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A MAGNETO-GRAVITATIONAL NEUTRON TRAP FOR THE MEASUREMENT OF THE
NEUTRON LIFETIME

Neutron decay is the simplest example of nuclear beta-decay. The mean decay lifetime is a key

input for predicting the abundance of light elements in the early universe. A precise measurement

of the neutron lifetime, when combined with other neutron decay observables, can test for physics

beyond the standard model in a way that is complimentary to, and potentially competitive with,

results from high energy collider experiments. Many previous measurements of the neutron life-

time use ultracold neutrons (UCN) confined in material bottles. In a material bottle experiment,

UCN are loaded into the apparatus, stored for varying times, and the surviving UCN are emptied

and counted. These measurements are in poor agreement with experiments that use neutron

beams, and new experiments are needed to resolve the discrepancy and precisely determine the

lifetime. Here we present an experiment that uses a bowl-shaped array of NdFeB magnets to

confine neutrons without material wall interactions. The trap shape is designed to rapidly re-

move higher energy UCN that might slowly leak from the top of the trap, and can facilitate new

techniques to count surviving UCN within the trap. We review the scientific motivation for a

precise measurement of the neutron lifetime, and present the commissioning of the trap. Data

are presented using a vanadium activation technique to count UCN within the trap, providing an

alternative method to emptying neutrons from the trap and into a counter. Potential systematic

effects in the experiment are then discussed and estimated using analytical and numerical tech-

niques. We also investigate solid nitrogen-15 as a source of UCN using neutron time-of-flight

spectroscopy. We conclude with a discussion of forthcoming research and development for UCN
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1 Neutron Decay

1.1 Introduction

The free neutron undergoes β decay

n→ p+ e+ ν̄e (1.1)

with a Q value of approximately 782 keV. A theoretical model for β-decay was first proposed

by Fermi[83], which was subsequently modified due to the discovery of parity violation, and

eventually incorporated into the framework of electroweak theory. Theoretical considerations

related specifically to neutron decay have been recently reviewed in the literature[18, 134]. In this

chapter we briefly review the prediction of neutron decay from the standard model and effective

low energy framework to describe the decay, following the notation used in standard texts[126].

We then discuss the current experimental knowledge of neutron decay, the predicted value of the

neutron mean lifetime, and the impact of its measurement on the fields of particle physics and

cosmology.

1.2 Neutron Decay in the Standard Model

At quark level in the standard model (SM), the decay of the neutron is due to the coupling of the

two lightest (u and d) quarks to the electroweak gauge fields. The u and d form a weak SU(2)

doublet which leads to the interaction

LSM ⊃
1√
2
g2W

+
µ Q

−µ +
1√
2
g2W

−
µ Q

+µ +
e

sW cW
ZµQ

µ
Z + eAµQ

µ
EM (1.2)

1
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with quark currents

Q+µ = d̄(L)IV
†
IJγ

µu(L)J (1.3)

Q−µ = ū(L)IVIJγ
µd(L)J (1.4)

Qµ
Z =

1

2
ū(L)Iγ

µu(L)I −
1

2
d̄(L)Iγ

µd(L)I − s2WQ
µ
EM (1.5)

Qµ
EM =

2

3
ūIγ

µuI −
1

3
d̄Iγ

µdI . (1.6)

Here, sW and cW are the sine and cosine of the weak mixing angle θW , e is the electric charge,

g1/g2 = tan θW , and Wµ and Zµ are (respectively) the charged and neutral weak gauge bosons.

The indices I = 1, 2, 3 and J = 1, 2, 3 (repeated indices summed) represent the three different

quark generations. The subscript (L) represents the fact that the quark fields are left-handed

projections. That is, the fields in the weak currents are given by u(L) = P(L)u = 1
2
(1 − γ5)u,

where P(L) is the left handed projection operator. The fermion currents thus take the form of a

vector current minus an axial vector current (the so-called V-A form). This has the implication

that the theory is chiral – weak interactions maximally violate parity symmetry.

The three generations of quark fields appearing in eqns. 1.3 through 1.6 acquire a mass

through the yukawa coupling to the Higgs field, and their representation is chosen so as to diago-

nalize the mass terms. It is, however, observed that these mass eigenstates are not simultaneously

diagonal with respect to the weak interaction terms; they are related to the mass terms via unitary

matrices

dI → DIJdJ (1.7)

uI → UIJuJ (1.8)

from which we see that the matrix VIJ appearing in the above is given by

V = U †D. (1.9)
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This matrix is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It has the implication that

weak interactions mix the different quark flavors so that, for example, a d quark can decay into

a u quark, which leads to β-decay. Writing the CKM matrix explicitly in terms of the different

quark flavors, we have that


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b

 (1.10)

where the matrix on the right hand side is the CKM matrix, the vector on the right hand side

contains the d,s,b mass eigenstates, while the fields on the left hand side are those that appear

in the weak interaction terms.

The lepton sector also participates in charged-current weak interactions:

LSM ⊃
1√
2
g2W

+
µ L
−µ +

1√
2
g2W

−
µ L

+µ +
e

sW cW
ZµL

µ
Z + eAµL

µ
EM (1.11)

with the lepton currents given by

L+µ = ē(L)Iγ
µν(L)I (1.12)

L−µ = ν̄(L)Iγ
µe(L)I (1.13)

LµZ =
1

2
ν̄(L)γ

µν(L)I −
1

2
ē(L)Iγ

µe(L)I − s2WL
µ
EM (1.14)

LµEM = −ēIγµeI (1.15)

where the generation index I = 1, 2, 3 represents electrons, muons, and tauons. The presence of

these quark and lepton currents in the SM permits the tree-level diagram shown in fig. 1.1.
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Figure 1.1: The decay of the free neutron at quark-level.

1.3 Effective Theory of Neutron β-decay

The decay of the neutron happens at low energy compared to the QCD scale, where confinement

makes perturbative calculations involving the quarks not feasible. We thus turn to a low energy

effective theory to describe the weak interaction of the bound states of the quarks. Noting that

neutron decay occurs well below the weak scale (so that the W field can be integrated out), we

can write the effective Hamiltonian for neutron decay in terms of a current-current interaction

between the nucleons and leptons

Heff =
1√
2
GFJ

µ
nJlµ (1.16)

with nucleon and lepton currents

Jµn = Vudp̄ (γµgV + gAγ
µγ5 − igMσµνqν/2M + gPγ5q

µ)n (1.17)

Jµl = ēγµ (1− γ5) νe. (1.18)

Here, the Fermi coupling GF = e2/
√

8s2WM
2
W (MW is the W boson mass) sets the overall

strength of the interaction. The matrices γµ are the Dirac matrices, σµν = (i/2)(γµγν − γνγµ),

M is twice the nucleon mass, and qµ is the four-momentum transfer of the W−. Further, the
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vector and axial-vector currents now include form factors gV and gA (evaluated here at q2 = 0)

which account for the modification of the weak currents by the strong interaction. It is sufficient

to evaluate the form factors at zero momentum transfer because the energy of the decay is small

compared to the interacton strength set by GF . A consequence of electroweak unification is that

the weak vector current is a conserved quantity as with the electromagnetic vector current, so

that the strong force cannot change the neutron’s weak vector charge. This is known as the

conserved vector current (CVC) hypothesis, and it has the implication that gV = 1. There can

be small apparent deviations in gV for the neutron due, for example, to the difference in u and d

quark mass, but such effects are expected to contribute at the 10−5-level. As we will see later,

this is small compared to the ∼ 10−3 experimental uncertainties in measured neutron β-decay

parameters, and is typically ignored in analyses[98]. There is no such conservation law for the axial

current, and spontaneous chiral symmetry breaking in low energy QCD indeed causes gA 6= 1.

Figure 1.2: The decay of the free neutron in the low energy effective theory.

Due to the internal structure of the neutron, other currents in addition to the vector and

axial vector currents in eqn. 1.17. The weak magnetism term gM is the result of the nucleon

exhibiting higher multipoles of weak vector charge. With the CVC hypothesis, it can be shown
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that gM is simply related to the anomalous magnetic moments κn of the neutron and κp of the

proton, which are well known[61]. There is also an induced pseudoscalar form factor gP which is

negligible at neutron decay energies. With the above considerations, we write the nucleon current

as

Jµn = Vudp̄ (gV γµ + gAγµγ5 + (κp − κn)σµνq
ν/2M)n. (1.19)

Thus, taking κn and κp as known inputs, neutron decay depends most sensitively on Vud and gA

, the latter of which is often cast as λ ≡ gA/gV .

As with nuclear β decay, if we write the differential decay rate of the neutron as a function of

the neutron spin vector σ, electron momentum vector pe, and neutrino momentum vector pν , it

can be expressed in terms of various scalar products with different symmetry properties[96, 18]:

dΓ = Γ0peEe
(
E0 − Ee

)2
dEedΩedΩν

×
[
1 + a

pe · pν
EeEν

+ b
me

Ee
+ 2σ ·

(
A
pe
Ee

+B
pν
Eν

+D
pe × pν
EeEν

)]
(1.20)

with Ee/Eν the electron/neutrino energies, Ωe/Ων the electron/neutrino momentum solid angles

(with respect to σ), me the electron mass, and the overall factor Γ0 a function of the coupling

constants in the Hamiltonian. The coefficients a, b, A, B, and D represent correlations between

the various three-vectors in the decay process, and can be expressed as functions of the (in general

complex) ratio λ = |gA|/|gV |eiφ. For example, the coefficient A describes the correlation between

the direction of the neutron spin and the electron momentum, an observable which violates parity

symmetry; this correlation coefficient is in fact non-zero, which is expected due to manifest parity

violation in the underlying theory. One can also write a differential decay rate as a function

of the electron polarization and summing over the neutron spins, which gives several additional

correlation coefficients.

The total decay rate Γ of the neutron can be computed by summing over neutron polarizations
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and integrating over the decay phase space, which gives the lifetime τn = Γ−1[121]:

τ−1n =
m5
e

2π3
G2
FV

2
ud

[
g2V (1 + ∆R

V ) + 3g2A(1 + ∆R
A)
]
Fn. (1.21)

The factor Fn is a calculated phase space factor for neutron decay (including weak magnetism

and nuclear recoil effects)[128]. The corrective terms ∆R
V/A are radiative corrections due to

Bremsstrahlung of the final state charged particles and corrections to the weak vertex. Including

these corrections, as well as the comparatively well known value of GF from muon decay, the

neutron lifetime can be written as

τ−1n =
V 2
ud(1 + 3λ2)

4908.7(1.9) s
(1.22)

where the uncertainty in the numerical factor is primarily due to hadronic uncertainties in the

radiative corrections[107].

In all, there are more than a dozen such observables in neutron decay, which, when combined

with experimental knowledge of the neutron lifetime, greatly over-constrain the number of pa-

rameters in the effective Hamiltonian. This makes measurements of neutron decay observables a

powerful tool for investigating new physics which could cause small deviations SM prediction of

the observables discussed here.

1.4 The Predicted Neutron Lifetime

The most precise determination of Vud comes from studies of the β-decay lifetime of nuclei.

Nuclear decays with spin and parity quantum numbers JP of 0+ in both the initial and final states

only depend on the vector coupling, which is the same for different nuclei under the assumption of

the CVC hypothesis. By incorporating isospin-breaking corrections, nucleus dependent radiative

corrections, and nuclear structure corrections, one can relate the mean lifetimes of such nuclei to

Vud. This has been performed with satisfactory agreement across several nuclei, from which Vud

is found to be |Vud| = 0.97425 ± 0.00022[90]. Quark flavor changing pion decay (in particular
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π+ → π0 + e+ + νe) also determines Vud, but with somewhat larger uncertanty to date[38].

We are thus left with the contribution λ of the axial coupling to the predicted neutron

lifetime. This can in principle be determined by lattice QCD calculations, though precision of

these calculations is currently not competitive with other methods[1]. Currently, measurements

of the A coefficient (where A = −2λ(λ+ 1)/(1 + 3λ2)) provide the most precise determination

of λ. Generally speaking, measurements of A consist of detecting β particles emitted from a

sample of polarized neutrons, and comparing the number of β particles emitted parallel and

anti-parallel to the neutron spin[46, 32]. The particle data group average of measurements gives

A = −0.1184± 0.0010, from which we have λ = −1.2723± 0.0023[47].

Figure 1.3: The combined determination of Vud and λ from 0+ → 0+ nuclear decays, the β-
asymmetry parameter A, and the neutron lifetime τn.

Using these experimental results and eqn. 1.22 the predicted neutron lifetime is τn = 883.1±

0.8 s. This value disagrees with the experimental global average of τn = 880.3 ± 1.1 (see fig.

1.3). Moreover, there is a statistically significant spread in different measurements of τn, and

some measurements have recently been re-evaluated, which has caused a ∼ 5σ shift in the mean

value[27, 23, 28, 69]. For these reasons, the discrepancy with the SM prediction is thought to be
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due to underestimated (or unconsidered) systematic effects[134]. One might therefore take the

experimental uncertainty in τn to be somewhat larger than the uncertainty given in the global

average, which is a primary motivation for an improved measurement of τn.

1.5 The Impact of an Improved τn Measurement

1.5.1 CKM Unitarity

The CKM matrix given in eqn. 1.10 is unitary, and as a conequence, the sum of the square

modulus of any row or column must equal one. Taking the first row, it must be that

|Vud|2 + |Vus|2 + |Vub|2 = 1. (1.23)

A deviation of this sum from unity is evidence that either the SM does not adequately describe all

possible quark transitions, or the Fermi coupling GF that governs the overall strength of charged

current weak interactions in the SM is in fact not universal; any such deviation would thus be

evidence of beyond-SM physics, such as a fourth generation of quarks.

The deviation ∆ckm from unitarity can be defined as

∆ckm = |Vud|2 + |Vus|2 + |Vub|2 − 1 (1.24)

The second and third entries in the matrix have been experimentally determined through the

study of kaon and B meson decays[55], which puts a combined constraint on unitarity violation

∆ckm = (1 ± 6) × 10−4[128]. This constrains new physics at an energy scale competitive with

collider experiments[13, 14]. The Vud entry could be extracted more precisely from neutron decay

(which obviates the need for nuclear structure corrections as in 0+ → 0+ decays) with improved

determinations of λ and a reliable determination of τn at the sub-second level, and is therefore

an appealing model-independent way of constraining new physics.
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1.5.2 Tests of V-A Theory

The effective Hamiltonian of eqn. 1.16 includes all of the non-negligible contributions to the

lepton and nucleon currents predicted by the underlying V-A interaction of the SM. However,

beyond-SM theories can in general predict small (but detectable) scalar (S) or tensor (T) currents

which would modify the Hamiltonian, and thus modify the neutron decay rate. For example,

theories with spontaneous left/right SU(2) symmetry breaking, theories with leptoquarks (i.e.

particles with both lepton and baryon number), and supersymmetric theories can introduce small

S and T currents in neutron and nuclear β-decay[18, 121]. Within the SM, there are in principle

S/T operators induced in eqn. 1.16 by (for example) loop diagrams involving the Higgs boson,

but such contributions are expected to be many orders of magnitude below what is currently

observable.

The strengths of these beyond-SM interactions can be constrained using measurements of the

observables from neutron and nuclear decays, and these searches are complimentary to beyond-

SM interactions that can be probed in high energy experiments[13]. Fits of the relative strength

of all possible effective form factors, making various model assumptions, have been performed

using available data of total decay rates and decay correlations[121]. In order to translate these

constraints into constraints on the true couplings of beyond-SM theories, one must estimate or

make assumptions about the induced form factors for the neutron due to the new couplings.

For example, the authors of ref. [70] discuss the prospects for lattice QCD calculations of the

induced scalar charge, and explore its impact on beyond-SM constraints. Further, stringent limits

on tensor form factors can be derived by combining 0+ → 0+ decays, the neutron lifetime, and

angular correlations[97].

1.5.3 Big Bang Nucleosynthesis

The neutron lifetime plays a direct role in the predicted abundance of light nuclei in the early

universe. After t ∼ 30 µs, a small fraction of protons and neutrons interacted with each other via

n+ νe ↔ p+ e−, n+ e+ ↔ p+ ν̄e, and neutron decay. Eventually (after t ∼ 1 s) the strength of
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the weak interaction was overcome by the expansion and cooling of the universe, and thereafter

only neutron decay contributed to the change in the relative number of neutrons and protons. At

t ∼ 3 minutes, the universe had cooled enough for the nucleons to form light, stable nuclei as a

result of fusion. The resulting abundance of these nuclei (in particular 4He) thus depends on the

neutron lifetime[18], and a comparison of the observed and predicted helium abundance is a test

of cosmological models.

As discussed in section 1.4, recent measurements of τn are highly discrepant. The impact

of discrepant lifetime measurements on primordial nucleosynthesis was explored in ref. [108].

Forthcoming astronomical measurements of light element abundances and measurements of the

baryon to photon ratio will ultimately make τn the least well known experimental input, and new

neutron lifetime measurements will therefore be needed to test predictions from cosmology.

1.6 Conclusions

Neutron decay offers several experimental observables which provide a competitive test of elec-

troweak theory. More precise measurements of neutron decay parameters, including the neutron

lifetime, are motivated by their potential to test for new physics at energy scales similar to cur-

rent collider experiments. Further, primordial nucleosynthesis (as well as other charged-current

processes) benefits from the resolution of τn at ∼ 1 s precision.

The ambiguity in the current clobal data weakens the ability of neutron decay to discover

discrepancies in the standard model or cosmology. Therefore, new methods for measuring the

neutron lifetime, a careful study of potential issues with past experiments, and focus on ex-

perimental investigations of systematic effects are all needed for neutron decay to reach its full

potential as a scientific tool.



2 The History of τn

2.1 Introduction

The neutron was discovered in 1932 by Chadwick[9, 11] by bombarding a beryllium target with

α-rays from polonium, inducing the reaction 9Be(α,n)12C[10]. The instability of the neutron was

suggested a few years later by a determination of the neutron mass from the deuteron binding

energy[12]. However, it was not until a decade thereafter, with the development of the first

continuously operating nuclear reactor, that the decay of the neutron was observed by Snell et

al [122]. Since this time, roughly two dozen measurements of the neutron lifetime τn have been

performed.

The precision of τn has improved steadily over this time, though not without inconsistency

and skepticism. In fact, Snell et al.’s estimate placed a lower limit of 22 minutes on the neutron

lifetime – 7 minutes longer than the current accepted value. This was perhaps a presage of

the future τn narrative. Figure 2.1 shows experimental determinations of the lifetime over time.

Several of these measurements were subsequently re-evaluated or withdrawn[47, 134].

Early measurements of the neutron lifetime used an “in-beam” method of measuring the

neutron lifetime. Generally, these measurements consisted of passing a cold or thermal neutron

beam through a charged particle detector (β or proton, or both). If the absolute beam density,

charged particle detection efficiency, and decay volume can be determined, the neutron lifetime

can be extracted.

The neutron flux in such an experiment is typically measured by activating a foil of known

absorption cross section and density. For a neutron beam with flux spectrum dφ/dv, the measured

rate depends on not the flux, but the density dρ/dv = v−1dφ/dv of neutrons (integrated over

12
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Figure 2.1: The mean neutron lifetime τn versus time.

the detection volume and neutron velocities). Conveniently, the activation rate Rf of a foil is

given by

Rf =

∫
σa(v)

dφ

dv
dv = σthvth

∫
dρ

dv
dv = σthvthρn. (2.1)

Thus, for a thin foil where the 1/v absorption cross section dependence is valid, the beam density

is given directly by the activity measurement. We can write the neutron fluence in terms of the

above quantities

Rn = εnAρfoilσthvthρn (2.2)

where εn is the efficiency of measuring the neutron activation of the foil, A is the beam area,

and ρfoil is the areal density of the foil. The charged particle detection rate is given by

Rp =
εpρnAL

τn
(2.3)
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where εp is the charged particle (typically proton) detection efficiency L is the length of beam

from which charged particles can be detected. We can thus determine τn:

τn =
εpRnL

εnRpvthσthρfoil
. (2.4)

From this we see that a precise measurement of the neutron lifetime requires accurate metrology

to determine the effective length L, and to account for geometric considerations in determining

the efficiencies. Detector considerations such as back-scattering from windows, thresholds, gain

drifts, and backgrounds can also make the determination of the efficiencies difficult. That said,

not all experiments fall completely into this paradigm, and have in some cases found elegant ways

of mitigating or bypassing some of these difficulties.

Basically all other measurements of the neutron lifetime use ultracold neutrons, or UCN (see

appendix A for discussion). If UCN are loaded into a suitable trap (typically a material trap),

the number of surviving neutrons can be measured after various storage times, from which the

neutron lifetime can be determined. As long as the detection efficiency for surviving UCN is the

same for all storage times, one need only perform a relative measurement of the UCN at different

times, thus avoiding the need to determine absolute efficiencies as in beam-based experiments.

However, the stored UCN may also be absorbed within the trap or inelastically scatter out of the

trap; that is, the storage time τs of the trap is given by

τ−1s = τ−1n + τ−1loss (2.5)

where τ−1loss is the rate at which neutrons are lost due to, for example, interactions with the walls

of the trap, or with residual gas in the apparatus. A trap-based measurement of the neutron

lifetime must characterize these loss mechanisms, and extrapolate to τ−1loss = 0. Further, these

loss mechanisms may depend on the given energy of a UCN (and more generally the phase space

distribution of the UCN) which leads to many subtle difficulties and many methods to characterize

these effects. Insofar as equilibrium kinetic theory is valid for UCN, one can compute the wall
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collision rate γ(E) which depends on the UCN energy as well as the bottle geometry. With this

we can write eqn. 2.5 as

τ−1s = τ−1n + ηγ(E) (2.6)

where η is the probability of loss-per-bounce. One can perform successive storage measurements

varying η, E, or γ, and using the calculated scaling of the loss term to extrapolate to zero loss. In

practice, varying the trap geometry (and hence γ) is common, and is often known as dimensional

extrapolation.

In addition to the scientific interest in a precise determination of τn, the criticism of past ex-

perimental methods and analyses motivates new experiments. It is therefore worthwhile to review

the landscape of neutron lifetime measurements; this provides the context for the experimental

design and theoretical considerations that will be discussed in later chapters.

2.2 First Measurements

The first measurements by Snell consisted of passing the neutron beam through a thin-walled

vacum can, with a cylindrical electrode (4 kV) which deflected the decay protons into an electron

multiplier. Proportional counters to detect the β particles in coincidence were implemented to

reduce the background, and a series of measurements were performed with a boron shutter to

stop the neutron beam, as well as aluminum foils to shutter the β particles and protons. A

hydrogen leak was introduced and the resulting rate in the proton detector for comparison. This

demonstrated neutron decay, but the authors only estimated a lower bound on the lifetime[122,

123].

At the same time, Robson performed a similar measurement at Chalk River Laboratories.

There were some important differences: the protons were detected by a mangetic spectrometer,

and the apparatus also included a β spectrometer, which demonstrated that the decay product

was a proton, and determined the β endpoint energy to be 782 ± 13 keV. In addition, the

intensity of the neutron beam is measured by activating manganese foils, and the author notes
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the convenience of a thin foil with σa ∝ 1/v for measuring the beam density. The measurement,

combined with the decay rate (and an estimate of the absolute detection efficiencies) leads to an

estimated neutron lifetime of 1108± 216 s[114, 115].

Also in the 1950’s, Spivak et al. performed similar measurements at the Atomic Energy in

the USSR. They note that the spatial dependence of the electric field profile used to extract

the decay protons can lead to uncertainties in determining the effective beam length L, and the

authors use favorable electric field geometries to mitigate this effect. Sodium and gold samples

are activated to determine the neutron flux, from which the neutron lifetime is determined to be

1012± 26 s[59, 21].

A somewhat different technique was used by D’Angelo at Argonne National Laboratory. A

neutron beam is passed through a cloud chamber, and decay events photographed at a rate of ∼ 2

frames per second with a stereoscopic camera system. Gold foils are used to characterize the beam

density, with an uncertainty of ∼ 7%. While the detection efficiency for the cloud chamber is well

understood, the experiment suffers from environmental, neutron beam generated, and neutron

capture generated γ-ray backgrounds. Materials are chosen carefully in the construction of the

apparatus to mitigate neutron related backgrounds, and considerable lead shielding is employed.

The result is a neutron lifetime of 1099 ± 164 s, with a statistical uncertainty contributing to

much of the total uncertainty[16].

2.3 Improved In-Beam Measurements

At the Risö reactor, Christensen et al. used a technique which greatly reduced the uncertainty in

determining the effective beam length. A pair of scintillator paddles were immersed in a uniform,

0.7 T magnetic field perpendicular to the neutron beam. The magnetic field served to guide

the decay electrons to the scintillators, so that ideally any decay event between the scintillators

would be detected. This, combined with a 0.4% measurement of the neutron density using a

calibrated 3He-based neutron counter (cross-checked with a gold foil activation measurement),

gave a lifetime of 918± 14 s. The authors discuss the effects of the gyroradius of the electrons
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(which would permit some fraction of electrons near the edge of the decay volume to miss the

scintillators), as well as the reduction in detection efficiency due to magnetic mirror effects and

detector thresholds, and these effects contribute substantially to the uncertainty[34].

As discussed in the previous section, proton counting is made difficult due to electric field

profiles needed to accelerate them into a detector, which can make the effective determination

of L difficult. Bondarenko et al. addressed this by utilizing a decay volume that is free of applied

voltage[54]. There is an aperature adjacent to the decay volume which contains the focusing and

acceleration electrodes. In this way, the protons that reach the aperture are collected with near

100% efficiency, which was checked using H+ and α sources, and the effective decay length is

easily determined because it is field-free. The solid angle collection efficiency into the aperature

is determined in a Monte Carlo study, including model uncertainties. Gold foil activation is used

to determine the beam flux, and backgrounds are investigated with a Cd shutter for the neutron

beam, and electrostatic mirror in front of the proton detector. The authors find a lifetime

of 877 ± 8 s. A later publication re-analyzed this experiment[124], considering corrections to

the neutron flux determination such as scattering from the gold foils and non-1/v behavior. The

authors perform separate experiments investigating the transparency of the high voltage grids used

for proton collection, ultimately finding a corrected value for the neutron lifetime of τn = 891±9

s.

One method eliminating the need to determine L was investigated in the PERKEO experiment.

The apparatus consists of a solenoidal magnetic field (parallel to a neutron beam) which bends

upwards at either end towards scintillator paddles to detect the decay βs. A careful determination

of the threshold efficiency and source calibrations were performed. To reduce backgrounds, two

PMTs viewed one scintillator, and a coincident signal was required in both PMTs to reduce

backgrounds. The unique feature of the experiment was that the neutron beam was pulsed, and

the pulse bunches were ∼ 1.5 m in length, whereas the decay volume was about 20 cm larger.

For this reason, knowledge of the decay length L was unnecessary because the signal could

be measured when the bunch was completely in the decay volume. Low statistical sensitivity
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was a side effect of this method, contributing a 10 s uncertainty to the measurement of τn =

876±21 s[51]. Gain drifts, detector resolution and calibration, and neutron beam characterization

contributed to the systematic uncertainties.

Significant technical improvements were made by Byrne et al. starting in 1980[48]. The

authors counted protons using a penning trap (a 1 T solenoidal magnetic field capped by 1 kV

mirror potentials) placed perpendicular to the neutron beam. The neutron beam was passed

through the trap, and protons were allowed to collect in the trap. The neutron beam was

thereafter shuttered, and the trap opened to view a silicon surface barrier detector biased to

−30 kV. Because the neutron beam was not passing through the apparatus while protons were

counted, backgrounds were greatly reduced, and the surface barrier detector provided excellent

signal-to-noise. In addition, the neutron beam was actively monitored using a 10B foil. The

reaction 10B(n,α)7Li produces energetic α particles which were counted by an arrangement of

surface barrier detectors. The final result is τn = 937± 18 s.

A revised version of the experiment reoriented the penning trap parallel to the neutron beam,

and an additional improvement was introduced which greatly reduced the systematic effect of

determining L. The apparatus consisted of a 5 T solenoidal magnetic field. There were a series

of sixteen electrodes along the length of the solenoid magnet. For a given measurement, different

electrodes could be used as the electrostatic caps (1 kV). The length of the penning trap could

thus be varied with all other experimental parameters being equal. In this way, edge effects are

eliminated via linear extrapolation to L−1 → 0. The authors also demonstrate long (100 ms)

trapping times for the protons to check for sources of loss. The beam is characterized with a

10B foil as in the previous experiment, for which the 1/v law is valid to 0.03%. The largest

systematic uncertainty was in determining the areal density of the foil (0.3%), and there was a

−3.6±0.5 s correction due to non-uniformity of the foil. Other sources of systematic uncertainty

were knowledge of the 10B cross section, uncertainty in proton detection efficiency, and scattering

from the boron foil substrate. The authors found τn = 893.6± 5.3 s[49].

This result was corrected by a later analysis. A Monte Carlo study of the trapped protons
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was performed for different electrode configurations, including inhomogeneities in the magnetic

field. These inhomogeneities caused slight deviations from linearity, with short trap lengths being

slightly elongated, and long trap lengths being slightly shortened. This introduced a −4.4 s

correction in τn. In addition, the authors find an error in proton detector deadtime corrections

used in previous work. The corrected result is found to be 889.2± 4.8 s[50].

The basic technique of Byrne et al.[49] was used in a more recent experiment at the National

Institute of Standards and Technology (NIST). As in the previous experiment, a proton penning

trap (4.6 T, 800 V caps) with sixteen variable electrodes were used. The same linear length

extrapolation was performed, with corrections from a Monte Carlo study.

The authors investigate proton loss and back-scattering in the dead layer of the silicon surface

barrier detector. Estimates were performed using SRIM, and the bias potential and dead layer

thickness were varied. The authors compute the lifetime extrapolating to 0 deadlayer thickness.

The neutron beam was incident upon a 6LiF foil on a silicon substrate. Silicon surface

barrier detectors with precision-machined apertures viewed the foil, and the α particles counted

to determine the beam density. The solid angle efficiency for this detector array was determined

to within 0.1% using a calibrated α source, as well as contact metrology. The determination

of the areal density of the foil contributed a 2.2 s uncertainty, and knowledge of the 6Li(n,t)α

cross section contributed a 1.2 uncertainty. Effects such as neutron beam divergence, finite LiF

foil thickness, proton trap non-linearity, and loss in the LiF foil substrate contributed 1 to 5 s

corrections with uncertainties ranging from 0.1 to 1 s. Proton counting dominated the statistical

uncertainty, and the authors find τn = 886.8± 1.2stat ± 3.2sys s[58, 52].

More recently, Yue et al. have performed separate experiments to calibrate the LiF-based

neutron monitor. A neutron detector was used to measure the efficiency of the neutron monitor

used in the original experiment to greater precision. The stability of the LiF foils over time was

established, so that the improved determination of the efficiency can be used in the determination

of the lifetime from the 2005 data, and the result does not depend on the absolute value of the

Li absorption cross section. From this analysis, the authors find τn = 887.7 ± 1.2stat ± 1.9sys
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s[31].

This experiment is the most precise determination of τn using a neutron beam. It should be

noted that because the neutron density measurement contributed the most to the uncertainty,

multiple independent determinations of the beam density could increase the precision of the

measurement. With this motivation, a continuation of the NIST beam is planned, which aims to

measure τn with a sub-second total uncertainty.

2.4 The Material Bottle Method

The first determination of τn using UCN was performed by Kosvintsev et al. at the SM-2

reactor[80, 81]. An upright, cylindrical aluminum container was used to store UCN for various

storage times. A series of aluminum discs could be inserted into the trap in order to vary the

total surface area, and thus the loss rate τ−1loss. The authors measure the storage time for different

numbers of discs, and use this to extrapolate to τ−1loss → 0. The authors find τn = 903 ± 13

s, with systematic uncertainties due to UCN leakage through shutters, loss due to residual gas,

uncertainty of the measured UCN spectrum (which is needed to average the loss rate over different

UCN energies), and the presence of Al2O3 on the surface of the trap. A preliminary measurement

with a D2O coating on the walls gave τn = 892 ± 20 s, but no subsequent measurements were

reported.

An experiment by Alfimenkov et al. used a spherical trap with a single opening. The trap

could be rotated so that the opening could face a UCN guide to load the UCN, and could then

subsequently be rotated so that the opening was at different heights. Different UCN energy bins

could therefore be selected by rotating the trap. The aluminum trap walls were coated with a 0.3

to 0.5 µm thick Be layer, and a 3 to 7 µm layer of solid oxygen at 15 K. The quoted losses per

bounce are (28.1± 4)× 10−6 and (6.1± 0.6)× 10−6, respectively. This lead to storage times of

8 to 10 hours (excluding β-decay). A second measurement campaign used a cylindrical trap (72

cm diameter by 15 cm long). This geometry has a different calculated UCN-wall collision rate,

which provides a means of extrapolating to zero collision rate, and hence zero loss.
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The experiment is explained in detail in ref. [74]. The authors discuss tests of the quality

of the surface coatings, the effect of residual gas, as well as the effect of partial overlap of the

selected energy bins. The effect of UCN heating due to the movement of the trap, uncertainties

in the optical potential, and uncertainty in the knowledge of the UCN spectrum within the energy

bins. The final result is τn = 888.4± 3.1stat ± 1.1sys.

Several material trap-based measurements have used Fomblin oil or other fluorocarbon oil,

with a quoted loss-per-bounce η = (2 − 3) × 10−5 at 20◦, and an optical potential VO = 106.5

neV[75]. In addition to a reasonable optical potential and low loss-per-bounce, Fomblin has a

low vapor pressure, and Fomblin coatings can be replenished in situ to provide a uniform surface.

The first experiment to use Fomblin was performed by Mampe et al. at the Institut Laue

Langevin[75]. The apparatus consists of a rectangular glass-walled 30 × 40 × x cm3 volume,

where x can be varied. Part of the roof is corrugated to assure that the loaded UCN are

distributed isotropically on a short time-scale (the authors quote a time of a few seconds). The

general measurement technique is to vary x so as to vary the mean free path for wall interactions

λ = 4V/S in a way that is proportional to the difference in times for which UCN are trapped. The

loss (due to changing the surface area) is thus varied while maintaining the same average number

of bounces during storage for each choice of x. In this way, changes in the UCN spectrum (due

to the energy dependence of the loss-per-bounce) have the same effect for all measurements,

and an extrapolation λ−1 → 0 can be performed to eliminate the effect of wall loss. There is

a ∼ 0.6% correction due to the fact that gravity causes the collision rate with the ceiling to be

lower than that of the floor, somewhat spoiling the assumption that the UCN sample the whole

surface evenly. There is also a correction (+0.3%) due to differences in initial UCN spectra for

different x, which can induce a non-linearity in the storage time versus λ−1.

The authors also discussed the direct assessment of potential systematic effects. The vacuum

pumps were changed to increase the effect of microphonics, which could cause slightly inelastic

collisions with the walls, thus “evaporating” some small amount of UCN from the trap, and no

reduction in the storage time was observed here. The authors also measure the lifetime while
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changing the temperature of the walls, which changes the probability of upscattering per bounce,

and find that the λ−1 → 0 extrapolation is reliable at all temperatures chosen. In order to

investigate the effect of residual gas on the storage time, the measurement was performed at

somewhat higher vacuum pressure, which also caused no noticeable effect.

Finally, the authors replaced the corrugated surface with a smooth glass surface, and repeated

the measurement. A reduction in the storage time constant for holding times less than 450 s was

observed, but for holding times t > 900 s, typical storage times were again observed. The authors

hypothesize that the completely smooth surface compromises the validity of the expression for λ.

Generally speaking, this suggests that the UCN in the completely smooth trap do not rapidly fill

their accessible phase space – this can lead to the general failure of kinetic theory as a tool for

understanding UCN trap-based neutron lifetime measurements, and can cause there to be UCN

with E > VO which persistently remain in the trap for long times (we hereafter refer to this type

of UCN as quasi-bound. The final result is the weighted average of different measurements, and

gives τn = 887.6± 3 s.

A general feature of the above experiments is that they rely on the calculation of the wall

collision rate for different geometries or energies. This lead Mampe et al. to propose a means of

measuring a quantity that depends on the collision rate. A fomblin-coated trap is used, and the

quasi-bound UCN are removed by lowering a polyethylene cleaner into the trap at the beginning

of storage cycles. An array of 3He-filled drift tubes is arranged outside of the trap to measure

UCN that are lost due to upscattering, thus providing a measurement of the collision rate of UCN

with the walls. Storage measurements are performed with two different trap geometries, and at

three different temperatures (to vary the upscattering rate). The neutron lifetime is taken as a

combination of the measurements at each temperature, correcting for the collision rates for the

two geometries. There are systematic effects due to leakage through the valve that closes the

trap and temperature gradients on the walls of the trap. In addition, there are systematic effects

related to the validity of the analysis and measurement of the collision rate. In particular, the

upscattering detection efficiency may be different for the two geometries, which can spoil the
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determination of the collision rate and make the extrapolation to zero loss less reliable. Including

estimates and corrections of all effects, the authors’ final result is τn = 882.6± 2.7 s[76].

2.5 Improved Bottle Measurements

The first measurement of τn with a quoted total uncertainty of less than one second was an

improved version of the experiment in ref. [76]. The trap consisted of a cylindrical, double-

walled, Fomblin-coated vessel in a horizontal orientation (inner cylinder 90 cm long by 33 in

diameter, outer cylinder larger by a 2.5 cm margin on all sides). A shutter connected the inner

vessel to the guide, and there is another shutter to connect the inner and outer vessels. The

vessels could be rotated in order to dip them into a Fomblin bath to re-coat the surfaces, and the

temperature of the walls could be varied between −26 and 20 Celsius and pumped to a vacuum

of (1− 5)× 10−6 Torr. As in ref. [76], an array of 3He-filled drift tubes was arranged outside the

vessels in order to detect upscattered UCN.

The storage times were measured at different temperatures over the course of 100 days. The

analysis of the data incorporated a small linear drift in the observed decay rate to incorporate

(to first order) the effect of the UCN spectrum evolving in the trap versus time. Spectrum

and time averaged quantities are computed in this model to extract τn. The authors correct for

different emptying times of the trap, which introduces a −3.1±0.4 s correction. The difference in

thermal neutron efficiency for the two vessels is corrected using Monte Carlo studies and separate

experiments. The linear drift was estimated by measuring the time dependence of the thermal

neutron count rates, which introduced a −2.0± 0.3 s correction. In addition, a 0.2 s uncertainty

was included to account for loss due to residual gas, a 0.3 s uncertainty for the thermal neutron

detection efficiency, a 0.2 s uncertainty in characterizing the number of UCN with E > VO for

Fomblin, and a 0.15 s uncertainty due to temperature gradients across the vessels. The end result

is τn = 885.4± 0.9stat ± 0.4sys s.

The measurement of τn with the lowest quoted uncertainty used a method similar to ref. [2].

Two rotatable traps were used – a cylinder (76 cm diameter by 14 cm long), and a quasi-spherical
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trap composed of two truncated cones connected with a cylindrical section. The cylindrical trap

had a calculated collision rate 2.5 times higher than the quasi-spherical trap.

The traps were coated with low temperature Fomblin which was evaporated onto the trap

surface, and could be replenished in situ with an evaporator on top of the apparatus. To test

the coating quality, storage measurements were performed also using a titanium trap coated with

the oil; titanium has a negative optical potential, so a long storage time shows that the trap

was completely covered with the oil, leaving no exposed regions of low potential. The traps

used for the experiment were beryllium. The trap was cooled to 113 Kelvin, and the estimated

loss-per-bounce of the trap surface was 2 × 10−6. After filling the trap, it is rotated to remove

UCN at the high-energy end of the spectrum, at which point it is brought upright. The neutrons

are then stored for either 300 or 2000 s. The trap is emptied by successively tipping the trap to

select different bands of the UCN spectrum. This permits dimensional extrapolation (using the

two different trap shapes) as well as energy extrapolation of the calculated loss factor γ(E)→ 0.

A Monte Carlo of the experiment was performed to reproduce the data, with the probability of

diffusive scattering in the trap left as a free parameter. Diffusive scattering probabilities of 10%

and 1% were chosen, from which the authors conclude that the true probability is at least 10%.

The simulation reproduces the experiment to within 0.236 s, which is dominated by the statistics

of the simulation. In order to estimate the effect of loss due to residual gas, the trap pressure was

increased to 8 × 10−4 mbar, and the storage time at two pressures used to extrapolate to zero

pressure. The loss-per-bounce versus energy is varied within reasonable limits from which the

authors find a 0.144 s uncertainty. The quoted uncertainties due to uncertainty in the Fomblin

potential is 0.004 s, and 0.058 s uncertainty in the dimensions of the traps. The uncertainties in

the UCN spectrum determination amounted to 0.104 s, for a final result of 878.5±0.7stat±0.3sys

s. At the time of publication, this result was 5.6σ lower than the next most precise result (that

of Arzumanof et al.), and 6.5σ lower than the world average. The authors note that their result

in combination with measurements of λ is in better agreement with the standard model. In

addition, the authors retract the result of ref. [2], citing poor statistical sensitivity and coverage
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and uniformity of the oxygen coating[27].

More recently, a measurement was performed with a technique similar to ref. [75]. As before, a

rectangular, variable-volume, Fomblin-coated, glass-walled trap is used to store UCN (43×42×(0

to 75) cm3). The time-scaling method is used, so that each storage time (for each trap volume)

gives the same number of UCN-wall collisions. The trap incorporates an outer “pre-storage”

volume with a polyethylene roof to rapidly upscatter any quasi-bound UCN before storage in the

primary volume. The fomblin coating can be replenished through the piston that moves the trap

wall. The trap vacuum was 8× 10−6 mbar or better, and the vacuum was constantly monitored

with a mass spectrometer.

The authors combine results from measurements with different wall temperatures. There

are contributions to the uncertainty from the determination of the trap length, loss due to

residual gas, model uncertainty in the loss-per-bounce as a function of UCN energy, temperature

gradients, and variations in the emptying time of the UCN from the trap. The authors find

τn = 880.7± 1.3stat ± 1.2sys s[23].

2.6 Corrections and Criticisms of Bottle Experiments

As of the publication of Serebrov, et al.[27], the two most precise measurements of the neutron

lifetime were in significant disagreement, and this has lead to discussion of potential sources of new

or under-estimated systematic effects in these material bottle experiments. Further, some of the

experiments in the previous section were re-analyzed in light of such systematic effects, and new

determinations of τn have been deduced from the data. In particular, the results of Arzumanov

et al[66] and Mampe et al.[75] have been re-evaluated, causing a substantial downward shift in

the global average of τn. Here, we will review some of the discussion of these effects and the

re-evaluations of these experiments.

Serebrov and Fomin[120] argue that the work of Serebrov et al.[27] exhibited the lowest

loss probability of any material bottle experiment, and it is therefore reasonable to expect that

systematic corrections in that experiment cannot explain the discrepancy with other neutron
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lifetime measurements (in particular that of Arzumanov et al[66]). A Monte Carlo study of

the experiments in refs. [66, 75] is therefore carried out to address potential systematic effects

not accounted for in the original work. The authors use a simulation which computes UCN

trajectories, incorporating loss, reflection, and diffusive scattering from material surfaces, with

the diffusive scattering probabilities were left as a tunable parameter.

For the experiment in Arzumanov et al[66], this simulation is used to investigate the effects

of the heating of UCN by shutters, leading to a −2.8 ± 2 s correction, and the effect of UCN

not being completely emptied from the inner vessel of the trap (which was not observed in the

simulation, giving a 0±1 s effect). In addition, the authors argue that the original correction due

to unequal thermal neutron detection efficiencies for the inner and outer volumes is incorrect. A

−2.1± 1 s correction is given, for a corrected neutron lifetime of 879.9± 0.9stat ± 2.4sys s.

This experiment was later re-analyzed by the original experimenters in ref. [69]. The authors

retract their original positive correction due to thermal neutron detection efficiency, and use

measurements to estimate a −1.6 ± 1.86 s correction instead. In addition, they argue that

differences in the stored UCN spectra (and possibly valve-related heating) in the inner and outer

vessels leads to different UCN detection efficiencies for the two volumes, giving a −3.1 ± 0.3 s

correction not included in the original work. This, and with a minor correction due to revised

data reduction, gives a new value 881.6± 0.8stat ± 1.9sys s which replaces the original result.

Serebrov and Fomin (also in ref. [120]) study the effect of quasi-elastic scattering of UCN

from Fomblin-coated surfaces to reanalyze the work of Mampe et al[75]. The authors argue

a −6.0 ± 1.6 s correction due primarily to the creation of quasi-bound UCN for long holding

times as a consequence of quasi-elastic scattering, and provide a revised result τn = 881.6 s with

the original quoted uncertainty. Serebrov and Fomin, from their corrected values of these other

experiments, present a revised global average of 879.9± 0.9 s, arguing that this lower value of τn

is in good agreement with the standard model and with primordial nucleosynthesis predictions.

Steyerl et al. responded to the work of Serebrov and Fomin in ref. [28], and provided a more

robust model of quasi-elastic UCN scattering. This model is used in a Monte Carlo study of the
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experiment in Mampe et al[75]. Steyerl et al. note minor discrepancies in the originally presented

work which are incorporated into the revised analysis. A negative correction to the original result

is found, though not as severe as that suggested by Serebrov and Fomin. This is in part due to the

presence of UCN with E > VO which lose energy due to quasi-elastic scattering, thus becoming

trapped. They recommend a new value τn = 882.5± 2.1 s, replacing the original result.

In a separate work, Steyerl et al. present a model of surface roughness relevant to Fomblin-

coated surfaces, and compute the UCN-surface scattering intensity to second order in perturbation

theory. This results in a reduced wall-loss probability for UCN, and the result is applied to a more

realistic Monte Carlo simulation of the work of Serebrov et al.[27]. The authors call into question

the validity of UCN-surface scattering models used in the simulations in ref. [27], and therefore

question the reliability of the extrapolation methods used to extract τn. They argue that the

chosen surface roughness correlation model changes the interpretation of the experiment, though

the results of their Monte Carlo study do not suffice to recommend a particular model or explicit

correction to the experiment.

2.7 Magnetic Bottles

As discussed in section A.6, magnetic field gradients apply a force F = ±µN∇|B| to UCN. In

this way, an inhomogeneous magnetic field in a suitably designed apparatus can confine UCN.

The use of this technique to measure the neutron lifetime was suggested more than fifty years

ago by Vladimirskǐi[132], and magnetic confinement was first achieved by Abov et al. using a

magnetic trap formed by a superconducting Halbach array (Halbach arrays will be discussed in

chapter 3)[78, 79].

Since this time, only Paul et al. have produced a measurement of τn using magnetic con-

finement. This is achieved by radially confining slow neutrons using a magnetic storage ring[77].

The confining radial magnetic force is achieved using a 1 m diameter superconducting sextupole

magnet. To deduce the neutron lifetime, UCN are loaded into the trap using a curved guide

and stored for various times, after which a 3He-filled neutron counter is inserted into the neutron
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beam to count the surviving neutrons.

Neutrons exhibiting radial motion around the sextupole magnet experience a linear restoring

magnetic force, giving both radial and vertical oscillations of the neutrons about their equilibrium

orbiting trajectories. Due to even minor imperfections in the magnetic field profile, betatron

oscillations of the neutrons may slowly mix the radial and vertical components of the oscillation.

Therefore, a neutron initially experiencing vertical oscillations may slowly evolve into a trajectory

with radial oscillations, strike the wall of the apparatus, and escape the storage ring. This is similar

to the quasi-bound UCN in trap-based experiments. In this experiment, trajectories with large

oscillations are removed before the storage interval with the temporary insertion of a neutron-

absorbing material. This process, in the context of UCN traps, is often referred to as “cleaning”

or “pre-conditioning” (cf. ref. [23]).

This introduces a loss mechanism due to this slow evolution of the occupied phase space

of the neutrons in the experiment, leading to two important features in the apparatus. First, a

decapole field is superimposed on top of the sextupole field; this introduces a non-linearity in the

restoring force which more rapidly mixes the modes of oscillation, thus making this effect only

prevalent for short storage times. Second, neutron-absorbing beam-scrapers are used to remove

neutrons that experience large oscillation amplitudes. The scrapers remained in a fixed position

for 20 s after the filling of the apparatus was completed, at which time they were moved outward.

Long storage times are observed to be insensitive to the effect of loss due to the evolution of the

beam phase space. An exponential fit to the number of surviving neutrons, discarding data at

short storage times, gives τn = 877± 10stat s.

Since then, several magnetic-storage-based neutron lifetime experiments have been proposed

or initiated. Ezhov et al. demonstrated the storage of UCN in a vertically oriented, cylindrical,

high order multipole magnet trap composed of NdFeB magnets with FeCo poles as flux returns.

The bottom of the trap is closed using an electromagnetic solenoid, and a polyethylene sheet

is used at the top of the trap to clean quasi-bound neutrons. The authors estimate that, given

the field gradients in the trap, the probability of depolarization is on the order of 10−4 s−1. The
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storage time was determined by counting the survivors from fill-and-empty cycles of the trap,

which gave a storage time of 882± 16stat s over a 143 hour run campaign at the ILL[72].

A subsequent iteration of this experiment utilized a fomblin-coated aluminum pre-filling vol-

ume with an absorbing roof as a cleaner. After UCN from the source are filled into this volume,

it is adiabatically lowered into the trap and opened. In addition, an outer solenoid surrounds the

entire multipole trap to assure that B 6= 0 everywhere. A guide beneath the trap leads to a UCN

monitor, which, in addition to detecting surviving neutrons after storage, can also detect neutrons

that depolarize during the storage time interval. Depolarization was noted as the dominant source

of loss during storage, and the size of this loss mechanism could be changed by changing the

current or orientation of the outer solenoid. The authors quote a statistical sensitivity of about

2 s, but no subsequent storage times or measurements of τn have been reported[73]. It is worth

noting that the high rate of depolarization is possibly due to the accidental cancellation of the

solenoidal field and the multipole field in a (presumably small) region of the trap.

An ongoing effort at NIST offers a novel alternative to the fill-and-empty paradigm of other

material or magnetic bottle experiments[63, 36]. The apparatus consists of a superconducting,

quadrupolar, Ioffe-Prichard trap filled with superfluid 4He. A collimated cold neutron beam passes

through the apparatus, downscattering UCN in the superfluid, thus filling the trap with UCN.

With temperature T < 250 mK and an estimated 3He concentration less than 5 × 10−13, the

absorption and upscattering rates in the helium are estimated to be 5× 10−6 s−1 and 10−6 s−1.

An additional feature of the experiment is that neutron decays are actively detected. When

a trapped UCN decays, the β-ray ionizes the helium atoms which form excimer molecules. The

singlet molecular state decays in about 10 ns and emits UV light (the triplet state with lifetime of

13 s is too long lived to be observed). A layer of wavelength-shifting TPB coats the walls of the

helium volume, and this light is guided out of the trap by acrylic light guides and into two PMTs.

Candidate events must produce a minimum of two photoelectrons in each PMT, thus reducing

backgrounds related to neutron capture in the shielding materials. Experimental campaigns have

demonstrated long storage times, and a forthcoming increase in the size of the trap (3.1 T field
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strength, 8 liter volume) is expected to reach statistical sensitivity of 2.4 s over a 40 day reactor

cycle.

In spite of the lack of improved measurements of τn using magnetic traps, storage times

consistent with past τn measurements have motivated additional efforts. Namely, a vertical

octupolar trap coupled to a dedicated, high density UCN source at the ILL[103], and a large-

volume superconducting trap designed to detect protons from neutron decay[68].

2.8 Conclusions

In this chapter, we have reviewed the history of measurements of the neutron lifetime. The

now mature neutron beam-based technique can be expected to achieve a few tenths of a second

precision, but there remains a disparity between current beam- and bottle-based experiments[31]

as well as a more general need for independent determinations of τn to improve the confidence

in the global average of measurements. Though the material bottle method has produced the

lowest quoted uncertainties, there is continuing discussion in the literature of the validity of model

assumptions and extrapolation methods used in these experiments.

No magnetic-trap-based experiment has produced a measurement with precision comparable

to material bottle or beam measurements, but these efforts have generally produced storage

times that are in agreement with past measurements of the neutron lifetime. This suggests that

a magnetic trap can be made to have low losses, and thus little or no extrapolation to determine

τn. The efforts described in this chapter will generally utilize large trapping volumes for high

statistical sensitivity, and high sensitivity will be necessary to vary and study potential systematic

effects in these experiments.

As was the case even in the neutron storage ring of Paul et al., and studied further in other

experiments using magnetic confinement[53, 65], control over the occupied phase space of the

UCN is important to mitigate the effects of quasi-bound neutrons (and the time dependence of

the UCN phase space more generally). We note that all of the ongoing or proposed magnetic

trap experiments mentioned here exhibit at least approximate cylindrical symmetry. This could
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lead to quasi-bound UCN orbits and thus long cleaning times. The geometry of a magnetic trap

and the dynamics of neutrons in the trap therefore play an important role in the reliability of the

experimental methods for this class of experiment.

Thus, this discussion of past and current experimental efforts motivates many of the features

of the experiment described in this dissertation. In particular, a large volume, low-depolarization,

rapidly-cleaned trap is desirable.



3 Experimental Design

3.1 Introduction

The experimental design of the UCNτ prototype apparatus consists of a number of separate

components. Coarsely, the components of the apparatus are the permanent magnet trap, holding

field coils (to assure |B| 6= 0 throughout the trapping volume), the UCN cleaner (to remove high

energy UCN from the trap), and the vanadium activation detector (to detect surviving neutrons).

Beneath the trap is the UCN polarizer, spin flipper, guide system, and UCN monitor detectors.

The trap geometry was motivated by neutron tracking studies[4], and the original experimental

design was presented by Walstrom et al [62]. It is important to note, however, that some design

parameters have changed since that publication.

Fig. 3.1 shows a schematic of the experiment. UCN from the source (to the left of the

apparatus, not shown) pass through the polarizing magnet and spin flipper. At this point, they

can be directed up through a piston-actuated door into the UCN trap, or directed to a UCN

monitor at the end of a vertically curved section of guide. The cleaner can be moved into the

trap via a pneumatic piston that is fed through into the vacuum system. An array of 3He filled

drift tubes line the outside of the jacket near the cleaner to detect upscattered neutrons. The

vanadium foil can be lowered into the trap by a linear actuator driven by a stepper motor. In its

raised position, the vanadium foil rests between two plastic scintillator paddles and an array of

NaI detectors.

The performance of the UCN source at LANSCE has been reviewed, and measurements

of UCN densities and spectra have been compared to comprehensive Monte Carlo models[24].

An understanding of the UCN source itself has important implications for understanding the

32
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Figure 3.1: A schematic of the experiment. P is the polarizing magnet, S is the spin flipper, and
B is the UCN monitor detector. There is another monitor to the left of the polarizing magnet
(not shown). The holding field coils (not shown) are arranged outside of and around the vacuum
jacket of the trap.

experimental methods and interpretation of data for the measurement of τn. The UCN output

rate, energy spectrum, and time structure from the source are needed to interpret the rates

observed in various detectors, and the (in)stability of the source can also cause systematic effects

related to determining the number of UCN in the trap when it is filled. This will be discussed in

sec. 6.12.

3.2 Permanent Magnet Trap

The magnetic trap consists of ∼ 4000 aluminum-coated NdFeB permanent magnets arranged

in an asymmetric bowl shape. Each magnet (1 in. deep, 0.5 in. wide, 2 in. long, ∼ 1.35 T

remnant field strength) is adhered to aluminum plates of varying sizes (typically ∼ 30× 30 cm2)

using West System 105 epoxy resin. In order to overcome the strong and rapidly varying forces

of nearby magnets, custom jigs are used to insert each magnet into place. Once a plate has been

populated with the permanent magnets, it is bolted to an aluminum frame. Fig. 3.2 shows the
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constructed magnet trap. There is a rectangular region at the bottom of the trap that is absent:

the magnet plate that fits into this position is not part of the trap frame, but is instead fastened

to a pneumatic actuator which can raise the plate upwards to close the trap, or downwards to

open it (this is described in more detail in sec. 3.3).

Figure 3.2: The completed permanent magnet trap, prior to insertion into the vacuum jacket.
The rectangular hole at the bottom is filled by a separate magnet plate (not shown here) which
is fastened to a pneumatic actuator.

The trap is in the shape of two piecewise torii. In cartesian coordinates x, y, z (with +z

being up), the inner material surface of the bowl is given by

x, y, z : (R + ρ)2 + x2 = r2 and z < −1.0 (3.1)

where ρ =
√
y2 + z2. The major and minor radii R and r are defined piecewise such that

R = 1.0 m and r = 0.5 m if x > 0, and their values swapped otherwise. In words, each half

of the trap consists of a slice near the edge of a torus centered at the origin, with azimuthal

symmetry about the x axis, and the x > 0 side curving more steeply than the other half. Fixing

the sum of the major and minor radii on either side of the x = 0 plane ensures that the trap
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surface and its tangent vectors are continuous. In these coordinates, the bottom of the trap is

at (x, y, z) = (0.0, 0.0,−(R + r)).

The desired field profile for the trap is achieved by arranging the permanent magnets into

a Halbach array[89]. The magnetization direction of each magnet is alternated in a spatially

periodic pattern. The salient features of this type of arrangement are a (nearly) vanishing field

on one side of the array, and a strong magnetic field near the array surface on the other side. The

field strength diminishes roughly as exp (−κd), where d is the distance from the array surface

and κ−1 is on the order of the size of the individual magnets. A visualization of a Halbach array

and the resulting field is shown in fig. 3.3.

Figure 3.3: The magnetic field generated by a Halbach array. The red arrows represent the
magnetization direction of each magnet, and the black arrows represent the magnetic field.

For an ideal, flat Halbach array with ζ̂ pointing normal from the surface, and η̂ pointing along

the direction of variation of the magnet orientations, we have that

B =
4Br

π
√

2

∞∑
n=1

(−1)n−1

4n− 3
(1− exp(−knd)) exp(−knζ)

(
sin knηη̂ + cos knηζ̂

)
(3.2)



CHAPTER 3. EXPERIMENTAL DESIGN 36

with kn = 2π(4n − 3)/L, and L = 2 in. is the periodic distance of the Halbach array. For the

trap, the curvature is gradual, so the expression for the flat Halbach array is approximately true

in the local toroidal coordinates η, ξ, ζ, given by

ζ = tan−1(y/z) (3.3)

ζ = r −
√

(ρ−R)2 + x2 (3.4)

η = r tan−1
(

x

ρ−R

)
. (3.5)

Upon assembly, some of the populated magnet plates came into contact with plates that

were already installed, causing some of the magnet plating, and in some cases small fragments

of the magnets, to break off from the array. While the removal of the magnet coating doesn’t

pose a problem in terms of performance of the trap, the missing fragments of the magnets might

be detrimental: if the field strength in the vicinity of the chipped surface is much less than the

nominal ∼ −.8 T field, it acts as a ”hole” for the low-field-seeking UCN, and thus can be a source

of loss. While these missing fragments can eventually be replcaed or repaired, these defects have

been remedied by covering them with a single layer of Cu tape. This provides a high optical

potential non-depolarizing surface to greatly mitigate the effect of any potential holes. We will

discuss the implications of this in sec. 6.4.

3.3 Trap Door and UCN Guides

In order to open the trap, the bottom-most 6×6 in2 magnet plate is separate from the rest of the

trap. The plate is fastened to a stainless steel rod, and can be raised into a closed position so that

it is flush with the rest of the trap, or opened by lowering the plate by approximately 4 inches.

A brass wheel-shaped frame holds the rod so that it remains laterally aligned in the presence

of large (∼ 400 lb) lateral forces on the trap door due to the rest of the magnet array. UCN

can transmit through the spokes of the brass wheel and around the trap door magnet to enter

the trap. The rod is connected at the bottom to a pneumatically actuated piston. The position
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can be moved by sending a proportional analog voltage to the piston controller electronics. The

piston can be lowered or raised in about 1 second.

Figure 3.4: UCN are directed to or through the tubular sections to the left or right. A UCN that
goes up passes through the brass spokes, and up around the steel rod and magnet plate (top).
The pneumatic piston is beneath the guide cross to push the piston rod upwards or downards.

The piston interfaces with the trap door (which is within vacuum) through a double o-ring

seal on the rod, and this volume is pumped independently of the main trap vacuum. A modest

amount of vacuum grease was applied to this seal to facilitate smooth movement, but the rod

was cleaned of this grease using soap and alcohol. The top of the rod is exposed to the UCN

volume, and any greased surfaces exposed to UCN make that surface have a high loss-per-bounce

for UCN. Aside from the brass parts, most of the rest of this assembly is composed of stainless

steel, which, while mechanically robust and in general UCN-friendly, has a somewhat higher
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spin-flip-per-bounce probability than that of copper or carbon.

Figure 3.5: A cutaway of the trap door and guide cross assembly. The cross assembly (middle)
surrounds the piston rod. UCN can pass through the spoke holes up to the top of the cross
assembly, past the magnet plate (door), and into the trap. The features above the guide cross
assembly are encased in the vacuum vessel of the trap.

All of the guides leading from the trap door assembly to the pre-polarizing magnet are made

of 3 in electropolished copper, except for a 1 m section of quartz tube coated with a layer of

diamond-like carbon. This guide is used in the vicinity of the spin-flipper because it is non-

conductive. The RF resonator and magnetic field coil for the AFP spin-flipper surround this

guide. Downstream of the trap door, past the aluminum shutter, the guides that curve downward

to the UCN detector are electropolished stainless steel.

3.4 Holding Field Coils

Because the field strength of the Halbach array is negligible except near the array surface, a

UCN in the trap could undergo a Majorana spin-flip when not near the surface. To remedy this,

electromagnetic coils are placed outside of the apparatus to generate a ∼ 100 Gauss magnetic
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field throughout the trapping volume. To assure that this field does not cancel the Halbach array

field, the coils are oriented along a circle in the y, z plane, so that the holding field is perpendicular

to the Halbach field everywhere. A schematic of this arrangement is shown in fig. 3.6.

Figure 3.6: The holding coils (shown from the side in red) produce field lines (dotted blue) which
are perpendicular to the field of the Halbach array.

The ten water-cooled, rectangular, copper coils are fastened to the outside of the vacuum

jacket of the experiment. Each coil is split into two L-shaped pieces, each of which consists of

eight hollow-core bars of copper. Each bar is wrapped in epoxy tape for insulation, and bent to

the L shape on a bending table. The bundle of bars is then wrapped in another layer of epoxy

tape, and a layer of shrink tape. The bars are cut to length, placed into an 80/20 frame, and

baked to constrict the shrink tape. The ends of the bundles are fanned out so that each bar

can be fastened with a bussing clamp to its corresponding bar on the other L split, and the ends

are fitted with a hose to route water to each bar. Silver conducting paste is used for electrical

connections to assure a large contact area between each L split. Detailed views of the coils are

shown in figs. 3.73.8.

The coils are bolted to the outside of the vacuum jacket, and electrically connected in series

using 4/0 AWG cable. Water lines are connected to each coil in parallel, with de-ionized water

at 80 − 90 PSI supply pressure. A high current power supply is used to generate the magnetic

field, and the maximum current is 300 A with a 40 V drop across all of the coils.
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Figure 3.7: The design of the holding coil. Each L-shaped copper bundle rests in an 80/20 frame,
and the frames are fastened together with joining brackets.

In the coordinate system used in section 3.2, we can write an expression for the holding field,

assuming that it is an ideal toroidal field:

Bhold = Bh0
r +R√
y2 + z2

ξ̂ (3.6)

This field is everywhere perpendicular to the field from the Halbach array.

3.5 AFP Spin Flipper

High-field seeking UCN that pass through the polarizing magnet (see fig. 3.1) are polarized by

an Adiabatic Fast Passage (AFP) spin flipper. The design of the spin flipper used here is a

scaled-down low-field version of that used for the UCNA experiment[30]. The resonating cavity

consists of a printed circuit board with sixteen ∼ 8 cm long parallel copper strips wrapped into

a cylindrical shape. Adjacent strips are connected by 1 µF capacitors, which gives a resonant

frequency of approximately 400 kHz, corresponding to a resonant field for the neutron of 140 G.

The ambient field is generated by an electromagnetic solenoid which has two segments with

a different number of turns of copper wire. This produces the necessary resonant field with the

small gradient needed for high efficiency adiabatic fast passage spin flipping. The field parallel

to the UCN guide axis along the solenoid is shown in fig. 3.9. The spin flipping efficiency is

expected to be at least 98% for UCN of typical velocity coming from the LANSCE source.
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Figure 3.8: A closeup of the individual copper conductors. The bars are fanned out, and fitted
with water connections for cooling. Each bar is electrically connected to its corresponding bar on
the other L-split with a copper bussing clamp.

3.6 UCN Cleaner

The UCN cleaner consists of a 36.5× 66.0 cm2 low-density polyethylene sheet fastened onto an

aluminum frame, mounted horizontally on one side of the trap. The sheet is fastened using double

sided tape on the frame while under tension. A pneumatic piston raises the sheet to the top of

the trap, or lowers it 7 cm downwards into the trap. Nine cylindrical aluminum drift tubes (5.1

cm diamter, 1.2 m long) were installed outside the vacuum jacket above the cleaner, and each

tube was filled with 1.8 bar of 3He to measure the upscattered neutrons from the polyethylene of

the cleaner. Figs. 3.10 and 3.11 show the design and placement of the cleaner. The use of the

cleaner in the experiment is discussed in chapter 4, and the systematic effects associated with

the cleaner discussed in chapter 6.
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Figure 3.9: The component of the magnetic field parallel to the UCN beam axis produced by the
AFP solenoid with 5 A of applied current.

3.7 UCN Detectors

3.7.1 Introduction

To monitor the flux of UCN delivered to the experiment, UCN counters are incorporated into the

guide system beneath the apparatus. UCN are typically counted with 3He-filled detectors [35].

Neutrons undergo the reaction 3He(n,p)t with a Q value of 0.764 MeV, and the resulting proton

and triton ionize a stopping gas with a small neutron absorption cross section such as CF4. The

current shortage of 3He, however, demands the development of alternative high-efficiency UCN

detection schemes [101].

10B provides an alternative to 3He. Ions are produced through the neutron-capture reaction

10B(n,α)7Li, with a Q value of 2.8 MeV. This reaction leaves the 7Li nucleus in an excited
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Figure 3.10: The UCN cleaner. The rectangular polyethylene sheet is fastened to the Al frame,
which swivels on four legs so that its height can be changed. The linkage on the back of the
sheet connects to a pneumatic actuator which is fed through a bellows from outside the vacuum
jacket. The two Al wing-shaped plates bolt the assembly to the frame of the Halbach array.

state with a 94% branching ratio, which decays to the ground state with the emission of a 0.48

MeV photon [100]. Recently, boron coatings for UCN detection have been used in the form of

track-etch detectors and Gas Electron Multipliers [67, 60].

UCN are monitored in this experiment using a boron-lined detector. The inside of a cylindrical

ion-chamber is coated with a boron that was previously used for multi-layer thermal neutron

detectors at LANSCE[133].

In this section, we investigate the performance of this design. Its efficiency is directly compared

to a duplicate ion chamber filled with a 3He/CF4 gas mixture. In addition, the UCN interaction

with the layer is characterized by separately detecting UCN and thermal neutrons, and comparing

the pulse height spectra. The pulse height spectra of detectors with solid neutron-reactive layers

can be understood using a simple Monte Carlo technique [39, 109]; we perform this analysis for
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Figure 3.11: A cutaway of the apparatus showing the placement of the UCN cleaner.

the boron-coated ion chamber, and the result indicates that UCN mostly interact with the outer

surface of the boron layer.

3.7.2 Design

The ion chamber is a 76.2 mm long stainless steel tube, with a 76.2 mm outer-diameter and

1.7 mm thick walls. UCN transmit into the detector through a 0.3 mm thick aluminum window

fastened to one side of the tube, and a polyoxymethylene cap electrically isolates the detector

from UCN guides and vacuum components. The ion chamber anode is a single 4.8 mm-thick

copper conductor, protruding 50.8 mm into the cylindrical volume. The detector is pumped and

filled with gas through a VCR feedthrough (see fig. 3.12).

The coating is made with 58 ± 30% mg of > 97% isotopically pure boron powder. The

average grain size is measured with an optical microscope to be less than 1µm. The powder is

mixed with an acetone (15 ml) and polystyrene (4 mg) solution, which acts as an adhesive. The

mixture is then sprayed manually in three coats over the interior of the detector volume. The

smoothness and uniformity of the coating are not characterized. We estimate the layer thickness
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Figure 3.12: A schematic of the UCN detector assembly. The bottom plate, aluminum window,
and polyoxymethylene cap are sealed with o-rings.

to be 1.5 ± 0.5 µm, assuming that the coating is distributed evenly on the detector walls. The

10B capture cross section is 3835 barns at 2200 m/s; at a number density of 1.31 × 1023cm−3,

the mean-free path ` ≡ (nσ)−1 is 27 nm for 3 m/s UCN.

The use of isotopically enriched boron is necessary for UCN detection: natural boron has

a high optical potential (V ≈ 200 neV) that would reflect UCN away from the layer, greatly

diminishing the absorption efficiency. Pure 10B has Vf = −3.4 − 36.4i neV. With 3% of 11B

(b = 6.65), the net potential is 3.5 − 36.4i neV. For a flat surface with this potential, the

probability of UCN reflection per bounce averaged over all angles of incidence is 15% for 50 neV
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UCN. When operated in a mode where the detector is below mean beam-height, this reflection

probability is much lower. In addition, the UCN within the chamber have more than one chance

to capture on the wall. It is thus likely that the detector window and upscattering of the UCN

within the detector gas are the limiting factors for the total efficiency of the detector.

3.7.3 Characterization Methods

We compare the performance of the boron-coated detector to the same detector housing filled

with 10 mbar of 3He gas. Both detectors are filled with 500 mbar of CF4 gas. The anodes are

biased to 500 Volts, and pulses are collected using Amptek A250CF charge-sensitive preamplifiers

[3]. The pulses are then amplified by spectroscopy amplifiers with a 6 µs time constant and read

into a multi-channel analyzer. For CF4 gas at a pressure of 500 mbar and temperature of 300

Kelvin, the ranges of the charged particles (estimated using SRIM2008 code [127]) are no larger

than 7.8 mm. The full energy of the ions (less the energy loss in the solid layer) can therefore

be deposited in the gas.

Figure 3.13: The detector mount configuration. Lengths are not to scale.

To acquire data using UCN, the helium and boron-coated detectors are fastened to either

side of an electro-polished guide tee and mounted on top of a gate valve, below which is a UCN

guide leading to the UCN source. The gate valve is closed to measure the background rate of the
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detectors. A small aperture on the underside of the UCN guide leads downward to a multi-wire

proportional counter used to monitor the incoming flux of UCN. This configuration is shown in

fig. 3.13. Thermal neutron data are acquired using a 252Cf neutron source moderated with room

temperature polyethylene. An energy calibration is performed for the boron-coated detector by

introducing an additional 5 mbar of 3He gas into the chamber and using the known full energy

peak of 0.764 MeV.

3.7.4 Results

Figure 3.14 shows a comparison of the pulse height spectra for the helium and boron-coated

detectors. Because neutrons capture on the wall of the boron detector, only one of the Li or α

will ionize the gas, and there is no full-energy peak. We are thus left with two prominent edges

corresponding to the full energy of each ion. There is a less intense higher energy edge due to

α ions from the 6% decay branch. The discriminated count rate versus anode voltage for the

boron-coated detector is shown in fig. 3.15. The saturated ion region is reached for applied biases

above 300 V.
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Figure 3.14: Pulse-height spectra for the helium and boron-coated ionization chambers using
UCN. The vertical lines represent the Li and α energies of 0.84, 1.02, 1.47, and 1.78 MeV.
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Figure 3.15: The discriminated count rate from the boron-coated detector as a function of applied
anode bias. The discrimination threshold is adjusted for each voltage as needed to remove low
energy background pulses.

To measure the relative detector efficiencies of the helium and boron-coated designs, data

are acquired simultaneously for both detectors. The spectrum for each detector is measured with

the gate valve open, and then measured with the gate valve closed to determine the background

spectrum. The signal spectrum is formed by normalizing all counts to the monitor rate, and

subtracting the closed-valve spectrum from the open-valve spectrum. In addition, counts below

0.15 MeV are discriminated, as γ-ray backgrounds from neutron capture are potentially high in

this energy range. The background rate for both detectors was 700 mHz ±15%, primarily due

to thermal neutrons that escape from the UCN source.

The ratio of the helium detector signal to the boron-coated detector signal is (94± 8) %.

The error includes the statistical uncertainty of the background spectra as well as an estimated

uncertainty in establishing the discrimination threshold for the two detectors.

Finally, fig. 3.16 compares the pulse-height spectra of the boron counter using UCN and

thermal neutrons. The full energy peaks are significantly broader when detecting thermal neu-

trons: faster neutrons can penetrate further into the boron layer than UCN, and the subsequent
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ions must traverse a significantly larger portion of the coating, thus losing more energy prior to

ionization in the gas. This will be discussed quantitatively in the next section.
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Figure 3.16: Comparison of boron-coated detector spectra for UCN and thermal neutrons. The
spectra are scaled so that their integral is unity. The predictions are discussed in section 3.7.5.

3.7.5 Discussion

Because the detector windows and stopping gas are the same for the 10B and 3He detectors,

only a difference in the neutron absorption efficiency and ion collection efficiency can cause a

discrepancy in the relative detector efficiency. The capture probability for the 3He detector is

close to unity: typical UCN (50 neV) in the gas have ` = 11 mm, which is several times smaller

than the detector dimensions. In addition, the charge collection efficiency is expected to be high.

The efficiency of the boron detector depends on the probability of a UCN transmitting into

the layer, as well as the probability that either of the resulting α or 7Li ion escapes the layer

with sufficient energy to ionize the stopping gas. The probability of the latter process is given by
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[133]:

εboron =
1

2

(
1− exp

(
−T
`

))(
1− `

R0

)
+

T

2R0

exp

(
−T
`

)
. (3.7)

Here, T = 1.5 µm is the layer thickness, and R0 is the range of either the α or Li ion in 10B.

The respective ranges of the α and Li are 3.6 and 1.9 µm for the 94% decay branch, and 4.4 and

2.2 µm for the 6% branch. In all cases, ` ∼ 27 nm is much smaller than R0 and T , so that the

efficiency is close to unity for UCN that enter the layer. The measured relative efficiency of the

3He and 10B detectors therefore indicates a reasonable efficiency for UCN to transmit into the

layer.

The pulse-height distribution for a single ion is given by the number of detected ions created

at an initial depth in the layer x and angle to the normal of the surface θ that escape the layer

such that their final energy is E. That is,

dN

dE
= N0

∫ 1

0

d(cos θ)

∫ ∞
0

dx× P (x, cos θ)δ (E − η (x/ cos θ)) . (3.8)

Here, P is the probability of an ion starting at a depth x and and angle θ within the layer, and

is given by

Pdxd(cos θ) = `−1 exp (−x/`) dxd(cos θ) (3.9)

where ` is the mean free path of the neutron incident on the boron layer.

Further, η is the final ion energy given an initial depth x and angle θ, and is given by

η = E0 −
∫ x/ cos θ

0

dE

dL
· dL (3.10)

where E0 is the initial ion energy, and dE/dL is the ion energy loss per distance traveled in the

boron layer. We calculate η using dE/dL for the lithium and α ions in solid boron-10 using

SRIM2008 (see for example fig. 6 in [39]).

We perform a Monte Carlo integration of equation 3.8 to find dN/dE, adding the contribution

of both ions and decay branches. The resulting spectrum is convolved with a gaussian distribution
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of width 0.015 keV, which is commensurate with the width of the full energy peak for the 3He pulse

height spectrum; this is a simple means of including the instrumental width into the theoretical

prediction [109]. This calculation is performed separately for ` = 27 nm (UCN) and ` = 20µm

(thermal neutrons), and the results are represented by the dashed lines in fig. 3.16.

The model captures the qualitative shape of the spectra. There are, however, an excess of

counts below the full energy peaks in the UCN data which are not predicted by the model. The

10B powder grain size is similar to the ion ranges, so that surface roughness of the layer may cause

additional energy loss for detected ions with large angles with respect to the surface normal. In

addition, the upscattering of UCN in the detector may introduce a thermal component to the

UCN spectrum. While this observation does not effect the total efficiency, it demands future

investigation. Furthermore, it is evident from fig. 3.16 that the the observed energies of the Li

peaks are measured to be 10% lower than their expected values. This has been reproduced under

several operating conditions, and it is not explained by a discrepancy between the theoretical and

observed detector gain and offset. The effect is therefore not understood at this time.

3.8 Vanadium Activation Detector

To count the surviving UCN in the trap, the trap door can simply be opened and the UCN drained

back into the guide system where they are detected by a UCN counter. As discussed in chapter

2, this is the approach used in past neutron lifetime experiments using material traps. However,

draining times can be long, and the efficiency to transport UCN from the trap to the counter

may depend on the UCN spectrum and occupied phase space of the trap. It is therefore desirable

to detect UCN in the trap, because it offers the potential to make a detector which rapidly and

efficiently detects all of the neutrons with less sensitivity to the phase space of the UCN in the

trap. To this end, the apparatus incorporates a prototype detector that uses vanadium activation

to count the surviving UCN. After a storage interval, a 127 µm-thick, 10.2×20.3 cm3 rectangular

foil is lowered into the trap to absorb the UCN. The foil is then raised out of the trap into a

detector array to measure the activity of the foil and deduce the number of survivors.
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Figure 3.17: A cutaway of the vanadium detector. A 5 cm thick rectangular Pb background γ-
ray shield surrounds the array of 8 NaI detectors. The vacuum jacket between the NaI detectors
houses the V foil (which can be lowered into the trap) which is surrounded by the plastic β
detectors.

Vanadium is chosen because it has a slightly negative optical potential (VO ≈ −7 neV), and

thus a high UCN transmission probability. In addition, the upscattering probability has been shown

to be approximately 1% of the total loss (absorption and upscattering), so that UCN that strike

the foil have a high probability of nuclear absorption[42]. The activated 52V (T1/2 = 3.743(5)

m) emits a β-ray with a 2.5 MeV endpoint that is coincident with a 1.4 MeV γ-ray with a more

than 99% branching ratio. For the prototype, a detector array for the coincident detection of the

β and γ rays is employed, providing a low-background method for detecting 52V decays.

A cutaway of the vanadium foil and detector array is shown in fig. 3.17. The foil is mounted

in a steel frame, and fastened to a magnetically-coupled linear actuator. The actuator can move

the foil (in vacuum) from the detector array above the apparatus to the bottom of the trap in

less than one second. The β detectors consist of two 4 mm thick, 10.2 × 30.5 cm2 polyvinyl

toluene scintillators placed on both sides of the foil. Acrylic light guides couple to one edge of

each scintillator, leading out of the vacuum jacket to 5 cm diameter PMTs. The sides of the

vacuum jacket are 0.3 cm-thick Al to assure that γ-rays transmit outside of the apparatus. A
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Figure 3.18: A schematic of the detector geometry. The Pb shield surrounds the stack of NaI
detectors. The black line represents the vacuum break. The plastic scintillators immediately
surround the V foil within vacuum. The foil is moved down into the trap using a magnetic
coupler to connect to a linear actuator outside the vacuum.

stack of 5.1 × 10.2 × 20.3 cm3 hermetically-sealed NaI crystals coupled to PMTs are used for

γ-ray detection. In the February 2013 experimental campaign, two NaI detectors (one on each

side of the vanadium foil) were operational, and the plastic scintillator was of type BC404 (2 ns

decay time). In the subsequent run campaign, 8 NaI detectors were implemented, and the plastic

scintillators changed to a phoswich sandwich consisting of a 0.5 mm layer of EJ212 scintillator (2

ns decay time) backed by a 3.5 mm layer of EJ240 (285 ns decay time). The phoswich geometry is

used (in conjunction with a waveform digitizer) to discriminate pulses which only contain the slow

component: β-rays from the vanadium decay must necessarily pass through the fast scintillator
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and stop in the slow scintillator, so that events with only a slow component cannot be due to

52V β-decay. A diagram of the detector geometry is shown in fig. 3.18

3.9 Automation and Data Acquisition

For the Feb 2013 run campaign, a FAST ComTec MPA3 was used to acquire signals from the

UCN detectors, upscatter detectors, and vanadium detector array. A global 20 MHz clock provides

timing information for each detector channel, and the initial CPU time of each run is also recorded.

Shaped and amplified signals are inputted, and the pulse height recorded for each event. In the

case of the β detectors, a hardware anti-coincidence is performed, and hardware threshold is set,

and the resulting digital pulse is sent to the MPA3 system to record the event time.

In the second run campaign, this system was replaced with a 12 bit 250 MHz waveform digi-

tizer. While only the waveform acquisition for the β detectors was necessary, all detector channels

were read into the waveform digitizer to preserve precise relative timing across all detectors. Each

digitizer channel is triggered independently by a preset minimum voltage threshold for the given

channel. Upon triggering, a set number of pre-samples is stored, and the remaining waveform is

recorded. Signals are sent to a PC over ethernet, and each event contains the trigger time from

the 250 MHz clock and the packet time from the ethernet transfer. Timing filtering amplifiers

are applied to the analog signals before input into the digitizer, which provides cleaner signals and

good matching of each signal to the dynamic range of the digitizer with a negligible reduction in

timing resolution.

In order to perform a measurement cycle, many devices must be activated in a repeatable time

sequence. Valves must be open and closed, the cleaner and vanadium actuators raised and lowered

at particular times, and runs must be syncronized with the detectors. To do this, a custom-made

program is used to create individual POSIX threads which set timers, and execute commands

for the various devices. For most of the controls, a central measurement and automation device

(LabJack U3) is used.

To actuate the cleaner, shutter, and gate valve, the control pins on the U3 are configured for
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digital output. The output is sent to the control side of a solid state relay. On the load side of

the relay, a 24 V power supply connects in series with the relay and the actuator solenoid. Thus,

when the U3 sends a 5 V signal, the relay sends power to the solenoid, actuating the device.

The LANSCE proton beam enable is a TTL signal sent to the accelerator’s central control room.

When no voltage is applied, a kicker diverts the hydrogen ions away from the RF cavities in the

accelerator. When a high signal is sent, the kicker is deactivated, and protons are incident on the

UCN target, providing arbitrary control over beam delivery to the spallation target for the UCN

source.

A 14 bit DAC module that connects to the U3 and communicates via i2c protocol is used to

send an analog position signal to the trap door piston. The position encoder output of the PCS

is sent to an analog input of the U3, and the control program logs the piston position in regular

(typically 10 s) intervals.

The PC communicates with the vanadium actuator controller via RS232 connection. The

GUI sends serial commands to the controller to set the acceleration and speed parameters to the

stepper motor, and instructs the stepper motor to raise and lower the vanadium foil using the

same type of timing threads as the labjack.

For synchronization of the slow control and detector DAQ, the MPA3 has a digital output

which sends a high signal when a run has commenced. This is inputted into the U3, and the

control GUI waits until the detectors are acquiring data before the control sequence is started.

To perform a run, the user inputs the delay and spacing between each actuator event into the

control GUI. When the run is started, the GUI waits for the signal from the MPA3 system, and the

run commences. The timing parameters are written as a data entry into an HDF5 file along with

a date time stamp and user-inputted description of the run. When the control run is complete

and the MPA3 data acquisition run is stopped, the MPA3 software writes a time-stamped file of

the detector events. In this way, the control runs can be correlated in time with detector data

acquisition runs for later analysis. Upon implementation of the waveform digitizer in later run

campaigns, the digitizer acquisition program was integrated into the slow control program, and
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runs synchronized in software.

The reliability of the timing of each device can have implications for a high precision mea-

surement of the neutron lifetime. Prior to taking data with UCN, the above system was tested by

performing ∼ 200 run cycles wherein the various devices were actuated for various times (typically

20 to 30 s). Each event was timed independently by a high frequency clock and a stop watch

timer. The delay and duration of each event varied by typically 0.01 s.



4 First Experimental Campaign

4.1 Introduction

The apparatus was assembled as in fig. 3.1 in February 2013 at LANSCE. A one-week measure-

ment campaign was performed to test the components described in chapter 3. During this time,

background data were acquired, spin contrast measurements performed to tune the spin flipper,

and UCN were stored in the trap. Data were acquired using the V activation detector, but the

signal-to-background was poor due to limited NaI detector solid angle efficiency and low UCN

density. Therefore, these data were not used to characterize the apparatus in this campaign. The

upgrade and commissioning of the V detector will be discussed in chapter 5. In this chapter, we

determine the storage time of the trap, examine detector backgrounds, and study the signal from

the upscatter detectors.

4.2 Backgrounds

The backgrounds in the monitor detector were studied by computing the count rate while UCN

are stored in the trap and the beam is off. These conditions are used since they are most similar

to those for the emptying process. The time integration window for each run is also limited

to assure that UCN that are being emptied into the detector from the guides are not included.

Figure 4.1 shows this rate over the course of the run campaign.

Between runs 70 and 140 there is a notable increase in the background rate, most likely due

to repeated re-assembly of 10B-loaded rubber shielding around the outside of the detector, and

due to a (subsequently discovered) intermittent ground loop which caused excess noise in the

detector preamplifier. For runs after 140, It was observed that the low-energy tail of the pulse

57
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Figure 4.1: The average beam off background rates for the 10B detector over the run campaign.
The red line is a linear fit for runs greater than 140, with a slope of approximately 90 mHz per
day.

height spectrum contributed a substantial amount to the rate. It’s therefore worth considering

whether an appropriate pulse height cut improves the signal-to-background: figure 4.2 shows the

background versus time with a lower level cut on the ADC events of 0.65 V which removes much

of the observed noise tail, and this improves the stability for later runs by a factor of three.

Figure 4.2: The beam off background rate for the 10B detector with a lower level ADC cut of
0.65 V.

The boron detector (analyzed for its signal during fill-and-empty measurements) is not consis-
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tent with a flat background, even accounting for the increase in the rate from run 70 to run 140.

Care must therefore be used to subtract the background either on a run-by-run basis, or in some

way account for drifts in the background over time. As discussed in the next section, a run-by-run

fit of the data including a background term accounts for this background drift. A single cause for

the ostensible background drift was not identified, but it is likely due to a combination of changes

in detector shielding (mentioned above), slow contamination of the detector gas due to diffusion

or leakage through the o-ring seals of the detector chamber, and changes in the environmental

background such as beam-induced activity.

4.3 Determination of the Storage Time

In this section we present a determination of the storage time of the trap. UCN are loaded into

the trap, cleaned, stored for various times, and emptied into the 10B counter to determine the

storage time constant τstore. A typical filling and emptying cycle of the apparatus is shown in fig.

4.3. At the beginning of a cycle, all UCN valves are open, the cleaner is lowered, and the proton

beam is turned on. After tpre = 30 s, the shutter is closed and filling continues for another 180

s until the time tfill. Once filling is complete, the shutter is then opened to drain UCN from the

guides, the proton beam is turned off, and the trap door and main gate valve are shut. The

cleaner remains in a lowered position for an additional 30 s; it is raised at time thold, and the

UCN are stored for variable amounts of time (100 to 2000 s). The trap door is then opened at

time tempty to measure the number of surviving UCN and measure the detector background. The

storage time is then given by tstore = tempty − thold.

Fig. 4.4 shows the UCN monitor rate during a typical measurement cycle. The count rate

increases as the density in the guide system saturates. Once the shutter is closed at tpre, the

count rate reduces due to deflecting away neutrons with E < V
(Al)

O . At the end of the filling

cycle, the count rate rapidly increases due to re-opening the shutter, and then diminishes with

time as the UCN drain from the guide system. Upon re-opening the trap door at tempty, the

surviving neutrons are counted.
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Figure 4.3: The timing of components during a fill and empty cycle. The beam is on (off), valves
are open (closed), and the cleaner is down (up) for a high (low) signal.

After filling the trap, some UCN remain in the guide system for an average time of ∼ 5− 10

s before being lost or detected. For short storage times, this affects the otherwise constant

background in the monitor detector. To correct for this, the counting rate from time tfill until

tempty is fit to the function

B(t) = B0 exp (−βt) +B1 (4.1)

where B0, B1, and β (typically ∼ 0.15 s−1) are free parameters. As an example, for the 2000 s

storage time runs B(t) is dominated by B1 ≈ 0.02; the average signal to background (integrated

over the signal window) for these runs was approximately 1.7. This incorporates the detector

background B1 along with the UCN draining from the guide system at time thold.

For sufficiently stable operation of the UCN source, the initial number of trapped UCN is

proportional to the detector rate from time tpre until tfill. The mean rate R during this time

window is used as a normalizing factor for the emptying signal. The ratio of counts P with the

shutter open to the rate R provides an indication of changes in source performance, which could

cause fluctuations in the ratio of trappable to countable UCN as discussed above. Runs with



CHAPTER 4. FIRST EXPERIMENTAL CAMPAIGN 61

Figure 4.4: The 10B counter rate during a measurement cycle. From left to right, the vertical
lines represent time tpre when the shutter is closed, tfill when the trap door is closed and shutter
opened, and tempty when the trap door is opened.

P/R fluctuating by more than ∼ 20% from the nominal range were rejected. This amounted

to rejecting 9% of the experimental cycles. This cut improves the goodness-of-fit, but does not

cause a significant change in the central value or standard error; thus, these fluctuations do not

have a significant effect for the results in this chapter, but need further examination in order

to interpret high precision data that will be used to extract τn in future run campaigns. The

potential causes and treatment of these fluctuations are discussed in more detail in chapter 6.

With the above, we define the signal S of stored UCN to be

S ≡ 1

R

1

∆t

∫
[D(t)−B(t)] dt (4.2)

where the limits of integration run from tempty to tempty + 100 s, ∆t is the integration bin width,

and D(t) is the measured counter rate while emptying. The signal for various tstore is shown in fig.

4.5, for a total data acquisition time of approximately twenty hours. We perform a least squares

fit of N exp(−t/τstore) to the data, from which τstore is deduced. The measurement is repeated
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with the holding field deactivated, which reduces the storage time due to depolarization of the

trapped UCN. We find that τstore = 860 ± 19 s (χ2/ν = 0.87) with the holding field activated,

and τstore = 470 ± 160 s (χ2/ν = 1.17) with the field deactivated. The fit value of τstore with

this method is consistent with a determination by computing the log-ratio of the signal of long

and short storage times (as done, for example, in refs. [27] and [23]).

Figure 4.5: The signal S versus tstore. The storage time constant of the trap is given by τstore from
the exponential fit (upper). The distribution of residuals of the exponential fit are normalized to
their statistical uncertainty (lower).
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4.4 Cleaner Upscatter Detectors

In this section, the 3He drift tubes on top of the vacuum jacket (near the cleaner) are analyzed.

An appropriate set of runs is identified, and the data are combined to observe the time dependence

of the counts during the cleaning process. Runs wherein the trap is filled for a fill and empty

measurement with 30 seconds of cleaning were used.

Fig. 4.6 shows the average drift tube rate during filling. The prompt background from the

beam pulses is evident while the trap is being filled. Fig. 4.6 shows a typical pulse height spectrum

for the drift tubes during cleaning. The data from the 3He tubes are extracted, and an ADC cut

of 1.8 to 3 V is applied. While some events below the full energy peak are also neutron-generated

(though deposit less energy due to wall-effect), rejecting data outside of the full energy peak

offers improved signal-to-background.

Figure 4.6: The pulse height spectrum of the 3He tubes (left). The pulse height spectrum of the
3He tubes (right).

Data for all of the runs are aligned in time, and counts for each run are extracted starting 5

s after the trap door shuts, and ending 50 s later. From the above, we plot the counts over time

during the 30 s cleaning cycle averaged over all such runs. This is shown in the left panel of fig.

4.7 along with a N exp(−kt) + C fit. This gives a time constant k−1 ≈ 8 s. We can perform

the same analysis of fill and empty runs where we did not clean. This is shown in the right panel

of fig. 4.7, and the signal is not observed.
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Figure 4.7: The combined counts over time during 30 s cleaning, with exponential fit (left). The
combined counts over time for fill and empty runs with no cleaning (right).

In order to truly conclude that the cleaning curve shown in figure 4.7 is due to upscattered

UCN in the trap, it will ultimately be desirable to compare runs wherein all valve/actuator timings

are equal, except that the trap door never opens. Though no such data were taken during the

limited time of this run campaign, future experiments are planned to examine the nature of the

signal from these detectors, and potentially improve the detector efficiency by placing detectors

closer to the cleaner.

4.5 Conclusions

The measured storage time of 860± 19 s is within 1σ of current averages of τn measurements.

This demonstrates that the storage time is long compared to the neutron lifetime, which is a

critical for a magnetic-trap-based measurement of τn.

However, the (statistical) uncertainty is quite large. The data included in the storage time

measurement comes from approximately one day’s worth of run cycles. However, in order to

perform additional systematic studies in the future, many such cycles must be performed, and

improving UCN transport into the trap is necessary to perform these characterizations in a rea-

sonable time-span. In addition, the polarization of the UCN is observed to be poor due to the

presence of stainless steel components used in and near the trap door. We estimate ∼ 104 trapped

neutrons per fill, but substantially less are detected due to the poor transport efficiency into the
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monitoring detector. The statistical uncertainty per measurement can be greatly improved by

moving the trap door further out of the way to make for a larger UCN conductance into the

trap, replacing the stainless steel components with copper or other non-depolarizing material,

and implementing an in situ detector (e.g. the vanadium activation detector) which doesn’t rely

on high transport efficiency from the trap to an external detector.

In this campaign, data were acquired with the vanadium activation detector, but exhibited

very low solid angle efficiency for the NaI detectors and high background rate in both the plastic

scintillators and NaI detectors. This is addressed with greater NaI detector coverage and improved

shielding, and will be discussed in chapter 5.

For the storage time measurement in this chapter, a determination of the background on a

run-by-run basis was sufficient to provide consistent signal data, in part due to the high signal-

to-background of UCN counters. However, any changes in shielding geometry, changes in the

environmental background (e.g. proton beam spill, activation due to the accelerator), and other

effects such as gain drifts, will complicate precision measurements, and it will be necessary to

devote dedicated studies to the source of backgrounds and their effect on the measurement of

τn.

The normalization procedure used here of measuring the saturated rate in the monitoring

detector while filling, was sufficient to provide a consistent normalization for each run well within

the statistical uncertainty. However, as will be discussed in chapter 6, this may not be sufficient

for a precision measurement in the presence of source output fluctuations that are on similar

time-scales to the trap filling time.

Finally, the data from the 3He cleaner detectors shows a time-dependent signal correlated with

the trapped UCN. However, there may be other sources of background in these detectors, such

as upscattered UCN from the guide system, or accelerator-generated thermal neutrons present in

the experimental hall. This motivates more detailed study of these data in future campaigns, as

well as separate experiments to study upscattered neutrons from the Cu guides and other sources.



5 Second Experimental Campaign

5.1 Introduction

A second run campaign was performed in a few runs from the fall of 2013 through February

of 2014. The goals of this campaign were to commission and characterize the V detector,

investigate the stability of monitoring the number of loaded UCN, and improve UCN polarization

and transport efficiency. The guide system was initially configured as in the previous run campaign.

This configuration was modified during the campaign to investigate new guide configurations to

improve the trap density.

A custom waveform digitizer was used to acquire data from all detectors, with 12 bit digital

resolution and a 250 MHz sampling rate. This is sufficient to identify the peak from the fast

component of the plastic scintillators coming directly from the PMTs. The UCN counters were

read out using integrating preamplifiers, and spectroscopy amplifiers with 2 µs shaping times.

Attenuators were placed on the output of the UCN counters as needed to reduce the signal

voltage in order to fit within the allowable range for the waveform digitizer inputs.

5.2 Vanadium Detector Characterization

The vanadium detectors were configured as discussed in section 3.8, with two stacks of four

NaI detectors surrounding the plastic phoswich scintillator paddles. The NaI PMT signals were

summed together into one data acquisition channel, and the plastic scintillators are each read

into a data acquisition channel. The gate valve monitor and downstream 10B detector were also

implemented.

66
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5.2.1 NaI Characterization

Because the NaI detectors are summed into a single channel, it is important that the gain of

each of the 8 detectors is well matched, so that events outside of the region of interest for 52V

decay can be excluded. In order to gain match the detectors, a 60Co source was placed in the

middle of the detector array, and one NaI detector biased at a given time. The 1.1 and 1.3 MeV

γ-ray peaks from the source were identified in each detector, and the PMT bias adjusted to make

the peaks appear in the desired location of the pulse-height spectrum. The detectors are then

all biased to verify that the spectrum summed over all detectors provides the desired resolution.

Figure 5.1 shows the measured pulse height spectrum of 60Co from the NaI detectors.

Figure 5.1: The measured 60Co spectrum using the summed NaI detectors. The black shows
the measured spectrum, the red shows the spectrum with the source removed, and the blue is a
direct subtraction of the foreground and background spectra.

The expected photopeaks and compton edge are readily discernable in the spectrum, as are

pileup events from the two photons. There is not a significant 1.1 + 1.3 MeV full energy peak

due to the low solid angle efficiency of a sole detector in the array. From a gaussian fit to
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the photopeaks in the 60Co, the FWHM resolution is approximately 10%. Because the goal is

to count decays (with the aid of coincidence with the plastic scintillators), energy resolution is

not critical aside from being able to reject events with energy much greater than the 1.4 MeV

photopeak for 52V. Regardless, the energy resolution could be improved in future run campaigns

using spectroscopy amplifiers and longer pedestal sampling for each waveform. In addition, the

detectors could be read out independently to obviate the need for careful gain matching.

This gain matching procedure was peformed with the holding field both off and on, and two

different gain matching routines used for either configuration due to differences in PMT gain with

magnetic field. The change in gain between these two configurations is as large as 10-20% for

the detectors closest to the holding field coils. Ultimately, the holding-field-on gain matching was

used (as no holding-field-off runs were performed in this campaign). The overall gain was set so

as to fit events with energy up to ∼ 2 MeV. Any events with more energy saturated the digitizer

input, and (as they are above the 52V photopeak) were rejected.

Also in fig. 5.1, an additional peak is evident near the 60Co peaks (and hence near the 52V

peak). This is readily identified as the electron capture decay branch of 40K: an isotope that is

prevalent in the experimental hall.

We can use vanadium activation spectra to investigate the gain stability of the NaI detectors

during typical run cycles. As will be discussed in more detail in section 5.2.2, the V detector

signal-to-background ratio is considerably improved by forming coincidences between the NaI

and plastic scintillators. While measuring the activity of the vanadium, The NaI spectrum for

coincident events clearly resolves the 52V photopeak.

Thus, to investigate gain stability, coincident NaI spectra were obtained from a series of

four high-statistics vanadium activation runs. The spectra were formed for events during the

time shortly after the vanadium was raised into the detector array, to maximize the number of

signal events compared to background. In each run, the 52V photopeak was fit to a gaussian

distribution of variable height, mean, and width, and the resulting mean taken as the location

of the photopeak. The mean versus time (normalized to initial mean) is then fit to a line to
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Figure 5.2: The pulse height spectrum of vanadium activation events in coincidence with plastic
scintillator events. The blue line shows the gaussian fit within the fit range, denoted by vertical
dotted lines (left). The relative peak position from the gaussian fits to the high-statistics vanadium
activation data versus time, along with the linear fit (right).

estimate the size of the relative drift in peak position. Figure 5.2 shows a fit to the coincident

NaI spectrum, as well as the relative peak position versus time with linear fit. We find the slope

of this fit to be (3.7± 2.0)× 10−4 hr−1.

5.2.2 Coincidences

Figure 5.3: The time-to-nearest-event for the beam on period of run 655, activity measurement
during that run, and beam off background from run 656, each in a 200 s window. The (left) time-
to-nearest-event for the two plastic scintillators and (right) plastic scintillators and NaI detectors
are shown.

An ideal candidate β event is one in which exactly one of the plastic scintillators is triggered
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(referred to here as an “xor” β event). Coincidences between the two scintillator paddles must

be due to cosmic ray or other environmental backgrounds, and the probability of a backscattered

β triggering both scintillators is negligible. Further, the xor β event should be coincident with

a NaI event with energy not above that of the photopeak. Compton-scattered γ-rays below the

photopeak are included.

The time-to-nearest-event between the two plastic scintillators is shown in the upper panel

of fig. 5.3 for a time window while the beam is on, beam is off and V foil unactivated, and

when the beam is off and activated V foil in the detector array. In the β-β coincindences, one

immediately notices an increased coincidence rate with the beam on, and little difference between

the background and V activation, suggesting that very few real events are lost by the rejection

of coincident events.

The lower panel of fig. 5.3 shows the same runs, but for coincidences between the plastic and

NaI scintillators. There is an excess of V activation events in this region compared to background,

suggesting that it can discriminate NaI events uncorrelated with events in the plastic scintillator.

The peak in the time to nearest event for coincident events is offset between the β and γ signals,

most probably due to the comparatively slow speed of the NaI and the use of shaping amplifiers

for the NaI. Further, there is a prompt signal well timed with the plastic scintillators, which is

likely due to detector noise caused during the movement of valves and actuators while the trap

is being filled.

While the time-to-next-event plots offer the desired time correlation between detector events,

we want to choose the coincidence and anti-coincidence windows used to select data so as to

optimize the V decay signal. We accomplish this by taking a typical vanadium activation run,

systematically varying the timing window, and fitting the resulting data to an exponential-plus-

background:

S(t) = Ne−t/τV +B (5.1)

with initial decay rate N and background rate B free parameters, and the 52V mean lifetime

fixed to τV = 324.0 s[94]. The relative least squares error of N for a given fit is then determined
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as a function of the time window. The offset of the time window is fixed to 7.8 ns in the case

of plastic scintillator anti-coincidences, and to 3096 ns between the NaI and plastic scintillators.

Figure 5.4 shows the optimized fit uncertainties for the β anti-coincidences and β-γ coincidences.

In the case of the β-γ coincidences, a later run was used which had better signal to noise, in

order to have sufficient statistical sensitivity to perform the optimization. This run consisted of

lowering the V foil, opening the trap, and turning the beam on for 400 s, and then raising the

foil to measure the activity. The rates in the NaI and β detectors from these runs is shown in fig.

5.5. From this analysis, we take a window of ±150 ns for the xor β event window, and ±250 ns

for the β-γ coincidences.

Figure 5.4: The relative uncertainty in the activity as determined by the fit to eqn 5.1 for xor β
events (left) and xor β coincident with NaI events (right).

5.2.3 Phoswich Geometry Characterization

Figure 5.6 shows example event waveforms from the plastic scintillators. Events with only a slow

component, as well as both a fast and slow component. The event shown in black exhibits only

a slow decay component, indicative of a charged particle (e.g. a background compton electron)

that stopped entirely in the thick, outer layer of the low scintillator. The other event (blue)

exhibits both fast and slow signals, and is indicative of an electron which passes through the thin

fast layer and stops in the slow layer. In order to investigate the shape of these signals, events
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Figure 5.5: The singles and coincidence rates in the detector for the high statistics run (see text).

were fitted to a double exponential function

I(t) = I1e
−t/t1 + I2e

−t/t2 (5.2)

with I1, I2, t1, t2 free parameters. The intensities I1,2 of the fast and slow components varied

substantially from event-to-event (as expected), but the time constants were found to reliably be

t1 = 11 ns and t2 = 285 s. The slow component agrees well with the quoted decay time of the

scintillator, while the fast component is substantially longer than the quoted 2 ns. This is most

probably due to the light collection time and response times of the PMTs. After initial study, the

time constants t1,2 were fixed to the above values, while the intensities remained unconstrained.

Figure 5.7 shows a fit to a typical waveform using the above prescription.

Alternatively, the pulse shape can be investigated by separately computing the area under the

fast and slow parts of the pulse (also shown in fig. 5.7). Parallel analyses of the data show no

appreciable qualitative difference between the fit and integration methods of analysis[93]. As such,

the integration method is used to analyse the phoswich data as it is much less computationally

intensive.

With this method, we investigate the background rejection of the phoswich signals using the



CHAPTER 5. SECOND EXPERIMENTAL CAMPAIGN 73

Figure 5.6: Digitized waveforms from the phoswich scintillators. An event with just a slow
component (black) and an event with a fast and slow component (blue) are shown.

vanadium foil activated by UCN. A vanadium activation run with a modified guide geometry for

improved signal (run 826, see section 5.4) was examined. Figure 5.8 shows the fast and slow

areas for xor β and coincidence events. Events are situated most prominently in two bands in the

fast/slow parameter space: those with mostly a fast component, and those with both a fast and

slow component. The presence of these bands is possibly due to two scenarios: electrons which

stop completely in the fast layer, perhaps due to large incident angle into the fast side of the

scintillator paddle, and those which pass through both the fast and slow scintillators. As it turns

out, most events that are dominantly slow are rejected simply by setting the trigger threshold

sufficiently high. As such, events which originate outside of the two paddles and stop entirely

within the slow layer are essentially shielded by that layer.

By comparing the xor and coincidence events in fig. 5.8, one might expect, due to the sub-

stantially different signal to background content of these two types of events, that a comparison

might reveal a particular place in the parameter space where true 52V events are found. However,
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Figure 5.7: (left) A typical digitized waveform (solid) with the associated double exponential
fit (dotted line). (right) The same waveform (solid) with vertical dotted lines representing the
domain of integration for the fast part of the pulse; all times after the later dotted line form the
domain of slow integration.

both branches of events appear to contain signal events for both xor and coincidence events.

While in principle one could simply bin events in the two-dimensional fast/slow parameter space

and directly subtract histograms of signal and background data, the events are sparse enough

that reliable subtraction becomes difficult. Such an analysis was performed, and while it indi-

cates significant signal events throughout the parameter space, it is more tractable to reduce the

parameter space to that of one dimension, with a parameter that depends on the pulse shape.

Because we aren’t concerned with the total energy deposited in the scintillator, and fig. 5.8

suggests that events lie near two slopes in the fast-slow space, the above data are re-binned as

a function of the angle of the slope (viz. tan−1
(
Ifast/Islow

)
). This is shown in fig. 5.9 for

runs 826, as well as run 827, which is a background run in which the GV was never opened to

allow UCN into the guides/trap. This shows that real 52V decay events appear in both branches,

though preferentially in the fast signal dominated region. Further, most of the background events

in the other region are excluded by the coincidence cut, which further shows that indeed both

regions are populated by real events.

Ultimately, rejecting data in certain regions of the fast/slow parameter space does not improve

the statistical sensitivity of the vanadium activation measurements. While this conclusion may

change if signal or background rates are much different in future run campaigns, the initially
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Figure 5.8: The fast and slow integrals of events from run 826, a vanadium activation run in a
modified guide geometry. The xor β events (left) and xor β-γ coincidences (right) are shown.

considered type of background event (i.e. an event with only a slow component) is rejected simply

due to having lower instantaneous light output, thus being below the trigger threshold. Further,

many 52V decay events appear to stop in the fast scintillator, suggesting that a revision of the

phoswich geometry might change the qualtitative nature of events and provide better background

rejection. In any case, the tagging of events with the NaI detectors provides excellent background

rejection, and a substantial improvement in NaI efficiency may obviate the need for the phoswich

geometry altogether.

We can estimate the gain stability of the β detectors with the same high-statistics data used

to determine the NaI stability. Unlike the NaI vanadium signal, there is not a well-defined peak

that can be identified. Instead, we produce a spectrum Fr(E) of the total integrated pulse area

E from the first of the four runs, and treat this as a reference spectrum. Each subsequent run

is binned in the same way to form a trial spectrum F (E), and a least-squares fit of F (gE) to

Fr(E) is performed with g a free parameter. We then plot g versus average measurement time



CHAPTER 5. SECOND EXPERIMENTAL CAMPAIGN 76

Figure 5.9: The angle of the slope of fast and slow intensity for xor β and coincidence events.
Run 826 (vanadium activation) is shown in black, and run 827 (background) is shown in blue.
In each case, events for times after the vanadium has been raised into the detector array are
included.

for the three runs (with the initial reference run at t = 0) and fit the data to g = 1 + rt with r

free. This is shown in fig. 5.10 and gives a best fit of r = (9± 6)× 10−4 hr−1 for 32 pulse area

bins. However, the reference spectrum may exhibit some statistically allowable deviations in a

given pulse area bin which could affect the best fit to later trial spectra. To check this, the above

procedure was repeated for different numbers of pulse area bins and for different upper and lower

pulse area cuts on the spectrum. This produced 1-σ deviations |r+ δr| as large as r = 2× 10−3

hr−1 for finer binning, though with much poorer goodness-of-fit. Thus, the value r = 2 × 10−3

hr−1 appears to be a reasonably conservative upper bound.

5.2.4 Backgrounds

The primary advantage of using traditional UCN detectors to count surviving UCN is that they

exhibit very low (in some cases negligible) background rates, even in proximity to reactor cores
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Figure 5.10: The best-fit gain for trial runs compared to the initial reference run versus average
measurement time, in hours.

or spallation targets. The background rates in the vanadium detector array are significant, which

raises two issues: any estimate of the statistical sensitivity of this technique to a measurement

of τn must incorporate the size of these backgrounds, and time-dependent contributions to the

background can systematically effect the extraction of τn.

In addition to measuring the background rates, the nature of background events can be

investigated by performing different types of background runs. Here, we analyze three types of

background runs: beam-off, beam-on GV closed, beam-on trap closed. In all three cases, all

valves/actuators were run in the same way, except for the GV never opening in the beam-on GV

closed run, and the trap door remaining closed throughout the beam-on trap closed run. These

runs separate a few potential sources of background: prompt background related to the spallation

source, spallation-source induced radioactivity, and UCN-generated backgrounds (e.g. radiative

capture of UCN on guide surfaces).

Figure 5.11 shows the background rates from these run types, as well as a foreground run with

the same timing parameters, for the different types of detector events. The coincidence events
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Figure 5.11: The background rates for the different run types. Rates for β singles events (upper
left), xor β events (upper right), NaI singles (lower left) and xor β-γ coincidences (lower right)
are shown.

and xor β events show no appreciable changes in background for the different configurations.

However, the NaI detectors show an increased background while and after the beam was on. In

addition, there is a small but significant increase in the NaI background rate for the beam-on trap

closed compared to the beam-on GV closed run. This is possibly generated by absorption (or

upscattering and subsequent absorption) of UCN within the guide system. This will be studied in

more detail in subsequent run campaigns by performing more runs of this type, as well as runs in

which UCN are loaded into the trap, but the vanadium foil never lowered. Of interest here, for the

purpose of investigating time dependent backgrounds that could cause systematic effects for a τn

measurement, we study the beam-on NaI detector background and the coincidence background

(insofar as it can depend on the background rate in the NaI detector).
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The high-statistics data used to extract the vanadium lifetime (see section 5.3) consisted of

a 400 s period of beam on, and provide good sensitivity to beam related effects. Figure 5.12

shows a run in which the beam was turned on, but no UCN loaded into the trap. There is a

considerable decaying background, which has been identified to be due to activity in the NaI

detectors from thermal and fast neutron capture on the iodine, sodium, and aluminum casing of

the detectors. The largest source of this background is due to the activation of the iodine, which

has a ∼ 25 m half-life[56]. Having identified this source of background, the lead shield will be

fitted with 10B-loaded rubber to shield the detectors and greatly reduce this background in future

measurements.

Figure 5.12: The background in the NaI detector just after the beam was on for 400 s. The red
curve is a fit to a constant background plus a decaying component, consistent with the ∼ 25 m
half-life of 128I.

In spite of this considerable background in the NaI, this time-dependent background is osten-

sibly eliminated by forming coincidences with the β detectors. Coincident events for this same

set of runs were examined to test for the presence of decaying backgrounds or slow drifts in the
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background. The background are fit including an exponentially decaying term to incorporate this

background, and these fits find no significant contribution. This constrains the initial rate of

decay due to such a background to be less than 0.2 s−1 for a 25 m half-life. Likewise, we can fit

these data to a constant background combined with a slow linear drift, and this constrains the

size of such a drift to be less than 1.3× 10−4 s−1 on top of the background rate of 0.7 s−1. We

will discuss the effect of decaying backgrounds and slow drifts in the background in section 6.10.

5.3 The 52V Mean Lifetime

The high statistics runs described above were also used to measure the vanadium lifetime. There

were four foreground runs, each followed by a run wherein the gate valve was never opened, which

served as a background run. Ultimately, the vanadium decay signal was large enough that the

1000 s counting time was not sufficient for the vanadium activity to diminish by the start of the

background run. Because the runs were timed exactly 1400 s apart, the data from the foreground

and background runs were instead combined with the appropriate time offset. While the β − γ

coincidences give the best signal-to-background, the signal was not large enough to compensate

for the ∼ 1/5 reduction in efficiency (due to the somewhat low NaI efficiency). Thus, β-xor

events were analyzed to determine the 52V lifetime.

The data from a run pair is shown in fig. 5.13. Data are binned with no additional cuts on

the pulse height spectrum to maximize the signal. The data are well-described by an exponential

plus constant background function (with typical reduced χ2 of 1 to 1.1). During of the first of

the four pairs of the measurements, A trip of the accelerator caused a spurious fluctuation in

the background, and therefore the background run could not be used in the fit. The first run of

this pair was used, but contributed much less to the overall result because of the lower statistical

sensitivity. The resulting measurements of the 52V mean lifetime for the four pairs are shown in

table 5.1, and the combined result is τV = 323.9± 1.1 s, in agreement with ref. [94].
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Figure 5.13: An example of 52V lifetime run pairs. The beam-on data is cut from the runs, and
the foreground and background combined together with the appropriate time offset between the
runs (upper), with the red showing the best fit. The lower panel shows the fit residuals.

As a check for any time dependence in the data, the function

f(t) = Ne−t/τV (1 + rt) +B (5.3)

with N, τV , r, B free parameters, was used. For all run pairs, r is found to be consistent with zero.

With increased statistics in future run campaigns, this exercise could be repeated to check for time

dependent effects during counting, such as gain/efficiency drifts, time dependent backgrounds,

dead time, or pileup.

5.4 Improved UCN Transport

In a separate experiment, UCN transmission and polarimetry measurements were performed on

various segments of the guide system as initially configured for these data[92]. These measure-
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runs τV δτV

831 321.0 3.46
833,834 327.0 1.7
835,836 323.9 1.7
837,838 321.6 1.7

combined 323.9 1.1

Table 5.1: The extracted vanadium lifetimes from each run pair. For the first run pair, the second
run could not be used. The values are weighted by the square of their uncertainties and combined
to obtain the final result.

ments demonstrated poor transmission and polarization in the guide section nearest to the trap.

Moreover, the polarization was unaffected by the location of the trap door magnet plate, the

strength of the holding field, or the other magnets in the experimental hall. This suggests a low

conductance, high loss, and high rate of depolarization in the guide region immediately near the

trap. This is readily explained by the presence of stainless steel guide components, a constricted

guide geometry leading to the trap, and potential oil contamination from the actuation of the

trap door magnet plate.

Motivated by these measurements, a series of alternate guide geometries were tested. The

different geometries are shown in fig. 5.14. The first modification served to test losses due to

the (lowered) trap door magnet plate and piston drive: these components were removed, and the

bottom of the vacuum chamber replaced with a copper-lined vacuum seal (which we will refer to

as the “bare” geometry). Thereafter, a Cu elbow was retrofitted into the vacuum chamber, and

brass tube inserted in the upstream section of guide until the beginning of the Cu guide sections,

so that no stainless steel was exposed. A short section of electro-polished Cu tube leads up to

the bottom of the trap (elbow geometry). A 15.2× 15.2 cm2 polished copper plate with a hole

the size of the tube diameter was then fastened to the top to prevent UCN from leaking out of

the tube and back into the SS vacuum volume (elbow & plate geometry). Finally, the tube and

plate was removed, and replaced with a rectangular Cu box ∼ 15× 15 cm2 wide, and tall enough

to reach the bottom of the magnet array (box geometry).

For each geometry, the trap was loaded by turning on the beam, opening the GV for 200 s,
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Figure 5.14: The bare (upper left), elbow (upper right), elbow & plate (lower left), and box
(lower right) geometries that were tested to improve UCN transport efficiency into the trap. Cu
components are shown in red, and brass components in yellow.

the V foil lowered for 30 s, and then raised to count the activity. As in section 5.5, the xor-β

signals were counted and normalized to the GV rate to determine the trap density. These runs

were also performed with the spin-flipper turned off. The spin-flipper-off runs in principle cause

only high-field-seeking UCN to be loaded, which cannot be stored; however, depolarization in the

guide system may cause the flipper-off signal to be nonzero, and the contrast Son/Soff of flipper

on loading to flipper off loading is a relative measure of the polarization of the UCN that reach

the trap.

Table 5.2 shows the signal and contrast for each geometry. While the elbow & plate geom-

etry showed the greatest improvement in UCN density, the box geometry showed similar gains,

and is a more feasible geometry for making a new UCN loading system. In addition, the data
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geometry signal contrast

original 1.0± 0.06 1.3± 0.2
bare 1.4± 0.09 –

elbow 2.7± 0.2 5.0± 0.9
elbow & plate 4.9± 0.3 6.8± 1.1

box 4.6± 0.2 8.5± 0.9

Table 5.2: The GV-normalized xor-β signal and flipper-on to flipper-off contrast for each geometry,
each normalized to the signal and contrast of the original geometry with the trap door and piston
drive present. No flipper-off data were acquired for the bare geometry.

show increased contrast with the introduction of only Cu and brass components, which further

demonstrates that the stainless steel is the primary cause of depolarization. This analysis will

be used to guide the development of improved UCN guides and an improved loading system for

UCN. By also improving the detector efficiencies in future run campaigns, an initial number of

∼ 105 UCN should ultimately be achievable.

5.5 Studies with the Vanadium Foil

An understanding of the characteristic time to absorb the neutrons onto the vanadium foil is

important for optimizing run cycles that will be used for precise determinations of the storage

time, and ultimately for the measurement of τn. If the vanadium foil is not lowered for long

enough to sufficiently absorb all of the trapped UCN, UCN phase-space time dependence might

complicate the interpretation of the data. In addition, the height of the vanadium foil can be

changed in order to probe the distribution of trapped UCN. Here, we analyze the time and height

dependence of UCN capture on the foil, which could be repeated in further detail in future run

campaigns.

Due to the somewhat low NaI detector efficiency and limited trap density, the xor β events

were used to extract vanadium activation signals. This offered the best statistical sensitivity for

the amount of activity observed during a typical run. For runs with the initial guide geometry

(i.e. that described in chapter 4), the downstream 10B-coated detector was used to normalize

the number of UCN loaded into the trap. For the modified geometries studied thereafter, the
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gate valve monitor was used to normalize the trap density. The downstream aluminum shutter

was always closed to maximize the UCN density in the trap.

Figure 5.15: The extraction of the vanadium signal for a typical run. The time distribution of
β-xor events (top) is shown along with the fit to extract the number of vanadium counts. The
GV rate (bottom) is shown along with the window within which the normalization rate M is
computed (red vertical lines).

In general, the analysis of these runs consists of extracting the xor β events that occur after

UCN have been absorbed onto the foil in the trap, and the foil has been raised into the detector

array. Events in the monitor detector are selected within a time window wherein the rate has

saturated. The xor β events are then fit to eqn. 5.1, and the signal is then defined to be NτV /M

with M the average monitor rate. In the case of studies of trap filling time, the monitor event

window is varied commensurately with the duration of the filling, such that the window remains

within a region of constant rate (see fig. 5.15).

A series of runs were performed wherein the gate valve and trap were opened, and beam

turned on, to fill the trap. The above analysis was applied to each run with fixed time windows,

and the resulting signal as a function of vanadium absorption time is shown in fig. 5.16. The
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data are fit to A(1 − exp
(
−t/tdrain

)
) with A and tdrain free parameters. The best fit gives

tdrain = 8.9± 2.2 s.

Figure 5.16: The normalized xor β signal as a function of vanadium draining time in the nominal
guide configuration. The best fit for an exponential approach is also shown.

If we suppose that the time dependence of UCN draining into the foil is approximately ex-

ponential, characterized by a draining time τD, then we must account for the decay of both

neutrons and 52V nuclei before the foil has been raised. This necessitates a multiplicative cor-

rection proportional to (1 + τD/τn − τD/τV )−1, which amounts to a 1-2% correction based on

the observed tdrain. This is much smaller than the statistical uncertainty in the measurement

performed here, though will become important in future measurements. We will examine the

effect of this time-dependent draining profile with respect to systematic effects in sec. 6.11.

During the end of the run campaign, with the Cu box geometry in place (see section 5.4), a

series of measurements were performed wherein the beam was turned on to fill the trap, and the

vanadium foil lowered to different heights. This provides a probe for the vertical density profile

of UCN while the trap is being filled.
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The measurement was done for four different heights, starting with the nominal ”down”

position which is ∼ 1 cm from the surface of the magnets to the nearest corner of the foil. The

trap was filled for 200 s, and the vanadium foil lowered for 30 s. The signal for each height was

extracted, and is shown in figure 5.17.

Figure 5.17: The height dependence of the detector signal after filling for 200 s.

Also shown in figure 5.17 are predictions from kinetic theory (see sec. B.2). Model 1 is a

calculation of the local density near the foil for trapped UCN with a
√
EdE spectrum up to 50

neV and up to 100 neV. Model 2 uses the same spectra and maximum energies, but instead plots

the relative number of UCN that are energetically allowed to reach the bottom edge of the foil.

One might expect the former calculation to describe the measurement if the vanadium absorption

time is short enough that only the local density is sampled, and the latter would be expected if

the vanadium absorption time is long enough to capture all UCN that can reach the foil. The

figure shows that this measurement is likely in between these two regimes, and the measured

signal above 50 cm shows that some amount of quasi-bound UCN are introduced into the trap
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during filling.

5.6 Discussion and Conclusions

In this chapter, we have addressed the issues encountered in the first run campaign: we have

demonstrated the detection of trapped UCN using the vanadium activation method, and as-

sessed means of improving the trapped UCN density. The vanadium activation method offers

substantially higher statistical sensitivity, and the β-γ coincidence provides a robust background

rejection. While the NaI efficiency (and thus the coincidence efficiency) is somewhat low, this will

be straightforwardly improved with the inclusion of more NaI detectors, and a modified detector

array geometry which places the NaI detectors closer to the V foil. Simulations with GEANT4

suggest that a NaI efficiency of 50-60% is possible with only modest changes[7]. The signal

can also be improved by reducing the neutron-generated NaI background using thermal neu-

tron shielding, thus reducing potential time-dependent backgrounds such as the activated iodine.

The plastic scintillator detector backgrounds could be reduced by modifying and optimizing the

phoswich geometry, and possibly by changing the light collection geometry to reduce the rate of

Cerenkov events in the light guides. This source of background is likely a substantial component

of the background events observed in these data with only a “fast” component.

The measurement of the V absorption time constant of tdrain = 8.9 ± 2.2 s hints that the

vanadium foil counts surviving UCN much faster than the fill-and-empty technique with this

apparatus and in earlier UCN bottle experiments. In the run campaign described in chapter 4,

the emptying time was found to be ∼ 30 s; however, UCN emptied from the trap are subject

to considerable losses while being transported to the detector (or can flow back upstream in the

guide system, where they are likely lost), so that 30 s is likely a lower bound.

A naive estimate of the V absorption time constant from kinetic theory is given by

t−1
drain

=
A 〈v〉
4V

(5.4)
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with A the absorption area, 〈v〉 a typical UCN velocity, and V the trap volume. Taking A = 620

cm2 to be twice the area of the foil (as it is double sided), V = 670 l the physical trap volume,

and assuming that the time constant is dominated by the highest velocity component so that

〈v〉 ≈ 3 m/s, we have tdrain = 14.4 s. This estimate is somewhat higher than the measurement,

possibly because UCN with v < 3 m/s occupy a smaller effective volume than the physical trap

volume, and because of deviations from kinetic equilibrium (i.e. trapped UCN occupying a smaller

volume of phase space than is energetically permitted). Nonetheless, this comparison suggests

that the vanadium absorption probability per bounce is not much less than unity. Ultimately, a

more rigorous study of this observable can help address the size of phase-space-related systematic

effects (see sec. 6.11), and neutron tracking studies are better suited to provide a theoretical

estimate.

In conclusion, the data in this chapter suggest that improved statistical sensitivity is achievable,

and the detection methods investigated here can be used to study the dynamics of the trap and

investigate certain types of systematic effects. These data, in combination with the discussion

of systematic effects in chapter 6, provide the motivation for a high-precision measurement of τn

with the magnetic bottle technique.



6 Systematic Effects

6.1 Introduction

In the previous chapters, we demonstrated that the Halbach array stores neutrons for times

comparable to τn. In future run campaigns to measure the neutron lifetime, the storage time τs

will be determined by storing neutrons for two times t1 and t2, counting the surviving neutrons

C1 and C2, normalizing this measurement to the initial number of neutrons in the trap M1 and

M2, and computing

τ−1s =
ln
(
C1M2

C2M1

)
t2 − t1

. (6.1)

Ideally, the normalized signal goes as Ci/Mi ∝ exp(−τ−1n ti) where i = 1, 2, because effi-

ciencies and other effects cancel between the two storage measurements, and we have that the

measured τs = τn. However, if some systematic shift occurs between the two measurements,

this causes a shift in the measured storage time. We can fix the normalized signal for the first

storage time, and separate the normalized signal for the second storage time into factors which

cancel and those that do not – either due to a shift δC in the counting or δM in the normaliza-

tion. In addition, the factor of τ−1n could be modified due to sources of loss in the trap, so that

τ−1n → τ−1n + τ−1l where τ−1l is the inverse loss lifetime which principle contains multiple terms

for different sources of loss. With these considerations, we let

C2

M2

=
C1(1 + δC)

M1(1 + δM)
e(τ
−1
n +τ−1

l )(t2−t1). (6.2)

90
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Inserting into eqn. 6.1, we have that

τ−1n = τ−1s − τ−1l +
δC

t2 − t1
− δM
t2 − t1

(6.3)

which is valid to first order in δC and δM . The first term is the measured storage time with its

uncertainty, and the remaining terms are systematic corrections (with uncertainties) which we

can quantify using analytic estimates, simulation, and/or by performing ancillary measurements.

The purpose of this chapter will be to discuss, provide estimates of, and propose measurements

of some of the expected systematic corrections due to loss, counting of the UCN, or normalization

of the UCN signal. For a given systematic effect, we quantify its effect by estimating its effect on

the measured τn. Generally, we assume here that the storage time will be measured by pairs of

short and long storage measurements, each pair being independent of subsequent pairs. Possible

effects of the three types are shown in table 6.1.

loss counting normalizing

residual gas t-dep. bkgd t-dep. bkgd
material loss gain drifts gain drifts

heating dead time dead time
cleaning phase space t-dep. source fluctuations

depolarization non-linearity non-linearity

Table 6.1: Potential systematic effects related to storing, counting, and normalizing.

6.2 Residual Gas

The residual gas in the trap can absorb or upscatter the stored UCN to cold or thermal energies,

thus introducing a potential source of UCN loss in the experiment. Recent experiments have

corrected for this effect. Arzumanov et al. introduce a 0.2 s uncertainty (but no correction) in

their determination of τn for a trap pressure of 1× 10−6 to 5× 10−6 Torr[66, 69]. Pichlmaier et

al. introduce various corrections depending on the observed vacuum pressure and composition,

ranging from 0.7 to 1.4 s. The larger corrections were due to the outgassing of Fomblin oil,

which was observed with a mass spectrometer and fine pressure gauge. Thereafter the pressure
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was stable at 3.8 × 10−6 torr, and the dominant residual gas that can cause upscattering was

water vapor. All corrections quoted a 0.4 s uncertainty due to the location of the measurement

devices[23].

The effect was measured by Serebrov et al.[27] by measuring the storage time of the trap

at two pressures P = 3.8 × 10−6 and P = 6 × 10−4 Torr. The loss rate rate τ−1g ∝ P is then

determined from these two measurements, giving a 0.4± 0.024 s correction to the measurement

of the neutron lifetime. We can estimate the loss rate by relating it to the correction time

tcorr = τn − τstore

τ−1g =
tcorr

τn (τn − tcorr)
(6.4)

from which we find that, for example, a 0.4 s correction imples τ−1g ≈ 5× 10−7 s−1.

Because the upscattering and absorption cross sections σup and σa of a UCN are proportional

to 1/v, the rate

τ−1g = n(σup + σa)v = τ−1up + τ−1a (6.5)

is to a good approximation independent of the UCN velocity. The time-dependent distortion of

the trapped UCN energy spectrum is therefore negligible. However, the rate for different molecular

species can be quite different due to the large variance of total molecular scattering/absorption

cross sections for typical residual gases. Care must therefore be taken to monitor for changes in

the molecular composition of the gas over time.

For a free, monatomic gas (atomic mass M), we can write the double differential scattering

cross section

d2σ

dΩdE ′
=

√
E ′

E

σscat
4π

√
βM

2π~2κ2
exp

[
− βM

2~2κ2

(
E − E ′ − ~2κ2

2M

)2
]

(6.6)

where κ2/2m = E + E ′ − 2
√
EE ′x, x = cosθ is the cosine of the neutron scattering angle, E

(E ′) is the initial (final) neutron energy, and β = 1/kT is the inverse temperature. From this
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expression, we compute the total upscattering cross section

σup =
σscat
4π

√
Mπβ

mE

∫ ∞
0

∫ 1

−1

dxdE ′
√
E ′√

E + E ′ − 2
√
EE ′x

×

exp

− βM
(
E ′ −

√
EE ′x

)2
m
(
E + E ′ − 2

√
EE ′x

)
 . (6.7)

As an example, the upscattering rate of argon at P = 5×10−6 Torr is 1.1×10−9 s−1, and this rate

is constant in UCN energy to within a relative deviation of less than 10−4 with 0 < EUCN < 50

neV. For molecular gases, the dynamic structure factor used to compute the cross section in eqn.

6.6 must incorporate rotational and vibrational degrees of freedom in addition to translational

motion, which can sometimes be calculated[135]. Regardless of the intra-molecular dynamics,

the σ ∝ 1/v behavior still holds, and we can describe the scattering from a molecular species j

by direct calculation or by an experimentally determined rate.

The absorption rate for a given species with cross section σa (quoted at thermal velocity

vth = 2200 m/s) is given by

τ−1a = σanvth =
P

kT
σavth. (6.8)

For the most prevalent and problematic gas species (primarily water vapor and heavier hydrocar-

bons) the hydrogen scattering cross section is much larger. The loss rate due to absorption in

water at 5× 10−6 Torr, for example, is 4.7× 10−9 s−1, which is two orders of magnitude smaller

than its upscattering rate.

During the February 2013 experimental campaign, the vacuum pressure was initially ∼ 10−5

Torr, but continual pumping and flushing with nitrogen brought the vacuum to 7 × 10−6 Torr

using a Turbo-V 300HT Macro Torr turbo pump backed by a scroll pump. A residual gas analyzer

(RGA) was used to determine the composition of the vacuum, and showed that water vapor was

the primary contaminant in the vacuum system, along with some N2 and O2. The nitrogen

and oxygen were due to small known leaks in sealing bolts and guide couplers, which can be

straightforwardly remedied in subsequent experimental runs.
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Further, the pumping speed can easily be increased by an order of magnitude with the addition

of a cryo-pump on one of the large flanges at either end of the vacuum jacket. By increasing

the pumping speed and flushing with dry gas, we expect that the residual gas upscattering rate

can be decreased below 10−7 s, thus reducing the residual gas correction to the 10−4 level or

below. Further, an RGA can be permanently installed on the apparatus in order to assure that

the necessary vacuum conditions are not compromised during the measurement.

6.3 Depolarization

The Halbach array and holding field are designed to assure that |B| 6= 0 everywhere in the

trap volume. The data in chapter 4 show that without the holding field, UCN are depolarized

at a mean rate that is of order τ−1n . Ultimately, the operating approximation is the adiabatic

condition of eqn. A.30, which demands that the off-diagonal components of the spin-dependent

Hamiltonian for the trapped neutron are negligible. While the physics in either case are the same,

we identify two types of depolarization in the trap: 1) the presence of a low-field region in the

trap, were the adiabatic approximation is badly violated, and 2) the slow rate of depolarization

due to the small but non-negligible violation of the adiabatic condition. The former effect can

be addressed by simply mapping the field within the trap volume and verifying that the holding

field is at its nominal strength, and does not cancel anywhere with the Halbach field.

The latter effect is that of quantifying the validity of the approximation, in particular in regions

near the trap surface where field gradients are large. This effect was addressed in ref. [62] for the

simple 1-dimensional case of a UCN reflecting from the exponentially-varying magnetic field. The

depolarization rate was calculated by assuming an asymptotic form for the spatial wavefunction,

invoking the WKB approximation to compute the transition rate to the high-field-seeking spin

state, and ultimately finding the depolarization rate by computing the probability current that

escapes the edges of the trap. This prescription was extended to two spatial dimensions by the

authors of ref. [29], which encapsulated the rotating field of the Halbach array as seen by the

neutron while bouncing near the surface. The semiclassical approximation was validated in this
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work by comparing results to direct numerical integration of the Schrödinger equation.

In the more robust two-dimensional model of ref. [29], the authors average the depolarization

rate over an isotropic neutron distribution up to the trappable neutron speed, and find a loss

rate 10−5 smaller than τ−1n for holding field strengths comparable to that used in the current

experiment. It thus seems reasonable to suppose a < 10−4 correction to the measured lifetime

due to non-adiabatic spin-flipping, though this will ultimately need to be verified for a high-

precision measurement. This can be achieved by placing thin detectors on the surface of the

trap, and will only be accessible to the high-field-seeking spin state. Even such a detector with

limited surface area can be used to place a bound on the size of the effect, and can be checked

by de-tuning the AFP spin-flipper to assure the detector performance.

6.4 Material Losses

In order to mitigate the effect of defects in the magnets during the construction of the trap,

copper tape is placed over defects of appreciable size; namely, defects with depth more than

∼ 1 mm or an area of more than a few square mm. The total area covered with copper is

approximately 42± 0.5 cm2, though this is an overestimate of the area that would be accessible

to trapped UCN: the tape must be anchored around the perimeter of a defect, so that the area

covered by material is greater than that of the defect. In addition, a ”hole” in the magnetic trap

is only caused if the minimum field strength dips below ∼ 0.8 T, which only happens across some

fraction of the defect’s area. In addition, most of the affected areas are closer to the top edges

of the trap, where one might expect fewer bounces per second and lower average UCN velocity

at those heights.

A naive kinetic theory estimate, assuming a loss-per-bounce η = 10−4, trap volume of 600

l, 42 cm2 area of tape, and neutron speed of 3 m/s, this gives a mean loss rate of 5.25 × 10−7

s−1. For a nominal lifetime of 880 s, this is a 0.4 s correction to the measured storage time. If

indeed the area is an upper bound, and if the loss-per-bounce is somewhat lower (Cu guides can

be much lower than ∼ 10−4 per bounce), the correction could in reality be negligible. However,
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the UCN properties of this copper has not been demonstrated.

A simple way of quantifying the effect experimentally is to measure the storage time with

the copper in place, and with the copper removed. Any difference in the storage times will be

a direct indication of material losses. Ultimately, the magnets must be repaired – molds have

been obtained of all defects, so that magnets can be shaped to fill the defects, where feasible. In

addition, surface profilometry of the tape would rule out the presence of any contaminants which

spoil the assumptions made here. For the current experiment, and with the future experimental

checks described here, a +0.4± 0.4 correction seems reasonable.

In order to verify the UCN compatibility of the Cu for a high-precision campaign, a series

of measurements can be performed. The loss-per-bounce can be determined through separate

experiments in which UCN are bottled in a material volume containing the copper-coated adhesive

used here. Along with this measurement of the loss-per-bounce, the tape within the trap can

be replaced with a material that is known to have a high loss-per-bounce, such as polyethylene

or polymethylpentene; a storage measurement in this configuration would provide an estimate

of the total rate of incidence upon these regions of the trap, and the combination of this rate

measurement and the loss-per-bounce measurement will measure or constrain the size of the

effect.

6.5 Cleaning Quasi-Bound UCN

The data in section 4.4 suggests that many of the quasi-bound neutrons are absorbed in a mean

time on the order of 8 s. However, there is likely non-exponential behavior in the draining of

quasi-bound neutrons because of the distribution of UCN energies, and potentially due to non-

equilibrium behavior of the trapped UCN.

In a simple model of the initial trapped population N0 and initial quasi-bound population qN0

(where q represents the fraction of quasi-bound UCN relative to the trapped number), we can
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write the time evolution as

N(t) = N0

[
e−τ

−1
n t + qe−(τ

−1
n +τ−1

q )t
]

(6.9)

with τq the mean loss time for quasi-bound UCN once the cleaner is raised, and the UCN storage

interval begins. The initial populations are defined to be the remaining number of trapped and

quasi-bound UCN after the cleaning interval, and after the short storage time t1. In the following,

we will set t1 = 0 without loss of generality. For a precision measurement, it must be that q is

small (i.e. that much of the quasi-bound UCN are removed during cleaning) and so we take the

above, and compute the storage time from the log-ratio of the surviving UCN after no storage,

and a long storage time t2. To first order in q, we have that

τ−1s = τ−1n + qt−12

(
1− e−t2/τq

)
(6.10)

which gives a relative pull on the lifetime of

δτn/τn =
τnq

t2

(
e−t2/τq − 1

)
. (6.11)

The parenthetical factor is only small if t2 . τq. Foregoing any knowledge of τq, the correction

can be as large as τnq/τ2, and so it is generally desirable to make the fractional population q as

small as possible.

The effectiveness of a cleaner that covers the whole plane of the trap at a constant z was

investigated in refs. [62, 4]. These studies showed that such a cleaner leaves < 10−4 quasi-

trapped fraction remaining after 120 s of cleaning time. In these studies, UCN were initially

placed randomly throughout the volume of the trap, with their velocity determined so as to make

their total energy that of the trappable energy. However, quasi-bound UCN must necessarily have

a trajectory that starts from the location of the trap door, and the initial conditions chosen in

that work might skew the occupied phase space of the trap, and skew the relative presence of



CHAPTER 6. SYSTEMATIC EFFECTS 98

uncleaned quasi-bound UCN. In order to investigate this, here we perform a neutron tracking

study which consists of filling the trap from the trap door for 60 s with the cleaner in the down

position, and then closing the trap door and leaving the cleaner down for 250 s. In this way, only

UCN which initially start at the trap door are considered. The UCN spectrum goes as v2dv with

a lower cutoff such that the UCN are energetically able to reach the top of the trap, and an upper

cutoff of 4.5 m/s, which was taken from a simulation of the UCN spectrum that is loaded into

the trap[91]. The cleaner in its lowered position is 42 cm from the bottom of the trap, which

is similar to the lower height of the prototype cleaner and within the range of cleaning heights

studied in ref. [62].

The rate of cleaning of the UCN from the trap after filling is shown in figure 6.1. The UCN

are cleaned with a time constant on the order of 1 s, and less than 5× 10−5 UCN remain after

cleaning. This result, as well as the subsequent results in this section, turns out to be largely

consistent whether or not the higher-order ripples in the Halbach field are included.

Figure 6.1

To investigate the ability of the current prototype cleaner to reduce the quasi-bound popula-
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tion, additional neutron tracking simulations are performed. The simulation consists of loading

the trap for 60 s, with trajectories beginning at the location of the trap door, and oriented isotrop-

ically upwards in 2π. The cleaner remains down for another 250 s thereafter to clean the UCN.

The velocity spectrum v2dv is cut off from below and above as with the previous simulation.

Figure 6.2: The rate of incident UCN upon the cleaner versus time. Data are fit to two-exponential
functions, and the best-fit for the time constants t1 and t2 are shown. The fitted amplitudes of
the exponential terms are (respective to the legend) 121.5 and 46.0 in relative units.

Two simulations of this type were performed. First, the dimensions of the prototype cleaner

from section 3.6 were used. The trap was loaded for 60 s and cleaned for 250 s thereafter. The

rate of cleaning over the 250 s time interval is shown in fig. 6.2 along with a two exponential fit.

The shorter time constant of this fit is 6.2± 0.6 s, in reasonable agreement with the upscattered

neutron measurements with the cleaner from section 4.4.

However, to quantify the effect of quasi-bound neutrons using this cleaner, the number of

remaining quasi-bound neutrons after the cleaning interval must be extracted. In fact, from this

simulation, 1− 10% of the quasi-bound neutrons remain. Even correcting for the smaller relative

population of quasi-bound neutrons after filling the trap, this would lead to a significant effect

at the 0.1% level of measurement. Figure 6.3 shows an example trajectory that is not cleaned
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Figure 6.3: A trajectory that is not cleaned by just the prototype cleaner. The black line represents
the spatial trajectory, and the red box outlines the position of the cleaner.

by the prototype cleaner alone. Clearly, it reaches a height well above the cleaning height, but

has a momentum primarily directed along the x direction. Even for long times, this trajectory’s

momentum does not shift appreciably out of the x-z plane, thus avoiding the cleaner.

In forthcoming run campaigns, an additional polyethylene sheet will be included in addition

to the prototype cleaner to rapidly clean higher energy quasi-bound UCN. The sheet will occupy

the side of the trap opposite that of the cleaner (i.e. the y < 0 side), covering nearly half of the

trap from the furthest y < 0 edge to approximately 7 cm from the center of the trap along y = 0.

This geometry was modeled in the same way as the other geometries, and the study shows that

q < 6× 10−4 after ∼ 200 s. The cleaning rate is shown in fig. 6.4.

In order to translate this into a systematic uncertainty, we must take into account the fractional

population of quasi-bound UCN before the cleaning interval begins (that is, the value of q when

the cleaning interval begins). Figure 6.5 shows the initial spectrum, as well as the spectrum after

the filling interval is complete and cleaning interval begins. Quasi-bound UCN are initially 2.19
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Figure 6.4: The rate of cleaning using the prototype cleaner and additional polyethylene sheet.
No UCN remain after ∼ 200 s, suggesting that less than 6× 10−4. The fitted amplitudes of the
three exponential terms are (respective to the plot legend) 681.6, 334, 4, and 30.2, in relative
units.

times more abundant than trappable UCN, but these UCN are cleaned during filling, reducing

the population to 0.29 of that of the trappable UCN. The simulation thus suggests that, even

conservatively, q ∼ O(1) before cleaning, and less than 6× 10−4 after cleaning, which sets a like

bound on the size of the systematic shift in τn due to this effect.

6.6 Cleaner-Generated Effects

The use of a flat, horizontal pad of UCN absorbing or upscattering material is a conceptually and

experimentally straightforward way to eliminate marginally-trapped UCN from the UCNτ storage

volume. However, two potential complications arise. First, the number of trapped neutrons

depends on the cleaning height. If this dependence is strong, it demands reproducibility of the

movement of the absorber for each fill, clean, and storage cycle: large variations in the height can
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Figure 6.5: The initial spectrum entering the trap (blue) and spectrum after the trap has been
filled (red). The vertical black dotted line corresponds to the maximum trappable UCN energy.

change the number of trapped neutrons relative to the signal from the UCN monitors, thus making

the normalization of each measurement unreliable. Second, the trappable neutrons absorbed by

the cleaner could be removed with a much longer time constant than the quasi-bound neutrons.

The number of trapped neutrons could then be sensitive to the cleaning time, and any variation

or uncertainty in the time could spoil the normalization.

To quantify these effects, we simulate the cleaning of UCN at slightly varying heights, and

analyze Nt with time for each height. A fractional difference between two simulations 1 and 2

of
(
N

(1)
t −N

(2)
t

)
/N0 (where N0 is the initial number of UCN in the simulations) provides an

indication of the size of the systematic effect on the ability to determine the initial number of

UCN in the trap.

UCN are cleaned using the neutron tracking code described in chapter B. Three cleaning

heights (42.0, 43.5, 44.0 cm) are used in separate simulations. For each simulation, N0 = 105
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neutrons are placed in a rectangular region near the bottom of the trap corresponding to the profile

of the trap door. Their horizontal position is distributed uniformly throughout the rectangular

region, and their momenta are distributed isotropically in 2π facing vertically upward with a

velocity distribution ρ(v) ∝ v2 up to v = 4 m/s. Trajectories are integrated until the cleaner is

reached, or until 100 s have elapsed.

From each simulation, the time of capture on the cleaner for all UCN is binned. The cumulative

sum of this quantity is equal to the number Nc(t) of UCN cleaned versus time. Fig. 6.6 Shows

N0 −Nc(t) (the number of survivors) for each simulation.

Figure 6.6: Number of surviving UCN for the three cleaning heights.

Fig. 6.7 shows the number of survivors versus cleaning height (normalized to the 44 cm

simulation), with statistical uncertainties. A linear fit to the relative survivor number versus time

tells us that, for cleaning heights near ∼ 43 cm, we have a fractional change in trapped UCN of

0.2% for every millimeter change in cleaning height.

We necessarily expect to eventually clean almost all of the UCN above htrap. As long as the

density ρ(z) of UCN in the trap at a height z does not change rapidly after some time, we can
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Figure 6.7: The relative number of trapped UCN after 100 seconds for the three different cleaning
heights. The black line is a linear fit.

estimate the number of trapped UCN after cleaning via

Nt(hclean) =

∫ hclean

0

ρ(z)dz (6.12)

If we assume that, in the region of 42 to 44 cm, the change in Nt is linear (which we assumed in

the previous section as well), we have that the relative change m in Nt versus cleaning height is

m =
1

Nt(42)

d

dhclean
Nt(hclean)|42 =

ρ(42)

Nt(42)
(6.13)

in units of centimeters.

From a simulation of trapped UCN without cleaning, we can bin the heights of the UCN (and

normalize to unity) to extract ρ(z). UCN are distributed randomly throughout the trap initially,

with a random momentum distribution upwards in 2π and initial energy chosen such that the

spectrum goes as v2dv.

Most importantly, the UCN spectrum is cut off corresponding to the height of the trap, so that
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Figure 6.8: Vertical linear density (normalized to unity) extracted from simulation without clean-
ing, after 100 s.

there are no marginally-trapped UCN. We therefore expect the number of UCN at heights near

the top of the trap to be relatively low, and therefore ρ(z) to be somewhat lower at those heights

than the true density profile that includes quasi-bound UCN. The distribution versus height is

shown in figure 6.8. From this, we have that m = 0.9% per mm.

The second effect can be investigated by looking at how Nt varies with time for the different

simulations. For all three cleaning heights, the rate of cleaning of UCN is similar after sufficiently

long times. Fig. 6.9 shows the rate that UCN are absorbed versus time. That the rates are

similar after only ∼ 10 seconds suggests that marginal UCN are cleaned with a fairly short time

scale, while trappable UCN above the cleaner height are cleaned with a long time constant. That

is, no matter the cleaning height, there are always trappable neutrons which can reach hclean + ε

(for some small ε) that are cleaned with a long time constant.

However, as long as the cleaning time is repeatable, approximately the same number of

“sacrificed” UCN will be removed on each fill. In order to quantify this, we consider a cleaning

time of 40 s. After this time, the rate of absorption of UCN for all three cleaning heights is no

more than ∼ 8 s−1. If the cleaning time has an uncertainty of δt, the absolute uncertainty in the
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Figure 6.9: The rate of absorption of UCN on the cleaner for 3 different cleaning heights.

number of UCN remaining in the trap is of order (8 s−1) · δt. The number of remaining UCN is

in the range of 3.4 × 104 to 3.7 × 104, which gives relative uncertainties in Nt in the range of

2.2× 10−4 to 2.4× 10−4 per second of uncertainty. The uncertainty in the actuation of the trap

door is also relevant, as it defines when the cleaning starts.

The results of this section indicate that if the timing control of the cleaner is of order 1 second,

trap filling is reliable at the 10−4 level. Further, the above results hint that sub-millimeter control

of the cleaning height is needed to fill accurately at the 10−4 level. Control at the millimeter

level may introduce a ∼ 10−3 shift in the stored number: the current cleaner is pneumatically

actuated with mechanical stops to set the position of the cleaner. It is likely that this is reliable

to the level of 0.5 mm, which constrains the effect to 5 × 10−4 relative to τn, and the position

can be monitored in future experimental campaigns to assure at least this level of stability.

There are two additional techniques that could be used to mitigate these effects. The first is

to correct for discrepancies in the cleaning height using the number of upscattered UCN detected

in the 3He drift-tubes, or by turning the absorber into an active detector of UCN. If, for example,

the cleaning height is discrepant for two fills, this could in principle be observed as a change in
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the number of cleaned UCN that are detected. Another method is to use a separate cleaning

volume, as opposed to an in situ cleaner. Filling cycles would be performed over a time that is

long enough for equilibrium to be achieved between the cleaning and trap volumes. In this way,

the absorbing surface need not be actuated.

6.7 Microphonic Heating

6.7.1 Introduction

One potential loss channel is that of small energy transfer to a trapped neutron which can sub-

sequently render it energetically untrappable. In this way, the UCN could be slowly “evaporated”

away. For both material and magnetic traps, microphonic vibrations of the trap may induce such

small energy transfers.

The effect of vibrations on material traps has been discussed in the context of material

storage volumes[86], though not usually in the context of precision measurements of the neutron

lifetime (one exception being Mampe et al[75]). In a material storage volume, a UCN can either

gain or lose velocity upon bouncing from a material wall depending on the wall’s instantaneous

velocity vwall ∝ ωA (where ω and A are the angular frequency and amplitude of the vibration,

respectivelly). In this way, the UCN can be seen as taking a random walk in velocity with each

bounce, so that the net change in velocity is proportional to ωA
√
n, where n is the number of

bounces. However, it is not necessarily reasonable to expect that the same behavior would also

occur in magnetic traps.

In this section, the trajectories of UCN in a simplified 1-D model of the trap are investigated.

The model introduces a time-dependent modulation of the potential to simulate the effect of

microphonic vibrations. The size and frequency of these vibrations are then investigated using an

accelerometer in the UCN experimental area to assess the potential severity of the effect.
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6.7.2 Simplified Model

In the simplified model, motion is 1-D in the vertical (z) direction, the Halbach array is a horizontal

plane, the holding field is neglected, and the higher order ripple terms in the Halbach array field

are neglected. With no ripple, the magnitude B of the static field in a linear Halbach array of

period λ is

B(z) = B0e
−kz, (6.14)

where k = 2π/λ and B0 is the field at the surface of the array. When the entire Halbach array

is assumed to move up and down vertically in a sinusoidal fashion with amplitude A, angular

frequency ω, and phase δ, the field becomes time-dependent and takes the form

B(z, t) = B0e
−k[z+A sin(ωt+δ)] (6.15)

Assuming that the adiabatic condition is satisfied, the 1-D equations of motion for a field-repelled

neutron in this field, with gravity, are

dvz
dt

=
k|µ|
m

B0e
−k[z+A sin(ωt+δ)] − g (6.16)

dz

dt
= vz (6.17)

Since we now have a time-dependent potential, the numerical integrator used for tracking in

the static potential has to be modified to preserve their symplectic properties. Both modified

leapfrog and fourth-order time-dependent symplectic tracking algorithms were used here, with

satisfactory agreement (see for example the time-dependent prescription in ref. [117] as applied

to the optimized fourth-order integrator in ref. [110]). An initial set of tracking studies was done

to establish the magnitude of the effect. Three cases were considered, with λ = 0.02 m, B0 = 1

T, A = 10−4 m, f = 100 Hz (ω = 2πf), with initial oscillation phases of 0, π/4, and π. The

neutron was dropped from h ≡ z(0) = 0.3 m with zero velocity, and tracked with the fourth
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order method with a 10−8 s time step.

Figure 6.10: Plots of z vs. t for various phases. Red: 0; blue: π/4; green: π.

Plots of z vs. t for the three phases are shown in Fig. 6.10. Note that for phases of 0 and

π/4, the energy (and the maximum bounce height) is smaller than the initial energy after 1 s,

but for π, the final energy is greater. Figure 6.11 is a plot of E/mn for the trajectories of Fig.

6.10. From this we see that energy transfers of 2% can be observed after one bounce. Though

the chosen amplitude of A = 100 µm is somewhat gratuitous, it suggests that a more careful

sweep of the parameter space would be beneficial to establish the size of typical energy transfers.

6.7.3 Parameter Sweep

The parameters h, f , A, and δ are individually varied (with other parameters fixed) to investigate

the relationship between the energy transfer per bounce of the UCN. The salient features of the

model are:

• The energy transfer is roughly linear in E0.

• The energy transfer obeys ε ∝ sin(δ + φ) for some φ with all other parameters fixed.
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Figure 6.11: Plots of E vs. t for various phases. Red: 0; blue: π/4; green: π.

• The energy transfer is roughly linear in A.

• The energy transfer is maximal for some f ∼ 0 − 100, and drops off rapidly at high and

low f .

This behavior is shown in figs. 6.12, 6.13, and 6.14. For example, there is a resonant behavior

as a function of frequency, perhaps unsurprisingly different from the frequency dependence of this

effect for material walls. Frequencies above the few hundred Hz range induce little change in

neutron energy, even for large amplitudes.

6.7.4 Spectral Random Walk

With the above behavior established, we can estimate the effect of these small UCN energy

transfers by randomly walking the initial stored spectrum in a UCN trap, and observing the

fraction x of the spectrum that exceeds the maximum trappable energy. In the experiment, we

can remove UCN that reach 6−8 cm from the top of the trap. In this study, we conservatively take

the height of 6 cm, so that the greatest UCN energy is 45.1 neV. Based on full 3-D simulations
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Figure 6.12: Energy transfer after 1 bounce as a function of δ to a UCN with h = 0.44, f = 40,
A = 10−5.

of the trap, A typical number of bounces is roughly N = 3000 over 1000 seconds of storage.

For the random walk computation, we take an initial spectrum of 3× 105 UCN, with energy

distributed as ρ(E) ∝
√
E up to E = 45.1 neV. Using the observed behavior from section 6.7.3,

we proceed by shifting each neutron N times as per:

Ei+1 = Ei ± ε sin η · Ei
45.1 neV

(6.18)

for each energy. After N iterations, x is computed by counting the number of final energies

EN > Et where Et = 50.3 neV. A value of ε = 0.06 gives x = 1.5 · 10−4. The initial and final

spectra are shown in fig. 6.15.

From the above, we find the largest value A which satisfies ε < 0.06 for a few different

frequencies. Some measured values are A ≈ 8 · 10−6 at f = 40, A ≈ 4 · 10−5 at f = 100, and

A ≈ 3 · 10−4 for f = 150. This, then, is an estimate of the size of vibrations at these frequencies

over 1000 seconds that could evaporate more than 10−4 of the UCN.
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Figure 6.13: Energy transfer after 1 bounce as a function of A to a UCN with h = 0.44, f = 40,
δ = 2.0.

6.7.5 Microphonic Vibration Measurements

Here, the amplitudes from section 6.7.4 are compared to observed vibrations in the UCN exper-

imental area at LANSCE. The presence of, for example, vacuum pumps and compressors may

induce large vibrations at low frequencies. To investigate, an STMicroelectronics accelerometer

(sensitivity 50µg/
√

Hz) is fastened firmly to various equipment in the area, including, for exam-

ple, a vacuum jacket on the UCN beamline used for neutron Electric Dipole Moment (nEDM)

research and development.

The device is calibrated to read out acceleration a versus time independently along three axes.

From the acquired data a(t) we can readily compute the vibrational spectral density (VSD) along

a particular direction. Fig. 6.16 shows the VSD along one direction on the nEDM vacuum jacket.

The mean amplitude of oscillation at a given frequency is given by

Ā = 2I/ (2πf0)
2 , (6.19)
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Figure 6.14: Energy transfer after 1 bounce as a function of f to a UCN with h = 0.44, δ = 2.0,
A = 10−5.

where I is the area under a given peak in the VSD, and f0 is the central frequency of the peak.

A few of the most intense low frequency peaks are identified; Ā = 16 µm at 30 Hz is the largest

observed amplitude (measured on the vacuum manifold connecting to the jacket), with more

typical values of Ā = 1 to 5 µm measured directly on the vacuum jacket.

6.7.6 Discussion

While the simple model in section 6.7.2 captures some of the qualitative behavior of trapped UCN

in the presence of microphonics, the 3-D UCN trajectories are more complex, and the presence of

quasi-stable orbits could exacerbate the effect. It is also important to note that the escape time

for a UCN with energy E > Et may not be short compared to the 1000 s storage time, and this

is not considered in the above analysis.

The results of section 6.7.5 give a sense of the size and frequency content of microphonics in

the experimental area. It is, however, unclear how these vibrations translate to that of the actual
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Figure 6.15: The initial (upper) and final (lower) spectra after N = 3000 bounces.

trap walls, as this depends on geometry and the mechanical coupling of the trap to the rest of the

apparatus. This suggests that in situ measurements should be done, so that problematic sources

of vibration can be identified.

Finally, the loss of neutrons due to vibrational heating is only one potential systematic effect:

insofar as UCN detection efficiencies are usually velocity dependent, a change in the UCN spec-

trum during storage folded with the efficiency of detection at different storage times may induce

non-exponential behavior. The subtlety of this issue demands that it be addressed with respect

to particular detection methods.

6.7.7 Conclusions

A simple model is presented to investigate the trajectories of UCN in the UCNτ trap when

subjected to small microphonic vibrations. The model suggests that vibrations of amplitude ∼ 10

µm at frequencies below 200 Hz may be able to heat one in ten thousand UCN to an energy

above the trap potential over 1000 seconds. Vibrations of similar amplitude and frequency can

be observed in the vibrational VSD data acquired from the UCN experimental area at LANSCE.
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Figure 6.16: The VSD along a particular axis of the vacuum jacket on the UCN beamline at
LANSCE.

By monitoring the vibrations of the trap itself, we can estimate the severity of the effect, and

ultimately mitigate the effect by damping the vibrations and/or cleaning to a lower height, so

that trapped UCN do not have sufficient time to “evaporate” while being stored.

6.8 Gain Drifts

The vanadium activation detector operates by counting pulses above a threshold. Because of the

continuous spectra from the plastic and NaI scintillators, the observed count rate is sensitive to

the detector gain relative to the (typically fixed) threshold. Therefore, gain drifts can induce a

time-dependent change in the survivor counting efficiencies, systematically effecting the storage

time measurement.

We can estimate the size of this effect as follows. We write the observed spectrum from a
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detector as a product of pulse-height and time-dependent parts:

dN

dE
= R0(t)F (gE) (6.20)

where R0 represents the total event rate, and F is the unit normalized pulse height (or energy)

distribution. The factor g represents the gain, which we model here as having a linear drift, so

that g = g(t) = 1 + rt with r the fractional gain change per unit time. The measured count rate

in such a detector is given by

R(t) = R0(t)

∫ E2

E1

F (gE)dE (6.21)

with E1 and E2 the lower and upper thresholds, respectively. To first order in r, this expression

reduces to

R(t) = R0 (1 +Xrt) (6.22)

where X is given by

X = E2F (E2)− E1F (E1)− 1 (6.23)

The value X ∼ −1.4 is a reasonable approximate value for the boron detector and plastic

scintillators, and derived from the measured detector spectra from the previous chapters. This

factor is somewhat smaller for NaI coincidences due to the greater separation of the 52V photopeak

from the low energy threshold. The signal S from a storage cycle is given by the counted survivors:

S =

∫ tf

te

R(t)dt. (6.24)

where, R is the rate in the survivor counting detector. To first order in the drift rate r for the

survivor counter we have

S = S0 +Xr

∫ tf

te

tR0(t)dt (6.25)

where S0 is the zeroth order predictions for the number of survivor and monitor counts. We
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can compute the integrals assuming a survivor counting rate which takes the form R(t) =

λvNUCN exp (−λv(t− te)), giving

S = S0 +
NUCNXr

M0λ

[
1 + λte − (1 + λtf )e

−λ(tf−te)
]
. (6.26)

In order to estimate the effect of gain drifts, we take the expression for S for a long and short

storage and calculate the storage time to first order in r. The second storage cycle would start

at a time tw after the first, and the expected signal would be given by the above, replacing the

factor in the integrand with t→ t+ tw. Computing the discrepancy between the neutron lifetime

τn and the measured storage time gives

τ−1s − τ−1n =
Xrtw
t2 − t1

(6.27)

or

τs − τn =
Xrtwτ

2
n

t1 − t2
(6.28)

In the above, we have taken exp(−λ(tf − te)) � 1, which only contributes to a few percent of

the total first order shift. There is a shift in the signal S due to the gain drift over the course

of the activation measurement, but this effect appears at second order, and so we are left with

the dominant effect due to the waiting time tw between measurements. Taking X = −1.4 (i.e.

assuming that the plastic scintillators cause the largest effect), a drift of ±2× 10−3 hr−1, a long

storage time of 2000 s, and a waiting time of 2300 s, gives a pull of ±0.7 s on the measured

lifetime.

6.9 Dead Time and Pileup

The dead time associated with measuring the vanadium activation can lead to a fraction of missed

events which depends on detector rate. Therefore, the missed fraction of events for a short storage
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time versus a long storage time could be different, leading to a systematic shift of the extracted

storage time. The probability of accepting an event in the detector with event rate r is given

by the area under the time-between-event distribution for all times greater than the deadtime td,

which is exp(−rtd). We can suppose r = r(t) = NUCN exp(−λvt), and integrate over this rate

weighted by the detection probability to find the measured signal versus NUCN and td. We have

that NUCN = N0 exp(−tstore/τn), and compute the storage time τ−1s = ln(N1/N2)/(t2 − t1)

using the deadtime-diminished signal, and expand to first order in td, from which we find

τs − τn =
λvtdN0τ

2
n

2(t2 − t1)
(
e−t1/τn − e−t2/τn

)
. (6.29)

Assuming an initial rate of 300 s−1, a long storage time of 2000 s, and a dead time of 2 µs, this

gives a pull of 0.1 s on the measured lifetime. Further, this effect can be corrected for with high

precision, and ultimately made negligible, as in precision studies of 0+ → 0+ nuclear decays[128].

6.10 Time Dependent Backgrounds

The analysis performed in the preceding chapters generally assumes a constant background for

the monitor and vanadium detectors. The high signal-to-background and stability of the monitor

detectors is likely to be sufficient for a precision measurement of τn. However, the backgrounds

in the vanadium are significant, and the extraction of the surviving number of UCN is sensitive

to changes in the background on the scale of minutes or hours. This could be due to short-lived

isotopes generated by the spallation source. Slow drifts could be due to, for example, the slow

diffusion of radiactive gasses through the experimental hall.

For the case of a decaying background after the trap has been loaded, we can write the rate

in the vanadium detector as

Re−t/τv + Ie−t/τb +B (6.30)

where τb is the mean lifetime of the source of background. The initial time dependent background

rate is I, B is the constant part of the background, and R the initial rate of true 52V decays.
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Computing the storage time for a pair of short and long storage times t1 and t2 with a vanadium

counting time TM , the first order shift in τ−1n is given by

τ−1s − τ−1n =
Iτb

Rτv(t2 − t1)

(
1− e−TM/τb

1− e−TM/τv

)(
e(τ
−1
n −τ−1

b )t1 − e(τ
−1
n −τ−1

b )t2
)
. (6.31)

A slow drift in the background is given by the limit of τ−1b → 0. If we express a slow (linear)

drifting background as a fraction of the constant background B(1 + rt), we have

τ−1s − τ−1n =
BT 2

Mr

2Rτv(t2 − t1)

(
et1/τn − et2/τn
1− e−TM/τv

)
. (6.32)

From section 5.2.4, we have constrained the size of I to be . 0.2 s−1 for the dominant decay

time of ∼ 2100 s (i.e. the mean lifetime of 128I). From the above, if we count 5 × 104 UCN in

the vanadium detectors during a short storage interval, and with a long storage time of 2000 s

and nominal neutron lifetime of 880 s, the effect is constrained to 9×10−3. This is not sufficient

for a 0.1% measurement of τn, however, the 10B-loaded rubber shield will reduce the intensity

of thermal neutrons by ∼ 50− 100, which will drive a commensurate decrease in the initial rate

I of any induced activity. Further, a detailed statistical analysis shows that such a background

can be accounted for in the analysis of the data, which ultimately exacerbates the statistical

precision by approximately a factor of 4[15]. Thus, the shielding is likely to eliminate the effect

of this background, and at worst could be accounted for with sufficient reliability. If, then, 10−4

statistical precision of background measurements over the run campaign can be achieved this will

contribute a relative effect of approximately (−4± 4)× 10−4 on τn.

As also discussed in section 5.2.4, the high-statistics data constrain slow linear drifts in the

background. The results from that section only constrain the size of a systematic effect to

∼ 0.5%, though this can be readily suppressed by decreasing the background rate of coincident

events, improving the V detector efficiency, and by performing dedicated studies of potential

linear drifts to higher precision – all of these contribute linearly to the size of the effect. Further

still, in the presence of a linear drift, background runs before and after a foreground run can be
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averaged to partially correct for this effect. The combination of these techniques should lead to

a sub-0.1% effect, and the effect must ultimately be limited to 5 × 10−4 in order to not be the

leading systematic.

6.11 Phase Space Evolution and Vanadium Activation

As discussed in chapter 2, if the occupied phase space of a magnetic bottle can change with time

over the course of a measurement, this can cause a systematic effect; if the detection of surviving

UCN or decay products varies over the phase space of the trap, the time-evolution of the phase

space will translate into a time-dependent detection efficiency. Here, we consider, in basic terms,

the implications of such an effect for a τn measurement using the vanadium activation technique.

The activation of the vanadium versus time can be expressed as

V̇ = A(t)− τ−1v V (6.33)

where V is the activity of the foil, A(t) is the rate of capture of UCN on the foil, and τv = 324 s

is the mean lifetime of 52V. if the foil is lowered for a time te, then the activity during the activity

measurement is given by

V (t) = e−t/τv
∫ te

0

et
′/τvA(t′)dt′ (6.34)

While the foil is lowered into the trap, the number of UCN N decreases either due to β-decay or

due to absorption on the foil, so that

N = N0 exp

(
−t+ ts

τn
−
∫ t

0

D(t)dt

)
(6.35)

where D(t) is some function of time expressing the rate of absorption of UCN on the vanadium

foil, and ts is the storage time. This rate is given by A(t) = D(t)N , and the signal C from

vanadium activation measured from the end of the emptying time te until some time tm is given
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by

C =

∫ te+tm

te

V̇ dt. (6.36)

Phase space time dependence causes a systematic effect if the draining function D(t) changes

between two counting measurements C1 and C2. To gain insight, we suppose that for the

first storage measurement, the absorption of UCN onto the foil is exponential with a constant

characteristic time τD, and thus D(t) = τ−1D . The draining time for the second measurement is

then given by a characteristic time τ ′−1D = τ−1D (1 + η) due to a time-dependent change in the

occupied phase space of the trapped UCN. We then compute the lifetime from the signals C1

and C2 including this difference in time constants. The relative pull on the lifetime for a typical

draining duration and draining time constant is shown in fig. 6.17 as a function of η and as a

function of te.

Figure 6.17: The relative correction to the lifetime (for nominal 885 s lifetime) as a function of
the vanadium absorption time tm (left) and as a function of the change of draining η (right).

From this we see that a change in the shape of the draining curve can cause two counter-

acting effects. Suppose the characteristic time increased at later time. In this case, more counts

would appear at the end of the tail, and thus more would be missed by the foil, causing later

times to exhibit unexpectedly lower activity, and thus τn would appear shorter. At the same time,

a longer draining time means that most of the activated vanadium nuclei have had less time

to decay before the foil is raised for counting, thus causing later times to exhibit unexpectedly
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higher activity. The latter effect occurs no matter how much of the tail-end of the distribution is

missed, which is why the pull on the lifetime does not vanish for long tm as long as η 6= 0.

For typical measurement times, the extraction of τn is affected at the level of 0.1% if the

change in mean draining time is as big as 1-10% using this simple exponential model. This sets the

scale of the effect, but there is no reason to expect that the draining function is truly exponential

in nature: UCN of different energies presumably have different characteristic draining times, and

the possibility of non-equilibrium behavior in the trap permits non-exponential behavior.

Figure 6.18: The rate of absorption on the vanadium versus time after three different storage
times. Two-exponential fits are also shown with best-fit values for time constants t1 and t2.

To provide a more realistic estimate of the effect, we simulate three measurements. In each

measurement, the trap is filled for 60 s, stored for either 10, 200, or 800 s, and then the vanadium

absorbs the trapped neutrons for 60 s. In each case, the spectrum loaded into the trap is a v2dv

distribution initially at the trap door, up to the trappable neutron velocity. The momentum

distribution is isotropic in 2π facing up into the trap. We record the time of absorption of

the UCN onto the vanadium foil, in effect measuring the draining curve D(t). These data are
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normalized to the number of neutrons that are filled into the trap for the given simulation.

The distribution in all cases is effectively described by a two-exponential fit:

A(t) = A1e
−t/t1 + A2e

−t/t2 . (6.37)

The draining profiles for each simulation are shown in fig. 6.18. Also shown are double exponential

fits with the best-fit values for t1 and t2. The time t1 is in approximate agreement with the data

from chapter 5. The 10 s storage time exhibits a different time constant from the longer storage

times, which suggests that after ∼ 200 s, the draining profile stabilizes. We can compute the

observed vanadium activity at the time that the foil is raised:

N =

∫ 60

0

et/τvD(t)dt. (6.38)

The 200 and 800 s storage time signals are discrepant at a relative level of (5 ± 5) × 10−4,

which also sets the size of this effect on the extraction of τn. However, this would be further

mitigated by using a larger foil, performing more detailed studies of the draining time of UCN

into the foil, and more extensive simulations. Further, new detector technology will permit the

direct measurement of the capture rate A(t), as will be discussed in chapter 8.

6.12 UCN Source Fluctuations

The previous UCN bottle experiments discussed in chapter 2 used a UCN detector outside of the

bottle as a means of normalizing each storage measurement. All of the high-precision experiments

using material bottles were performed at the reactor-based Institut Laue-Langevin UCN source.

Because it is a reactor-based source with a constantly rotating turbine to downscatter UCN, the

incoming rate of UCN into the apparatus is assumed to be constant. Therefore, measuring the

rate in a monitor detector is sufficient to normalize the initial trap density. This assumption

appears to be implicit in the precision measurements using the material bottle technique with the

exception of Arzumanov et al[66] who state explicitly that the turbine-based UCN source at the



CHAPTER 6. SYSTEMATIC EFFECTS 124

ILL is sufficiently stable for their measurements.

The proton beam delivered to the LANSCE UCN source operates by delivering pulses at a

rate of 201.25 MHz over a 625 µs wide RF gate. There are 5 pulse gates at a rate of 20 Hz

that direct protons to the UCN spallation target, and this 5-pulse chain occurs every 5 seconds.

During each pulse chain, UCN are produced and are transported through several meters of UCN

guides until the apparatus is reached. There is thus a substantial delay between this pulse and the

arrival of the UCN at the apparatus and monitor detectors, and the time-of-arrival distribution

can have a non-trivial structure due to the geometry of the UCN source, guides, apparatus, and

the shape of the UCN spectrum.

The rate in the monitor detectors and the time dependence of the density of UCN in the trap

is thus determined by the number of UCN produced during a pulse chain convolved with the time

of arrival spectrum to the apparatus (call it G(t)). That is, The number of UCN in the trap can

be expressed as

N(t) ∝
N∑
n

InG (t− n∆t) (6.39)

where there are N pulse chains during a beam-on period to fill the apparatus, and ∆t = 5 s is

the separation between pulse chains. The In represent the UCN production during the nth pulse

chain, each being a function of the proton current delivered to the target and the temperature and

pressure of the neutron moderator and UCN converter. The system response function G(t) takes

the approximate form G(t) ∝ t exp(−t/tg) where tg depends on the average lifetime of UCN in

the source and guide system leading to the experiment. This functional form agrees with results

from simulations; further, by operating the proton beam in a long-pulsed mode (i.e. one pulse

chain every ∼ 200− 400 s) this quantity can be measured directly, thus providing a more direct

means of estimating this effect. This will be done in future run campaigns. For the purposes of

estimating the size of the effect in this section, the analytical form will be used, with tg = 20 s

being a reasonable estimate based on neutron tracking studies and preliminary measurements.

Ultimately, a systematic effect can occur if the In are not constant – that is, some Ii is

different from the rest of the In while the trap is being filled. This fluctuation will propagate
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Figure 6.19: The rate in a monitor detector based on the convolution of the system response G(t)
with sequential pulse chains; the black curve shows the rate assuming a sequence of constant
pulse chains, and the red shows a constant set of pulse chains, except for a single pulse chain
with 1% lower UCN output during filling (top). The same rates, but zoomed in on the region of
nearly-constant rate during filling, over which the rate is averaged to compute the normalizing
factor (bottom).

through the guide system to become a fluctuation in the initial number of UCN in the trap by the

time the trap door is closed. The effect is then manifest in the data analysis when the saturated

rate in the monitor detector is determined by integrating the detector rate over the region of

ostensibly constant rate (e.g. as is done in fig. 5.15). This fluctuation, while difficult to observe

above the statistical fluctuations in rate, can systematically change the mean rate that is used

to normalize each run. This is shown in fig. 6.19, which shows the essentially imperceptable

difference between a completely constant fill versus a fill with a 1% fluctuation in UCN output

during a pulse chain.

However, with knowledge of G(t) and an independent measure of these fluctuations during

each pulse chain, the effect can be estimated and, to an extent, corrected. The proton charge

delivered to the target during each RF gate is measured by commercial (Bergoz) integrating

current transformers with linearity of better than 1%. In addition, 3He-filled drift tubes for
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thermal neutron detection are embedded into the biological shielding near the UCN source, and

these can be used to measure the neutron flux generated by each pulse chain. The combination

of these two measurements can identify fluctuations at the 1% level (i.e. fluctuations of the size

shown in fig. 6.19). Integrating over the rate in the time window of the lower panel of the figure,

this leads to a 3 × 10−4 relative discrepancy in the average rate, and thus in the normalization

factor for a UCN storage measurement.

This is further complicated by the fact that the time response function for the monitor

detectors could be somewhat different from that for the trap itself. The response for the trap

itself can be measured during a run campaign by temporarily placing a UCN detector in or near

the trap, and compared to that for the separate monitor detectors. Ultimately, a detector near

or above the trap could be used as the dedicated monitor detector.

It is also worth noting that the average rate during filling is the simplest quantity that can

be used as a normalization factor. A more sophisticated normalizing quantity, which for example

weights earlier and later times during filling differently, or includes non-statistical fluctuations in

the uncertainty of the normalization factor, can further mitigate the effect.

6.13 Summary and Conclusions

We have discussed the potential systematic effects for a future measurement of the neutron

lifetime using the current apparatus to a precision of 0.1% or better. In general, these effects

appear to be manageable at the 0.1% level, but will require much more sophistication to quantify

for a next-generation 0.01% measurement. A summary of the systematic effects, with estimated

corrections and uncertainties, are shown in table 6.2.

As will be discussed in chapter 8, forthcoming advances in the UCN detector technology could

further address or avoid some of the effects in this chapter. In particular, an in situ detector with

high efficiency and low background will mitigate the effects of time dependent backgrounds and

gain drifts, and will offer a means of investigating the effect of phase space evolution on UCN

detection. Such a detector could be employed within the trap in order to monitor the initial trap
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effect correction comments

residual gas (+1± 1)× 10−4 RGA monitoring of gas content
depolarization < 10−4 in situ verification of depolarization
material losses (+4± 4)× 10−4 measure η for the Cu

cleaning (+6± 6)× 10−4 vary cleaning heights and times
cleaner reliability ±5× 10−4 verify position reproducibility

microphonic heating ±1× 10−4 in situ accelerometry
dead time/pileup < 10−4 pileup ID and artificial dead time

gain drifts ±2× 10−4 regular gain monitoring
time dependent backgrounds ±5× 10−4 need sufficient background data

phase space evolution ±5× 10−4 measure V draining curve
source fluctuations ±3× 10−4 measure monitor/trap response

total (1.1± 1.2)× 10−3

Table 6.2: Estimates of potential systematic effects in the current experiment, with corrections
where applicable.

density, thus providing insight into the severity of UCN source fluctuations.

The sources of material loss and residual gas must be investigated. Recent experiments at

LANSCE have measured the upscattering cross section for various gases; this, in combination

with regular monitoring of the residual gas content of the trap, will mitigate this source of loss.

The use of Cu to cover magnetic defects must be investigated by assuring a low loss-per-bounce

and depolarization per bounce for the surface, and field mapping near these defects can be used

to assure the absence of field zeros and low-field “holes” in the magnetic trap. Ultimately, these

defects can be repaired if the results of these studies introduce large corrections.

The detector technology to be discussed in chapter 8 can also be used to study UCN cleaning.

A larger-area cleaner appears to be more than adequate based on neutron tracking simulations

performed here and by Walstrom et al. A portion of a cleaner could be instrumented as a detector,

and the cleaning rate versus time measured to compare to simulation and assure the efficacy of

the technique. This would greatly improve upon the technique of detecting the upscattered

neutrons, which to-date exhibits low signal-to-background.



7 Solid Nitrogen as a UCN Converter

7.1 Introduction

Several planned UCN sources use solid deuterium (D2) to downscatter cold or thermal neutrons

to UCN energies[24, 71, 19, 41]. Since it was first proposed and investigated[85, 112, 25, 26],

considerable recent effort has gone into understanding UCN production in D2[20, 104, 44, 43].

Deuterium is chosen for its low neutron absorption cross-section, low incoherent scattering cross-

section (to minimize UCN elastic scattering within the source), and the presence of numerous

phonon modes which can inelastically scatter neutrons down to UCN energies. However, aside

from these phonon modes, the free rotation of D2 molecules can cause incoherent upscattering

of UCN in the deuterium. In order to suppress this upscattering, the D2 sample is converted to

the J = 0 (ortho) state using paramagnetic catalysts[20, 37].

Solid α−15N2 is a potential alternative to deuterium: its absorption cross-section is only 5% of

that of D2, and it has a negligible incoherent scattering cross-section. Additionally, free rotation

of the N2 molecules in the lattice is inhibited due to the anisotropy of the N2 inter-molecular

potential. This leads to dispersive modes for the rotational degrees of freedom (librons) which

provide additional channels for neutron downscattering and eliminate the rotational incoherent

upscattering prevalent in D2.

Due to the primarily classical nature of its inter-molecular potential, the anharmonicity of

the angular degrees of freedom, and phonon/libron coupling, solid nitrogen has been a test-

bed for ab initio lattice and molecular dynamics calculations[118]. Several models exist which

utilize inter-molecular or atom-atom potentials of various forms[106, 45, 116, 8, 88, 131], and

anharmonic effects have also been investigated experimentally and theoretically[6, 64, 5, 130].

128
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Past interest notwithstanding, there is little data on the dynamic structure factor of α-N2 from

neutron scattering[99].

In this chapter, solid 15N2 in the α phase (T < 35 K) is investigated as a new UCN converter.

The dynamic structure factor is measured using a time-of-flight spectrometer, and the UCN

production and upscattering cross sections are computed using the results from sec. A.5.

7.2 Experiment

The dynamic structure factor is measured with the IN4 TOF spectrometer at the Institut Laue

Langevin (ILL) using incident neutrons of wavelength λ = 2.2Å[111]. The sample environment,

cryostat, and sample control system are the same as that used for previous studies of oxygen and

deuterium as UCN converters[20, 40]. This provides a means of direct comparison between the

different converters. Gaseous 15N2 (99.4% isotopic purity) is introduced into the 2 mm annular cell

through a needle valve, and cooled using the ILL’s orange helium-exchange cryostat (see [20, 40]

for details). The detector array is calibrated using an isotropically scattering vanadium sample.

The dynamic structure factor and related quantities are computed using the ILL’s standard data

treatment software LAMP[113].

Total scattering from the sample cell is measured while condensing nitrogen to assure that

the cell is completely filled, and the sample temperature is then lowered to the solid α-phase. In

order to ensure that the nitrogen sample did not consist of macro-crystals, the elastic scattering

intensity is analyzed for various annealing times at the α−β phase transition. We find only slight

variations in the elastic peaks for different annealing times, which suggests that the sample is

polycrystalline as desired.

Data are then acquired with nitrogen at temperatures of 5.9, 11, 15, 20, and 25 K. A

background measurement of the empty cell is performed at 11 K. The inelastic scattering back-

ground due to the aluminum phonons is temperature-dependent, especially on the anti-Stokes

(E < 0) side, changing with temperature according to the Bose-Einstein occupation factor

nBE(T,E) = [exp (E/kT )− 1]−1. We thus rescale the background intensity by the relative
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change in occupation number (as a function of E) prior to subtracting it from the nitrogen data.

This is particularly important for computing UCN upscattering mean free path for T < 11 K (see

below), where it is a ∼ 20% effect if uncorrected.

We also perform measurements using 14N2, and find that the dynamic structure is the same as

that for 15N2, except for a difference in overall scattering intensity commensurate with the isotopic

difference in total scattering cross-section (σscat14/σscat15 ≈ 2.2). For this reason, data with 14N2

are used for the determination of the temperature dependence of the dynamic structure factor

because of better statistical sensitivity. The results are scaled by the above factor to determine

the absolute 15N2 cross-sections.

7.3 Results
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Figure 7.1: The differential scattering cross-section versus E. E > 0 corresponds to energy
loss, and E < 0 to energy gain. The vertical scale is set by integrating to the total scattering
cross-section (see text).

The differential scattering cross-section dσ/dE is shown in fig. 7.1. The vertical scale factor

κ is set by demanding that

κ

∫ (
dσ

dE

)
data

dE = σscat (7.1)
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where σscat is the total scattering cross-section per molecule. We find κ = 36.6± 7.3 b, with the

20% uncertainty due primarily to the unknown contribution of scattering intensity outside the

kinematic range of the instrument. The factor κ has units of barns so as to convert the dσ/dE

data (which has an arbitrary normalization) into a cross-section. This normalization factor is used

below to calculate the absolute UCN production and upscattering cross-sections.

The dynamic structure factor S(q, E) (averaged over orientations of ~q due to the polycrys-

tallinity of the sample) is shown in fig. 7.2. The intensity at q = 1Å−1 has peaks at E = 4.5,

5.7, and 8 meV, in reasonable agreement with the Tg, Au, and Tu modes predicted by Kjems

and Dolling[99]. However, it is difficult to comprehensively compare the data to various dynamic

models due to the low energy resolution of the TOF method, as well as the polycrystalline nature

of the sample.
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Figure 7.2: The dynamic structure factor of polycrystalline α−15N2. The color scale is set by
integrating the measured differential cross-section and equating it to the total scattering cross-
section. The black line corresponds to the UCN production curve given by eqn 7.2.

Fig. 7.3 shows the Generalized Density-Of-States (GDOS), which exhibits prominent peaks

from one-phonon states, and broad low-lying intensity due to multi-phonon processes. Elastic
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contamination is removed by fitting the GDOS to E2 for E . 2 meV. The peaks in the 4 to 8 meV

range broaden with increasing temperature due to phonon and libron conversion and dephasing,

which has been studied in detail using infrared and Raman spectroscopy[64, 5].
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Figure 7.3: The GDOS for solid nitrogen at two temperatures in the α-phase. Peak broadening
at higher temperature is observed.

7.4 Discussion

The black line in fig. 7.2 corresponds to the necessary kinematic condition for UCN downscatter-

ing. As UCN energies are much less than cold and thermal neutron energies, we take the UCN

energy EUCN ≈ 0 and arrive at the following relation for the wave-vector transfer q =
∣∣∣~ki − ~kf ∣∣∣

and energy transfer E = Ei − Ef :

E = ±~2q2

2mn

(7.2)

with the plus sign for UCN production, and minus sign for UCN upscattering.

The intensity of S(q, E) parameterized along the curve given in eqn. 7.2 is then proportional

to the cross-section to nearly “stop” a cold neutron, thereby converting it to a UCN. The UCN

production cross-section versus incident energy integrated over final UCN energy Ef from 0 to
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some maximum UCN energy Emax is given by

σUCN(Ei) =
2

3
κE3/2

max ·
1√
Ei
S
(√

2mnEi/~, Ei
)
. (7.3)

Upon escaping the nitrogen volume, UCN are boosted by the solid 15N2 optical potential of

∼ 69 neV. We choose Ef = 181 neV, which corresponds to a trappable energy of 250 neV,

commensurate with UCN production cross-section calculations in [40].
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Figure 7.4: The UCN production cross-section in 15N2for EUCN ≤ 181 neV versus incident
neutron energy. The inelastic cross-section for E < 2 meV is difficult to determine due to elastic
contamination, though is likely small compared to that of the energy range shown here.

The energy-dependent production cross-section is shown in fig. 7.4. Production peaks near 6

meV, most probably due to a combination of vibrational and librational downscattering channels.

The production cross-section can vary with temperature due to the temperature dependence of

normal mode frequencies and their widths: we find the variation in the cross-section to be no

more than 18% in the range of 5 to 25 K (increasing slightly with increasing temperature).

From the above, the rate of UCN production in a source using 15N2 can be estimated, making

reasonable assumptions about the incident neutron flux. For a UCN source illuminated with the
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Figure 7.5: The UCN yield of 15N2 for a neutron flux of 1014 cm−2 s−1 from a cold moderator at
temperature T . The yield in UCN is optimized for incident neutrons at a temperature T = 40 K.

neutron flux from a cold moderator at temperature T , we define the UCN yield to be

Y (T ) = n

∫
φ (E, T )σUCN(E)dE (7.4)

where n = 2× 10−22 cm−3 is the number density of 15N2, and the cold neutron flux is given by

φ(E, T ) = φ0

√
4E

πk3T 3
exp (−E/kT ) . (7.5)

From this, we find an optimal moderator temperature of 40 K (see fig. 7.5). For a UCN

source with total incident cold neutron flux flux φ0 = 1014 cm−2 s−1 at T = 40 K, the yield is

approximately 8.9× 104 UCN per second per cm3 of source volume. In order to extract a UCN

from a source for use in an experiment, the UCN mean free path λ must be comparable to or

larger than the thickness of the source. The mean free path contains contributions from different

processes:

λ−1 = λ−1up + λ−1abs + λ−1inc.el. (7.6)
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where λup corresponds to UCN upscattering to non-UCN energies, λabs to nuclear absorption, and

λinc.el. to UCN elastically scattering within the nitrogen volume. Even for relatively poor isotopic

purity, the incoherent scattering mean free path is much larger than the size of a potential UCN

source, and can be neglected. The absorption mean free path is highly dependent on the isotopic

purity, and purity ∼ 99.9% or higher is necessary for upscattering to be the dominant contribution

to the mean free path.
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Figure 7.6: The mean free path λup for UCN to upscatter to non-UCN energies within the solid
nitrogen volume. The error bars are statistical.

The (temperature dependent) upscattering cross-section of UCN in the nitrogen can be com-

puted from the data by choosing the minus sign in eqn. 7.2 and integrating over the final state

energy:

σup = κE
−1/2
0

∫ ∞
0

√
ES

(√
2mnE/~,−E

)
dE. (7.7)

We compute λup = 1/σupn for UCN with E0 = 181 neV over a range of temperatures (see fig.

7.6). We observe an increased λup with decreasing temperature due to the smaller population

of lattice modes that can induce upscattering. At T = 5.9 K, the data suggest an upscattering

mean free path of approximately 46 cm, which is greater than the thickness of current D2 sources
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such as the Los Alamos source (∼ 5 cm) or the PSI source (∼ 15 cm)[24, 19]. The thickness of

a UCN source using 15N2 could therefore be made larger than a D2 source, the latter of which is

limited by its 8 cm incoherent scattering mean free path.

7.5 Conclusions

The dynamic structure factor of solid α−15N2 has been measured over a range of temperatures.

No appreciable difference in dynamics is observed between 14N2 and 15N2, and there is reasonable

qualitative agreement between our data and previous studies of the dynamics of solid α-nitrogen.

However, a higher resolution neutron scattering technique would be necessary to thoroughly

investigate the rich structure of the vibrational and librational modes.

The absolute UCN production cross-section is determined by normalizing the scattered inten-

sity to the total molecular cross-section of the sample. The cross-section peaks strongly near 6

meV, and the optimal incident cold neutron temperature is 40 K. The measured cross-section

is found to be somewhat lower than that of D2 and O2 (see [40]). However, we observe an

upscattering mean free path substantially longer than that of D2. Thus, for sufficiently high

isotopic purity, an α−15N2 source could be large while maintaining efficient UCN extraction to

compensate for the lower production cross-section.

In addition, a nitrogen-based source may benefit from operating temperatures below those

used here, if the upscattering cross-section can be further reduced at lower temperatures (∼ 1 K).

While deuterium is ultimately limited by its temperature independent absorption and incoherent

scattering mean free paths, further improved isotopic purity of 15N may make an even lower

temperature nitrogen volume a promising candidate for a new UCN source. This motivates future

work in performing direct measurements of slow neutron mean free paths and UCN production

rates in 15N2.



8 Conclusions

8.1 Summary and Overview

An independent, precise determination of τn using magnetic confinement is timely. Knowledge of

τn, along with other n-decay observables, can discriminate potential beyond-SM processes which

distort charged-current weak interactions in a way that is complimentary to, and potentially

competitive with, high energy experiments. Moreover, the accurate resolution of the neutron

lifetime with 10−3 relative precision would have a significant impact on cosmological predictions

of the effective number of thermalized neutrinos in the early universe, and thus is a test of new

physics manifest therein.

While ultimately measuring τn with 10−4 precision is desirable for competitive tests of new

physics, current limits suffer from the ambiguity in the global data. The nature and size of

systematic corrections in UCN material bottle measurements have been called into question in the

literature, and magnetic confinement is a promising new technique due to small (and potentially

negligible) losses. It is worth noting, however, that the current particle data group values for Vud

and λ predict a lifetime of 883.1±0.8 s, which is in disagreement with both the most precise UCN

bottle measurement and most precise beam measurement (the latter at the level of 2-σ)[22, 31].

While this doesn’t point to the source of the experimental ambiguity, it does suggest that a new

type of measurement is needed.

The UCN bottle experiments surveyed in chapter 2 employed several experimental handles to

quantify losses and other sources of systematic error, such as varying wall temperature, filtering

the UCN spectrum, or measuring upscattered neutrons, though the data analysis is typically

complicated by the precarious nature of UCN. For example, the UCN wall loss rate is UCN and

137
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energy and momentum distribution dependent, and direct measurements of these distributions is

often difficult or impossible. As such, model assumptions, equilibrium kinetic theory, simulation,

or perturbative analyses are employed in order to extrapolate measurements to the true lifetime.

These analyses for a given experiment often achieve remarkable internal consistency, though this

does not preclude the presence of systemic effects which do not vanish when the endemic effects

are extrapolated away.

We have presented the design of a magneto-gravitational UCN trap for the measurement of

the neutron lifetime with large volume and geometry that permits the study of UCN cleaning,

study of the occupied phase space of the trap, and new UCN detection techniques. We place

an upper bound on the non-β-decay loss rate in the trap and demonstrate the ability to detect

cleaned UCN. The potential for much greater statistical sensitivity is possible with future changes

in the guide geometry and trap loading mechanism, and also through the development of in situ

UCN detection schemes such as vanadium activation.

The vanadium activation technique has demonstrated high β detection efficiency. The γ

efficiency with the NaI detectors is somewhat lower, but this is dominated by solid-angle effi-

ciency, and forthcoming redesigns can increase the efficiency by a factor of two or three. The

data presented here show that UCN are rapidly absorbed onto the V foil which is a substantial

improvement over the fill-and-empty technique used in previous experiments. In addition, with

modest improvements to the shielding, the backgrounds can be substantially stabilized. In addi-

tion, the scintillators and PMTs demonstrate stability sufficient for a 1 s measurement, and can

be improved with source calibrations and active gain monitoring.

In spite of the performance of the apparatus detailed in this dissertation, there remains a

pervasive issue for this and other UCN experiments: UCN densities are low. As mentioned

in chapter 7, there are several new s-D2 and superfluid helium UCN sources being developed

which promise vast improvements, but none have thus far demonstrated substantially better UCN

densities than LANSCE or the ILL in an apparatus external to the source itself. This motivates

the investigation of new UCN converters and other improvements in UCN technology.
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The improvement of UCN production and transport technology could transform the nature of

UCN experiments. The experiment described in chapter 7 offers a simple means of measuring a

UCN production cross section without the need for a dedicated source, and the technique could

be used for other candidate materials as well, such as 208Pb. Nitrogen offers a somewhat lower

UCN production cross section, but also shows the potential for longer UCN mean-free-paths. This

necessitates more work to measure mean free paths in these materials in order to demonstrate

that a large source is beneficial.

8.2 Outlook

8.2.1 Magnetic Confinement

The past research on magnetic confinement discussed in chapter 2 and measurement of the

storage time with the magneto-gravitational trap discussed in chapter 4 clearly demonstrate that

sources of loss using magnetic confinement are small or negligible. This technology is therefore

ideal for a measurement of the neutron lifetime, as it obviates the need for dimensional or spectral

extrapolation to determine τn. The presence of the copper tape to cover defects in the apparatus

described here must be investigated further by checking what fractional area of the array exhibits

lower magnetic field strength due to the defects. In addition, separate measurements using the

adhesive-covered copper used in the trap must be performed to estimate the loss-per-bounce,

and in particular verify that it is no larger than ∼ 10−4.

The depolarization of magnetically trapped UCN remains a potential issue for next-generation

measurements. Basic estimates, as well as more detailed calculations, of depolarization rates sug-

gest that the effect should be negligible at the level of 10−4 or lower. However, these calculations

must be verified with experiment. A thin-film detector could provide a means of measuring or

placing limits on the rate of depolarization in a Halbach array. Boron-coated fibers or ZnS screens

(see subsection 8.2.3) could be placed immediately on the array surface. Even if the whole array

surface is not covered, a measurement using unpolarized (or high-field polarized) UCN could

provide a reference rate in the detector. Thereafter, any rate measurement with polarized UCN
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during storage could be interpreted as being due to depolarization.

From the neutron tracking results, it is clear that a large area cleaner will be sufficient to

remove all but 10−3 to 10−4 UCN in the trap, and this can be confirmed by repeating measure-

ments of τn with and without cleaning. In addition, the neutron tracking results show that the

draining of UCN into the vanadium is stable for long and short storage times, suggesting that

phase space time dependence is mitigated with this trap.

Still, there may exist other trap geometries which facilitate rapid cleaning and little phase

space time dependence. This is the subject of ongoing theoretical and numerical research, and

other asymmetric trap geometries have recently been proposed. These exhibit large fractions of

chaotic orbits, and could utilize superconducting magnets to vary the trap potential. While a

superconducting trap greatly increases the experimental complexity and turn-around time for mea-

surements and R&D, it could provide additional means for characterizing the trapped population

of UCN and reducing systematic effects related to magnetic confinement.

8.2.2 Vanadium Activation

The vanadium activation technique and detector array described in chapter 5 demonstrates rapid

absorption of surviving UCN within the trap. While the phoswich geometry did not ultimately

provide significant background rejection, the coincidence technique greatly reduced backgrounds.

The NaI efficiency will be increased in future run campaigns by redesigning the portion of the

vacuum vessel near the detectors, in order to move the NaI closer to the V foil. In addition, more

NaI modules will be added. This will likely increase the efficiency by a factor of 2 or 3, for a total

efficiency near 50%.

From the analysis in chapter 5 and estimates from chapter 6, the detector stability and

backgrounds are likely to be sufficient for a 0.1% measurement of τn, as long as time dependent

backgrounds can be controlled. This will require long-term studies of the background in future

run campaigns, and adequate shielding for thermal neutron induced activation.

Implementing a larger foil will decrease the absorption time of UCN onto the foil, and this
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could further reduce any potential systematic effects related to non-equilibrium of the trapped

population. These effects can be checked by measuring this absorption time after short and long

storage times. In addition, varying the height of the foil will provide a detailed measurement of

the UCN distribution in the trap, and can be used for monte carlo and model validation.

8.2.3 New in situ Detection Techniques

While the vanadium activation detectors and cleaner upscatter detectors are promising, the direct

counting of surviving and cleaned UCN within the trap would be desirable. This could further

improve efficiency and signal-to-background, and provide a direct measurement of the cleaning

time profile and survivor counting time profile, which would be desirable for monte carlo validation

as well as evaluating the systematic effects discussed in chapter 6.

A promising technique is that of 10B-coated ZnS films coupled to photo-detectors. Recently,

such a detector was tested at the LANSCE UCN source which consisted of a ∼ 4 µm thick ZnS

screen evaporatively coated with 20−300 nm of isotopically pure 10B. The screen is then coupled

to a PMT to read out the scintillation light produced by the daughter ions of the boron-capture

reaction. The 10B layer is exposed directly to the UCN volume. There is no detector window,

greatly improving the detector efficiency. Preliminary tests show excellent efficiency and signal-

to-background with 7.6 cm diameter foils coupled to the UCN beamline[82]. This technology

could replace the vanadium foil and cleaner, using wavelength-shifting fibers to transport light to

PMTs or Silicon PMs outside the vacuum system.

In general, the development of new detection techniques, along with magnetic confinement

of UCN, will make an independent determination of τn possible. This is necessary to address the

ambiguity in the current neutron decay data. This is a necessary step towards improved BBN

estimates, and along with the broader suite of neutron decay experiments, will provide a test for

new physics in the charged-current sector.
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A Slow Neutrons

A.1 Introduction

Neutrons interact with magnetic fields via their magnetic moment µn ≈ −60.3 neV/T, with

nuclei via the strong nuclear force, with gravitational fields due to their mass mn ≈ 939.565

MeV/c2, and as discussed in chapter 1, they decay via the weak force.

Neutrons are often classified in terms of their energy range, and for neutrons with E . 0.1

eV, in terms of their temperature equivalent T = k−1B E, where kB ≈ 0.0862 meV/K is the

Boltzmann constant. Here, we define four types of “slow” neutrons: thermal, cold, very cold,

and ultra cold. Table A.1 shows the approximate energy range of these neutrons, along with their

range of de Broglie wavelengths λ, velocities v, wavenumbers k, and temperatures T , which are

related by

E = kBT =
1

2
mnv

2 =
~2k2

2mn

=
h2

2mnλ2
. (A.1)

name E v [m/s] λ [Å] k [Å−1] T [K]
thermal 25 to 100 meV 2200 to 4000 1.2 to 2.5 3.5 to 7 290 to 1200

cold 1 to 25 meV 440 to 2200 2.5 to 13 0.7 to 3.5 12 to 290
very cold 300 neV to 1 meV 8 to 440 2.5 to 740 0.012 to 0.7 0.003 to 12
ultra cold 0 to 300 neV 0 to 8 >740 >0.012 0 to 0.003

Table A.1: Four classes of slow neutrons, with approximate energy, velocity, wavelength,
wavenumber, and temperature ranges.

The physics of slow neutrons, and the theory of neutron scattering are rich topics, with many

applications to condensed matter and nuclear physics. There are several texts on the subjects

of slow neutrons[129, 119], neutron scattering[105, 125, 84], the dynamics of crystals[17], and

ultracold neutrons[87, 95]. In this chapter, we limit the discussion of these subjects to the physics
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of Ultracold Neutrons (UCN) relevant for chapters 2 and 3, and the theory of neutron scattering

from crystalline solids (for chapter 7).

A.2 Slow Neutrons and Nuclei

Neutrons interact with nuclei via the strong force. Due to the strong but short ranged nature of

the interaction, we can approximate the nuclear potential Vnucl seen by the neutron as a spherical

well with a depth on the order of tens of MeV, and a radius on the order of a femtometer. We

can write the wave function of the incoming and scattered neutron as

ψ = eik·x + f(θ)
eik·x

r
(A.2)

where θ is the angle formed between the initial and scattered neutron wavevector. Because the

slow neutrons described in table A.1 have wavelengths much longer than the size of the nuclear

well, the scattering is predominantly in the s-wave, so that f(θ) is constant. We can simplify the

problem by replacing the square well potential with an effective potential VF which can be used

in the Born approximation, and its strength tuned to agree with experiment:

VF (r) =
2π~2b2

mr

δ (r − r0) . (A.3)

Here, mr is the reduced mass of the neutron and nucleus, δ(x) is the (three dimensional) Dirac

delta function, and r0 is the location of the nucleus in the center of mass coordinates. This is

referred to the Fermi potential. The scattering length can in general be complex, with the real part

corresponding to the strength of the scattering. The imaginary part causes a non-conservation (in

particular a decrease) of the probability current of the neutron wave function, and represents the

nuclear capture of the neutron. Using Fermi potential in the Born approximation gives f = −b

and total cross section σ = 4π|b|2 = σs + σa with σs and σa the scattering and absorption cross

sections.

It can be shown that, for most nuclei, thermal (and slower) neutrons are lower in energy than
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the energy of excited nuclear states. The cross section for absorption is then simply proportional

to the time that the neutron wave packet spends in the vicinity of the nucleus. Thus, we have

that σa ∝ v−1. Slow neutron absorption cross sections are thus typically given at a reference

velocity of v(th) = 2200 m/s, so that the cross section at any velocity is expressed as

σa =
σ
(th)
a v(th)

v
. (A.4)

A neutron beam incident upon a collection of nuclei will diminish due to absorption. The

differential decrease in neutron intensity I in a material of number density n is given by the

scattering probability (i.e. the effective area nσadV = nσaAdx divided by the beam area A)

times the intensity:

dI = Iσandx (A.5)

and thus, for an initial intensity I0, we have that

I(x) = I0e
−x/`a (A.6)

where `a = 1/σan is the mean free path for a neutron to travel through the medium before it is

absorbed. We can likewise define a scattering mean free path `s = 1/σsn which represents the

mean distance that a neutron travels before it is scattered, when in the presence of a collection

of nuclei.

A.3 Neutron Scattering from Condensed Matter

In a condensed matter system, the nuclei are spatially bound, so that we let mr → mn for all

scatterers. We can write the potential for a neutron incident on the system is given by a sum of

the potentials at time t due to nuclei at positions Rj(t):

V (r, t) =
2π~2

mn

∑
j

bjδ (r −Rj(t)) (A.7)
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where we note that the positions Ri are operators. For a neutron with incident wavevector ki,

final wavevector kf , initial and final energy Ei and Ef , we can express the general cross-section

for a neutron to scatter into a solid angle dΩ = 2πdθ, with energy transfer E = Ei − Ef with

the use of Fermi’s golden rule

d2σ

dΩdE
=

m2

4π2~4
kf
ki

∑
j′

∑
j

Pj |〈kf , j′ |V | ki, j〉|2 × δ (E + Ej′ − Ej)) . (A.8)

Here, j and j′ are the initial and final states of the scattering system, and Pj is the probability of

the system being in the jth state. This general form for the double differential cross-section can

be expressed using plane wave solutions for the incoming and outgoing neutron, and considering

the matrix element in the fourier domain

d2σ

dΩdE
=

1

2π~
|kf |
|ki|

∑
jj′

bjbj′

∫ ∞
−∞

〈
e−iq·Rj′ (0)eiq·Rj(t)

〉
e−iEt/~dt (A.9)

where the brackets represent the expectation value of the operator, and ~q = ~(ki − kf ) is the

momentum transfer which satisfies |q|2 = |ki|2 + |kf |2 + 2|ki||kf | cos θ.

The cross section is often re-expressed in terms of correlation functions. First, we define the

pair correlation function or van Hove function for a system of N atoms:

G(r, t) =
1

N

∑
jj′

∫
〈δ(r′ −Rj′(0))δ(r′ + r −Rj(t))〉 d3r′. (A.10)

The function G(r, t) represents the correlation between a nucleus j at position r = 0 and time

t = 0, and nucleus j′ at position r time t. The double sum in A.10 can be divided into the sum

over like atoms (j = j′) and distinct atoms (j 6= j′), for which we have the self and distinct pair

correlation functions Gs and Gd respectively. It can be shown that the double differential cross

section is given by

d2σ

dΩdE
=

1

~
|kf |
|ki|

∫ ∫ [
〈b〉2G(r, t) +

(〈
b2
〉
− 〈b〉2

)
Gs(r, t)

]
e−iEt/~eiq·rdtd3r (A.11)
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with scattering length averages 〈b〉 =
∑

j pjbj and 〈b2〉 =
∑

j pjb
2
j . The scattering lengths may

vary due to the atomic composition of the system, as well as the spin dependence of the scattering

length of a given nucleus. The first term in the integrand is referred to coherent scattering, and

includes the interference between the scattered neutron wavefunctions of different nuclei. This

leads to, for example, the phenomena of neutron diffraction and coherent phonon scattering. The

second term is referred to as incoherent scattering, and represents the (approximately isotropic)

scattering of a neutron from a single scatterer.

The cross section can be further simplified by introducing the dynamic structure factor

S(q, E):

S(q, E) =
1

2π~

∫ ∫
G(r, t)eiq·re−iEt/~d3rdt. (A.12)

We thus arrive at the final expression of the cross section, which can be divided into coherent

and incoherent parts

d2σ

dΩdE
=

d2σcoh.
dΩdE

+
d2σinc.
dΩdE

=
|kf |
|ki|

[
〈b〉2 Scoh.(q, E) +

(〈
b2
〉
− 〈b〉2

)
Sinc.(q, E)

]
=
|kf |
|ki|

σtot
4π

S(q, E) (A.13)

where σtot = σcoh. + σinc. = 4π 〈b2〉 is the total cross section (per atom) for a neutron to scatter

from the system.

For a condensed matter system in thermal equilibrium, the populations Pj of the scattering

states are proportional to exp(−Ej/kBT ). This leads to the principle of detailed balance, which

relates the processes of neutron energy loss and energy gain when scattering from a collection of

nuclei in thermal equilibrium. In terms of the dynamic structure factor, it leads to the relation

S(−q,−E) = e−E/kBTS(q, E). (A.14)

Scattering processes in which the neutron gains energy (E < 0) are often referred to as Stokes
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processes, while energy loss (E > 0) are anti-Stokes.

A.4 Crystalline Solids

The dynamic structure factor encodes the frequency content and structure (in reciprocal space)

of the scattering system. It is independent of the coupling of the neutron to the system and

to the neutron kinematics. Therefore, a scattering experiment (with proper knowledge of the

scattering kinematics) can be used to experimentally extract S(q, E) and related quantities. This

makes neutrons a powerful probe for the structure and dynamics of condensed matter.

The behavior of S(q, E) depends greatly on the scattering sample. There are general charac-

teristics of S(q, E) for samples such as liquids, gasses, amorphous materials, and crystals can be

found in the references given in the previous section. Here, we discuss the scattering of neutrons

from crystals.

For a nucleus in a crystal, its position Rj(t) can be expressed in terms of its equilibrium lattice

position plus the small time dependent displacement: Rj(t) = lj + uj(t). For this collection of

nuclei, the operators uj can be expressed in terms of creation and annihilation operators of the

normal modes of the lattice:

uj =

√
~

2MN

∑
s,q′

es(q
′)√

ωs(q′)

(
as(q

′)ei[q
′·lj−ωs(q′)t] + a+s (q′)e−i[q

′·lj−ωs(q′)t]
)

(A.15)

where the normal modes have dispersion relations E = ~ωs(q) and the creation and annihilation

operators satisfy the usual bosonic commutation relations (here, we assume the displacements

uj are small, so that the motion is harmonic). Inserting this into eqn. A.9 and combining the

exponentiated operators, it can be shown that

d2

dΩdE
=
|kf |
|ki|

e−2W (q)

2π~
∑
jj′

bjbj′e
iq·(lj−lj′)

∫ ∞
−∞

e〈AB〉e−iωtdt (A.16)
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with the operators A and B given by

A = −iq · uj(0)

B = iq · uj(t) (A.17)

and the quantity exp(−2W (q)) is the Debye-Waller factor which is due to the non-commutativity

of the operators A and B.

Now, we consider the coherent (j 6= j′) and incoherent (j = j′) contributions to the above

cross section. Because the exponentiated expectation value in eqn. A.16 is small, we Taylor

expand it and examine each term individually. The zeroth-order term (exp(〈AB〉) ≈ 1) corre-

sponds to elastic scattering, as there is no time-dependence in this term. For this case, we arrive

at the coherent and incoherent elastic cross-sections

dσ

dΩ

∣∣∣∣
inc.

= e−2W (q)
(〈
b2
〉
− 〈b〉2

)
dσ

dΩ

∣∣∣∣
coh.

= e−2W (q)
∑
τ

|Sτ |2 δ(q − τ) (A.18)

where the static structure factor Sτ is given in terms of the reciprocal lattice vectors τ of atoms

at position d in the unit cell (with unit cell volume v0) by

Sτ =
8π3

v0

∑
d

bde
iτ ·d (A.19)

We see that the incoherent cross section is mostly isotropic (aside from the q-dependence of

the Debye-Waller factor), while the coherent scattering cross section depends strongly on the

structure of the lattice: scattering occurs only when the Bragg condition (q = τ) is satisfied, and

the scattering intensity is enhanced due to the constructive interference of the scattering off of

the different nuclei. From this we see that the Debye-Waller factor physically corresponds to the

damping and broadening of the scattering intensity at wave-vector transfer q due to the thermal

motion of the atoms about their mean position.
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Now, the higher-order terms in the Taylor expansion of the expectation value in A.16 include

the harmonic time dependence of the atoms in the crystal, and the powers of 〈AB〉 can be

calculated using the creation/annihilation operator commutation relations. Each of these terms

physically corresponds to the cross section to scatter from a normal mode of the lattice, with the

first order term representing 1 phonon scattering, the second term to 2 phonon scattering, and

so on. For example, the one-phonon coherent scattering cross section is

d2σ

dΩdE
=
|kf |
|ki|

4π3

v0

∑
sq′

1

ωs(q′)

∣∣∣∣∣∑
d

〈bd〉√
Md

e−Wd(q)eiq·d (q · ed,s(q′))

∣∣∣∣∣
2

×

[
(ns)(q

′) + 1) δ(E − ~ωs(q′))
∑
τ

δ(q − q′ − τ)

+ns(q
′)δ(E + ~ωs(q′))

∑
τ

δ(q + q′ − τ)

]
. (A.20)

Here Md is the mass of the dth atom in the unit cell, and the first (second) bracketed term

corresponds to Stokes (anti-Stokes) processes of phonon emission (absorption) by the neutron.

From the δ-functions, we see that the sum of the neutron and phonon energy and momentum

must be conserved in the scattering process, and the scattering angle also depends on the phonon

polarization.

The incoherent one-phonon scattering cross section represents the process of a neutron scat-

tering from an individual atom, thus emitting or absorbing potentially many normal mode ex-

citations such that energy (but not lattice momentum) is satisfied. The incoherent scattering

cross-section can be written in terms of the density of states Z(E) of the crystal, which counts

the total number of modes between energy E and E + dE:

d2σ

dΩdE
=

~2

4M

|kf |
|ki|

σinc
4π

e−2W (q)
〈
(q · es(q))2

〉 Z(E)

E
[coth (E/2kT )± 1] . (A.21)

Here, the + (−) corresponds to Stokes (anti-Stokes) processes.

The derivations in this section consider the translational degrees of freedom for scatterers in
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the unit cell of a crystal. This analysis can be generalized to consider other degrees of freedom,

such as the nuclear spin or the orientation of rigid molecules, which also exhibit normal mode

excitations (namely magnons and librons, respectively), and these excitations also contribute to

the scattering processes described above. Further, anharmonic effects can be included pertur-

batively (see for example ref. [17]). In the harmonic approximation, scattering only occurs due

to a given normal mode if E = ~ω(q) exactly. The anharmonicity in an inter-atomic or inter-

molecular potential has the effect of (potentially) causing a small shift in the frequency, as well

as broadening the dispersion relation. Thus, instead of a sharp peak in the scattering intensity

at E for a fixed momentum transfer ~q, the intensity follows a Lorentz distribution in E with

full-width-half-maximum 2Γ, where Γ−1 is the lifetime of the normal mode.

In this section, we have described the principles of neutron scattering from crystals that are

necessary to understand the conversion of neutrons by crystalline solids to UCN energies, as well

as the interaction of UCN with matter.

A.5 Ultracold Neutron Production

The UCN defined in table A.1 are typically generated by inelastically downscattering cold or ther-

mal neutrons. It is not experimentally feasible to moderate neutrons to the ∼ 1 mK temperature

of UCN, so they are instead produced by non-equilibrium processes. Because UCN energies are

∼ 10−5 smaller than moderated neutron energies, a UCN converter must virtually stop a neutron,

and it must be extracted from the converter before a second scattering event can upscatter it to

its equilibrium energy.

One method forms the basis of the UCN source at the Institut Laue Langevin: neutrons are

guided vertically from a D2O moderated, reactor based neutron source, to a neutron-reflecting

turbine that downscatters the neutrons. The velocity of the turbine blades is chosen to be similar

to incident neutron velocities so that (nearly) all of the neutron’s energy is taken away by the

recoil of the blade.

However, other current and planned UCN sources rely on cryogenic liquid or solid converters.
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A converter is chosen that exhibits vibrational modes whose dispersion relation intersects the free

neutron dispersion relation:

E = ±~2q2

2mn

(A.22)

where the plus sign corresponds to downscattering, and the minus sign to upscattering. A neutron

incident upon such a material will have some probability of scattering with energy transfer Ei ≈ E

and momentum transfer ~q ≈ ~ki, thus converting it to a UCN. In this way, the phase space

density of the initial thermal neutrons can be partially concentrated at UCN energy, with the

associated decrease in entropy compensated by the increased phonon (or other normal mode)

entropy. To then extract the UCN from the source and into a UCN guide, the material must

have a small probability of upscattering or capturing the UCN.

The downscattering cross section can be computed by starting with eqn. A.13 and parametriz-

ing it along the free neutron dispersion relation:

d2σ

dΩdE
=
σtot
4π

√
Ef
Ei
S(
√

2mnEi/~, Ei). (A.23)

Here, we have used the fact that |kf |/|ki| =
√
Ef/Ei. Integrating over solid angle is trivial since,

in the above approximation, the momentum transfer is independent of the scattering angle. We

can fix Ei and integrate over Ef , which is trival since the cross section is proportional to
√
Ef .

We thus arrive at the general form of the downscattering or UCN production cross section:

σdown(Ei) =
2

3
σtot

E
3/2
UCN

E
1/2
i

S(
√

2mnEi/~, Ei) (A.24)

where EUCN represents the maximum usable UCN energy. Typically, one chooses the maximum

UCN energy EUCN that can be extracted or used at a UCN source (∼ 100 to 300 neV). Similarly,

we can write the upscattering cross section by again starting with eqn. A.13 and choosing the

minus sign in the free neutron dispersion curve. For upscattering, we have that E ≈ Ef , q ≈ kf ,
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and Ei = EUCN so that

σup (EUCN) = σtotE
−1/2
UCN

∫ ∞
0

S
(√

2mnE/~,−E
)
dE. (A.25)

From this we see that, to a good approximation, σup ∝ v−1 as is the case for nuclear absorption.

A.6 Ultracold Neutrons

The magnetic, gravitational, and material surface interactions all contribute at UCN energy scales

for laboratory-scale magnetic field strengths, distances, and materials. UCN are therefore easily

guided, confined, and polarized in suitably designed experiments. This has lead to a broad

experimental program to use UCN to perform precise measurements of the properties of the

neutron, including the neutron electric dipole moment[33] and the β-asymmetry parameter A[57]

in addition to the neutron lifetime. This section notes some of the properties of these interactions

that are necessary to understand measurements of the neutron lifetime with UCN.

A.6.1 UCN and Material Surfaces

As discussed in A.2, the Fermi potential given in eqn. A.3 reflects the fact that a slow neutron

wavelength is much longer than the size of a nucleus. For neutrons at ultracold energy, the

neutron wavelength is also substantially larger than the inter-atomic spacing in typical solid

materials (∼ 1 − 10Å), and the coherent interaction between a UCN and solid material cannot

result in Bragg scattering. As a result, we can interpret the motion of a UCN through a solid

material as that of a neutron which is moving through a uniform potential VO due to forward

coherent scattering. This “optical” potential is computed by performing a spatial average over

the Fermi potential due to each nucleus in the material:

VO = 2π~2m−1nb̄coh (A.26)
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where n is the number density of nuclei in the material, and b̄coh the average coherent scattering

length.

The interaction of a UCN with a flat material surface can be modeled using the 1-D Schrödinger

equation. The component of the UCN wave vector k⊥ normal to the surface can be used to com-

pute an effective kinetic energy K⊥ = ~2k2⊥/2mn, and for a surface occupying, say, x > 0, the

neutron potential can be written as V = VOΘ(x), so that the neutron hamiltonian is H = K⊥+V ,

and the usual results from basic 1-D quantum mechanics apply. From this, one finds that the

specular reflection of a UCN from a material surface is in practice quite probable, so that UCN

can be stored in material traps for times comparable to the neutron lifetime.

This simple 1-D model captures the basic interaction of UCN and material surfaces. However,

surface properties such as thin fim deposits and surface roughness can lead to, for example, diffu-

sive reflection of the UCN from surfaces, or changes in the expected transmission and reflection

probabilities. Such effects are discussed in more detail in refs. [87] and [95].

Here, we note one important effect. Upon reflection of a UCN from a material surface,

there is a partial overlap of the neutron wavefunction with the bulk of the material. There is

therefore some probability of nuclear absorption or upscattering of the UCN upon reflection. Part

of this effect is captured phenomenologically by the fact that coherent scattering amplitudes are

in general complex: inserting a complex bcoh into the expression for VO gives the UCN potential

an imaginary piece, which causes some of the neutron wave’s probability current entering the

material to disappear. This accounts for the loss of UCN due to absorption. In order to more

generally describe the loss of UCN upon reflection, the size of the imaginary part of the optical

potential is modified to incorporate inelastic scattering of the UCN as well.

This effect is parameterized in terms of the ratio η of the imaginary part to real part of

the optical potential, which roughly speaking is a loss-per-bounce, and can be small for many

materials. To first order in η, the reduction in reflection probability due to loss is given by

R = 1− 2η

√
E⊥

V − E⊥
. (A.27)
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Expressions such as this, accounting for the (UCN energy dependent) probability of loss upon

bouncing from a material, is critical for the “material bottle” experiments described in chapter

2.

A.6.2 UCN and Gravity

The gravitational potential for a neutron on the earth’s surface is given by

VG = mngh (A.28)

where h is the height of the neutron and g = 9.80665 m/s2 is the acceleration due to gravity.

We can rewrite this equation as

VG = (100.429neV/m)h. (A.29)

A.6.3 UCN and Magnetic Fields

A neutron interacts with magnetic fields via its magnetic moment. In general, the spin and

translational degrees of freedom are described quantum mechanically via the Hamiltonian operator

σ ·B (with σ the spin and B the potentially space and time dependent field strength). However,

for a neutron in a magnetic field, if the rate of change of the magnetic field as seen by the neutron

is slow compared to the neutron’s Larmor precession frequency

1

|B|

∣∣∣∣dBdt
∣∣∣∣� ωL (A.30)

then the neutron spin will adiabatically follow the local magnetic field in which it is immersed.

This is known as the adiabatic condition, and can also be written as

~
µN |B|2

∣∣∣∣dBdt
∣∣∣∣� 1. (A.31)
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For an inhomgeneous magnetic field B = B(r), and local neutron velocity v = dr/dt, we have

that

~
µN |B|2

v · ∇B � 1. (A.32)

As an example, for a 1 m/s UCN passing through a 1 T field with gradient of 1 T/cm (parameters

relevant to the field profile of the magnetic trap discussed later), this gives 10−6 � 1. Thus, a

UCN in either a high-field seeking (spin aligned with B) or low-field seeking (spin anti-aligned

with B) spin state will remain in that state and follow the local direction of the field. The

interaction with the magnetic field has only the effect of the magnetic field gradient applying a

force on the neutron, and the interaction can be written as

VM = ±µN |B| (A.33)

or

VM = ∓ (60.2 neV/T) |B| (A.34)

with the sign chosen according to the neutron spin state.



B Experimental Modeling

B.1 Introduction

B.2 Kinetic Theory Model of the Trap

Although the dynamics of the trap are complex, and over the course of a given measurement

some time dependent phenomena may be observed, the theoretical equilibrium density is useful

to gain some traction in understanding the occupied phase space of the trap. This is useful for

providing simple estimates of some measured quantities. Here, we compute the equilibrium phase

space density ρ(z) of the trap.

If no information about the initial conditions remains, we hypothesize that a UCN of energy ε

can access with equal probability the locations in the phase space that are energetically allowed.

More precisely, for a UCN with an energy between ε and ε + dε, the phase space density is a

constant with respect to z if 0 < H(z)− ε < dε, and vanishes otherwise. Defining B(x, a) to be

1 if 0 < x < a and 0 otherwise, we can write

ρ(z, ε) = B(H(z)− ε, dε)/A(ε). (B.1)

We can fix A(ε) by demanding that ρ(z, ε) satisfies

∫
ω

ρ(z, ε)dω = 1, (B.2)

which we can achieve by letting A(ε) be equal to the volume of phase space that satisfies

0 < H(z) − ε < dε. This can be written in terms of the volume Ω(ε) of the phase space for

157
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which H(z) < E:

A(ε) = Ω(ε+ dε)− Ω(ε) (B.3)

We can use this to write eqn. B.1 as

ρ(z, ε) =

[
Ω(ε+ dε)− Ω(ε)

dε

]−1
B(H(z)− ε, dε)

dε
. (B.4)

If we take the limit dε→ 0, we have

ρ(z, ε) =

[
dΩ

dε

]−1
δ(ε−H(z)). (B.5)

Figure B.1: The quantity ω(ε) ≡ dΩ/dε for typical UCN energies. The results of the Monte
Carlo integration are reasonably approximated by a polynomial.

Now, the trap is in fact filled with a distribution of UCN energies. We denote this distribution

as G(ε) (unit normalized over energy). We can then proceed to compute the phase space density

for a trap with this distribution of energies:

ρ(z) =

∫
ρ(z, ε)G(ε)dε (B.6)
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from which we find that

ρ(z) =

[
dΩ

dε
(H(z))

]−1
G(H(z)). (B.7)

Now, we must compute dΩ/dε. As stated above, Ω is given by the phase space volume that

satisfies H(z) < ε, or

Ω =

∫
ω

Θ(ε−H(z))dω. (B.8)

so that

dΩ

dε
=

∫
ω

δ(ε−H(z))dω. (B.9)

For our system with H(z) = H(q, p) = |p|2/2 + V (q), we have

ω(ε) =

∫
Q

∫
P

δ(ε− 1

2
|p|2 − V (q))d3pd3q. (B.10)

where P and Q are the volumes of the spaces spanned by p and q respectively, and we have

defined ω ≡ dΩ/dε. We can convert to polar coordinates in p:

ω(ε) = 4π

∫
Q

∫
|p|2δ(ε− 1

2
|p|2 − V (q))d|p|d3q. (B.11)

We can treat the argument of the δ-function as a function of |p| and invert it:

ω(ε) = 4π

∫
Q

∫
|p|2

δ(p−
√

2(ε− V (q)))√
2(ε− V (q))

d|p|d3q. (B.12)

The integration over |p| can now be performed, noting that the argument of the delta function

has no roots in the domain of integration unless ε− V (q) > 0, which gives

ω(ε) = 4π

∫
Q

Θ(ε− V (q))
√

2(ε− V (q))d3q. (B.13)

This can be estimated via Monte Carlo integration of over d3q: the integrand (call it f) is
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evaluated M times at uniformly random values qi ∈ Q and we compute

ω(ε) ≈ 4πQ

M

M∑
i=1

f(qi) (B.14)

This is shown in fig. B.1 for various values of ε. With this estimate, we can numerically compute

ρ(z) and quantities derived from it.

B.3 Neutron Tracking

B.3.1 Equations of Motion

The classical Hamiltonian for a neutron in the trap can be written as

H =
1

2
|p|2 + V (q) (B.15)

where q, p ∈ R3 and V (q) = ±µ|B|. The plus or minus sign is chosen depending on whether

the UCN is low field seeking (+) or high field seeking (−). Units are such that the neutron mass

mn = 1, lengths are in meters, times are in seconds, and magnetic fields are in Tesla. For this

choice, one energy unit corresponds to approximately 10.454 neV, and µ ≈ 5.768825731.

The corresponding equations of motion for this Hamiltonian are

ṗ = F (q) (B.16)

q̇ = p (B.17)

where the dot represents a time derivative, and the force is F (q) = −∇qV (q). From eqns. 3.2

and 3.6, we can compute F (q). Combining the expressions for the holding and trap fields, we
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have that

B = Bh0
r +R√
y2 + z2

ξ̂ +
4Br

π
√

2

∞∑
n=1

(−1)n−1

4n− 3
(1− exp(−knd))

× exp(−knζ)
(

sin knηη̂ + cos knηζ̂
)
. (B.18)

Because the unit vectors ξ, η, ζ are orthogonal, we can straightforwardly compute |B|2 = B ·B:

|B|2 = B2
h0

(r +R)2

y2 + z2
+ A2

∞∑
n,m=1

CnCm exp(−(kn + kmζ)) cos(kn − km)η (B.19)

with Cn ≡ (−1)n(1 − exp(−knd))/(4n − 3) and A ≡
√

8Br/π. To compute the force, we

must find the derivatives of |B| with respect to x, y, and z. The gradient of the magnetic field

magnitude is then:

∂|B|
∂x

=
A2

2|B|

(
x√

(ρ−R)2 + x2
Ξ− r(ρ−R)

(ρ−R)2 + x2
H

)
(B.20)

∂|B|
∂y

=
A2

2|B|

(
−2B2

h0(r +R)2y

A2(y2 + z2)2
+

(ρ−R)y

ρ
√

(ρ−R)2 + x2
Ξ +

rxy

((ρ−R)2 + x2) ρ
H

)
(B.21)

∂|B|
∂z

=
A2

2|B|

(
−2B2

h0(r +R)2z

A2(y2 + z2)2
+

(ρ−R)z

ρ
√

(ρ−R)2 + x2
Ξ +

rxz

((ρ−R)2 + x2) ρ
H

)
(B.22)

where Ξ and H are given by

Ξ ≡
∞∑

n,m=1

(kn + km)CnCm exp(−(kn + km)ζ) cos(kn − km)η (B.23)

H ≡
∞∑

n,m=1

(kn − km)CnCm exp(−(kn + km)ζ) sin(kn − km)η (B.24)

and the quantities ζ and η are expressed in terms of x, y, and z.



APPENDIX B. EXPERIMENTAL MODELING 162

B.3.2 Neutron Tracking Method

A simulation of trajectories in the trap must be accurate for times on the order of the neutron

lifetime. In addition, the integration step size h must be quite small because the potential rapidly

varies near the surface. Walstrom et al. used step sizes on the order of 10−6 seconds using the

second-order leap-frog integration method[62]. In addition, energy conservation is critical: the

physical energy change of a trapped UCN may be a source of loss (see sec. 6.7), and a numerical

energy drift may artificially create this effect in simulations.

For this reason, symplectic integration is used to study the dynamics of neutron trajectories

in the trap. Symplectic integrators are a subclass of geometric integrators, which are integration

methods constructed to preserve a given geometric quantity in the phase space of a differential

equation[102]. In particular, a symplectic integrator preserves the volume of the phase space (viz

dq ∧ dp) under time evolution (as is the case for the underlying continuous system by virtue of

Liouville’s theorem). There remains a concomitant integration error (typically O(hl) where l is

the order of the integrator), but unlike more general schemes such as Runge Kutta integrators,

the calculated trajectory remains near the manifold in the phase space defined by E = H(q, p),

so that energy is conserved to a good approximation.

f o r ( i =0; i<o r d e r ; i ++)
{

f = f o r c e ( q ) ;
p = p + c [ i ]∗ f ∗dt ;
q = q + d [ i ]∗ p∗dt ;

}

Figure B.2: A procedural representation of the symplectic integration method for separable, time
independent Hamiltonians.

The general numerical scheme for separable, time independent Hamiltonians is given in fig.

B.2. To map a point (q, p) to that for the next time t+h, the momentum is shifted by an amount

proportional to the force F at the original point q. The position q is then drifted proportional to

p to its new value. This process is repeated l times, and the constants ci and di are determined
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(non-uniquely) by demanding that dq ∧ dp is mapped to itself. Different solutions for c and d

can exhibit different error terms, and solutions with some ci = 0 are computationally beneficial,

as it reduces the number of force evaluations per time step.

name c d order

symplectic Euler 1 1 1
leapfrog 1/2, 1/2 1, 0 2

optimal 1/
√

2, 1− 1/
√

2 1/
√

2, 1− 1/
√

2 2
Ruth 2/3, −2/3, 1 7/24, 3/4, −1/24 3

Table B.1: Some solutions for the coefficients ci and di. The third order Ruth integrator is from
ref. [117].

Table B.1 lists some examples of symplectic integrators. An optimized fourth order method

is used to integrate the equations B.16 and B.17[110]. This integration method is optimized

for problems where the kinetic and potential terms in the Hamiltonian (and their derivatives)

contribute to the integration error on an equal footing; given the fairly hard potential in the trap,

it is unclear if this integration scheme is truly optimal for the problem at hand. Nonetheless,

its performance is empirically determined to be sufficient. Fig. B.3 shows a comparison of this

integration scheme compared to the Runge Kutta method.

Figure B.3: The relative change in particle energy for the pendulum problem using fourth or-
der symplectic (left) and fourth order Runge-Kutta (right) algorithms. The symplectic method
demonstrates the long-term stability of the energy.
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B.3.3 Simulation Method

The neutron tracking algorithm is used to model the procedures performed in the experiment,

such as loading the trap or cleaning. UCN can be created with arbitrary initial conditions, but are

typically started at the 15× 15 cm area at the bottom where the trap door panel is located. The

neutron trajectory is then calculated, and its position is checked to see if it is incident upon any

of the relevant components within the trap: in particular, the cleaner (in up or down positons),

V foil, and trap door opening. In addition, UCN that spill out of the edges of the trap are

identified. The components within the trap can be activated or deactivated in order to simulate

a given experimental procedure. As an example, UCN cleaning is simulated by activating the

trap door opening and the cleaner in its down position, and introducing UCN into the trap. After

the trap has been filled, the loss through the trap door is deactivated and the cleaner remains

in the down position. The trajectory of each neutron is stored in memory and saved to disk if

desired. Because each neutron trajectory is independent, N separate simulations are executed on

N processor cores, and the results of each simulation are combined later in analysis.

Figure B.4: The spatial trajectory of a trapped UCN (left and bottom panels), and the calculated
energy of the neutron versus time.
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Figure B.5: The spatial trajectory of a trapped UCN with energy near the maximum trappable
energy (left and bottom panels), and the calculated energy of the neutron versus time.

Two example trajectories are shown in figures B.4 and B.5 with a 10−4 s time step. The

spatial trajectory is shown along with the computed energy versus time. The energy shows a

slow drift over time, with the small changes in energy typically compounding at each reflection

from the strong field near the array surface. The energy drift is approximately diffusive in nature,

growing as
√
t, with the proportionality depending on the time step and the particular trajectory.

The trajectory in figure B.5 has an energy near the maximum trappable energy (∼ 46 neV),

whereas the trajectory in figure B.4 has much lower energy. The higher energy UCN exhibits

greater energy drift, which can be as large as 10−4 relative drift after one hour of time in the

simulation. Lower energy trajectories typically exhibit energy drifts less than 10−7 over this time

span.
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