0.02 -+ 0.18 MeV 2 , (12) 

weakly favoring a non-tachyonic muon neutrino. How- 
ever, it is amusing that three of  these four experiments 
provide negative values for m 2. 

It seems premature to consider published results on 
the tan neutrino mass [ 11 ], given that its existence 
has only been indirectly inferred from the decay of  
the tau lepton. Instead, let us consider another popular 
method of  searching for a neutrino mass: neutrino os- 
cillations [ 12]. These occur when the neutrino mass 
eigenstates differ from the weak interaction eigenstates. 
The amplitude of  the oscillations between any two 
flavors Va, u b of  neutrino is determined by the mixing 
angles, while the oscillation length Xab is proportional 
to the difference between the energies El,  E 2 of  the 
mass eigenstates Ul, v 2. For neutrino beam momenta 
p satisfying I p21 >> I m21, the oscillation length is given 
by 

Xab = (+m 2 ~ m 2 ) d / Z i p ]  , (13) 

where d is the distance of  the detector from the source 
of  neutrinos of  flavor a and where the lower sign in 
front o f  any mass eigenvalue is to be taken when the 
associated neutrino mass eigenstate is tachyonic. Un- 
fortunately, eq. (13) makes it clear that, short of  an 
experiment capable of  determining the sign of  Xab , 
neutrino oscillations do not provide a good means o f  
investigating our hypothesis. 

One might wonder whether there are any qualita- 
tive differences between the tachyonic and non-tach- 
yonic cases that do not disappear as the mass parame- 
ter tends to zero. This question is difficult to answer 
in general, but it seems that no such "zeroth order" 
effects appear in the model with L'  given by eq. (5) 
and with neutrino couplings involving currents of  the 
form ~Tu(1 - 75)~v- To show this, we adopt the 
heuristic attitude that the usual field theory rules are 
to be followed in constructing amplitudes, except that 
integrals over tachyonic momentum magnitudes I Pv[ 
are restricted [4] by the constraint 

]pv[ 2 >=m 2 . (14) 
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The neutrino propagator in momentum space is then 
found to be 

S(V)(P) = (/b3'5 - mv)/(p 2 + m2), (15) 

subject to the constraint (14). The extra factor 3'5, 
which one might have expected to lead to zeroth order 
effects, always occurs in the combination 

(1 - 3'5)/b75 -= ( 1 - 3'5)/b. (16) 

Thus, if terms depending on the mass parameter are 
ignored, the presence of  the extra factor 3'5 is irrele- 
vant. This verifies the assertion made above that the 
factor (1 - 75) is, at least to zeroth order, just what 
is needed to eliminate the effects of  the negative norm 
component  of  the neutrino field. 

Eq. (5) is, however, qualitatively different from eq. 
(4) in at least one respect: it seems to exclude the pos- 
sibility of  neutrinoless double beta decay [ 13]. This 
result follows from the properties of  the charge conju- 
gation matrix C', obtained by imposing a symmetry 
of  the form 

---> i f ' =  C ' ~  x , (17) 

on the tachyonic Dirac equation. We find 

C, T~ , -1  75 7 u c = 75 7 u - (18) 

It is, however, impossible to impose a Majorana condi- 
t ion of  the form ~ '  = ),~ for any phase X, as the reader 
is invited to verify. Thus, although C'  defined in this 
way is a symmetry of  the equations of  motion,  it can- 
not be used to project out  a charge self-conjugate 
spinor. Although there might be a subtler definition 
of  C'  that could circumvent this problem, with our 
definition eq. (5) cannot be used to describe Majorana 
tachyons. Therefore, processes that violate lepton 
number conservation due to the involvement o f  
tachyonic neutrinos are forbidden. 

In this note, we have raised the possibility that a 
neutrino, upon acquiring a small mass, might become 
a tachyon. We have surveyed the existing neutrino 
mass searches with this in mind and have suggested 
some ways to detect a tachyonic neutrino. Unfortu- 
nately, there is no "smoking gun", i.e., no piece of  
experimental  evidence that strongly implies the 
tachyonic nature of  the neutrino. There are, however, 
some interesting aspects of  the neutrino that  might 
bear reexamination under the hypothesis that it is a 
tachyon. For  example,  at one time it was hoped that 
the near masslessness of  the neutrino might be ex- 

plained [14] by interpreting it as the Goldstone 
fermion associated with supersymmetry breaking; 
perhaps this idea could be revived in conjunction with 
the tachyonic neutrino. Another possibility is that 
tachyonic neutrinos might explain the uniformity of  
the universe over distances that are large relative to the 
horizon distance. These and other ideas are being in- 
vestigated. 

We would like to acknowledge helpful conversations 
with Earle Fowler, Gregg Gallatin, Terry Goldman, 
Peter Herczeg, Vernon Hughes, Daniel Lu, Peter Rosen, 
and Dick Slansky. 

Note added: After this paper was written, a new 
value for the square of  the muon-neutrino mass was 
published by Abela et ai. [15]. This new value super- 
sedes the one quoted by gu et al. in ref. [10].When 
we recompute the world average for m 2, we find, 
instead of  eq. (12), the following result: 

my2 = 0.166-+0.091 . 

Thus, the data no longer weakly favor a non-tachyonic 
neutrino; instead they favor a tachyonic neutrino by 
almost two standard deviations. 
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