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ABSTRACT

Distributed cyberinfrastructure requires users (and machines)
to perform some sort of authentication and authorization
(together simply known as auth). In the early days of com-
puting, authentication was performed with just a username
and password combination, and this is still prevalent today.
But during the past several years, we have seen an evolution
of approaches and protocols for auth: Kerberos, SSH keys,
X.509, OpenID, API keys, OAuth, and more. Not surpris-
ingly, there are trade-offs, both technical and social, for each
approach.
The NSF Science Gateway communities have had to deal

with a variety of auth issues. However, most of the early
gateways were rather restrictive in their model of access and
development. The practice of using community credentials
(certificates), a well-intentioned idea to alleviate restrictive
access, still posed a barrier to researchers and challenges for
security and auditing. And while the web portal-based gate-
way clients offered users easy access from a browser, both the
interface and the back-end functionality were constrained in
the flexibility and extensibility they could provide. Design-
ing a well-defined application programming interface (API)
to fine-grained, generic gateway services (on secure, hosted
cyberinfrastructure), together with an auth approach that
has a lower barrier to entry, will hopefully present a more
welcoming environment for both users and developers.
This paper provides a review and some thoughts on these

topics, with a focus on the role of auth between a Science
Gateway and a service provider.
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1. INTRODUCTION
Our interconnected world depends on distributed cyber-

infrastructure (DCI). Whether it is email between family
members, searching the web for information, doing online
banking, or performing computation and analysis for science
and engineering, we rely on DCI. An implicit assumption (or
hope) by users is that the DCI we are using is trustworthy.
The concept of trustworthiness deserves considerable atten-
tion and we will only be able to touch on it here. How do we
know that an email we received from a friend or colleague
was actually sent by them? Is it possible their email ac-
count was compromised and someone else was pretending to
be them? Or perhaps the true sender did indeed originate an
email, but the message was intercepted and altered before
it arrived. Trustworthiness for online banking is, arguably,
a more serious matter. And what about science and engi-
neering? Should the lay public, policymakers, and funding
agencies trust scientists’ claims of some recent discovery?
Claims should always be questioned and verified. Those of
us helping to build and support DCI, especially those in
information security, can help insure that the underlying
technology provides at least some degree of trustworthiness.
Auth (authentication and authorization) plays a critical role.

The NSF has funded the evolution of high-end DCI for
many years1. This led to the formation of the TeraGrid
program and, more recently, the XSEDE program. The

1http://www.nsf.gov/news/special_reports/cyber/
fromsctotg.jsp
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Science Gateways program was part of this evolution. Its
primary purpose was to make it easier for researchers and
educators to use DCI by providing web portals that offered
easier access to resources (data, computational, experimen-
tal) and tools associated with those resources, e.g., work-
flow creation, job monitoring, and data analysis/visualiza-
tion. Security considerations were part of the foundation of
Grid technologies[5]. Security considerations for gateways,
which act on a user’s behalf, have been discussed by Welch
et al.[15].
Of course the evolution of DCI has not stopped. Dur-

ing the last few years, we have seen a tremendous growth
in social networking and the accompanying infrastructure
associated with it, including mobile devices, apps, and nu-
merous online services. Associated with these services are
application programming interfaces (APIs) that expose the
available functionality. Users can invoke the APIs, typically
using one of several software development kits (SDKs) that
the developers of the service make freely available. APIs
have become commonplace both for the business world[12]
and also for science and engineering.
Here, we focus on one particular service, the Science Gate-

way Platform as a service (SciGaP), and explore the evolving
security and usability issues associated with online services.
This is ongoing work from a collaborative engagement be-
tween the CTSC project (trustedci.org) and the SciGaP
project. Anderson[1] provides a theme for this project with
the following quote: “Managing the evolution of an API is
one of the toughest jobs in security”.
The target audience for this paper includes not only sci-

ence gateway administrators, but also DCI administrators
and software developers who want a better understanding
of auth options that are relevant for Science Gateways and
service providers.

2. SCIGAP: A MULTI-TENANT SERVICE
The Science Gateway Platform as a service (SciGaP.org)

project is an NSF funded effort to provide consolidated,
scaleable, elastic services for common gateway operations.
Examples of common operations include identity manage-
ment, application and resource metadata management, ex-
periment provenance for online application executions, and
data management (Figure 1). The SciGaP project is based
on a multi-tenanted version of the Apache Airavata software
system[11]. Airavata’s credential store component[9] man-
ages user identities within the gateway.
Establishing authentication and authorization between Aira-

vata and client gateways and desktop client applications is
an open problem that this paper examines.
SciGaP is developing an Application Programming Inter-

face (API) in order to meet its goal of scalable support for
multiple gateways[13]. The API defines a uniform contract
for interactions between SciGaP and its client gateways,
eliminating custom, per-gateway integrations that are dif-
ficult to sustainably support. SciGaP uses Apache Thrift to
define its API and associated data models and releases Soft-
ware Development Kits (SDKs) in multiple programming
languages. Gateway clients integrate these SDKs into their
code bases to make over the wire calls to SciGaP services.
SciGaP must address the security challenges introduced

by the API approach. SciGaP use cases broadly fall into two
categories: 1) SciGaP has direct or indirect (reference) ac-
cess to the gateway user store, and 2) SciGaP cannot access

gateway end user information. In the second case, SciGaP
and its client gateways must establish mutual trust (which
can be a one-time operation) as well as over the wire security
for each session. During a particular session, a client gate-
way and SciGaP must mutually authenticate to each other.
Both sides must also ensure that the integrity of requests
and responses is not compromised; privacy via encryption
of the message exchanges may or may not be required, de-
pending on the gateway.

These are well-established security considerations. Note
also that the gateway establishes trust with its users and
can make assertions to SciGaP about a user’s roles and per-
missions. It is the gateway therefore, rather than the user,
that is the center of the trust relationships.

Science gateways come in at least two major varieties,
which must be considered when developing a security model
for SciGaP. The first is the classic Web-based gateway, which
has been implicit in the above discussion. Here, users inter-
act via a Web browser with the gateway, which in turn in-
vokes SciGaP services. The gateway is a centralized service
that is only accessible to a well-defined operations team.
In contrast, a gateway may distribute desktop or mobile
application clients to its users. These clients may directly
contact SciGaP services. Consequently, gateway sessions do
not come from a single, centralized service, making the es-
tablishment and maintenance of trust more difficult.

3. AUTH: BACKGROUND
In this section, we offer a basic review of the ideas and

technologies behind authentication and authorization.
One of the earliest and still one of the most common ways

to authenticate oneself to a computer, web site, etc., is to
provide a username and password. The subject of passwords
has received and continues to receive considerable attention,
in both the daily news and in research. In one sense, pass-
words, or at least password complexity, can be traced back
to the 1940s and the beginning of information theory with
the seminal work of Claude Shannon[14]. The concept of
entropy, which in a somewhat convoluted fashion was bor-
rowed from statistical mechanics2, has been used to quantify
“good” passwords. In spite of the decades that have since
passed, passwords still remain vulnerable to being guessed[3]
or obtained through phishing attacks or other means.

One alternative to username/password authentication is
public key infrastructure (PKI). PKI arose from the concept
of a cryptographic key which is simply a string of bits used
to encrypt plain text. Cryptographic key algorithms can be
symmetric or asymmetric: symmetric having a single (pri-
vate) key and asymmetric having two keys (one public, one
private). PKI uses the latter. X.509 is a standard model
and protocol (https://tools.ietf.org/html/rfc5280) for
PKI. It is fairly complex and includes multiple components,
including the critical concept of a certificate. An X.509 cer-
tificate includes multiple entries, including the time range
for the certificate’s validity, the subject’s public key and the
type of algorithm used to generate it, a signature, and the
issuer, a.k.a. the certificate authority (CA).

The SSL protocol and, more recently, the TLS protocol
(https://tools.ietf.org/html/rfc5246/), on which web
browsers rely for security, require X.509. A user can in-

2Gleick’s book, The Information[6], offers a lucid discussion
of entropy in this context for the lay reader.
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Figure 1: SciGaP as a service architecture overview

spect their web browser’s security settings and see that it
has many built-in CAs. This infrastructure has been built
up over the past few decades and is how we have at least
some degree of security on the Internet. However, X.509 has
its share of criticism[7][8], primarily due to its complexity.
In the context of Science Gateways during the NSF Tera-

Grid program, an auth architecture was implemented, based
on the X.509 model, that allowed for community accounts[2].
This worked, in part, due to the trust relationship between
a science gateway web portal and the resource providers, as
described in the previous section.
Another type of auth, with less complexity than X.509,

is to use an API key, a.k.a. bearer token or developer to-
ken3. An API key is a cryptographic key, i.e., a unique,
random string of alphanumeric characters, that serves to
authenticate and authorize the holder of the key to invoke
an API. One could imagine using the widely known Uni-
versally Unique Identifier (UUID) as an API key. For ex-
ample, running the BSD command uuidgen will generate a
unique 128-bit (hyphenated) ID, such as 92E5E0DB-7A49-
4E42-A001-C5B343DB3F06. By removing the hyphens, one
might consider using it as an API key. Note, however, that
the IETF RFC cautions against doing so (https://tools.
ietf.org/html/rfc4122#section-6).
In the era of social networking and apps running on mobile

devices, many online services have adopted a relatively new
auth protocol called OAuth[10] (OAuth 2; https://tools.
ietf.org/html/rfc6749). OAuth makes it possible for a
user to authorize one service to access their information on
another service. A simple social networking example would
be to allow Twitter to post your tweets on your Facebook
page. In spite of this trivial-sounding example, the autho-
rization flow that takes place for OAuth is far from trivial,
as depicted in section 1.2 of the IETF RFC. One key idea
of OAuth is that the user’s credentials are not shared be-
tween the services; rather, an access token is generated and

3Note that the terminology surrounding tokens can be a bit
confusing and overlapping.

shared. This access token is a string containing a scope of
the authorization, its lifetime, and other attributes.

Of course OAuth is used in more than just social net-
working applications and we will show some of these in the
next section. The Agave API[4] is another service for science
gateways that has also adopted OAuth4.

4. RELATED WORK
In this section, we examine a few popular services and see

how they deal with authentication and authorization. While
these examples may seem repetitive, we wish to demon-
strate the variety of options for auth, how credentials are
managed, some best practices, and highlight a common ap-
proach: OAuth.

4.1 Google
Google provides numerous APIs to its services (https:

//developers.google.com/apis-explorer) and offers the
following advice related to auth:

Every request that your application sends to the
Google+ API needs to identify your application
to Google. You can use the API key you get when
defining your project, or you can use an OAuth
2.0 access token. You should use an access token
when you are making calls on behalf of a given
user.

The general approach that Google uses to assist appli-
cation developers is to provide a web-based (HTTPS) con-
sole (https://console.developers.google.com) to create
a project and obtain either an OAuth token or an API key,
depending on the nature of the application (Figure 2). Many
other online services/APIs provide similar web interfaces.

4http://agaveapi.co/authentication-token-management
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Figure 2: Google Console to create an application
that will use OAuth

4.2 AWS
Amazon Web Services (AWS) is an extremely successful

commercial cloud computing and data storage, delivery, and
analytics suite of services. AWS powers several well-known
online services, e.g., Netflix, Adobe, reddit, Docker, Globus,
and more. For auth, AWS offers multiple options:

• email and password
• Identity and Access Management (IAM) username and

password
• Access keys (access key ID and secret access key)
• Key pairs (public and private), only for a limited num-

ber of AWS services

In addition, AWS offers multi-factor authentication as an
option.
AWS also provides a web-based interface (Figure 3) for

managing one’s keys and offers the following explanatory
text for these keys:

Access keys are also used with command line in-
terfaces (CLIs). When you use a CLI, the com-
mands that you issue are signed by your access
keys, which you can either pass with the com-
mand or store as configuration settings on your
computer.

AWS provides SDKs for multiple platforms and program-
ming languages, including Python, Ruby, PHP, Java, and
others (http://aws.amazon.com/tools/).

Figure 3: Web (HTTPS) interface for managing
AWS access keys

And AWS also provides an OAuth option for applications:

After users log in, they are returned to your web-
site or mobile app. At this point, your client can
obtain an access token by calling the Login with
Amazon authorization service. That token al-
lows clients to access the customer’s name and
email address from their customer profile.

When you are granted an access token, you may
also receive a refresh token. A refresh token is
valid for longer than an access token, and allows
you to trade in the refresh token for a new access
token and a new refresh token.

To access customer data, you must provide an ac-
cess token to the Login with Amazon authoriza-
tion service. An access token is an alphanumeric
code 350 characters or more in length. Access
tokens begin with the characters Atza|. Access
tokens are only valid for sixty minutes and are
specific to the user logging in and the data the
app requested when it triggered the login. These
access tokens are bearer tokens...

Access tokens are returned in both the Implicit
and Authorization Code grants.

4.3 GitHub
GitHub, as most software developers know, is a very suc-

cessful hosting service for software repositories. It provides
an API to its services and offers multiple auth approaches.
The simplest auth is the personal access token, described in
a GitHub help article5:

When it comes to dealing with the API, personal
access tokens work the same as OAuth tokens,
and can easily be generated on GitHub.com.

Personal access tokens are useful when it’s too
cumbersome to provide a client/secret pair for
a full application, such as when authenticating
to GitHub from Git using HTTPS, or within a
command line utility or script.

GitHub also provides a web-based interface (Figure 4) for
managing personal access tokens.

5https://help.github.com/articles/creating-an-access-
token-for-command-line-use/
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Figure 4: Web (HTTPS) interface for GitHub’s Per-
sonal Access Token

But for production applications, GitHub recommends au-
thentication via OAuth. From their developer documenta-
tion:

While the API provides multiple methods for au-
thentication, we strongly recommend using OAuth
for production applications. The other methods
provided are intended to be used for scripts or
testing (i.e., cases where full OAuth would be
overkill). Third party applications that rely on
GitHub for authentication should not ask for or
collect GitHub credentials. Instead, they should
use the OAuth web flow.

4.4 Evernote
Evernote (evernote.com) is a cloud-based note taking, archiv-

ing, syncing, and sharing service. It is of interest to our work
for multiple reasons:

• it is a very successful service and offers web, desktop,
and mobile clients,

• it uses the Apache Thrift (RESTless) framework for
its API,

• it provides both OAuth and developer tokens for au-
thentication,

• it provides SDKs (for multiple languages/platforms)
to assist in developing clients

In the following snippet of Python code, we see how easy
it is to begin creating a Thrift client when an appropriate
SDK has been provided.

import ssl

from thrift.transport import TSocket

class TSSLSocket(TSocket.TSocket):

SSL_VERSION = ssl.PROTOCOL_TLSv1

When a developer is creating an application and needs
to access only their personal account, they can use a devel-
oper token for authentication (Figure 5); otherwise, Ever-
note supports OAuth. Figure 6 depicts the OAuth flow for
an Evernote application.

Figure 5: Web (HTTPS) interface for obtaining (or
revoking) an Evernote token

Figure 6: The OAuth flow for Evernote

5. RISKS
There are multiple risks associated with a project such as

this. When one considers risks, it is usually in the context of
security and certainly those are present and taken seriously
here. There are, for example, risks associated with API keys
being compromised, for various reasons. OAuth also has
risks. The OAuth specification itself (OAuth2) has received
some criticism for being overly complex. This may lead to
implementations that are non-interoperable or, worse yet,
insecure.

However, there are also risks associated with the usability
of the API. If the API is difficult to use or lacks sufficient
functionality, the project risks alienating users. Designing
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and implementing an acceptable compromise between secu-
rity and usability is a challenge for any service.

6. ARCHITECTURE AND BEST PRACTICES

FOR AUTH
The SciGaP team will be concluding a design and initial

implementation of an architecture for their service in the
next few months.
We began this project considering three primary contenders

for an auth solution: X.509, API keys, and OAuth. X.509
was ruled out primarily due to its complexity and because
of the targeted clients. In addition to the traditional web
portal science gateways, SciGaP would also be targeting na-
tive clients running on desktops and mobile devices. Many
of these users would find X.509 to be overwhelming.
Using API keys was our preferred choice for awhile be-

cause they seemed to offer an acceptable compromise be-
tween security and usability. However, upon further con-
sideration, the functionalities of API keys can be achieved
as an authorization grant option within the OAuth specifi-
cation. With increasing adoption of the OAuth2 standard,
combined with SciGaP’s wish to use an existing implemen-
tation over writing an API key implementation from scratch,
we eventually selected OAuth as our choice for auth. Sci-
GaP’s eventual preference to incorporate the WSO2 Identity
Server6 into its architecture also affected our decision. This
open source product has broad support for OAuth. The de-
velopers of both projects have a close working relationship
which suggests that WSO2 may be willing to tailor some of
their product’s OAuth functionality to help satisfy SciGaP’s
needs.
Further, the OAuth2 specification naturally maps to Sci-

GaP use cases. They will cover three grant flows discussed
in the specification:

1. Gateways integrating with SciGaP and using the Sci-
GaP provided identity management will follow the“Au-
thorization Code Grant flow”.

2. Gateways with native apps and mobile apps will use
the “Implicit Grant flow”.

3. Gateways managing their own users (and SciGaP un-
able to access this information) will need to employ
the “Client Credentials Grant flow”.

For completeness and to offer some advice to other projects
that may choose to use API keys, we provide a list of best
practices (some of which apply to OAuth also):

• have the service generate the API key
• deliver the API key in a web interface using HTTPS
• allow multiple API keys per user/client and allow de-

activating them when one is potentially compromised
or no longer needed

• regenerate API keys periodically (annually, at a mini-
mum)

• do not embed API keys directly in code
• store API keys on the server hashed and salted
• provide easy to use SDKs in multiple languages
• provide example clients (using the SDKs) that demon-

strate using TLS for the transport protocol

6http://wso2.com/products/identity-server

7. CONCLUSIONS
Traditional science gateways from ten years ago enjoyed a

unique trust relationship between a web portal and resource
providers and piggybacked on the Grid Security Infrastruc-
ture. The emergence of Cloud Computing resource providers
requires integration with infrastructure APIs. In addition,
science gateways are evolving into services and are them-
selves providing public APIs. These require us to revisit
the trust relationships. For many online services, it is now
commonplace to use either API keys or OAuth for authenti-
cation and authorization. API keys are, conceptually, easier
to understand and use: a user obtains a (cryptographically
secure) key and passes it into the API. However, there are
significant burdens on both the user and the service to se-
curely manage these keys. OAuth, although more complex,
is widely supported and recommended by many popular on-
line services. In addition, there has been a proliferation of
libraries and frameworks, for both clients and servers, that
implement the OAuth specification and thereby encourage
its adoption. In this paper, we discussed these transitions
and shared the experiences of the SciGaP project in arriving
at a security solution. With the expert consulting and vali-
dation by CTSC, SciGaP is planning to support OAuth for
science gateways. Its support on the server side will, at least
initially, be provided by the WSO2 Identity Server, an open
source product with a broad industrial and academic cus-
tomer base. For client side support, SciGaP plans to bundle
OAuth libraries into its various language binding SDKs.
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