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Adrienne S. Roman 

NEUROCOGNITIVE CORRELATES OF SPECTRALLY-DEGRADED 

SPEECH RECOGNITION IN CHILDREN 

 The research reported in this dissertation was carried out to investigate the 

contribution of several core neurocognitive factors in speech perception when degraded 

and underspecified phonological and lexical representations of speech are presented to 

normal-hearing (NH) listeners.  The first study successfully replicated Experiment 2 from 

Eisenberg, Martinez, Holowecky, and Pogorelsky (2002), which demonstrated the 

influence of word frequency and neighborhood density on recognition of vocoded speech. 

 The second study assessed relations between vocoded sentence perception and 

measures of auditory attention and short-term memory in NH children. Analyses revealed 

significant relations between performance on both sets of neurocognitive measures and 

vocoded speech perception tasks.  These findings support the hypothesis that vocoded 

speech perception reflects not only peripheral processes, but cognitive processes as well. 

 The third study used the California Verbal Learning Test – Children’s Edition 

(CVLT-C) to examine relations between verbal learning in memory and speech 

perception.  In the first part, NH children were assessed on the CVLT-C and vocoded 

speech. In the second part, we investigated relations between speech perception and the 

CVLT-C in a group of children with cochlear implants (CI) and NH age-matched 

controls.  Findings from this study revealed that that CI children and NH children 

processed verbal material in fundamentally different ways in a multi-trial free recall 

learning task. 
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 Taken together, these studies provided new insights into the foundational 

underlying neurocognitive processes that support perception of spectrally-degraded 

speech in children – an area of research previously unexplored—and established the need 

for extending future research in hearing impaired children with cochlear implants to 

include new measures of cognition such as attention, verbal learning, and memory. 
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CHAPTER 1 

INTRODUCTION:  NEUROCOGNITIVE CORRELATES OF SPECTRALLY-

DEGRADED SPEECH RECOGNITION IN CHILDREN 

 
Speech perception abilities in normal-hearing (NH) typically-developing children 

begin to develop prenatally and quickly improve after birth.  With minimal exposure to 

language, infants show evidence of categorical perception of speech sounds, adapting 

also to variability of speech by multiple talkers and variability in speaking rate (Jusczyk, 

1997).  After more exposure, infants begin to segment words in speech in their native 

language and demonstrate statistical learning abilities along with other more complex 

forms of speech perception all before one year of age (Jusczyk & Luce, 2002).  This rapid 

development of speech perception abilities is essential for the growth of spoken language, 

which is critical for successful cognitive and social development in children.  Delays in 

speech perception development are associated with a number of developmental risks 

including poor reading abilities (Mody, Studdert-Kennedy, & Brady, 1997), dyslexia 

(Boets, Ghesquière, Van Wieringen, & Wouters, 2007; Manis et al., 1997; Richardson, 

Leppänen, Leiwo, & Lyytinen, 2003), and poorer language comprehension (word and 

phrase understanding) and production (word production) (Tsao, Liu, & Kuhl, 2004)  

Hearing impairments delay and in some cases disrupt and reorganize the normal 

time course of speech and language development.  Without prenatal and early exposure to 

sound, deaf and hard-of-hearing children begin life already developmentally delayed 

relative to their normal-hearing peers.  Although deaf and hard-of-hearing children can 

now be implanted with cochlear implants to restore acoustic input to the auditory system, 

the acoustic information they receive via the cochlear implant is spectrally-degraded so it 
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is not as rich or detailed as the information being conveyed to a normal-hearing system.  

Especially because deaf children are receiving cochlear implants and are fit with hearing 

aids earlier than ever, new research is needed to better understand the development of 

speech recognition skills in this clinical population and the variability in speech and 

language outcomes after cochlear implantation.   

One approach to understanding how the processing of speech through a cochlear 

implant affects speech recognition has been through the use of spectrally-degraded 

vocoded speech with NH listeners.  Spectrally-degraded speech refers to speech signals 

that have been processed to preserve gross temporal and amplitude information but have 

degraded fine spectral information in the signal (Shannon, Zeng, Kamath, Wygonski, & 

Ekelid, 1995).   This type of noise-vocoded speech was created by Shannon et al. (1995) 

to model the speech produced by a cochlear implant.  First, speech is divided into a 

designated number of frequency bands, or spectral “channels.”  Next, the amplitude 

envelope is extracted from each frequency band, which preserves the temporal 

components of the speech signal.  Lastly, using the profiles of the amplitude envelopes, 

white noise is added to each frequency band and then combined with the other frequency 

bands to create a newly vocoded signal. 

 One fundamental gap in our knowledge regarding the perception of spectrally-

degraded speech is understanding how NH children perceive vocoded speech.  The use of 

spectrally-degraded speech allows researchers to replicate the hearing experience 

produced by cochlear implants in NH children who have typically-developed cognitive 

systems.  Understanding how the NH children perceive vocoded speech provides 

researchers with information on the effects of reduced acoustic information in the speech 
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signal on spoken word perception while eliminating confounding factors related to 

hearing loss.  Currently, very little research has used vocoded speech with NH children 

and what little there is has focused on the sensory and perceptual requirements for 

vocoded speech perception.   

 In a seminal study, Eisenberg, Shannon, Martinez, Wygonski, and Boothroyd 

(2000) first used vocoded speech with NH children to evaluate performance on speech 

recognition tasks while varying the amounts of spectral information available in the 

signal.  Perceptual data obtained from two groups of children (young: 5-7 years; old: 10-

12 years) and a group of adults revealed significantly lower performance by younger 

children when the amount of fine spectral information in the signal was reduced.  Older 

children and adults did not significantly differ leading the authors to conclude that 

younger children require more spectral information in the signal to accurately identify 

spoken words and sentences.  This suggests that there might be a critical component of 

speech perception that has not fully developed and/or is less efficient in young children.  

Identifying this component could potentially provide important insight into identifying 

children at risk for delays in the development of speech perception abilities.  For example, 

in a speech recognition task using the HINT-C sentences, Eisenberg et al.’s (2000) 

younger group recognized an average of 82% of the sentences correctly in the 8-channel 

condition while the older children and adults recognized 93% and 94%, respectively.  

Although the amount of spectral information varied from 4-32 channels, performance for 

all groups tended to plateau when more than 8 channels of information were provided.  

This finding was consistent with later studies investigating the amount of spectral 

information needed for spoken word recognition (Dorman, Loizou, Kemp, & Kirk, 2000), 
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talker identification (Vongpaisal, Trehub, Schellenberg, & van Lieshout, 2012), and 

audiovisual integration (Maidment, Kang, Stewart, & Amitay, 2014).   

 While it has been demonstrated that younger children require more information 

for reliable vocoded speech recognition, this finding was only observed in children five 

and older.  To understand how even younger children perceive vocoded speech, Newman 

and Chatterjee (2013) tested toddlers in a preferential looking study to assess how well 

they could discriminate between two vocoded words with different amounts of spectral 

information available.  They found that toddlers looked at the target object significantly 

longer (above chance performance) for the unprocessed, 8- and 24-channel conditions; 

however, they were slower to respond to the correct target object as the amount of 

spectral information was reduced.  When the vocoded speech was reduced to 2 and 4 

channels, the majority of children performed the task at below chance levels.  Like the 

older children, toddlers need at least 8 channels of spectral information to accurately 

respond to a target signal.   

 In another study by Warner-Czyz, Houston, and Hynan (2014), 6-month-old 

infants were tested on vocoded vowel discrimination with varying numbers of spectral 

channels (unprocessed, 16, and 32 channels) using a visual-habituation task.  The authors 

found that infants needed at least 32 channels to discriminate between the consonant-

vowel syllables /ti/ and /ta/.  This finding is in line with other studies reporting a strong 

relationship between age and amount of spectral information needed to accurately 

recognize speech. 

 The use of vocoded speech is important because it can help us better understand 

the effects of degraded auditory input in individuals with cochlear implants without any 
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interactions from cognitive or perceptual consequences related to hearing loss.  This 

research would also contribute to the basic science of speech perception because it 

provides real-world ecological scenarios for when speech is degraded before ever 

entering the auditory system (e.g. acoustic transmissions by cell phones or over FM 

systems).  Researchers can then utilize knowledge on how a NH typically-developed 

system perceives and encodes degraded acoustic information to efficiently identify 

potential developmentally at-risk children with cochlear implants and develop effective 

interventions.  For example, vocoded speech has been used in studies to compare 

performance of NH children to children with cochlear implants.  Conway, Walk, 

Deocampo, Anaya, and Pisoni (in press) used vocoded speech to investigate the role of 

sentence context in word recognition in NH children listening to vocoded speech 

compared to children with cochlear implants listening to unprocessed speech.  The 

authors found that when asked to recognize vocoded spoken sentences, NH children 

utilized sentence context more effectively than children with cochlear implants.  Another 

study by van Heugten, Volkova, Trehub, and Schellenberg (2013) used familiar cartoon 

voices to examine a child’s ability to identify different talkers.  The stimuli were vocoded 

for NH children but unprocessed for children with cochlear implants.  The NH children 

heard voices that differed in spectral degradation ranging from 4-24 channels.  Using a 

forced-choice task, even with the fewest number of channels, the NH and children with 

cochlear implants were able to identify familiar cartoon voices at above chance 

performance, although children with cochlear implants did slightly poorer, on average, on 

this task.  The authors suggest that the findings from this research demonstrate the 

possibility of talker recognition even when temporal fine structure is absent from the 
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speech signal because the children are able to utilize articulatory timing differences in the 

cartoon character’s voices as a result of long-term representations of these voices in 

memory. 

One study of particular importance to the present research was carried out by 

Eisenberg, Martinez, Holowecky, and Pogorelsky (2002).  Eisenberg et al. (2002) 

investigated the effects of word frequency and neighborhood density on vocoded spoken 

word and sentence recognition using a small group of NH children 5-14 years in age.  

The authors found that lexically “easy” words (high frequency words in English with 

fewer phonetically similar neighbors) were recognized better in both isolation and in 

sentences than lexically “hard” words (low frequency words with more phonetically 

similar neighbors).  Eisenberg et al. (2002) also found that accuracy for words in 

sentences was better than for the same words in isolation (i.e., context benefit gain).  

While this study is frequently cited in the literature on the perception of vocoded speech 

in children, no follow-up research has ever been conducted despite the importance of the 

problem and several significant limitations in the original study.   

One limitation of the Eisenberg et al. (2002) study was the very small sample size 

for the age-range tested.  The study used only 12 normal-hearing children ranging from 

5-14 years in age with an uneven distribution of participants across ages.  Moreover, 

three of the children included in the sample had receptive vocabulary scores below their 

age-equivalencies, which may present a problem when interpreting results of analyses on 

the effects of receptive vocabulary on vocoded speech perception measures.   

 The study by Eisenberg et al. (2002), like most studies of vocoded speech 

perception in children, also did not include any neurocognitive measures even though 
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earlier research findings have shown that auditory perception in children is associated 

with a range neurocognitive processing operations.  The addition of neurocognitive 

measures could have provided more insight into individual differences in performance.  

For example, performance on a number of auditory processing tasks, including pitch 

discrimination and temporal order discrimination of tones, is positively correlated with 

measures of verbal and nonverbal intelligence in children (Deary, 1994).  We also know 

from earlier research that children with cochlear implants often show significant delays 

and deficits in several areas of cognition such as: working memory (Burkholder & Pisoni, 

2003; Pisoni, Kronenberger, Roman, & Geers, 2011), verbal short-term memory (Harris 

et al., 2013), language and reading (Johnson & Goswami, 2010), implicit sequence 

learning (Conway, Pisoni, Anaya, Karpicke, & Henning, 2011) and theory-of-mind 

(Peterson, 2004).   

 Research with cochlear-implanted children suggests that speech perception and 

cognition are not parallel independent abilities but are closely coupled and linked 

together in development (e.g. Beer, Kronenberger, & Pisoni, 2011).  What we have yet to 

understand is if this strong coupling also applies to development in NH children and how 

it may be affected by highly degraded spectrally-reduced speech.  This is important to 

know because if speech perception and cognition are closely linked in development 

future research needs to be designed so that the focus is not just on one part of the speech 

perception process (either speech perception or cognition) but made to incorporate both.  

The more information that is available to researchers regarding speech perception 

development, the more targeted the interventions can be for children at risk for deficits or 

delays.  Currently, the primary use of vocoded speech has been to assess how much 
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spectral information is needed by a listener to accurately understand the effects of poor 

spectral information on speech recognition.  Using neurocognitive measures combined 

with vocoded speech perception tasks to find underlying relations between measures will 

help to identify which neurocognitive processes are involved in processing degraded 

speech.  With that knowledge, we can improve our ability to provide process 

explanations for variability in performance in processing degraded speech.  We also need 

to understand the role of more basic neurocognitive processes such as learning, attention, 

and memory in perceiving degraded speech to be able to identify and potentially 

intervene when children with cochlear implants are performing poorly. 

The research reported here was carried out to investigate the contribution of 

several core neurocognitive factors in speech perception when degraded and 

underspecified phonological and lexical representations of speech are presented to 

listeners.  More specifically, the purpose of this research was to understand the relations 

of cognition to vocoded speech perception in NH children, particularly the contribution 

of auditory attention, short-term memory, and verbal learning and memory.  Investigating 

the links between vocoded speech perception and cognition in NH children will provide 

researchers with new basic knowledge about the operations of the information processing 

system of deaf children with cochlear implants that are used to encode, store, process and 

use spoken language as well as with new knowledge about how children process speech 

in suboptimal listening conditions.  This knowledge will enable clinicians and researchers 

to better understand individual differences in deaf children with cochlear implants.  By 

identifying the factors that underlie a successful listener it will allow us to understand the 

effects of spectrally degraded underspecified acoustic representations on the processing 
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and encoding of speech.  This knowledge will also be beneficial for normal-hearing 

children to understand the effects of listening to speech in adverse listening conditions. 

No research has examined the core underlying neurocognitive processes involved 

in perceiving vocoded speech in children. Thus, this research fills in a significant gap in 

our understanding of the role of neurocognitive factors in speech perception and spoken 

language processing.  For the purpose of this research, two specific cognitive processing 

domains were assessed in NH children: attention and memory.  In particular, auditory 

attention, short-term memory, and verbal learning and memory were assessed in a group 

of children 5-13 years of age.  Their performance was also compared to a group of young 

adults. 

Attention, as it pertains to this research, refers to the properties of cognition 

involving control and allocation of limited processing resources and capacities 

(controlled attention, as opposed to attention as a basic perceptual process 

(Cowan,1995)).  Attention operates to keep information active in memory during a wide 

range of cognitive processes. Auditory attention, most relevant to this research, 

specifically refers to preferential focus directed at specific auditory information and 

keeping auditory information active in memory.  Auditory attentional processes select 

what information is processed further by other cognitive systems which makes it essential 

for efficient information processing in speech and language tasks (Gomes, Wolfson, & 

Halperin, 2007).   Auditory attention was chosen as a cognitive measure because it is how 

information is selected for further processing by the auditory system and if a child’s 

ability to inhibit irrelevant information from being processed is ineffective it could 

negatively impact the ability to accurately recognize degraded speech.   
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Short-term memory refers to a subsystem that stores limited amounts of 

information for a short period of time (Baddeley, 2012; Cowan, 2008; Unsworth & 

Engle, 2007).  Short-term memory has a well-established role in speech perception and 

language acquisition because it controls verbal rehearsal and storage of information while 

long-term representations are created in memory (e.g. Baddeley, Gathercole, & Papagno, 

1998; Frankish, 1996; Jacquemot & Scott, 2006; Peter W Jusczyk, 1997; Pisoni, 1975).  

Short-term memory was chosen as a cognitive measure because if short-term memory is 

impaired then it could prevent the accurate encoding of verbal information for transfer 

into long-term memory, which aids in spoken word recognition.   

Lastly, measures of verbal learning and memory using the California Verbal 

Learning Test- Children’s Edition (CVLT-C) were obtained.  The CVLT-C is a valuable 

neuropsychological assessment tool that provides information regarding how an 

individual learns and recalls verbal information over a short period of time using an 

ecologically valid memory task.  The CVLT-C is often used in clinical settings to detect 

and diagnose memory impairments that may be related to additional learning or 

neurological disorders (Delis, Kramer, Kaplan, & Ober, 1994).  Although the CVLT-C is 

primarily used with clinical populations, it provides valuable information regarding 

learning strategies, memory capacity, and effects of interference in a relatively short 

amount of time, which could provide new insights into and a more in-depth 

understanding of the core cognitive factors that affect the perception of degraded speech.  

Taken together, this research was designed to understand some of the underlying 

neurocognitive processes used in perceiving vocoded speech in children. 
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 The following four chapters summarize the findings of the investigation into 

neurocognitive predictors of vocoded speech.  Chapter 2 reports the results of a 

replication and extension of Eisenberg et al.’s (2002) vocoded speech study with NH 

children and adults.  In Chapter 3, auditory attention and short-term memory are 

examined as possible predictors of vocoded speech recognition in children.  Chapter 4 

investigates the role of verbal learning and memory using the California Verbal Learning 

Test- Children’s Version (CVLT-C) as a predictor of vocoded speech recognition in NH 

children and adults.  Data are also reported for a group of children with cochlear implants 

and age-matched NH controls also using the CVLT-C.  Lastly, Chapter 5 provides a final 

summary, conclusions, and potential applications of the research findings. 
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CHAPTER 2 

VOCODED SPEECH RECOGNITION IN NORMAL-HEARING CHILDREN USING 

LEXICALLY CONTROLLED WORDS AND SENTENCES: A REPLICATION AND 

EXTENSION 

 

Introduction 

 Spoken word recognition is a remarkable ability in normal-hearing listeners.  

Normal-hearing listeners can successfully recognize speech even when the signal is not 

ideal, such as when it is in the presence of background noise, the signal is degraded (for 

example, by phone or radio transmission), or when there is a large variability in talkers 

(e.g. accents, age, or gender). Recognition begins when a spoken word is conveyed to a 

listener in the form of a complex sound wave.  The signal is then perceived 

physiologically and neurologically by the components of the outer, middle, and inner ear.  

From there, the signal is transmitted to the brain where it is interpreted in a linguistic and 

psychological manner.  In hearing-impaired individuals, this chain of events is disrupted 

and often significantly impaired resulting in poorer speech recognition abilities (Niparko, 

2009).  Because of the involvement of many factors, including severity of hearing loss 

and age at onset of hearing loss, enormous variability in speech and language outcomes is 

routinely observed in hearing-impaired individuals, especially listeners who have 

received cochlear implants (Niparko et al., 2010; Sarant, Blamey, Dowell, Clark, & 

Gibson, 2001; Svirsky, Robbins, Kirk, Pisoni, & Miyamoto, 2000).  One core area of 

particular interest has always been variability in spoken word recognition processes 
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(Eisenberg, Martinez, Holowecky, & Pogorelsky, 2002; Grieco-Calub, Saffran, & 

Litovsky, 2009; Kirk, Pisoni, & Osberger, 1995; Svirsky et al., 2000). 

  Outside of the physiological limitations, linguistic difficulty with spoken word 

recognition can be understood within the framework of the Neighborhood Activation 

Model (NAM) developed by Luce and Pisoni (1998).   NAM is a spoken word 

recognition model that explains the process of lexical discrimination and selection based 

on the similarity between the phonetic-acoustic properties of spoken words.  These core 

acoustic-phonetic properties are conceptualized in terms of similarity neighborhoods.  A 

similarity neighborhood is defined as a group of words that is phonetically similar to a 

target word.  Each neighborhood can be characterized in terms of two properties: (1) 

lexical density and (2) word frequency.  Lexical density reflects the degree of 

confusability of the words in a similarity neighborhood based on a one-phoneme 

substitution, addition, and deletion parameter (Luce & Pisoni, 1998).  Frequency refers to 

the frequency of the words in the English language within a similarity neighborhood.  

Words in lexical neighborhoods are phonetically similar to the target word and differ by 

only one phoneme.  

 According to NAM, when a word is heard it activates other words with similar 

acoustic-phonetic properties in long-term memory.  Words with the most similar patterns 

have higher levels of activation and, as the word is processed further, the words with 

continued similar patterns receive activation while less similar words lose activation.  

Words that are more frequent in the language show a stronger bias for probability of 

selection by the listener.  Consequently, words are more easily identified if their 
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neighborhoods consist of high frequency words and lower densities compared to low 

frequency words from high-density neighborhoods (Luce & Pisoni, 1998).   

 Individuals with hearing impairment receive poorer acoustic-phonetic information 

from spoken words, which may result in their lexicon being organized into larger 

neighborhoods with increased densities (Bell & Wilson, 2001; Charles-Luce & Luce, 

1990; Dirks, Takayana, & Moshfegh, 2001; Dirks, Takayanagi, Moshfegh, Noffsinger, & 

Fausti, 2001).  Because of increased competition among similar-sounding words, spoken 

word recognition is significantly more difficult.  Spectrally-degraded speech, or vocoded 

speech, has become an important tool for understanding the effects of hearing impairment 

on speech perception and spoken word recognition, especially in individuals with 

cochlear implants.  Vocoded speech allows researchers to test hypotheses in normal-

hearing populations without interference from confounding variables that are often 

difficult to control in clinical populations (e.g. etiology of hearing loss, surviving neural 

population, and duration of deafness). 

 Eisenberg et al. (2002) used the principles of NAM to investigate spoken word 

recognition in children with normal hearing and with cochlear implants.  Their research 

had three specific objectives: 1) To determine if the lexically controlled words and 

sentences would display monotonic performance intensity functions (Experiment 1); 2) 

To test normal-hearing children under spectrally-degraded conditions on lexically 

controlled words and sentences replicating response patterns from the first experiment 

(Experiment 2); and 3) To test children with cochlear implants to assess if their response 

patterns replicated findings from the first two experiments (Experiment 3).  For this 

research, we focused on their findings from the second experiment. 
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 Eisenberg et al.’s (2002) second experiment investigated the effects of word 

frequency and neighborhood density on vocoded spoken word and sentence recognition 

using normal-hearing children 5-14 years in age.  Speech recognition materials were 

generated using the principles of NAM and earlier research conducted by Kirk, Pisoni, 

and Osberger (1995) and Bell and Wilson (2001).  Eisenberg and colleagues created sets 

of “easy” and “hard” words based on lexical density and word frequency.  “Easy” words 

were high-frequency words selected from sparse neighborhoods and “hard” words were 

low-frequency words from dense neighborhoods.  Results from Experiment 2 

demonstrated that lexically “easy” words were recognized by normal-hearing children 

better than lexically “hard” words in both isolation and sentences under vocoded 

(degraded) conditions.  They also found that accuracy for words in sentences was better 

than for the same words in isolation (context benefit gain).  This particular study was 

important because it demonstrated the robustness of recognition patterns based on word 

frequency and neighborhood density in open-set word recognition when listeners 

received spectrally-degraded speech signals.  This means that successful word 

recognition is not solely dependent on the quality of the speech signal, but on some 

underlying cognitive component facilitating recognition as well.  Since the time this 

pioneering study was carried out, no attempts at replications have been made although 

this study is widely cited in the literature.  One purpose of the present research was to 

carry out a replication of the findings from this study to assess how robust the original 

findings were.  If the original study can be replicated, then it would strongly support the 

proposal for involvement of cognition in degraded spoken word recognition.  In addition, 

the replication findings, specifically the context gain aspect, are important for 
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understanding the significance of the findings from Chapter 3 and Chapter 4 which 

investigate additional cognitive aspects of vocoded speech recognition.  A second goal 

was to obtain a benchmark for further studies on the role of attention, learning, and 

memory in the perception of vocoded speech by children.  

 In the original study, Eisenberg et al. (2002) tested 12 normal-hearing children 

ranging from 5-14 years in age with an uneven distribution of participants across ages.  

Because the sample size is so small and covers a wide age range, the interpretation of the 

findings of the original study are limited because they could be easily influenced and 

biased by factors relating to age and development.  The majority of children in the sample 

were not naïve to vocoded speech and three children had receptive vocabularies below 

their age-equivalencies.  Some of the children were used in Experiment 1 of the original 

study and, therefore, had prior exposure to the materials, which might increase 

recognition performance in Experiment 2.  Also, children with receptive vocabularies 

below their age-equivalencies could indicate language or developmental delays so they 

would not be appropriate to use since they are not representative of a typically-developed 

population.  One purpose for replicating Eisenberg et al.’s (2002) experiment was to 

address these limitations.  The present replication study tested 31 children over the same 

age range to increase the sample size to verify that the findings from original study were 

reliable.  All the children used in the present study had receptive and expressive 

vocabularies within the normal range for their ages. Also, the original study did not 

include any measures of cognitive processing and this limitation will be addressed further 

in Chapters 3 and 4. 
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 In addition to addressing several of the limitations of the original study, the 

present study extended Eisenberg et al.’s (2002) earlier study by including a vocoded 

speech familiarization task (WIPI), an expressive vocabulary test (EVT-2), and a group 

of adults that provided a baseline measure for performance.  The closed-set Word 

Intelligibility by Picture Identification- 2nd Edition (WIPI) was chosen for the vocoded 

speech familiarization task because of its simplicity (closed-set design) and child-friendly 

stimuli.  Completing this task prior to the other vocoded speech perception tasks gave the 

children time to adjust to a new form of speech and learn task instructions.  The 

Expressive Vocabulary Test- 2nd Edition (EVT-2) was added to provide converging 

information regarding the role of vocabulary knowledge in vocoded speech perception.  

Lastly, adding a group of adults as a baseline group for comparison removed the 

contribution of development and linguistic experience.  We collected pilot data to verify 

the replication was reproducible and also analyzed data from the original Eisenberg et al. 

(2002) study along with data from the current study to obtain measures of context benefit 

gain. 

Methods 

Part 1. Replication of Study 2 of Eisenberg et al. (2002) 

Participants 

 Thirty-seven typically-developing monolingual English-speaking children (15 

females, 22 males) from 5;2 years (years; months) to 13;3 years of age (M=12;4 years; 

SD=2;7 years) were recruited for this study.  The majority of the sample was Caucasian 

(n=33), with the remaining identified as either Native Hawaiian/ Pacific Islander (n=2) or 

more than one race (n=2).  Six children were excluded for the following reasons: 
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technical problems (n=2), noncompliance (n=3), and reported speech delays (n=1).  Thus, 

31 children between 5;9 years and 13;3 years of age (M=10;0 years, SD=2;4 years; 12 

females, 19 males) were included in the final dataset.  An independent samples t-test 

revealed that the children in the replication dataset did not significantly differ in age 

compared to the children in Eisenberg et al.’s (2002) study (M=8;8 years, SD=2.67); 

t(41)=1.54, p=.13.  By parent-report, all children had normal hearing and vision and had 

no diagnosed cognitive/developmental delays.  All children were recruited through an 

IRB approved departmental subject database.  The majority of the children that 

participated in this study were from families with a moderate socioeconomic status: 19% 

reported incomes less than $50,000; 58% reported incomes within the $50,000-$100,000 

range; 6% reported incomes within the $100,000-$150,000 range; 10% reported incomes 

within the $150,000-$200,000 range; and 6% reported incomes greater than $200,000.  

All children included in the final data analyses passed a pure-tone hearing screening at 15 

dB between 250-4000 Hz to verify that their hearing was within normal limits.   

Equipment 

 Speech perception testing occurred in an IAC sound booth in the Speech Research 

Laboratory at Indiana University in Bloomington.  A high-quality loudspeaker (Advent 

AV570) was located approximately two feet from the listener.  A RadioShack Digital 

Sound Level Meter was used to verify stimulus presentation levels over loudspeaker at 65 

dB using C-Weighting.  Speech stimuli were presented using programs run on a Power 

Mac G4 Apple computer with a Mac OS 9.2 using Psyscript (Bates & D’Oliveiro, 2003).  

Vocoded Stimuli 

 Spectrally-reduced speech signals were created by replicating the techniques 
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described in Shannon, Zeng, Kamath, Wygonski, and Ekelid (1995) and Eisenberg et al. 

(2002).  Original recordings of the unprocessed speech stimuli were obtained from Dr. 

Laurie Eisenberg for the replication of Experiment 2 of the Eisenberg et al. (2002) paper.  

AngelSim (TigerCIS), an online cochlear implant speech-processing program, was used 

to custom-vocode all of the speech stimuli.  The original set of speech signals was 

processed to 4 spectral channels with bandwidth frequencies set at 300, 722, 1528, 3066, 

and 6000 Hz using a noise-vocoded setting with white noise as the carrier type (see Table 

2.1 for division of frequencies for each channel).  

Performance Measures 

Peabody Picture Vocabulary Test- 4th Edition (PPVT-4) 

The PPVT-4 was used to obtain a measure of the child’s receptive vocabulary.  

This test is a standardized vocabulary assessment that can be administered to participants 

ranging in age from 2.5-90+ years.  During administration of the PPVT-4, the 

experimenter showed the child a page with four different colored illustrations displayed 

in a 2x2 box format.  The experimenter said the stimulus word out loud and instructed the 

child to either point to or say the number associated with the picture that best illustrated 

the meaning of the word.  Guessing was encouraged.  The child began the PPVT-4 at a 

predetermined point based on the child’s chronological age and continued until he or she 

reached ceiling on the assessment.  The PPVT-4 contains a total of 228 test items divided 

into 19 groups of 12 items.  Items increased in difficulty as the test proceeded.  Raw and 

standardized scores were obtained for each child.  All children were administered Form A 

of the PPVT-4.  The test took approximately 15 minutes to complete.  The PPVT-4 has a 

mean standard score of 100 and a SD of 15 (Dunn & Dunn, 2007).    
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Lexically Controlled Words and Sentences 

The stimulus lists of lexically controlled words and sentences originally 

developed by Eisenberg et al. (2002) were used to investigate the effects of word 

frequency and neighborhood density on word recognition in isolation and in sentences.  

Eisenberg et al. (2002) created two lists of words based on their lexical properties: one 

lexically “easy” list and one lexically “hard” list.  The authors selected and categorized 

words as lexically “easy” or “hard” using the methodology described in the 

Neighborhood Activation Model (Luce, 1986; Luce & Pisoni, 1998) and by Kirk et al. 

(1995).  Lexically “easy” words are high-frequency words with low neighborhood 

densities (fewer phonetically similar words).  Lexically “hard” words are low-frequency 

words with high neighborhood densities (greater number of phonetically similar words).  

Each list consisted of 15 practice words and 60 test words produced by one female 

speaker.  The two lists, Easy and Hard, were combined to create one set of 30 practice 

words and 120 test words that were vocoded and presented in a randomized order.  

Practice trials always preceded test trials (see Appendix A for a list of words).  The 

vocoded words were played over a high-quality Advent AV570 loudspeaker at 65 dB and 

were scored for accuracy.  For the word recognition task, children were instructed to 

repeat what they heard.  Children did not receive any feedback regarding the accuracy of 

their responses. 

Eisenberg et al. (2002) also created two lists of 25 low-predictability sentences (5 

practice and 20 test sentences) using the same easy and hard words that were produced by 

one female speaker and previously presented in isolation.  Each sentence was five to 

seven words in length and contained three “key” words from either the easy or hard list.  
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The two sentence lists were combined to create one larger set of 10 practice sentences 

and 40 test sentences that were also vocoded and presented in a randomized order.  Once 

again, practice trials always preceded the test trials (see Appendix B for a list of 

sentences). The vocoded sentences were played over the loudspeaker at 65 dB and scored 

for number of key words correct.  For the sentence recognition task, children were 

instructed to repeat what they heard.  Children did not receive any feedback regarding the 

accuracy of their responses. 

Parent Report Measures 

Eisenberg Word Familiarity Rating Scale  

The Eisenberg Word Familiarity Rating Scale was used to assess each child’s 

familiarity with the test words.  Parents were asked to rate their child’s familiarity of each 

of the 150 Eisenberg lexically controlled words on a likert scale ranging from 1 (not at all 

familiar) to 7 (very familiar).       

Part II. Extension to Study 2 of Eisenberg et al. (2002) 

Participants 

 Thirty-one typically-developed monolingual English-speaking young adults (27 

females, 4 males) from 18;10 years (years; months) to 25;5 years of age (M=20;8 years; 

SD=1;7 years) were recruited for this study.  The majority of the sample was Caucasian 

(n=30), with the remaining identified as Asian (n=1).  By self-report, all adults had 

normal hearing and vision and no diagnosed cognitive/developmental delays.  Adults 

were college students recruited using IRB approved flyers posted throughout the 

Psychological and Brain Sciences department at Indiana University. All adults included 

in data analyses passed a pure-tone hearing screening at 20 dB between 250-4000 Hz to 
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verify that their hearing was within normal limits.   

Performance Measures 

Word Intelligibility by Picture Identification- 2nd Edition  (WIPI)   

The WIPI test is a closed-set spoken word recognition test (Ross, Lerman, & 

Cienkowski, 2004) that was used to familiarize the participants with vocoded speech.  

Both children and adults listened to List A, which consisted of 25 vocoded words 

presented over loudspeaker at 65 dB.  The subjects responded by pointing to one of six 

pictures that matched the word they heard (see Appendix C for example response sheet).  

Responses were scored for accuracy.  

Expressive Vocabulary Test- 2nd Edition (EVT-2)   

In addition to the PPVT-4, the EVT-2 was used to obtain a measure of each 

participant’s expressive vocabulary knowledge.  This standardized vocabulary 

assessment can be administered to participants ranging in age from 2;6-90+ years.  

During administration, the examiner presented the participant with an illustration and 

read a stimulus question asking the participant to either label the illustration or provide a 

synonym for a noun, verb, adjective, or adverb. The participant began at a predetermined 

point based on chronological age and continued until the participant reached ceiling on 

the assessment.  There were a total of 190 items arranged in order of increasing difficulty.  

Raw and standardized scores were obtained for each participant.  All participants were 

administered Form A of the EVT-2. The test took approximately 15 minutes to complete.  

The EVT-2 has a mean standard score of 100 and a SD of 15 (Wiliams, 2007).  
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Procedures 

 All participants were tested individually.  The study was completed in one test 

session lasting 1-1.5 hours.  Parental and adult consents and child assents, when 

applicable, were obtained prior to testing as per the guidelines of Indiana University’s 

Institutional Review Board. All assessments, with the exception of the PPVT-4 and EVT-

2, were administered in an IAC sound booth in the Speech Research Laboratory at 

Indiana University in Bloomington.  At the conclusion of the experiment, all participants 

received monetary compensation.  In addition, all children received two books along with 

numerous stickers that were distributed throughout the testing session. 

Results 

Pilot Data and Sentence Gain Scores from Eisenberg et al.’s (2002) Original Dataset 

and Current Dataset 

 Results of pilot data collected prior to beginning the replication and extension of 

Eisenberg et al.’s (2002) study verified that the main findings of the study were 

reproducible.  Eleven typically-developing monolingual English-speaking children (9 

females, 2 males) from 5;1 (years; months) years to 12;11 years of age (M=9;3, SD=2;3) 

were recruited for the pilot study.  Independent samples t-tests were used to assess if the 

overall pattern of findings was similar to original study.  The first analyses assessed 

whether Easy words were recognized more accurately than Hard words when presented 

in isolation and in sentences.  Recognition of Easy words (M=27.33, SD=13.92) was 

significantly better than recognition of Hard words (M=21.30, SD=12.06) in isolation; 

t(10)=3.60, p=.005.  The pattern of results was consistent for the sentences.  Recognition 

of Easy sentences (M=46.27, SD=21.50) was significantly better than recognition of Hard 
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sentences (M=39.42, SD=18.44); t(10)=3.12, p=.011.  Analyses of the sentence scores 

revealed that recognition of words in sentence context was better than words in isolation, 

a result that was consistent with Eisenberg et al.’s (2002) original findings.  Recognition 

of the words in sentences (M=42.98, SD=19.67) was significantly better than recognition 

of words in isolation (M=24.11, SD=12.19); t(10)=5.07, p<.001.  In summary, the initial 

pilot study replicated results of Eisenberg et al.’s (2002) original study so a full 

replication and extension proceeded.  The initial pilot data were not included in the full 

replication or extension of the Eisenberg et al. (2002) study discussed in the proceeding 

sections. 

 Before the replication analyses were carried out, a number of additional analyses 

were conducted using subsets of the original data provided by Dr. Eisenberg.  Only 7 of 

the 12 normal-hearing children from the original Eisenberg et al. study were included in 

these analyses because of missing data from 5 children.  The first set of analyses 

investigated the effect of sentence context gain in spoken word recognition of vocoded 

speech.  A sentence context gain score was calculated by subtracting percent accuracy 

scores for words in isolation from percent accuracy scores for the same words in 

sentences.  Because the sentences were scored by key words (i.e. the words presented in 

isolation that were then embedded in sentences), this score represents the performance 

gain from having sentence context.  Both normal-hearing children from Eisenberg et al.’s 

(2002) study and the final replication (discussed more in Part II) exhibited the same 

pattern of results.  In each group, the majority of children benefited from the presence of 

sentence context (see Figures 2.1 and 2.2).  However, the group of children with cochlear 

implants from the original Eisenberg et al. (2002) study displayed a different pattern.  
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One-third of the children in this group did not show any gain from sentence context (see 

Figure 2.3).  The adults from the final replication (discussed more in Part II) showed the 

most consistent pattern with all of them benefiting from the additional context provided 

by sentences (see Figure 2.4).  This is a theoretically important finding because it 

indicates that normal-hearing children and adults routinely make efficient use of sentence 

context to perceive speech when the acoustic-phonetic information in the signal is 

degraded.  Evidently, children with cochlear implants are less able to use context as 

efficiently.  This pattern is consistent with a recent finding reported by Conway, Walk, 

Deocampo, Anaya, and Pisoni (in press).  They found that normal-hearing children 

showed gains in performance with the use of context while children with cochlear 

implants appeared to process meaningful sentences as strings of isolated words showing 

little or no benefit from sentence context.  The ability to bind acoustic-phonetic 

information with semantic knowledge to aid in recognition also helps to explain why 

sentence scores are consistently higher than scores for words in isolation. 

Part I:  Replication of Study 2 of Eisenberg et al. (2002)  

 Results from averaging the Eisenberg Familiarity Rating Scale data indicated that 

all children were highly familiar with the test words used (M=6.91, SD=0.16).  Results 

from the replication analyses support the original findings.  As with the data from the 

original study by Eisenberg et al. (2002), the percent-correct scores were first normalized 

by subjecting them to an arcsine transformation and then entered into a repeated measure 

ANOVA to test for main effects of lexical competition (easy and hard) and stimulus type 

(words and sentences).   Analyses revealed that lexically easy words were recognized 

better than lexically hard words, F(1,30)=5.82, p=.022 and that words in sentences were 
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recognized better than words in isolation, F(1,30)=37.53, p<.001.  The interaction 

between lexical competition and context was not significant.  Figure 2.5 displays the 

significant difference in performance between easy and hard words in isolation for both 

Eisenberg et al.’s (2002) original data and child data from the current study.  Figure 2.6 

displays the significant difference in performance between easy and hard sentences for 

both Eisenberg et al.’s (2002) original data and child data from the current study.  Lastly, 

Figure 2.7 displays the significant difference in performance between words in isolation 

and sentences for both Eisenberg et al.’s (2002) original data and child data from the 

current study.  The graphs display raw percent correct scores. 

 Next, consistent with the analyses completed in the original study, Pearson 

product-moment correlations were computed between language quotients and the 

vocoded speech perception measures.  The language quotients were derived by taking the 

PPVT-4 age-equivalency scores and dividing them by the chronological age.  This 

method provided an index of language development that controlled for effects of 

chronological age.  As in the original study, no significant correlations were observed 

(see Table 2.2).  

 We also examined the effects of chronological age on speech recognition.  

Chronological age was found to be significantly correlated with the vocoded sentence 

perception measures in the original Eisenberg et al. (2002) study and this pattern was also 

found with all of the vocoded speech perception measures in the current study (see Table 

2.3).  Chronological age was significantly correlated with performance on words in 

isolation (r=.59, p<.001), lexically easy words in isolation (r=.65, p<.001), and lexically 

hard words in isolation (r=.49, p=.006).  Chronological age was also significantly 
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correlated with performance on sentences (r=.73, p<.001), lexically easy sentences (r=.68, 

p<.001), and lexically hard sentences (r=.73, p<.001). 

Part II.  Extension to Study 2 of Eisenberg et al. (2002) 

The first part of the extension was the addition of the WIPI to the performance 

measures for the children and adults.  The WIPI was administered prior to the first 

vocoded speech perception task in order to familiarize the child or adult with vocoded 

speech.  Since this was a familiarization task, no formal analyses of the scores were 

conducted, but it is important to note here that all participants were able to perform at or 

above chance on this test with the exception of one child (see Figures 2.8 and 2.9). 

Second, the EVT-2 was included to obtain a converging measure of the role of 

vocabulary knowledge on vocoded speech perception.  Pearson product-moment 

correlations were computed between the language quotient derived using the EVT-2 and 

the vocoded speech perception measures.  The language quotients were derived by taking 

the EVT-2 age-equivalency scores and dividing them by the chronological age. One 

significant correlation was uncovered between the EVT-2 language quotient and easy 

sentences (see Table 2.4), which suggest that expressive vocabulary may be an important 

index of the use of context in vocoded sentences and that expressive vocabulary 

measured with the EVT-2 may be a stronger predictor of performance than receptive 

vocabulary assessed by the PPVT-4. 

 Finally, a group of young adults were included to provide a baseline measure of 

performance that eliminated influences of age or development.  As with the previous 

analyses, the percent-correct scores were normalized by subjecting them to an arcsine 

transformation and then entered into a repeated measure ANOVA testing for main effects 
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of lexical density (easy and hard) and stimulus type (words and sentences).  Analyses 

revealed that lexically easy words were recognized more accurately than lexically hard 

words, F(1,30)=38.83, p<.001 and words in sentences were recognized better than words 

in isolation, F(1,30)=95.62, p<.001.  The interaction between lexical competition and 

context was also significant, F(1,90)=6.37, p=.013 with hard words being more difficult 

in isolation than in sentences (see Figures 2.10-2.12 for raw percentage score figures).   

Discussion 

 The purpose of this study was to replicate the findings from Experiment 2 of 

Eisenberg et al. (2002) using a larger sample of children and to compare their 

performance on the vocoded speech tasks with adults.  We were able to successfully 

replicate the main findings from the Eisenberg et al. (2002) study by showing that 

lexically easy words were recognized better than lexically hard words in both isolation 

and in sentences and that accuracy for words in sentences was better than for the same 

words presented in isolation.  These findings were also consistent with predictions made 

by the NAM model of spoken word recognition (Luce & Pisoni, 1998).  Replicating 

Eisenberg et al.’s (2002) original study, we found that language abilities, as measured by 

the PPVT-4 language quotient, were not significantly related to vocoded speech 

perception measures, however chronological age was highly significant with older 

children performing better than younger children on all vocoded speech perception 

measures.  

 While the main findings were replicated, one difference was observed between 

the original dataset from Eisenberg et al. (2002) and the present results.  The overall 

mean performance scores for the children from Eisenberg et al.’s (2002) original study 
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were higher than the overall mean performance for the present dataset.  One explanation 

for the differences in the two studies could be that more than half of Eisenberg et al.’s 

(2002) participants (7 of 12) were used in their previous Experiment 1, which could have 

made them more familiar with the stimuli in Experiment 2.  Prior experience with these 

stimuli would have created an advantage for recognizing the speech stimuli under 

spectral degradation (Bent, Buchwald, & Pisoni, 2009; Davis, Johnsrude, Hervais-

Adelman, Taylor, & McGettigan, 2005).  Another possibility could be that the small N in 

Eisenberg et al.’s (2002) original study was not representative of the ages included and 

when more children were recruited, the average scores decreased.    

 While the original set of findings was replicated with the adults, their average 

scores were much higher than both Eisenberg et al.’s (2002) and the current study’s 

groups of children.  The significant correlations between age and vocoded speech 

perception measures suggest that more mature language systems and greater vocabulary 

knowledge are important for recognition of vocoded speech.  We also found a smaller 

difference between the easy and hard words for the adults in the sentence condition and a 

significant interaction between lexical competition and context.  The smaller difference 

between easy and hard words could be due to the fact that the stimuli used were chosen 

from a child’s lexicon and with the benefit of context, the effects of lexical familiarity 

and neighborhood density was attenuated.  The interaction means that the additional 

context provided by sentences significantly aided in the recognition of hard words, 

suggesting that adults are effectively able to utilize context when less than ideal listening 

conditions are present.  The adults, unlike the children, did not show any significant 

correlations between performance on vocoded speech and vocabulary level or age.  It is 
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likely that this was a result of a more restricted age range with many adults having very 

similar vocabulary levels.  Moreover, because adults are more cognitively mature, the 

effects of age and vocabulary knowledge were not expected to be important of factors 

underlying performance on these tasks. 

 One potential issue with this study, although it is outside the scope of the original 

study, was whether any perceptual learning of vocoded speech took place.  Although the 

participants did not receive any feedback during the experiment and completed the WIPI 

as a familiarization task in addition to the practice words and sentences before each 

condition, rapid perceptual learning of degraded speech has been shown to take place 

over a short period of time even when participants are only passively exposed to vocoded 

speech.  For example, Davis, Johnsrude, Herbais-Adelman, Taylor and McGettigan 

(2005) investigated the processes involved in perceptual learning of six-channel noise-

vocoded speech in college-aged normal-hearing adults.  They carried out a series of 

experiments to determine if passive perceptual learning occurs through exposure alone 

and compared this condition to the effects resulting from different types of context and 

training.   Most relevant to the current research are the results from their Experiment 1, 

which investigated passive perceptual learning.  Davis and colleagues (2005) found an 

improvement in performance on vocoded sentence materials when participants were only 

exposed to 30 sentences, revealing rapid improvement in speech recognition performance 

in a short period of time with no explicit feedback or training.   

 With these results in mind, perceptual learning effects of vocoded speech were 

also investigated in the current study.  First, we investigated whether or not perceptual 

learning occurred during the vocoded words in isolation task.  Because the order of 
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presentation for vocoded speech materials was counterbalanced, the groups of 

participants could be divided into two groups depending on whether they received the 

words first (Children, n=16; Adults, n=16) or the words second (Children, n=15; Adults, 

n=15).  Next, the words were divided into 4 blocks of 30 words.  Block 1 represented the 

first 30 words each participant heard, Block 2 the second set of 30 words, and so on.  The 

total number of words correctly recognized was summed over the participants for each 

block and is displayed in Figure 2.13.   

 Two sets of analyses were then carried out to investigate the effects of perceptual 

learning: within-task and between-groups.  To assess if any perceptual learning occurred 

when the vocoded words were presented in isolation, one-sample t-tests were computed 

between presentation blocks for both groups.  Analyses revealed no significant difference 

in performance between presentation blocks for either group suggesting that no 

perceptual learning took place during the isolated word task.  However, evidence of 

perceptual learning was found when we examined the difference in performance between 

the two counterbalanced groups (the group that received words first compared to the 

group that received words second).  A one-way ANOVA revealed that the group that 

received the words in isolation second (after the words in sentences) did significantly 

better on Block 1 [F(1,29)=7.28, p=.011], Block 3 [F(1,29)=5.63, p=.025], and Block 4 

[F(1,29)=14.18, p<.001] (see Figure 2.13).  This suggests that the group that received the 

words in isolation second benefited from the previous exposure to the vocoded words in 

sentences. 

 A similar pattern of performance was found in an analysis of the data from the 

adult group.  A series of one-sample t-tests computed between presentation blocks for 
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both groups of adults revealed only one significant difference in performance.  The adult 

group that received the words second displayed significantly better performance on Block 

1 (M=13.33, SD=2.9) than on Block 4 (M=11.6, SD=2.9); t(14)=2.73, p=.016.  This 

pattern suggests that the adult group actually got worse in performance during the task.   

One explanation for the decrease in performance could be that the adults may have 

started to experience cognitive fatigue resulting in less effort extended to the task at the 

end.  This may have also happened in the group of children, but because their 

performance was lower overall, it may not have been as observable in their performance.  

As with the group of children, evidence of perceptual learning was found when we 

examined the difference in performance between the two groups of adults.  A one-way 

ANOVA revealed that the adult group that received the words in isolation second did 

significantly better on Block 1 [F(1,29)=13.55, p<.001], Block 2 [F(1,29)=13.23, p<.001], 

Block 3 [F(1,29)=8.18, p=.008], and Block 4 [F(1,29)=4.57, p=.041] than the group that 

received words in isolation first. 

 Next, perceptual learning during the vocoded sentences condition was examined.  

Because the order of presentation for vocoded speech materials was also counterbalanced, 

the groups of participants could again be divided into two groups depending on whether 

they received the words first (Children, n=16; Adults, n=16) or the words second 

(Children, n=15; Adults, n=15).  To do this analysis, the sentences were divided into 4 

blocks of 10 sentences each.  Block 1 represented the first 10 sentences each participant 

heard, Block 2 the second set of 10 sentences, and so on.  The total number of sentences 

correctly recognized was then summed over the participants for each block and the 

results are displayed in Figure 2.14.  Two sets of analyses were then carried out to 
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investigate the effects of perceptual learning: within-task and between-groups.  To 

determine if perceptual learning occurred with vocoded words in sentences, one-sample t-

tests were computed between blocks for both groups.  Analyses revealed three significant 

differences in performance between blocks for the children that received the sentences 

first.  First, a significant difference was found between Block 1 (M=9.93, SD=7.06) and 

Block 2 (M=13.0, SD=7.75); t(14)=3.304, p=.005.  Second, a significant difference was 

found between Block 1 (M=9.93, SD=7.06) and Block 3 (M=13.87, SD=8.5); t(14)=3.58, 

p=.003.  Third, a significant difference was found between Block 1 (M=9.93, SD=7.06) 

and Block 4 (M=14.33, SD=6.87); t(14)=3.58, p=.003.  No significant differences were 

found in the group of children receiving sentences second or in either of the adult groups.  

Unlike the vocoded words in isolation condition, one-way ANOVAs revealed no 

evidence of any perceptual learning with sentences when we examined the difference in 

performance between groups in children and adults.   

 In summary, the investigation of perceptual learning revealed that with increased 

exposure to vocoded speech, both children and adults improved in recognizing vocoded 

words in isolation, as seen with difference in performance between groups that heard 

words first compared to groups that heard the words second, but generally did not 

improve or learn within the task itself.  No significant improvement was observed for 

either group in the sentence condition, except for the group of children that received the 

sentences first, where learning appeared to take place within the task.  

Conclusions 

 Investigating vocoded speech perception in normal-hearing children is an 

important step in understanding the effects of degraded auditory input on speech 
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perception in cochlear implant users.  Successfully replicating the Eisenberg et al. (2002) 

study has several important theoretical implications.  First, the replication provides 

supporting evidence for the importance of lexical density and word frequency on vocoded 

speech recognition.  Second, replicating the original study is a critical prerequisite for the 

new research studies reported below that made use of Eisenberg et al.’s (2002) original 

stimuli and methodology.  Having successfully replicated the original study now allows 

for future research using the methodology to investigate the relations between vocoded 

speech and cognitive processes, a suggestion made by Eisenberg et al. (2002) in their 

original paper.   

 The extension of the replication provided additional insight into vocoded speech 

perception in these two groups of listeners.  First, by examining sentence gain scores a 

clearer picture emerged regarding how sentences are perceived better by normal-hearing 

listeners and that children with cochlear implants are doing poorly when words are in 

sentence context.  This suggests that children with cochlear implants are unable to use 

context efficiently to aid them in spoken word recognition.  Second, expressive 

vocabulary scores showed a stronger relationship to vocoded speech perception compared 

to receptive vocabulary scores.  During the expressive vocabulary assessment, children 

have to generate the correct word from memory when provided with a short prompt and a 

visual cue.  Generating the correct word from memory requires that the words, including 

their linguistic characteristics and semantic associations, have been encoded with robust 

memory traces and are available for recall.  The receptive vocabulary assessment is 

administered in a closed set four-alternative forced-choice format where children are 

provided with four visual cures.  This format promotes guessing where the child has a 
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25% chance of getting the answer correct without having to know the definition of the 

word.  The expressive vocabulary test may be more representative of the child’s language 

abilities because of the increased difficulty of the task, which resulted in stronger 

correlations with performance on the vocoded sentence recognition task.  Third, adults 

displayed the same pattern as children when words were presented in isolation but were 

affected less by lexical density and word frequency when words were embedded in 

sentences.  Finally, perceptual learning of degraded vocoded speech appears to take place 

in normal-hearing children and adults in a relatively short period of time suggesting that 

rapid adaptation and adjustment are fundamental skills that promote robust speech 

recognition in challenging listening conditions. 
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Table 2.1. Frequency Bandwidths for the 4-Channel Vocoded Simulation 

 
Spectral 
Channel 

Lower 
Frequency 
Cutoff (Hz) 

Higher 
Frequency 
Cutoff (Hz) 

 
Channel 

Bandwidth (Hz) 
 
1 300 722 

 
422 

 
2 722 1528 

 
806 

 
3 1528 3066 

 
1538 

4 3066 6000 
 

2934 
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Table 2.2.  Pearson Correlational Analyses Between PPVT-4 Language Quotient 

and Vocoded Speech Perception Scores for Children 

 
Speech Perception Measures 

Eisenberg Data1  

(N=12) 

Language Quotient  

Replication Data 
(N=31) 

Language Quotient 
 
Words in Isolation .36 .07 
    
     Easy Words .29 .08 
     
     Hard Words .38 .06 
 
Sentences (Keywords) .14 .25 
     
     Easy Sentences -.03 .29 
    
     Hard Sentences .26 .20 

 

     Note. Speech perception measures reflected percent accuracy.  

      1The original data set from the Eisenberg et al. (2002) was directly obtained from Dr.        

     Eisenberg at the University of Southern California.  

    *p<.05. **p<.01. ***p<.001 (two-tailed) 
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Table 2.3. Pearson Correlational Analyses Between Chronological Age and Vocoded 

Speech Perception Scores for Children 

 
Speech Perception Measures 

Eisenberg Data1 (N=12) 

Chronological Age 
Replication Data (N=31) 

Chronological Age 
 
Words in Isolation .26 .59*** 
    
     Easy Words .07 .65*** 
     
     Hard Words .39 .49** 
 
Sentences (Keywords) .80** .73*** 
     
     Easy Sentences .65* .68*** 
    
     Hard Sentences .84*** .73*** 

 

     Note. Speech perception measures reflected percent accuracy.  

     1The original data set from the Eisenberg et al. (2002) was directly obtained from Dr. Eisenberg     

    at the University of Southern California.  

    *p<.05. **p<.01. ***p<.001 (two-tailed) 
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 Note. Speech perception measures reflected percent accuracy.  

     *p<.05. **p<.01. ***p<.001 (two-tailed) 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4.  Pearson Correlational Analyses Between EVT-2 Language 

Quotient and Vocoded Speech Perception Scores for Children 

 
Speech Perception Measures 

Replication Data (N=31) 
EVT-2 Language Quotient 

 
Words in Isolation .27 
    
     Easy Words .28 
     
     Hard Words .25 
 
Sentences (Keywords) .34 
     
     Easy Sentences .41* 
    
     Hard Sentences .15 



 48 

Figure Captions 

Figure 2.1.  Sentence gain scores for NH children in the Eisenberg et al. (2002) original 

data set (N=12).  The original data set from the Eisenberg et al. (2002) was directly 

obtained from Dr. Eisenberg at the University of Southern California.  Sentence gain 

scores were derived by subtracting performance scores on lexically controlled words in 

isolation from performance scores on lexically controlled sentences.  Each bar represents 

an individual child’s sentence gain score.  Gain scores are ordered from lowest to highest. 

Figure 2.2.  Sentence gain scores for NH children in the replication data set (N=31).  

Sentence gain scores were derived by subtracting performance scores on lexically 

controlled words in isolation from performance scores on lexically controlled sentences.  

Each bar represents an individual child’s sentence gain score.  Gain scores are ordered 

from lowest to highest. 

Figure 2.3.  Sentence gain scores for the children with CIs in the Eisenberg et al. (2002) 

original data set (N=12).  The original data set from the Eisenberg et al. (2002) was 

directly obtained from Dr. Eisenberg at the University of Southern California.  Sentence 

gain scores were derived by subtracting performance scores on lexically controlled words 

in isolation from performance scores on lexically controlled sentences.  Each bar 

represents an individual child’s sentence gain score.  Gain scores are ordered from lowest 

to highest. 

Figure 2.4.  Sentence gain scores for NH adults in the replication data set (N=31).  

Sentence gain scores were derived by subtracting performance scores on lexically 

controlled words in isolation from performance scores on lexically controlled sentences.  



 49 

Each bar represents an individual adult’s sentence gain score.  Gain scores are ordered 

from lowest to highest. 

Figure 2.5.  Mean scores for lexically easy and hard words in isolation.  Both the children 

from Eisenberg et al.’s (2002) study (N=12) and the replication data set (N=31) showed 

better performance for easy words in comparison to hard words when presented in 

isolation.  The original data set from the Eisenberg et al. (2002) was directly obtained 

from Dr. Eisenberg at the University of Southern California.  Error bars represent 

standard error. 

Figure 2.6.  Mean scores for lexically easy and hard words in sentences.  Both the 

children from Eisenberg et al.’s (2002) study (N=12) and replication data set (N=31) 

showed better performance for easy words in comparison to hard words when presented 

in sentences.  The original data set from the Eisenberg et al. (2002) was directly obtained 

from Dr. Eisenberg at the University of Southern California.  Error bars represent 

standard error. 

Figure 2.7.  Mean scores for lexically controlled words and sentences.  Both the children 

from Eisenberg et al.’s (2002) study (N=12) and the replication data set (N=31) showed 

poorer performance for words presented in isolation than for the same words presented in 

sentences.  The original data set from the Eisenberg et al. (2002) was directly obtained 

from Dr. Eisenberg at the University of Southern California.  Error bars represent 

standard error. 

Figure 2.8.  WIPI scores (percent accuracy) for the NH children in the replication data set 

(N=31) plotted against age. Each bar or point represents an individual child’s WIPI score.  
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The red line marks performance at chance levels.  The blue line marks mean performance 

of the children. 

Figure 2.9.  WIPI scores (percent accuracy) for the NH adults in the replication data set 

(N=31) plotted against age. Each bar or point represents an individual adult’s WIPI score.  

The red line marks performance at chance levels.  The blue line marks mean performance 

of the adults. 

Figure 2.10.  Mean scores for lexically easy and hard words in isolation.  The adults in 

the replication data set (N=31) showed better performance for easy words in comparison 

to hard words when presented in isolation.  Error bars represent standard error. 

Figure 2.11.  Mean scores for lexically easy and hard words in sentences.  The adults in 

the replication data set (N=31) did not show a significant difference in performance for 

easy words in comparison to hard words when presented in sentences.  Error bars 

represent standard error. 

Figure 2.12.  Mean scores for lexically controlled words and sentences.  The adults in the 

replication data set (N=31) showed poorer performance for words presented in isolation 

than for the same words presented in sentences. Error bars represent standard error. 

Figure 2.13.  Effects of perceptual learning in NH children and adults for vocoded words 

in isolation.  Both children and adults were divided into two separate groups depending 

on whether they completed the vocoded words in isolation first or second (vocoded 

sentences were presented first).  The y-axis displays the sum of the number of accurate 

words correctly recognized in each block.  Words were grouped into 4 blocks of 30 

words with Block 1 containing the first 30 words presented, Block 2 the second group of 

30 words, Block 3 the third group of 30 words, and Block 4 the last group of 30 words. 
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Figure 2.14.  Effects of perceptual learning in NH children and adults for vocoded 

sentences.  Both children and adults were divided into two separate groups depending on 

whether they completed the sentences first or second (vocoded words in isolation were 

presented first).  The y-axis displays the sum of the number of accurate words correctly 

recognized in each block of sentences.  Sentences were grouped into 4 blocks of 10 

sentences with Block 1 containing the first 10 sentences presented, Block 2 the second 

group of 10 sentences, Block 3 the third group of 10 sentences, and Block 4 the last 

group of 10 sentences. 
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Figure 2.1.   
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Figure 2.2.   
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Figure 2.3.   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-60 

-50 

-40 

-30 

-20 

-10 

0 

10 

20 

30 

40 

50 

60 
Pe

rc
en

t D
iff

er
en

ce
 (S

en
te

nc
e 

- W
or

ds
) 

Individual Children 



 55 

Figure 2.4.   
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Figure 2.5   
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Figure 2.6   
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Figure 2.7   
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Figure 2.8   
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Figure 2.9   
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Figure 2.10   
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Figure 2.11   
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Figure 2.12   
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Figure 2.13   
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Figure 2.14   
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CHAPTER 3 

NEUROCOGNITIVE CORRELATES OF VOCODED SPEECH PERCEPTION IN 

CHILDREN 

 
Introduction 

 Researchers have learned a great deal about speech perception and cognition by 

studying individuals with hearing impairment, especially individuals who are born deaf 

and later receive cochlear implants (CIs) as a medical intervention in profound sensory-

neural hearing loss (Niparko, 2009; Waltzman & Roland, 2006; Zeng, Popper, & Fay, 

2004).  While the use of hearing aids and CIs has provided immeasurable benefit to 

individuals with hearing impairments, especially children who are born with severe-to-

profound hearing loss, a period of early auditory deprivation can be detrimental to 

cognitive development (Niparko, 2009; Nittrouer, 2010).  Because the brain is 

remarkably plastic, auditory deprivation and compromised acoustic input, especially 

during the critical periods for language development, can result in brain restructuring and 

reorganization from lack of normal sensory input (Gilley, Sharma, & Dorman, 2008).   

Auditory deprivation and language delays have been shown to negatively impact 

cognitive development and functioning in children with CIs.  For example, children with 

CIs have significant delays and deficits in working memory (Burkholder & Pisoni, 2003; 

Pisoni, Kronenberger, Roman, & Geers, 2011), verbal short-term memory (Harris et al., 

2013), language and reading (Johnson & Goswami, 2010), implicit sequence learning 

(Conway, Pisoni, Anaya, Karpicke, & Henning, 2011), visual attention (Horn, Davis, 

Pisoni, & Miyamoto, 2005; Quittner, Smith, Osberger, Mitchell, & Katz, 1994) and 

theory-of-mind (Peterson, 2004).   
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 Studying cognition in children who receive CIs is often complicated because of 

the involvement of additional demographic factors related to hearing loss (e.g. age at 

onset of hearing loss, age of implantation, and etiology of hearing loss).  Using 

spectrally-degraded vocoded speech has been a valuable research tool because it allows 

researchers to test hypotheses about the effects of degraded speech input on typically-

developing cognitive systems and also how neurocognitive functioning affects speech 

perception (Conway, Walk, Deocampo, Anaya, & Pisoni, in press; Dorman, Loizou, 

Kemp, & Kirk, 2000; Eisenberg, Martinez, Holowecky, & Pogorelsky, 2002; Eisenberg, 

Shannon, Martinez, Wygonski, & Boothroyd, 2000; Maidment, Kang, Stewart, & 

Amitay, 2014; Newman & Chatterjee, 2013; van Heugten, Volkova, Trehub, & 

Schellenberg, 2013; Vongpaisal, Trehub, Schellenberg, & van Lieshout, 2012; Warner-

Czyz, Houston, & Hynan, 2014).  Vocoded speech refers to speech signals that have been 

processed to preserve gross temporal and amplitude information but have degraded fine 

spectral information in the signal (Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995).   

This type of signal processing strategy was created by Shannon et al. (1995) to model the 

way a CI processes speech.  Unfortunately, very little research has used vocoded speech 

with normal-hearing (NH) children and the existing literature has primarily focused on 

the early sensory aspects of speech perception.  It is important to investigate the effects of 

neurocognitive functioning on the perception of degraded speech because previous 

research has shown that recognition of degraded speech is not just related to the amount 

of information available in the speech signal (Eisenberg et al., 2002; van Heugten et al., 

2013) but that cognitive abilities account for some variability in performance.  The 

purpose of the research reported here was to use vocoded speech in NH children to assess 



 68 

relations between vocoded speech perception abilities and several aspects of cognition.  

More specifically, we investigated relations between vocoded sentence perception and 

measures of auditory attention and short-term memory. 

 Attention, as it pertains to this research, refers to the properties of cognition 

involving control and allocation of limited processing resources and capacities 

(controlled attention, as opposed to attention as a basic perceptual process (Cowan,1995)).  

Attention has limited processing resources and capacity that operate to keep information 

active in working memory during different cognitive processes.  Auditory attention 

specifically refers to keeping information active in memory that has been presented 

auditorally to the listener.  Although auditory attention capabilities are critical to speech 

perception and the development of spoken language, almost all of the research on 

attention in children with CIs has focused on visual attention (Horn et al., 2005; Quittner 

et al., 1994; Smith, Quittner, Osberger, & Miyamoto, 1998; Tharpe, Ashmead, & 

Rothpletz, 2002).  The existing literature on auditory attention in CI children has been 

concerned with the child’s ability to attend to a stream of speech in the presence of noise 

or other distractors such as dichotic listening tasks.   Although this research is important 

because of its ecological validity and relevance to listening to speech in the real world, 

outside the laboratory or clinic, the presence of noise or competing distracting tasks 

creates an additional cognitive load.  As a result, greater effort is required to inhibit 

competition from irrelevant information while the listener focuses and directs attention to 

the target information.  Additional research is needed to better understand the role of 

basic attentional processes in speech perception, especially when the acoustic input is 

highly degraded via a CI or a simulation of a CI using vocoded speech since very little is 
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known about the relationship between auditory attention and speech perception at this 

time.   

 One approach to studying the relations between auditory attention and speech 

perception has been to use a talker discrimination task.  Cleary and Pisoni (2002) first 

developed and used this measure with young CI and NH children.  The talker 

discrimination task is unique because it requires the listener to attend to the indexical 

properties of speech and inhibit processing of the linguistic content.  Indexical properties 

of speech provide personal information about the talker such as gender, dialect, and 

emotional or physical states.  Linguistic properties of speech refer to the phonological 

and lexical content of the talker’s intended utterance.  Identifying or discriminating 

between talkers requires the listener to be able to perceive and encode the indexical 

properties of speech that are specific to each speaker.  This task has been found to be 

quite difficult for CI users because of the reduced spectral detail in the speech signal 

processed by the CI.  In order to successfully complete the talker discrimination task, a 

listener has to ignore and inhibit attention to the linguistic content of the sentence and 

focus attention instead on the indexical characteristics.    

 The children in the original Cleary and Pisoni (2002) talker discrimination study 

were asked to listen to pairs of sentences and then decide if the sentences in each pair 

were spoken by the same talker or two different talkers.  Their study examined two 

conditions: a fixed-sentence condition and a varied-sentence condition.  The fixed-

sentence condition presented two tokens of the same sentence recorded by either one 

talker or two different talkers.  In this condition, the linguistic content of the two 

sentences was held constant.  The varied-sentence condition presented pairs of different 



 70 

sentences recorded by either the same or different talkers.  In this condition, the linguistic 

content varied within each pair of sentences.  Talker discrimination is easier in the fixed-

sentence condition because the linguistic content is the same, but is more difficult in the 

varied-sentence condition because children must inhibit linguistic processing of the 

lexical and semantic content in order to attend to the indexical properties of the two 

signals.  The NH children completed the task without any acoustic degradation so they 

only received the varied-sentence condition since Cleary and Pisoni (2002) assumed 

performance would be at ceiling on the fixed-sentence condition.   

 Results revealed that CI children performed significantly above chance on the 

fixed-sentence condition.  On the varied-sentence condition, NH children had very little 

difficulty discriminating talkers, while CI children performed more poorly and close to 

chance.  Cleary and Pisoni (2002) also found that the CI children’s performance on the 

fixed-sentence condition of the talker discrimination task was significantly correlated 

with performance on both open- and closed-set speech perception tasks.  This pattern of 

results suggested that the CI children who are better at discriminating voices also have 

overall better speech perception scores. 

 Cleary, Pisoni, and Kirk (2005) further investigated talker discrimination abilities 

in CI children by using an adaptive version of the original Cleary and Pisoni (2002) task.  

In this study, children were told to make judgments on the similarity of voices in fixed- 

and varied-sentence conditions as the talker’s voices were adjusted in small increments of 

0.5 or 1 semitone(s).  They found that while a small number of the CI children performed 

similarly to NH children, overall, the task was much more difficult for them to complete.  

Some of the CI children were unable to complete the task altogether.  CI children had a 
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more difficult time discriminating between talkers, which the authors interpreted to mean 

that these children might have more poorly defined talker-category boundaries.  Taken 

together, these two studies suggest that talker discrimination task is challenging and may 

be a useful tool for measuring auditory attention and speech perception abilities in CI 

children.   

 In addition to auditory attention, we were also interested in understanding the 

relations between short-term memory and vocoded speech perception.  Short-term 

memory is the memory system that stores limited amounts of information for a short 

period of time (Baddeley, 2012; Cowan, 2008; Unsworth & Engle, 2007).  Short-term 

memory has been shown to have an important foundational role in speech perception and 

language acquisition (e.g. Baddeley, Gathercole, & Papagno, 1998; Frankish, 1996; 

Gathercole, Service, Hitch, Adams, & Martin, 1999; Jacquemot & Scott, 2006; Jusczyk, 

1997; Pisoni, 1975).  CI users show delays and deficits in short-term memory compared 

to their NH peers (Dawson, Busby, McKay, & Clark, 2002; Harris et al., 2013; Pisoni & 

Geers, 2000) which ultimately affect their speech and language processing and 

development.  

 Short-term memory is commonly assessed with immediate memory span 

measures such as forward digit span or word span (Richardson, 2007; Wechsler, 2003).  

These methods require an individual to retain item and order information over a short 

period of time before recall of the information is required.   Digit spans are frequently 

used an index of short-term memory capacity and have consistently revealed strong 

relations with performance on a wide range of language measures in deaf children who 

have received CIs.  Numerous studies have found significant correlations between digit 
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spans and measures of open-set and closed-set spoken word recognition (Burkholder & 

Pisoni, 2003; Pisoni & Cleary, 2003; Pisoni & Geers, 2000; Pisoni et al., 2011), speech 

perception (Pisoni et al., 2011), speech intelligibility (Pisoni & Geers, 2000; Pisoni et al., 

2011), vocabulary (Fagan, Pisoni, Horn, & Dillon, 2007; Pisoni et al., 2011), language 

comprehension (Pisoni & Geers, 2000), reading (Fagan et al., 2007; Pisoni & Geers, 

2000; Pisoni et al., 2011), verbal rehearsal speed (Burkholder & Pisoni, 2003), and 

nonword repetition (Pisoni et al., 2011).  These findings are not limited to clinical 

populations, however.  Recently, Osman and Sullivan (2014)  reported that digit spans of 

NH children were significantly correlated with performance on speech perception tasks 

performed in noise.  Taken together, these findings suggest a central role for short-term 

memory in spoken language processing.   

 As noted earlier, research with CI children has established the importance of 

auditory attention and short-term memory in speech and language measures, but very 

little research has investigated these areas of cognition in spectrally-degraded vocoded 

speech perception. Only one study to date has used any cognitive processing measures 

with vocoded speech.  Eisenberg et al. (2000) had two groups of NH children (5-7 and 

10-12 years of age) and a group of NH adults complete digit span tasks under varying 

amounts of acoustic degradation and then correlated their performance on the vocoded 

digit span task with performance on several different speech perception measures.  They 

found a statistically significant positive correlation between digit span under 8-channel 

simulation and a language quotient derived from the Peabody Picture Vocabulary Test 

(PPVT) that controlled for age.  The purpose of the present study was to fill a gap in the 

literature by further investigating the relations between auditory attention and short-term 
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memory with vocoded word recognition in NH children. We aim to expand on previous 

findings by investigating associations between neurocognitive measures and vocoded 

speech perception tasks, which has not been previously explored before even though 

earlier research has suggested the involvement of neurocognitive influences on 

performance. 

Methods 

Participants 

 These are same participants reported on in the previous chapter.  Thirty-seven 

typically-developing monolingual English-speaking children (15 females, 22 males) from 

5;2 years (years; months) to 13;3 years of age (M=12;4 years; SD=2;7 years) were 

recruited for this study.  The majority of the sample was Caucasian (n=33), with the 

remaining identified as either Native Hawaiian/ Pacific Islander (n=2) or more than one 

race (n=2).  Six children had to be excluded for the following reasons: technical problems 

(n=2), noncompliance (n=3), and reported speech delays (n=1).  Thirty-one children 

remained between 5;9 years and 13;3 years of age (M=10;0 years, SD=2;4 years; 12 

females, 19 males).  Based on parent-report, all children had normal hearing and vision 

and no diagnosed cognitive/developmental delays.  All children were recruited through 

an IRB approved departmental subject database.  The majority of the children that 

participated in this study were from a moderate socioeconomic status: 19% reported 

incomes less than $50,000; 58% reported incomes within the $50,000-$100,000 range; 

6% reported incomes within the $100,000-$150,000 range; 10% reported incomes within 

the $150,000-$200,000 range; and 6% reported incomes greater than $200,000.  All 
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children included in data analyses passed a pure-tone hearing screening at 15 dB between 

250-4000 Hz to verify hearing within normal limits.   

Equipment 

 Speech perception testing was carried out in an IAC sound booth in the Speech 

Research Laboratory at Indiana University in Bloomington.  A high-quality Advent 

AV570 loudspeaker was located approximately two feet from the listener.  A Radio 

Shack Digital Sound Level Meter was used to verify stimulus presentation levels over 

loudspeaker at 65 dB using C-Weighting.  All stimuli used in the speech perception, digit 

span, and symbol span tasks were presented using programs run on a Power Mac G4 

Apple computer with a Mac OS 9.2 using Psyscript (Bates & D’Oliveiro, 2003).   A 12” 

Keytec LCD Touch Monitor was used to present visual stimuli.  The colored touchscreen 

presented stimuli at a brightness level of 150 cd/m2 and a contrast ratio of 100:1. During 

presentation of the visual stimuli, participants were seated at a table directly in front of 

the touchscreen.  The touchscreen’s presentation angle was 120°. 

Vocoded Stimuli 

 Spectrally-reduced speech was created using techniques described in Shannon et 

al. (1995) and Eisenberg et al. (2002).  Original recordings of unprocessed speech stimuli 

were obtained for the replication of Experiment 2 of the Eisenberg et al. (2002) paper.  

AngelSim (TigerCIS), an online CI speech-processing program, was used to custom-

vocode speech stimuli.  The original speech signals were processed to four spectral 

channels with bandwidth frequencies set at 300, 722, 1528, 3066, and 6000 Hz using a 

noise-vocoded setting with white noise as the carrier type (See Table 3.1 for division of 

frequencies for each channel).  
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Performance Measures 

Word Intelligibility by Picture Identification- 2nd Edition  (WIPI)   

The WIPI test is a closed-set word recognition test (Ross, Lerman, & Cienkowski, 

2004) that was used to familiarize the participants with vocoded speech.  Each participant 

listened to List A, which consisted of 25 vocoded words presented over a loudspeaker at 

65 dB.  All participants responded by pointing to one of six pictures that matched the 

word he or she heard (see Appendix C for example response sheet).  This assessment was 

scored for accuracy but not included in any formal analyses investigating relations 

between neurocognitive measures and vocoded sentence perception.  

Lexically Controlled Sentences 

The stimulus list of lexically controlled sentences originally developed by 

Eisenberg et al. (2002) was used to assess the effects of word frequency and 

neighborhood density on word recognition in sentences.  Eisenberg et al. (2002) created 

two lists of words based on their lexical properties: a lexically “easy” list and a lexically 

“hard” list.  They selected and categorized words as lexically easy or hard using the 

computational methodology described in the Neighborhood Activation Model (Luce, 

1986; Luce & Pisoni, 1998) and by Kirk, Pisoni, and Osberger (1995).  Lexically easy 

words are high frequency words in English with low neighborhood densities (fewer 

phonetically similar words).  Lexically hard words are low frequency words with high 

neighborhood densities (greater number of phonetically similar words).  Each list 

consisted of 15 practice words followed by 60 test words produced by one female speaker.  

Using those words, Eisenberg et al. (2002) created two lists of 25 low predictability 

sentences (5 practice and 20 test sentences).  Each sentence was five to seven words in 
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length and contained three key words from either the easy or hard list.  The two lists were 

combined to create one set of 10 practice sentences and 40 test sentences that were also 

vocoded and presented in a randomized order.  Practice trials always preceded test trials 

(see Appendix B for list of sentences).  Vocoded sentences were played over loudspeaker 

at 65 dB and scored for number of key words correct.  For this task, children were 

instructed to repeat what they heard.  Children did not receive any feedback regarding 

accuracy of their response.   

While Chapter 2 analyzed both words in isolation and words in sentences, 

Chapters 3 and 4 only analyzed data from the words in sentences condition.  Since 

performance on words in isolation and words in sentences were highly correlated for both 

the child data (r=.79, p<.001) and the adult data (r=.62, p<.001), only words in sentences 

were chosen so that the use of context could be investigated.  Words in isolation were not 

included in analyses to increase the power of statistical analyses because of the relatively 

small sample size.  

Auditory Attention and Response Set Subtests (NEPSY-2) 

The Auditory Attention (AA) subtest of the NEPSY-2 was used to obtain a 

measure of the participant’s selective auditory attention and ability to sustain attention. 

During administration of AA, the participant listened to a three-minute series of 180 

prerecorded words presented over a loudspeaker and was instructed to touch the 

appropriate colored circle when the target color word (red) was presented randomly on 30 

of the 180 trials.    

The Response Set (RS) subtest of the NEPSY-2 was used to assess the 

participant’s ability to shift to and maintain a new set of complex instructions while 
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inhibiting previously learned responses by correctly attending and responding to 

matching or contrasting stimuli.  During administration of the RS, the participant listened 

to a three-minute series of 180 prerecorded words presented over loudspeaker and either 

touched the color, a contrasting color, or did nothing when a target color word was 

presented on 36 of the trials.  Appendix D provides an illustration of the response sheet 

used for both AA and RS tasks.  Raw and scaled scores were obtained for each child.  

These two subtests can be administered to participants ranging in age from 5-16 years 

(AA) and 7-16 years (RS).  Three children (1 five-year-old female, 1 six-year-old female, 

and 1 six-year-old male) were not administered the RS due to the age restrictions of the 

assessment.  Both subtests are part of the Attention and Executive Functioning domain of 

the NEPSY-2 and have a mean scaled score of 10 and SD of 3 (Korkman, Kirk, & Kemp, 

2007).  The AA or RS subtest were presented in clear and were not vocoded. 

Talker Discrimination   

A talker discrimination task was used to assess auditory attention for indexical 

properties of vocoded speech.  This task was modeled after the talker discrimination task 

originally created by Cleary and Pisoni (2002) to investigate the ability of deaf children 

with CIs to discriminate differences between talkers.  In this task, participants heard pairs 

of short meaningful sentences selected from the Harvard Sentence lists (e.g. the juice of 

lemons makes fine punch) and were asked to make a judgment as to whether the speaker 

of the first sentence in each pair was the “same” or “different” from the speaker who 

produced the second sentence.  Responses were recorded using a touchscreen monitor.  

Appendix E provides a picture of the computer response screen.   We modified this task 

from the original procedure in the Cleary and Pisoni (2002) study to use vocoded speech.  
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The sentences were vocoded following the parameters described in the Eisenberg et al. 

(2002) paper.   The key design feature of the talker discrimination task is that the listener 

is required to consciously ignore the lexical-symbolic linguistic information in the 

sentence and focus his or her attention on the indexical properties of the signal to make a 

same or different judgment based on the vocal source.    

Two presentation conditions were used in the talker discrimination task: a fixed-

sentence condition and a varied-sentence condition.  During the fixed-sentence condition, 

the same sentence was used for all trials.  Participants completed eight practice trials 

(four pairs) per condition with experimenter feedback using clear unprocessed speech 

prior to listening to the vocoded speech to verify that the subjects understood the 

instructions and task requirements.  The practice trials consisted of two male talkers 

(Talker 1 and Talker 21) from the Indiana Multi-Talker Sentence Database (IMTSD) 

developed by Karl and Pisoni (1994).  Two practice trials used the same talker and two 

practice trials used different talkers.  The test trials followed the practice trials.  The test 

trials consisted of three female talkers (Talkers 6, 7, and 23 from the IMTSD).  There 

were a total of 24 sentences (12 pairs) of test trials.  Six trials were the same talker (each 

talker paired with herself twice) and six trials were pairs of different talkers (each talker 

paired with the other twice).  The varied-sentence condition followed the same structure 

except that each test pair was a unique combination of two different sentences.  Appendix 

F shows a list of sentence pairings.  To respond correctly on each trial, the listener must 

actively inhibit processing the linguistic content of the sentence and focus his or her 

attention on the talker’s voice.  All of the sentence and speaker pairings were fixed, but 



 79 

the order of presentation was randomized.  Sentences were played over loudspeaker at 65 

dB. 

Visual Digit Span (Forward)   

A forward visual digit span task was used to obtain a measure of each 

participant’s verbal short-term memory capacity.  This task had three types of trials: 

familiarity, practice, and test.  Trials were administered via touchscreen computer.  

During the familiarity trials, the participant saw a single digit (between 1 and 9) 

randomly presented on the touchscreen monitor.  The visual digits appeared as a black 

number encased in a black box on a white backdrop in the center of the screen for one 

second.  When the digit disappeared, the response screen appeared.  The response screen 

displayed the digits, 1 through 9, in a 3x3 fixed grid format.  Appendix G shows an 

example sequence of trial presentations for a set size of two.  The participant was 

instructed to touch the number previously displayed on the screen.  After the familiarity 

trials, the participant began the practice trials.  During the practice trials, the participant 

saw a set of two and then a set of three single digits presented sequentially on the screen, 

each digit presented for a period of one second.  The response screen then appeared and 

the participant was instructed to reproduce the numbers previously seen in the order in 

which they were presented.  The participant had a window of five seconds after each 

presentation to respond before the experimental program advanced to the next trial.  Each 

participant had to successfully complete the practice trials to proceed to the test trials.  

The test trials then began with a set size of two digits (i.e. list length of two).  Each list 

length was presented twice and had to be correctly reproduced during one of the two 

trials before the list length increased by one digit on the next trial.  When the participant 
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failed to correctly reproduce both trials at a given list length, the assessment was 

terminated.   

The digit span task was scored for points correct.  One point was awarded for 

each digit correctly reproduced in its correct serial order.  For example, if a participant 

was presented with the digits “1…3…5” and responded with “1…4…5” the participant 

was awarded two points because the “1” and “5” were reproduced in their correct serial 

order.  We chose to administer the digit span task in a visual format to obtain measures of 

verbal short-term memory capacity that were independent of audibility.  Use of a manual 

touchscreen response also eliminated issues of variability in verbal output and response 

organization in speech motor control. 

Symbol Span (Forward)   

A symbol span task was used to assess a participant’s nonverbal short-term 

memory capacity.  This assessment was administered using the same procedure and 

format as the visual digit span assessment except nine abstract black and white symbols 

were used as stimuli in place of the familiar digits.  Appendix H displays an example 

sequence of trial presentations for a set size of two.     

Procedures 

 All children were tested individually.  The study was completed in one test 

session lasting about 1-1.5 hours.  Parental consents and child assents, when applicable, 

were obtained prior to testing as per the guidelines of Indiana University’s Institutional 

Review Board.  All assessments were administered in an IAC sound booth in the Speech 

Research Laboratory at Indiana University in Bloomington.  At the conclusion of the 
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experiment, all children received monetary compensation and two books along with 

numerous stickers that were distributed throughout the testing session. 

Results 

Auditory Attention and Response Set 

 Raw scores from the auditory attention (N=28, M=28.68, SD=1.59) and response 

set (N=28, M=32.82, SD=3.45) tests were used in Spearman’s rank correlational analyses 

with the vocoded sentence perception measure.  While Pearson product-moment 

correlations were used for consistency of the replication of Eisenberg et al. (2002) in 

Chapter 2, Spearman’s rank correlations were used in Chapters 3 and 4 because of the 

relatively small sample size and to detect potentially nonlinear trends in the data.  Three 

children were removed from the AA data set due to failure to demonstrate understanding 

of the task.  No significant Spearman correlations were found between AA or RS and 

vocoded sentences (see Table 3.2).   

Talker Discrimination Task 

 Figure 3.1 shows the distribution of scores for the fixed-sentence and varied-

sentence conditions in the talker discrimination task.  The x-axis represents the 

proportion of correct responses produced out of the 12 trials.  As shown in this figure, the 

majority of children (96.7%) performed above chance on the fixed-sentence condition 

(M=74.2%, SD=16.3%), but only 64.5% performed above chance on the varied-sentence 

condition (M=59.2%, SD=16.4%).   Age was strongly related to performance on both 

conditions (fixed-sentence: r(31)=.57, p=.001; varied-sentence: r(31)=.41, p=.024).  As 

expected, performance on the fixed-sentence condition was significantly better than 

performance on the varied-sentence condition; t(31)=4.76, p<.001 (see Figure 3.2).  
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Children’s performance on both talker discrimination tasks was significantly correlated 

with their ability to recognize vocoded sentences (see Table 3.2) with the fixed-sentence 

condition (r=.51, p=.003) being more strongly related than the varied-sentence condition 

(r=.40, p=.025).    

 Table 3.3 displays the children’s error rates and types of errors in both the fixed-

sentence and varied-sentence conditions.  In the fixed-sentence condition, children 

showed a higher occurrence of “misses” responding “same” when the talkers were 

different.  However, during the varied-sentence condition, children show a higher 

occurrence of “false alarm” errors responding “different” when the talkers were the same.   

Visual Digit Span (Forward) and Symbol Span (Forward) 

 Mean scores for the forward visual digit span and forward symbol span are 

displayed in Figure 3.3.  As determined by a one-sample t-test, children did significantly 

better on forward visual digit span (M=30.1, SD=15.3) compared to forward symbol span 

(M=14.6, SD=11.3); t(31)=5.91, p<.001.  Both forward visual digit span and forward 

symbol span scores were correlated with performance on vocoded sentences (see Table 

3.4) with digit span being more strongly related (r=.43, p=.015) than symbol span (r=.38, 

p=.036). 

Discussion 

 The purpose of this study was to investigate the relations between auditory 

attention, short-term memory, and the perception of spectrally-degraded vocoded speech 

in NH children.  Analyses revealed significant relations between performance on auditory 

attention and short-term memory tasks and a child’s ability to recognize sentences that 

were vocoded to four spectral channels.  This finding replicates previous research 



 83 

suggesting that vocoded speech perception not only reflects peripheral processes, but also 

cognitive processes as well (Chatterjee et al., 2014; Conway, Bauernschmidt, Huang, & 

Pisoni, 2010; Davis, Johnsrude, Hervais-Adelman, Taylor, & McGettigan, 2005; 

Eisenberg et al., 2002). 

 One unexpected finding was that only one of the measures of auditory attention 

(the talker discrimination task) was related to how well a child perceived vocoded 

sentences.  Neither of the two NEPSY-2 subtests was found to be correlated with 

performance on vocoded speech recognition.  One explanation of this finding is that both 

the AA and RS tasks were too easy as performance was close to ceiling.  The NEPSY-2 

AA subtest is a detection task that requires a child to sustain attention by attending to a 

stream of spoken words and respond to the target words.  The NEPSY-2 RS subtest also 

measured sustained attention in addition to set shifting, a form of response inhibition.  

With the exception of the three children who were excluded from analyses in the AA task, 

most children performed very well on both attention tasks, especially the AA task with 

the majority of children performing at ceiling level.  As a result, the range of scores was 

very limited resulting in weak correlations. 

  Auditory attention as measured by the talker discrimination task did however, 

show significant relations to vocoded sentence perception.  This finding suggests that a 

child’s ability to attend to and discriminate differences between two vocoded talkers 

based only on indexical properties of speech is associated with recognition of vocoded 

sentences.  It is important to point out here that both the fixed- and varied-sentence 

conditions were found to be significantly correlated to vocoded sentence perception.  

Although both conditions measure auditory attention, each condition also has a 
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substantial immediate memory component.  Performance in the fixed-sentence condition 

taps into verbal short-term memory because the children have to detect a change between 

two sentences when the linguistic content remains constant.  Consistent with the findings 

from the memory span data, short-term memory was strongly related to a child’s ability 

to recognize vocoded sentences, which may be one reason why this task was so strongly 

correlated with performance on the vocoded sentence recognition task.  In contrast, 

performance in the varied-sentence condition taps verbal working memory because the 

children now have to ignore differences in linguistic content between two different 

sentences while at the same time trying to detect similarities or differences between the 

talker’s voices.  This additional processing component increases the cognitive load on the 

child, making this condition more difficult.  Increasing difficulty reduced variability by 

lowering overall performance, which may be one reason why the varied-sentence 

condition was not as strongly correlated to vocoded sentence perception as the fixed-

sentence condition was.  Additionally, because both the talker discrimination task and 

sentence perception task were vocoded, the relations found between the two measures 

may also be interpreted as reflecting individual differences in how the children process 

vocoded speech.  Children that are better at perceiving vocoded speech would have an 

advantage on tasks using vocoded stimuli, such as the talker discrimination task. 

 Results from the talker discrimination task with NH children replicated findings 

from the earlier study with CI children carried out by Cleary and Pisoni (2002).  Both 

studies found better performance on the fixed-sentence condition than the varied-sentence 

condition and stronger correlations between performance on the fixed-sentence condition 

and several conventional speech perception measures.  A similar pattern was also found 
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in the error rates for each condition with a much stronger bias for committing false 

alarms during the more difficult varied-sentence condition.  The present findings are 

theoretically and clinically important because they demonstrate that regardless of hearing 

status, reducing spectral information in the speech signal makes discriminating talkers 

more difficult, especially when the cognitive load is increased in the varied-sentence 

condition.  These findings document the important role of cognition, specifically auditory 

attention, verbal short-term memory, and verbal working memory in perceiving 

spectrally-degraded vocoded speech.  This is a significant contribution to the speech 

perception literature because it indicates that auditory attention and memory are 

important for spoken word recognition in suboptimal listening conditions such as when 

the signal is degraded during transmission.  This new knowledge may be applied in the 

development of interventions for improving speech perception when the speech signal is 

presented in less than ideal listening environments.  For example, if the signal is 

impoverished and cannot be enriched for perceptual processing then finding ways to 

improve attention or memory abilities may provide another avenue for improving speech 

perception.  These results provide a new domain for future research and adds new 

knowledge to the growing body of literature in the field of vocoded speech perception 

(Chatterjee et al., 2014; Conway et al., in press; Davis et al., 2005; Dorman et al., 2000; 

Eisenberg et al., 2002; Eisenberg et al., 2000; Kronenberger & Pisoni, 2009; Maidment et 

al., 2014; Newman & Chatterjee, 2013; Shannon et al., 1995; van Heugten et al., 2013; 

Vongpaisal et al., 2012; Warner-Czyz et al., 2014).   

 Both measures of short-term memory also showed significant relations with 

performance on vocoded sentence perception measures.  A child’s ability to rapidly 
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encode and reproduce sequences of highly familiar items in serial order was associated 

with his or her ability to recognize vocoded words in sentences.  In speech perception, 

verbal short-term memory plays an important central role in retaining the order of 

phonological and lexical information in working memory.  Being able to encode, store, 

and remember serial order information about sequences of items is crucial considering 

the temporal nature of speech.  This is especially important when only degraded 

phonological representations are available, as in spectrally-degraded vocoded speech 

perception tasks.  Although the digits were presented visually, they were very likely to be 

verbally recoded for the purpose of rehearsal in short-term memory.   

 Although the symbol span was used as a measure of nonverbal short-term 

memory, it was also found to be correlated with performance on vocoded sentence 

recognition with a significance level close to that of the digit span task.  Therefore, a 

child’s ability to recall and reproduce the serial order of abstract visual objects was 

associated with his or her ability to recognize vocoded sentences.  This was an 

unexpected finding because the symbol span task requires less verbal mediation than the 

digit span task.  Although the symbol span task was originally designed to be a nonverbal 

measure of memory span, our informal observations suggest the use of verbal coding 

strategies by older children.  To facilitate active verbal rehearsal, older children applied 

names to the visual displays to serve as verbal cues for rehearsal and recall.  This might 

suggest that the two tasks may be tapping into similar aspects of short-term memory.  

Together, these findings and observations suggest that children with more efficient verbal 

coding strategies for encoding and remembering abstract visual information were able to 

apply more efficient strategies for recognizing vocoded speech.  Also, because sentences 



 87 

provide context cues and downstream support, it is possible that the ability to use context 

efficiently is related to the ability to recognize speech when less sensory information is 

available in the signal.  As a result, the findings obtained from the symbol span task are 

confounded by the verbal coding carried out by the older children.   

One limitation of this study is that it is a correlational study and, therefore, does 

not provide causal explanations between any of the performance measures.  Future 

research should include additional analyses to examine interactions between variables 

and compare variance accounted for by each measure for a more thorough understanding 

of cognitive involvement.  This research does, however, provide information regarding 

previously unexplored domains in vocoded speech perception, which is important for 

future research on the perception of degraded vocoded speech and individual differences 

in deaf children who use CIs. 

Conclusions 

 The purpose of this study was to investigate the relations between auditory 

attention and short-term memory in vocoded speech perception in NH children.  The 

findings obtained in this study are consistent with the existing literature suggesting that 

speech perception and cognition are closely interlinked systems (Burkholder & Pisoni, 

2003; Deary, 1994; Harris et al., 2013; Johnson & Goswami, 2010; Pisoni et al., 2011).  

Speech perception involves multiple systems working together in a highly integrated 

fashion and is not reliant on a single cognitive or peripheral sensory component.  More 

specifically, the present findings uncovered relations between auditory attention and 

short-term memory with degraded speech recognition.  Understanding the relations of 

auditory attention and short-term memory in vocoded speech perception can provide 
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important insights into the specific aspects of cognition that are most important for 

recognizing degraded speech and these results will be especially relevant for listeners 

with hearing impairments.  Knowing specific cognitive factors that may support 

successful speech perception and spoken word recognition will help in identifying 

children that may be susceptible to delays and provide earlier interventions that can 

include components not only aimed at improving the perceptual processing of speech but 

also cognitive processing. The present findings also provide new insights into 

understanding and explaining the enormous individual differences in the speech 

perception skills of deaf children with CIs by documenting the contribution of attentional 

control and short-term memory.  
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Table 3.1. Frequency Bandwidths for the 4-Channel Vocoded Simulation 

Spectral Channel 
Lower Frequency 

Cutoff (Hz) 
Higher Frequency 

Cutoff (Hz) 

 
Channel Bandwidth 

(Hz) 
 
1 300 722 

 
422 

 
2 722 1528 

 
806 

 
3 1528 3066 

 
1538 

4 3066 6000 
 

2934 
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Table 3.2. Spearman Correlational Analyses of Auditory Attention 

Measures and Vocoded Sentence Perception Scores for Children 

 

Auditory Attention Measure 

 

Vocoded Sentences 

 

NEPSY Auditory Attention .34 

NEPSY Response Set .16 

Talker Discrimination (Fixed) .51** 

Talker Discrimination (Varied) .40* 

 
 
            Note. Speech perception measures reflected percent accuracy. Auditory  

 Attention and Response Set reflect raw scores. 

    *p<.05. **p<.01. ***p<.001 (two-tailed) 
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Table 3.3. Vocoded Talker-Discrimination Task: Miss Rates and False 

Alarm Rates Among Children (Percentages) 

 
Type of Error 

Fixed-Sentence 
Condition 

Varied-Sentence  
Condition 

 

Miss Rate 
14.79 16.91 

False Alarm Rate 11.54 23.11 
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Table 3.4. Spearman Correlations Between Measures of Short-Term 

Memory and Vocoded Sentence Perception Scores for Children 

 
Short-Term Memory Measures Vocoded Sentences 

 
Digit Span (Forward) .43* 

Symbol Span (Forward) .38* 

 

      Note. Speech perception measures reflected percent accuracy. Span measures 

 scores reflect points per correct response. 

   *p<.05. **p<.01. ***p<.001 (two-tailed) 
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Figure Captions 

Figure 3.1  Talker discrimination scores displayed as proportion of correct responses out 

of the 12 test trials.  Top panel displays a histogram of the number of correct trials for the 

fixed-sentence condition; bottom panel displays a histogram of the number of correct 

trials for the varied-sentence condition.  

Figure 3.2  Mean scores for fixed-talker and varied-talker conditions in talker 

discrimination task.  Children were significantly more accurate at identifying “same” or 

“different” talkers in the fixed-sentence condition compared to the varied-sentence 

condition.  Error bars represent standard error. 

Figure 3.3  Mean scores for forward digit span and forward symbol span tasks.  Children 

were significantly more accurate at reproducing the serial order of visually presented 

digits compared to abstract visual symbols.  Error bars represent standard error. 
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Figure 3.1.   
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Figure 3.2.    
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Figure 3.3.   
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CHAPTER 4 

VERBAL LEARNING AND MEMORY STRATEGIES AS CORRELATES OF  

VOCODED SENTENCE PERCEPTION 

 

Introduction 

 Humans have a remarkable sensitivity to patterns, statistical regularities, and the 

underlying sequential structure of natural languages (Conway & Pisoni, 2008; Gupta & 

Dell, 1999; Redington & Chater, 1997; Romberg & Saffran, 2010).  This inherent 

sensitivity allows infants and young children to implicitly learn the complex rule system 

that underlies language through passive exposure and listening experience (Altmann, 

2002; Chambers, Onishi, & Fisher, 2003; Jusczyk, 1997, 2002; Jusczyk & Luce, 1994).  

Through this type of statistical learning, children are able to obtain a great deal of 

knowledge about their native language including probabilistic phonotactics, syntax, word 

boundaries, and lexical organization, to name a few (Auer & Luce, 2005; Conway, 

Bauernschmidt, Huang, & Pisoni, 2010; Jusczyk, 1997, 2002; Saffran, 2003; Vitevitch & 

Luce, 1998; Yu, 2008).  The ability to detect and process information sequentially 

develops early in life (Saffran, Aslin, & Newport, 1996) and is critical in the 

development of language because of its temporal nature (Dominey & Ramus, 2000; 

Romberg & Saffran, 2010; Rosen, 1992; Saffran, 2002; Tallal, Miller, & Fitch, 1993).   

 Several recent studies have suggested that children with cochlear implants (CIs) 

have difficulty with sequential learning and processing.  Conway, Karpicke, Anaya, 

Henning, Kronenberger, and Pisoni (2011) found deficits in prelingually deaf children 

with CIs when compared to normal-hearing (NH) peers in performance on the NEPSY 
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“fingertip tapping” subtest that assessed motor-sequencing abilities.  The authors also 

found that performance by the children with CIs on the sequential portion of the fingertip 

tapping motor-sequencing subtest along with the “dot location” subtest of the Children’s 

Memory Scale, a nonverbal visual-spatial learning and memory task, were related to 

language outcomes on the Clinical Evaluation of Language Fundamentals, 4th Edition 

(CELF-4).  The children with CIs who were slower on the sequential fingertip tapping 

task and had lower scores on the dot location visual-spatial learning and memory task 

also had lower scores on the CELF-4, suggesting that poorer motor-sequencing and 

sequential spatial memory abilities in the children were related to poorer language 

outcomes (Conway et al., 2011).   

 In another study, Conway, Pisoni, Anaya, Karpicke, and Henning (2011) found 

deficits in the implicit learning of visual color sequences in children with CIs.  The 

children in this study were asked to reproduce color sequences that were generated by an 

artificial grammar unknown to them.  Learning was measured by improvement on the 

accuracy and length of their reproductions of novel grammatical sequences.  Results 

revealed that NH children performed significantly better on novel grammatical sequences 

in comparison to ungrammatical sequences, as expected, but children with CIs were no 

better at reproducing the grammatical sequences than the ungrammatical sequences.  This 

finding demonstrated that the children with CIs implicitly learned sequential patterns at 

rates that were delayed relative to their NH peers.  Conway et al. (2011) also found that 

these implicit learning abilities were related to vocabulary development in the children 

with CIs, suggesting a link between the implicit learning of sequential patterns and 

language acquisition.  
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 Several years ago, Conway, Pisoni, and Kronenberger (2009) proposed an 

“auditory scaffolding hypothesis” to explain the observed deficits in sequential learning 

in children with CIs.  Because when we process speech and sound we also encode 

temporal patterns, the authors suggested that early experience with sound patterns helps 

to support the development of other cognitive abilities that are also temporal or sequential 

in nature; essentially, experience with sound creates scaffolding and knowledge 

structures for other sequential abilities to build on.  Hearing-impaired children with CIs 

are not only delayed developmentally because of the cortical reorganization of their 

neural and cognitive systems, but they also receive less robust acoustic information from 

the environment compared to NH peers (Niparko, 2009; Waltzman & Roland, 2006).  

The underspecified acoustic input from their CIs make implicit learning from passive 

exposure more difficult which, in turn disrupts typical-developing auditory scaffolding 

processes (Conway et al., 2011).   

 In another recent study, Ulanet, Carson, Mellon, Niparko, and Ouellette (2014) 

assessed the simultaneous and sequential processing abilities of a group of young 

children with CIs.  The goal of this study was to examine the relations between 

neurocognitive processing and language outcomes to better understand why some 

children with CIs have poorer outcomes on language tasks.  A small number of children 

with CIs (N= 22) were divided into two groups based on language scores obtained from 

the Comprehensive Assessment of Spoken Language (CASL) and either the Clinical 

Evaluation of Language Fundamentals (CELF) Pre-School-Second Edition (CELF-P) or 

the CELF Fourth Edition (CELF-4) based on the child’s age at the time of testing.  

Children were classified as either having language scores “below expectations” (i.e. 
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scores below the age-standardized mean) or “meeting expectations” (i.e. scores at or 

above the age-standardized mean).  The Leiter International Performance Scale-Revised 

(LIPS-R), the Mullen Scales of Early Learning (MSEL), or the Bayley Scales of Infant 

Development- Second Edition (BSID-II) was also administered as a baseline measure to 

verify that the children were within the normal range on nonverbal IQ and developmental 

measures.  The children with CIs were also tested with the Kaufman Assessment Battery 

for Children, Second Edition (KABC-II) to assess their ability to integrate verbal, visual, 

and/or spatial information (simultaneous processing abilities) as well as reproduce visual, 

motor, and/or auditory information sequentially (sequential processing abilities).   

 Ulanet et al. (2014) found that both groups of children with CIs were very similar 

to NH peers on measures that assessed simultaneous processing capacities.  However, the 

group with language scores below expectations displayed reduced sequential processing 

capacities in addition to significantly lower language scores.  Simultaneous processing 

scores were found to be positively correlated with nonverbal IQ scores, while sequential 

processing scores were found to be positively correlated with language scores.  Ulanet et 

al. (2014) suggested that specific deficits in sequential processing might negatively affect 

language processing and development in this clinical pediatric population.  In summary, 

these recent studies revealed disturbances and delays in sequential learning and 

processing in children with CIs that may be related to poorer language learning and 

memory abilities. 

 Almost all of the published research on learning and memory of sequentially-

presented stimuli in children with CIs has used visuospatial stimuli or a single-

presentation of verbal stimuli.  Repeated exposures to visuospatial sequences have been 
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used to test implicit or explicit learning (Conway et al., 2010; Conway et al., 2011), but 

no published research to date has systematically assessed the underlying foundational 

components of learning and memory in children with CIs using multiple exposures to 

verbal material.  The ability to encode, store, and retrieve verbal information that is 

acquired over several repeated exposures is termed “verbal learning.”  The lack of 

knowledge about fundamental verbal learning skills and development in children with 

CIs is a significant limitation in our current understanding of language and memory 

development in this clinical population, for several reasons:   

First, in daily experience and learning, children are frequently exposed to 

repetitions of verbal information, in order to enhance memory and learning.  Teachers, 

parents, and peers frequently repeat important information that is provided in spoken 

language, rather than providing a single exposure.  Thus, verbal learning based on 

multiple exposures is a common experience in real-world interactions and learning 

outside the laboratory and clinic.  Second, children’s abilities to learn based on multiple 

exposures cannot be inferred from memory performance after only a single exposure 

(Delis, Kramer, Kaplan, & Ober, 1994).  Without direct research using a verbal learning 

paradigm, the verbal learning processes and abilities of children with CIs is unknown.  

Third, the use of verbal learning paradigms in research allows for the investigation of 

critical influences on learning and memory that cannot be investigated using single-

exposure paradigms, such as learning curve (improvement with repetition exposures), 

proactive and retroactive interference (influence of competing verbal material on memory 

for learned information), changes in memory strategies in learning over repeated 

exposures (e.g., serial recall strategies, semantic recall strategies), decay of previously 
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learned material over a long delay, and recognition (e.g., storage) vs. free-recall (e.g., 

retrieval) capacity.  Investigation of these influences can provide a process-level 

understanding of influences on verbal learning and memory that goes well-beyond 

knowledge of verbal capacity alone.  Finally, repeated-exposure verbal learning 

paradigms place additional demands on other neurocognitive functions that are not taxed 

in the same way by single-exposure memory paradigms, allowing for further 

understanding of the influence of neurocognitive functioning on language learning and 

development.  Verbal learning paradigms demand more flexibility, sustained 

concentration, and active management of memory strategies than single-exposure 

memory paradigms, because subjects are provided with multiple exposures that allow for 

the use of shifting, actively-managed strategies (e.g., shifting from rote-serial memory 

strategies to semantic clustering strategies to enhance recall based on meaningfulness of 

content) based on experience with prior exposures to the verbal material.  Such flexibility, 

concentration, and active control of thinking are hallmarks of executive functioning 

(Barkley, 2012). 

Verbal learning and memory skills are inseparable components of language 

processing and development that may be associated with the development of speech 

perception skills, particularly under perceptually challenging conditions.  The 

interrelations of verbal learning and memory skills with speech perception are likely to be 

complex and may include components of “bottom-up” processing in which basic, 

foundational speech perception skills support higher-order verbal learning and memory 

skills and/or “top-down” processing in which verbal learning and memory are higher-

order abilities that support and promote speech perception skills.  Theories of language 
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processing have shown that bottom-up and top-down models considered alone often do 

not fully account for the complexity of interrelationships between basic and higher-order 

processes in language processing (Stanovich, 1980).  Rather, interactive models that 

incorporate both bottom-up and top-down contributions in a bidirectional, reciprocal 

model have received the most support in areas of language development such as reading 

(Stanovich, 1980, 1986). 

Individual differences in speech perception skills, particularly under challenging 

conditions, may have a significant “bottom-up” impact on verbal learning and memory in 

NH children and children with CIs, in several potential ways: First, in the earlier chapters 

of this dissertation, individual differences in processing vocoded sentences were found to 

be related to measures of auditory attention and short-term verbal memory.  Thus, 

auditory attention may be more efficient in children with better speech perception skills 

under challenging conditions, and their verbal memory capacity may be larger.  To the 

extent that verbal learning requires both capacity and efficiency of foundational speech 

processing and short-term verbal memory, performance on speech perception tasks under 

challenging, degraded conditions such as vocoded sentences should predict stronger, 

more efficient verbal learning performance.  Second, fast-automatic efficient processing 

of speech signals may free up resources for higher-order cognitive tasks used in verbal 

learning, such as the executive functioning skills described in the previous paragraph.  

Third, stronger speech perception skills suggest more robust lexical representations in 

long-term memory.  Short-term verbal learning and memory would benefit from stronger, 

more robust representations of spoken language. 
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Verbal learning and memory skills may also provide “top-down” support of 

robust sentence perception under challenging conditions.  Interactive-compensatory 

theories of language processing posit that when phonological stimuli are poorly encoded, 

individuals rely more heavily on other sources of information for word identification, 

such as meaning and context (Stanovich, 1980).  Speech perception under normal 

conditions is very fast, automatic, and therefore less dependent on contextual cues.  

However, vocoded speech perception is slower and more effortful, requiring additional 

allocation of cognitive resources for attention, memory, and comprehension to assist with 

sentence perception.  Thus, under challenging perceptual conditions such as vocoded 

speech, individuals are more likely to rely on and benefit from top-down contextual cues 

in sentences.  The ability to rapidly access contextual cues during sentence perception 

draws heavily on effortful controlled verbal learning and memory strategies, which 

individuals use to remember linguistic information during sentence perception and to 

learn across sentences.  This was exemplified by the perceptual learning that took place 

in the group of NH children during the vocoded sentence task described in Chapter 2.  

Therefore, consistent with interactive-compensatory models of top-down and bottom-up 

processing of language (Stanovich, 1980), we suggest that the relations between speech 

perception under challenging conditions and verbal learning and memory are reciprocal 

and bidirectional, with each supporting the other.  

A better understanding of the relations between verbal learning and speech 

perception abilities under challenging conditions would provide highly novel and 

significant information that addresses a critical gap in our understanding of language 

development in both typically-developing and clinical populations.  Specifically, an 
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understanding of the foundational building-blocks and influences on verbal learning in 

typically-developing children will improve models and theories of verbal learning and 

suggest specific targets for assessment and intervention to improve verbal learning.  For 

clinical populations with speech perception challenges and delays such as children with 

CIs, increased knowledge of relations between speech perception and verbal learning will 

provide both descriptive data about verbal learning and memory development and 

enhanced understanding of potential risk factors contributing to speech perception and 

verbal learning.  Finally, investigation of relations between speech perception under 

challenging conditions and specific verbal learning and memory processes (learning 

curve, semantic vs. serial strategies, primacy vs. recency effects, decay, etc.) will also 

provide a specific, processing-level explanation of the role of speech perception in verbal 

learning and memory. 

In order to address these research questions, relations between vocoded sentence 

perception, verbal learning and memory processes, and language abilities were 

investigated in two groups of children: a group of early-implanted children with CIs and a 

group of NH children using vocoded speech to simulate the spectrally-degraded speech 

conditions experienced by children with CIs.  To assess verbal learning and memory 

strategies in these two groups of children, we selected a well-known normed standardized 

assessment measure- the California Verbal Learning Test- Children’s Edition (CVLT-C). 

 The California Verbal Learning Test- Children’s Edition (CVLT-C) is a high-

yield neuropsychological assessment method that provides information about how a child 

learns and recalls − that is, encodes, stores, and retrieves – lists of spoken words using a 

multi-trial free recall procedure.  During administration of the CVLT-C, children are 
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presented with a list of 15 words (List A) spoken live voice, full-face by an examiner five 

separate times.  List A consists of words drawn from three semantic categories: things to 

wear, things to play with, and fruits.  After each of the five presentations of List A, 

children are asked to recall as many words from the list as they can in any order.  This 

multi-trial free recall procedure provides information on short-term memory, rate of 

learning, and memory organization strategies implemented by the children.  After the five 

learning trials are over, the children hear a second list of 15 words (List B) and are asked 

to recall words from this new list.  List B consists of new words from three semantic 

categories: fruits, sweets, and furniture.  List B is used to measure proactive interference 

in verbal learning and memory.  After recalling List B (the distractor list), children are 

then asked to recall the words again from List A (without being read the word list again), 

which is used to measure short-delay free recall and assess retroactive interference.  

Children are then provided with the names of the three semantic categories for List A 

words and are asked to recall words from each category (short-delay cued recall).  After a 

20-minute delay, children are again asked to recall the words on List A, first in a free 

recall format and next in a cued recall format to obtain measures of long-delay recall and 

decay.   

 Using this administration format, the CVLT-C assessment provides valuable 

information about verbal learning and organizational strategies, serial-position effects, 

short-term and long-term free recall, memory decay, learning rate, vulnerability to 

intrusions and perseverations during free recall, and effects of proactive and retroactive 

interference.  Because the CVLT-C provides a comprehensive examination of a child’s 

basic verbal learning, episodic, and semantic memory capabilities, it is often used in 
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clinical settings to detect and diagnose memory impairments that may be related to 

learning disorders, neurological deficits, or traumatic brain injuries (Arroyos-Jurado, 

Paulsen, Ehly, & Max, 2006; Delis et al., 1994; M. J. Roman et al., 1998).   

 In addition to the numerous verbal learning and memory measures provided by 

the CVLT-C, because the CVLT-C is administered as a multi-trial free recall task, 

researchers can also analyze the serial position curves obtained in free recall to identify 

where learning takes place after each trial.  During free recall tasks a U-shaped serial 

position curve is commonly observed when recall for items is plotted against the item’s 

serial position in the list (Murdock Jr, 1962).  The U-shaped serial position curve shows 

that items at the beginning (primacy) and end (recency) of the list are recalled more often 

than items in the middle of the list.  Primacy effects are frequently observed in free recall 

because items at the beginning of the list are thought to receive more verbal rehearsal in 

memory than items in the middle or at the end of the list (Murdock Jr, 1962; Rundus, 

1971; Rundus & Atkinson, 1970).  Recency effects are also frequently observed because 

items presented at the end of the list are still assumed to be available for retrieval from 

immediate short-term memory (Murdock Jr, 1962; Rundus, 1971; Rundus & Atkinson, 

1970).   

 To quantify these memory and learning effects, the CVLT-C scoring program 

produces primacy and recency scores by calculating the percentage of words recalled 

from the beginning and end (respectively) of the list; however, the CVLT-C scoring 

program averages across all of the five learning trials to obtain these two scores.  In 

addition to looking at the overall primacy and recency scores from the CVLT-C, we also 

decomposed each of the five learning trials of List A and List B into primacy, middle, 
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and recency subcomponents to obtain a more precise assessment of specific areas of the 

serial curve where learning occurred in the list during each trial.  Decomposing the 

learning trials of the CVLT-C into the three subcomponents of the serial position curve is 

informative because it not only provides information about the recall patterns of 

individual children but it also reveals differences in the rates of learning for each 

subcomponent of the curve and provides insight into the different processing mechanisms 

associated with each of the subcomponents.   

 Although the CVLT-C is a high-yield efficient methodology to assess verbal 

learning and memory processes, it has not been utilized with pediatric hearing-impaired 

populations or with typically-developing children in relation to speech perception under 

challenging conditions (vocoded sentence perception).  In fact, to date, only one study in 

the published literature has used the adult version of the CVLT with a group of post-

lingually deafened CI adults.  Heydebrand, Hale, Potts, Gotter, and Skinner (2007) 

administered the CVLT to obtain pre-implantation measures of recall performance that 

were used to predict post-implantation performance on spoken word recognition.  The 

authors created a composite variable for the CVLT from four of the individual verbal 

learning measures: recall after the first and fifth presentation of List A and recall of List 

A after short and long delays.  The authors found that improvement on spoken word 

recognition was strongly associated with higher free recall scores on the CVLT 

composite measures and that the duration of hearing loss and verbal working memory 

scores (measured by a separate letter span task) accounted for the majority of variance in 

the CVLT scores.   
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 Although the findings from the Heydebrand et al. (2007) study demonstrate the 

potential usefulness of the CVLT in a hearing-impaired population to uncover relations 

between verbal learning and memory and speech and language measures, the study did 

not utilize the full potential of the CVLT to provide much more specific, processing-level 

information about verbal learning and memory:  Although the CVLT provides over 50 

measures from raw and standardized scores, Heydebrand et al. (2007) only used four 

composite variables to measure their adult CI user’s verbal learning and memory abilities.  

While the authors found significant results with the composite score based on four 

measures of free recall, they did not address more specific questions about processing-

level contributions to these findings.   

 The experiments reported in this chapter investigated short-term verbal learning 

and memory and spoken word recognition in two populations: NH children and adults 

using spectrally-degraded vocoded speech (Experiment 1) and prelingually deafened 

children with CIs (Experiment 2).  Using these two populations allowed us to examine 

differences in the relations between vocoded speech perception by NH children and 

speech perception in children with CIs with verbal learning and memory strategies.  Data 

from NH adults were obtained to have benchmarks to assess differences between the two 

groups of children.  Comparing the two groups of children was of particular interest 

because both groups received spectrally-degraded acoustic input in the speech perception 

tests, minimizing effects related to the reduced sensory input.  These comparisons can 

provide insights into relations between individual differences in speech perception of 

degraded stimuli and verbal learning and memory strategies in the two groups.  The two 

studies reported below used the CVLT-C to examine relations between spoken word 
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recognition and measures of verbal learning and memory.  In the present experiments, we 

focused on the short-term, free recall trials of verbal learning and memory of the CVLT-

C in order to investigate serial position effects.   We predicted that speech perception 

scores would be related to several verbal learning measures primarily through short-term 

effects obtained on the CVLT-C. 

Experiment 1 

 The purpose of this first experiment was to investigate the relations between 

vocoded sentence perception and verbal learning and memory strategies in a group of 31 

NH children and a group of 31 NH adults.  Children and adults were tested on spectrally-

degraded sentences vocoded to four spectral channels using materials from Experiment 2 

of Eisenberg, Martinez, Holowecky, and Pogorelsky (2002).  Subjects also completed the 

California Verbal Learning Test- Children’s Version (CVLT-C) in the standard 

administration format. 

Methods 

Participants 

 Normal-Hearing Children  

 These are same children reported on in the previous chapters.  Thirty-seven 

typically-developing monolingual English-speaking children (15 females, 22 males) from 

5;2 years (years; months) to 13;3 years of age (M=12;4 years; SD=2;7 years) were 

recruited for this study.  The majority of the sample was Caucasian (n= 33), with the 

remaining identified as either Native Hawaiian/ Pacific Islander (n=2) or more than one 

race (n=2).  Six children had to be excluded for the following reasons: technical problems 

(n=2), noncompliance (n=3), and reported speech delays (n=1).  Thirty-one children 
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remained between 5;9 years and 13;3 years of age (M= 10;0 years, SD= 2;4 years; 12 

females, 19 males).  By parent-report, all children had normal hearing and vision and no 

diagnosed cognitive or developmental delays.  All children were recruited through an 

IRB approved departmental database.  The majority of the children that participated in 

this study were from a moderate socioeconomic status: 19% reported incomes less than 

$50,000; 58% reported incomes within the $50,000-$100,000 range; 6% reported 

incomes within the $100,000-$150,000 range; 10% reported incomes within the 

$150,000-$200,000 range; and 6% reported incomes greater than $200,000.  All children 

included in data analyses passed a pure-tone hearing screening at 15 dB SPL between 

250-4000 Hz to verify that their hearing was within normal limits.   

 Normal-Hearing Adults  

 These are same adults reported on in Chapter 2.  Thirty-one typically developing 

monolingual English-speaking adults (27 females, 4 males) from 18;10 years (years; 

months) to 25;5 years in age (M=20;8 years; SD=1;7 years) were recruited for this study.  

The majority of the sample was Caucasian (n=30), with the remaining identified as Asian 

(n=1).  By self-report, all adults had normal hearing and vision and no diagnosed 

cognitive or developmental delays.  Adults were recruited using IRB approved flyers 

posted throughout the Psychological and Brain Sciences department at Indiana University.  

All adults included in data analyses passed a pure-tone hearing screening at 20 dB SPL 

between 250-4000 Hz to verify that their hearing was within normal limits.  Data from a 

group of adults were obtained to provide a benchmark comparison for performance for 

the NH children on the neurocognitive and speech perception measures. 
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Equipment 

 Speech perception testing occurred in an IAC sound booth in the Speech Research 

Laboratory at Indiana University in Bloomington.  A high-quality loudspeaker (Advent 

AV570) was located approximately two feet from the listener.  A Radio Shack Digital 

Sound Level Meter was used to verify stimulus presentation levels over loudspeaker at 65 

dB using C-Weighting.  Speech perception stimuli were presented using programs run on 

a Power Mac G4 Apple computer with a Mac OS 9.2 using Psyscript (Bates & 

D’Oliveiro, 2003).  

Vocoded Stimuli 

 Spectrally-degraded vocoded speech was created using the signal processing 

techniques described in Shannon, Zeng, Kamath, Wygonski, and Ekelid (1995) and 

Eisenberg et al. (2002).  Original digital files of the unprocessed speech stimuli were 

obtained from Dr. Laurie Eisenberg for the replication of Experiment 2 of the Eisenberg 

et al. (2002) paper.  AngelSim (TigerCIS), an online cochlear implant speech-processing 

program, was used to custom-vocode all of the speech stimuli.  The original speech 

signals were processed by AngelSim to create four spectral channels with bandwidth 

frequencies set at 300, 722, 1528, 3066, and 6000 Hz using a noise-vocoded setting with 

white noise as the carrier type.  

Performance Measures 

 Word Intelligibility by Picture Identification- 2nd Edition  (WIPI)   

The WIPI test is a closed-set word recognition test (Ross, Lerman, & Cienkowski, 

2004) that was used to familiarize the participants with vocoded speech.  Each participant 

listened to List A, which consisted of 25 vocoded words presented over loudspeaker at 65 
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dB and responded by pointing to one of six pictures that matched the word he or she 

heard (see Appendix C for example response sheet).  This assessment was scored for 

accuracy and took approximately five minutes to administer.  

 Lexically Controlled Sentences 

The stimulus set of lexically controlled sentences originally developed by 

Eisenberg et al. (2002) was used to measure the effects of word frequency and 

neighborhood density on word recognition.  Eisenberg et al. (2002) created two lists of 

words based on their lexical properties: one lexically “easy” list and one lexically “hard” 

list.  They selected and categorized words as lexically “easy” or “hard” using the 

methodology described in the Neighborhood Activation Model (NAM) developed by 

Luce and Pisoni (1998) and Kirk, Pisoni, and Osberger (1995).  Lexically “easy” words 

are high frequency words in English with low neighborhood densities (fewer phonetically 

similar words).  Lexically “hard” words are low frequency words with high neighborhood 

densities (greater number of phonetically similar words).  Each test list consisted of 15 

practice words and 60 test words produced by one female speaker.  Using these 75 words, 

Eisenberg et al. (2002) then created two lists of 25 low predictability sentences (5 

practice and 20 test sentences).  Each sentence was five to seven words in length and 

contained three “key” words from either the easy or hard list.  The two sentence lists 

were combined to create one set of 10 practice sentences and 40 test sentences that were 

also vocoded and presented in a randomized order.  Practice trials always preceded test 

trials (see Appendix B for list of sentences).  Sentences were played over a loudspeaker at 

65 dB and scored for number of key words correct.  For this task, children and adults 

were instructed to simply repeat what they heard.  Neither group received any feedback 
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regarding the accuracy of their responses.  This task took approximately 10 minutes to 

administer. 

 California Verbal Learning Test- Children’s Version (CVLT-C)   

 The CVLT-C was used to obtain a detailed profile of the participant’s verbal 

learning and memory abilities.  The CVLT-C provided measures of multi-trial free recall, 

recognition, organizational strategies, serial position effects, perseverations and 

intrusions in recall, and proactive and retroactive interference.  The CVLT-C consists of 

two parts.  During Part 1, the multi-trial free recall phase, the participant was asked to 

recall in any order items from a list of 15 words (List A) that the experimenter read aloud 

using live voice during 5 learning trials.  The 15 items on List A consisted of familiar 

English words drawn from three semantic categories: things to wear, things to play with, 

and fruits.  After the five learning trials with List A, an interference task was presented, 

consisting of a new list of 15 words (List B) read by the examiner.  List B contained 15 

words drawn from three semantic categories: fruit, sweets, and furniture.  List B was 

followed by the short-delay free recall and cued recall tasks of List A test items.  During 

cued recall, children were asked to recall items from each of the three semantic categories 

of List A (given to the children as memory retrieval cues).  After a 20-minute delay 

period during which the children completed nonverbal activities, the experimenter began 

administration of Part 2 of the CVLT-C.  During Part 2, the participant was asked to 

recall List A items again (long-delay free recall), followed by cued recall of List A items.  

Finally, to measure recognition memory (an estimate of storage with minimal demands 

on retrieval), participants were provided with a list of 45 words consisting of the 15 List 

A words and 30 distractor words and were asked to indicate for each word if it was a 
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from List A.  In the present study, we focused on the short-term, free recall trials of 

verbal learning and memory (Part 1) because speech perception was expected to be 

related to verbal learning primarily through short-term effects on free recall. 

Several raw and scaled scores were obtained for each of the CVLT trials for all 

child participants: List A Trial 1 Free Recall, List A Trial 5 Free Recall, List B Free 

Recall, List A Short-Delay Free Recall (CVLT measures of Cued Recall and Long Delay 

measures were not analyzed for purposes of this study).  Raw and scaled scores were also 

obtained for several CVLT process measures: Proactive Interference (decrement in 

performance resulting from the interference of previously learned material on the 

retention of new material; List B score minus List A Trial 1 Score), Retroactive 

Interference (decrement in performance resulting from the interference of new material 

on the retention of previously learned material; List A Short-Delay Free Recall Score 

minus List B Score), Intrusion Errors (any words recalled that were not on the target list), 

Percent Primacy Recall (percentage of recalled words that were from the first 4 words of 

List A, across Trials 1-5), Percent Recency Recall (percentage of recalled words that 

were from the first 4 words of List A, across Trials 1-5), Semantic Cluster Ratio (an 

index reflecting the degree to which semantically-related words were recalled in adjacent 

order), Serial Cluster Ratio (an index reflecting the degree to which words adjacent to 

each other in the word list as presented by the examiner were recalled in adjacent order 

by the participant), and Learning Slope (the slope of the regression line fit between data 

points reflecting the number of words correctly recalled for each trial on List A Trials 1 

to 5).  Only raw scores were obtained for these measures for adults because the CVLT-C  

was designed and normed for use with children under 17 years of age.   
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In addition to global scores obtained from the CVLT-C, we also focused on a 

subset of trials that provided specific information about different processes of verbal 

learning and memory.  List A Trial 1 was selected because it measures the first exposure 

to the test materials and provides information about the initial memory strategies 

employed and short-term memory capacity.  List A Trial 1 is also important because it is 

the child’s first exposure to all of the test items on the list without having any prior 

knowledge of list length or three semantic categories.  List A Trial 5 was also examined 

separately because it is the last exposure to the test items on List A and can provide 

measures of the final memory strategies employed as well as information regarding the 

amount of material learned after five repetitions.  List B was examined because, aside 

from being the distractor list, it also provided a measure of proactive interference from 

the five presentations of List A.   

The CVLT-C is a standardized test with norms for participants ranging in age 

from 5-16:11 years.  Excluding the 20-minute delay, the CVLT-C took approximately 30 

minutes to administer (Delis et al., 1994).  The CVLT-C was administered live-voice by 

the examiner, with full face visible. 

Procedures 

 All participants were tested individually.  The study was completed in one test 

session lasting 1-1.5 hours.  Parental and adult consents and, when applicable, child 

assents were obtained prior to testing as per the guidelines of Indiana University’s 

Institutional Review Board. All assessments were administered in an IAC sound booth in 

the Speech Research Laboratory at Indiana University in Bloomington.  At the 

conclusion of the experiment, all participants received monetary compensation.  The 
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children received two books along with numerous stickers that were distributed 

throughout the testing session to maintain motivation and attention. 

Results 

CVLT-C Performance Overview 

 Figure 4.1 provides a summary showing the average number of words correctly 

recalled by the NH children and adult controls for each of the five learning trials of List 

A and List B along with an overall mean score averaged across the five learning trials.  

An independent samples t-test (two-tailed) was carried out to compare recall performance 

between children and adults and determine if there were any differences in the number of 

items recalled from List A.  Adults recalled significantly more items from List A on all 

five learning trials compared to the children (Table 4.1).  Both children and adults 

showed improved recall over the five presentations of List A.  An independent samples t-

test was carried out to compare learning slopes between children (M=1.05, SD=.59) and 

adults (M=1.40, SD=.45) to determine if there were any differences in the rate of learning 

of items from List A.  Although both groups demonstrated learning over the five learning 

trials, the adults showed a faster learning rate compared to children [(t(60)=2.62, p=.011), 

two-tailed].    

 Table 4.2 displays results from an independent samples t-test analysis comparing 

overall performance by the NH children and adults on the CVLT-C.  Findings show that 

adults were significantly different on all performance measures except amount of PI, 

serial clustering behaviors, and primacy and recency scores.  As shown in Table 4.2, 

adults had better recall scores on List A Trial 1, List A Trial 5, List B, and then List A 

after a short delay (SDFR).  They were also less affected by RI and produced 
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significantly fewer intrusions during recall.  Adults also showed stronger tendencies to 

semantically cluster information during recall (recall information by categories).  They 

also learned items on the list at a faster rate compared to children, which is indicated by 

learning slope.  Children showed stronger recency scores demonstrating a stronger bias to 

recall items from short-term memory compared to adults. 

CVLT-C Free Recall and Serial Position Curves 

 To better understand where learning occurred during the five learning trials of 

List A, we decomposed the learning curve into primacy, middle, and recency 

subcomponents. The CVLT-C scoring program defined the primacy portion of a list as 

the first four items and the recency portion as the last four items of the list (Delis et al., 

1994).  The middle portion included items 5-11 of the list.  To further analyze primacy 

and recency effects in greater detail, each subject’s data were rescored in order to 

calculate a separate percent correct score of recall for the primacy, middle, and recency 

portions of the list (e.g., percentage of words in each portion of the list that were recalled 

by the subject) for each learning trial.  A percent correct score was also calculated for the 

middle seven items of each list although the CVLT-C program did not originally analyze 

these serial positions.  

 Figure 4.2 shows the overall serial position curves for List A Trial 1 (top panel) 

and List A Trial 5 (bottom panel).  Scores for children and adults are plotted in each 

panel.  Both children and adults showed very similar patterns of free recall for List A 

Trial 1.  While both groups showed increases in recall after five learning trials, the adults 

were close to ceiling on performance for List A Trial 5.  Both groups also showed the 

conventional U-shaped serial position curves as expected during free recall tasks.  To 
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reduce the variance and noise in Figure 4.2, Figure 4.3 displays serial curves showing the 

average number of items correctly recalled (percent correct) for each of the three 

subcomponents of the serial position curves (primacy, middle, and recency) for each of 

the five learning trials for List A (1-5) for the NH children and adults.  Both children and 

adults showed a consistent U-shaped serial position curve across all five List A learning 

trials.  Words from the primacy and recency portions of the list were recalled better than 

items from the middle portion of the list.  Also, performance increased for each 

consecutive presentation of List A, demonstrating repetition-based verbal learning by 

both groups over the five learning trials (also shown in Figure 4.1).  Figure 4.4 shows a 

comparison of the rates of learning for each of the three subcomponents of the serial 

position curve for both NH children and adults.  The triangles and circles to the right in 

each panel represent the average percent recall of items in List B for NH adults and 

children, respectively.  Primacy recall was greater than middle and recency recall at Trial 

1 and peaked at Trial 3 for both children and adults.  Recency recall and middle recall, on 

the other hand, showed steep learning curves from Trials 1-3 and continued improvement 

through Trial 5.   

 Figure 4.5 displays performance on List A Trial 1 (solid line) and List B (dashed 

line) for each of the three subcomponents of the serial curve for NH children (left panel) 

and adults (right panel).  Effects from proactive interference (PI) can be seen by 

comparing recall performance on List B to recall performance on List A Trial 1.  Effects 

of PI are evident when poorer recall performance is found for List B compared to recall 

performance on List A Trial 1.  Children showed poorer performance on List B on the 

primacy and middle portions of the lists compared to List A Trial 1.  Paired samples t-
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tests were computed to determine if the difference in performance was statistically 

significant.  Analyses revealed that performance on the primacy portion of List A Trial 1 

(M=51.61, SD=24.10) was not significantly higher than performance on the primacy 

portion of List B (M=44.35, SD=28.66); t(30)=1.04, p=.31, two-tailed.  However, 

performance on the middle portion of List A Trial 1 (M=30.03, SD=16.68) was 

significantly higher than performance on the middle portion of List B (M=19.81, 

SD=14.75); t(30)=2.74, p=.01, two-tailed.  This means that children were affected by PI 

during recall of the middle portion of List B.  Adults showed poorer performance on List 

B only on the middle portion of the list compared to List A Trial 1.  Paired samples t-test 

were computed to determine if the difference in performance was statistically significant.  

Analyses revealed that while performance on the middle portion of List A Trial 1 

(M=39.77, SD=15.74) was not significantly higher than performance on the primacy 

portion of List B (M=28.61, SD=25.59); [t(30)=2.01, p=.054, two-tailed], the difference 

approached statistical significance. 

Relations Between CVLT-C and Vocoded Sentence Recognition  

 Spearman’s rank correlations were calculated between performance on the 

vocoded sentences and several scores from the CVLT-C scoring program to get an 

overview of how degraded spoken word recognition was related to verbal learning and 

memory measures for the NH children (see Table 4.3).  While Pearson product-moment 

correlations were used for consistency in the replication of the Eisenberg et al. (2002) 

study in Chapter 2, Spearman’s rank correlations were used in Chapters 3 and 4 because 

of the relatively small sample size and to detect potentially nonlinear trends in the data.  

Children with better speech perception scores for vocoded sentences recalled more words 
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on the fifth learning trial (List A Trial 5, rs=.47, p=.007), Trial B (rs=.44, p=.014) and 

List A Short-Delay Free Recall (rs=.41, p=.021).  Better speech perception scores were 

also related to greater serial clustering during recall (rs=.43, p=.016), higher primacy 

recall (rs=.37, p=.04), less recency recall (rs=-.52, p=.002), and fewer intrusion errors 

(rs=-.42, p=.018).  These findings indicated that children with better speech perception 

under challenging, degraded sound conditions use more serial, primacy strategies during 

verbal learning and have greater verbal memory and learning capacity.   

 Spearman’s rank correlations were also calculated between NH children’s 

performance on vocoded sentences and the three derived subcomponents of the serial 

curve for List A Trial 1, List A Trial 5, and List B (see Table 4.4).  Children with better 

scores on vocoded sentences recalled more words from the primacy portion of List A 

Trials 1 and 5.  Better perception of vocoded sentences was also related to better middle 

portion recall only for List A Trial 5.  Recency recall was unrelated to vocoded sentence 

performance on List A, but was positively related to vocoded sentence performance on 

List B.   

 These findings suggest that robust vocoded speech perception skills may underlie 

efficient subvocal rehearsal, which is used preferentially to maintain words from the 

primacy portion of List A in memory.  On the other hand, recency recall for List A is 

much less likely to be dependent on active rehearsal skills and therefore may relate less 

with individual differences in vocoded speech perception.  The finding of a significant 

relationship between vocoded sentence performance and List B recency suggests that 

different strategies and processes may influence List B performance, possibly as a result 

of PI effects.  Importantly, PI effects on List B performance were shown only in the 
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primacy and middle portions of the list (Figure 4.5), whereas recency performance 

improved on List B.  Therefore, PI effects may interfere with the benefit of efficient 

speech perception skills for recall from the primacy portion of the list.  Improvement in 

recency performance in List B may reflect greater use of active memory strategies on the 

list, possibly involving verbal rehearsal or more robust lexical representations supported 

by efficient processing of spoken language such as robust speech perception skills.   

Discussion 

 In this experiment, subjects demonstrated several well-established characteristics 

of verbal learning and memory using the CVLT-C.  NH children and adults showed a 

positive learning curve over five repetitions of a 15-word list, with adults showing a 

faster learning rate and greater recall performance than children.  Specific analyses of the 

subcomponents of the serial position curves produced expected primacy and recency 

effects in learning words on the list in both NH children and adults.  When the learning 

trials were broken down by items based on their serial position in the list and divided into 

the three subcomponents of the serial position curve (primacy, middle, and recency), both 

NH children and adults also displayed U-shaped serial curves over all trials.  This finding 

verified that all participants displayed a normal pattern for free recall as found in previous 

research in typically-developed young adults (Cole, Frankel, & Sharp, 1971; Murdock Jr, 

1962).   

Interestingly, PI effects on List B were not observed for recency portions of the 

list in either children or adults, whereas PI effects were consistently found for words in 

the middle of the word list.  Furthermore, children showed a PI effect for the primacy 

portion of the list, whereas adults did not.  This finding suggests that the effects of PI are 
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dependent on the location of the test words in the list.  Specifically, recency effects in 

learning appear to be strong enough that PI does not negatively impact words presented at 

the end of the list, whereas words in the middle of the list are particularly vulnerable to PI.  

Another explanation for this pattern is the development of new organizational strategies 

for free recall by the time the children get to List B in the test protocol.  Because 

information from the beginning of the list is thought to receive more active rehearsal, 

resulting in more robust representations in memory, children began to recall information 

at the end of the list first while it was still in immediate memory before recalling the 

items from the early primacy part of the list.  This creates an advantage for remembering 

items at the end of the list, as opposed to the beginning.  This pattern can be seen in 

Figure 4.3 where items from the recency portion were recalled at higher rates than those 

in the primacy portion of the list as the learning trials for List A proceeded (specifically 

List A Trials 4 and 5). 

The results of this experiment also demonstrate that vocoded speech perception 

and verbal learning and memory are strongly related in NH children.  Performance on the 

vocoded sentence task was correlated with several measures of verbal learning and 

memory throughout the CVLT-C: number of words recalled after five exposures to a 

word list, number of words recalled from an interference list, and number of words 

recalled from the original list after presentation of the interference list.  Thus, better 

sentence perception under challenging conditions is related positively with a broad set of 

measures of verbal learning and memory.  These findings are consistent with the 

hypothesis that the processes used in verbal learning and memory may act as 

compensatory strategies to support speech perception under challenging conditions and, 
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conversely, that robust lexical representations of spoken words and fluid-efficient speech 

perception promote greater verbal learning and memory.   

 Importantly, the present results go beyond verbal learning and memory 

performance and also provide insight into relations between vocoded sentence perception 

skills and process measures of verbal learning and memory.  Better vocoded sentence 

perception was related to greater serial clustering during free recall trials, and individuals 

with better vocoded sentence perception recalled more words from the early portion of 

the list (primacy) and fewer words from the later portion of the list (recency).  Greater 

amounts of serial clustering and primacy recall are suggestive of the use of rote Type I 

rehearsal strategies for maintenance of verbal information in short-term memory (Rundus, 

1971; Rundus & Atkinson, 1970).  Verbal rehearsal is critical for maintaining 

information in memory as additional information is received and processed, and items at 

the beginning of a list typically receive more verbal rehearsal than items in the middle or 

at the end of the list (Atkinson & Shiffrin, 1968; Rundus, 1971; Rundus & Atkinson, 

1970).  Because children with more robust, efficient speech perception skills under 

challenging conditions process verbal information more rapidly and automatically, they 

may be better able to use rote-serial cognitive/subvocal rehearsal strategies when learning 

lists of words.  Additionally, the ability to efficiently create more robust and stable long-

term representations of spoken language facilitates both memory and learning of 

sequences of spoken words and perception of degraded spoken language stimuli.  On the 

other hand, children with poorer speech perception skills may be more reliant on recency 

strategies in verbal learning and memory, which demand less active rehearsal and 

memory strategies for free recall. 
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 Vocoded sentence perception performance was negatively correlated with  

CVLT-C Intrusion scores.  This finding indicates that children with better speech 

perception under challenging conditions were less likely to recall words that were not on 

the actual studied word list (List A).  Fewer intrusions suggest less confusion and 

substitution of words in the same phonological or lexical neighborhood, as a result of 

more highly specified and detailed representations of phonological and lexical 

information about spoken words in memory.  Such a result is consistent with more 

accurate and robust encoding of verbal items and better cognitive control, which would 

be reflected in better vocoded sentence perception scores. 

 Additional findings of particular interest included the relations between the serial 

curve subcomponents and spectrally-degraded vocoded sentence perception (Table 4.4).  

Correlational analyses revealed significant relations between recalling words from the 

primacy portions of the list for List A Trial 1and the perception of words in vocoded 

sentences.  By List A Trial 5, performance on the middle portion of the list was also 

significantly related to vocoded sentence performance.  This suggests a trend that 

relations between vocoded sentence perception and performance on word recall by serial 

location increased with more repetitions for List A.  Such a finding is consistent with the 

hypothesis that children with more robust, efficient speech perception skills engage 

strategies of rehearsal of words in serial order beginning with the primacy portion of the 

list at the first trial and progressing serially to the middle portion of the list by the fifth 

learning trial.  Interestingly, for the PI trial (List B), only recency recall performance was 

positively related to vocoded sentence perception.  This suggests that children with more 

robust lexical representations of words engage different strategies during the PI list than 
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the original list.  It may be that robust representations of words from List A, which are 

stronger in children with better speech perception skills, interfere with less efficient rote-

primacy memory strategies on List B and cause greater reliance on recency effects. 

 Taken together, these findings suggest that being able to actively encode, rehearse, 

and retrieve spoken words in their original serial order helps with verbal learning, 

memory, and recall of words presented earlier in a sequence (primacy), which must be 

retained in the face of interference from later (recency) words.  This same process may 

also be important for learning language.  Children who are more proficient at rapidly 

transferring verbal information into memory with less interference from recency effects 

may develop better language learning skills that aid them in perceiving speech when less 

reliable acoustic-phonetic information is available in the speech signal.  Children who 

rely more heavily on retrieval from recency in free recall may be less efficient in 

establishing stable robust lexical representations of degraded speech in long-term 

memory. 

 In summary, the results of this study demonstrate the presence of similar verbal 

learning curves for NH children and adults, which demonstrate effects of primacy, 

recency, and serial clustering on recall performance.  Reciprocal, bidirectional relations 

between vocoded sentence perception and verbal learning were hypothesized because 

each of these abilities supports the other under challenging conditions and because both 

of these abilities are dependent on robust lexical representations of spoken language.  

Thus, efficient encoding, transfer, and retrieval of verbal information from memory are 

critical for both verbal learning and perception of spectrally-degraded vocoded speech.  

The core processes underlying verbal learning and memory are inseparable and closely 



 134 

linked to processes used to recognize spoken words in sentences, especially spectrally-

degraded vocoded sentences like the ones used by Eisenberg et al. (2002). 

Experiment 2 

 The purpose of this experiment was to extend the findings obtained in Experiment 

1 to investigate relations between speech perception and verbal learning and memory in a 

group of children with cochlear implants (CIs) and a comparison group of NH age-

matched controls.   Children were tested on measures of sentence repetition and verbal 

learning.  Using children with CIs and age-matched NH controls allowed us to uncover 

possible differences in verbal learning capabilities and organizational strategies in 

memory in these two groups of children.  Cochlear implants provide degraded, 

compromised, underspecified auditory input, which requires more controlled-effortful 

processing strategies during speech perception, compared to the automatic, fluid speech 

perception in NH children.  Furthermore, children with CIs have compromised, 

underspecified phonological and lexical representations of spoken words resulting from a 

period of auditory deprivation before they received their CIs.  As a result, their language 

skills are slower and more effortful even when the demands of audibility are removed.  

As a result, children with CIs must allocate more effortful, controlled resources to tasks 

such as speech perception and verbal learning and memory compared to NH children.  

The effects of effortful speech perception demands and additional allocation of resources 

on verbal learning and memory in children with CIs have not been studied and represent 

an important area to investigate because learning processes underlie all adaptive 

behaviors, especially speech perception and spoken language processing. 
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Methods 

Participants 

 Cochlear-Implanted (CI) Children  

 A subset of data from children with CIs was obtained from a larger ongoing study 

investigating the long-term neurocognitive processes and speech-language outcomes 

(LTO) in deaf children with CIs at Indiana University School of Medicine in Indianapolis 

(Kronenberger, Colson, Henning, & Pisoni, 2014; Ruffin, Kronenberger, Colson, 

Henning, & Pisoni, 2013).  This subset consisted of 23 monolingual English-speaking 

children with CIs (11 females, 12 males) from 9;3 years (years; months) to 16;7 years of 

age (M=13;2 years; SD=2;5 years).  The majority of the sample was Caucasian (n=21), 

with the remaining identified as either Asian (n=1) or more than one race (n=1).  The 

children with CIs were all implanted with multichannel CIs prior to 7 years of age 

(M=2;4 years) and had used the implant for 7 years or more (M=10;9 years).  All children 

had a severe to profound bilateral hearing loss that was identified by age 3 or younger.  

Etiology of deafness included: unknown (n=12), genetic (n=4), auditory neuropathy 

(n=2), Mondini malformation (n=2), enlarged vestibular aqueducts (n=1), ototoxicity 

(n=1), and Meningitus (n=1).  Family income was reported as follows: 4.3% ($10,000-

$14,999), 4.3% ($15,000-$24,999), 8.7% ($25,000-$34,999), 8.7% ($50,000-$64,999), 

13% ($65,000-$79,999), 8.7% ($80,000-$94,999), 39.1% (>$95,000), and 13% did not 

report.  To participate, children had to be enrolled in an auditory-aural rehabilitative 

program and/or education setting and did not have any additional developmental or 

cognitive diagnoses other than hearing loss.  All children had nonverbal IQ scores greater 
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than or equal to 1 SD below the normative mean.  Table 4.5 summarizes the demographic 

characteristics of these 23 children with CIs. 

 Normal-Hearing (NH) Age-Matched Control Children  

 A subset of data from NH age-matched control children was also obtained from a 

larger ongoing study investigating the long-term neurocognitive processes and speech-

language outcomes (LTO) in deaf children with cochlear implants at the Indiana 

University School of Medicine in Indianapolis (Kronenberger, Colson, Henning, & 

Pisoni, 2014; Ruffin et al., 2013).  This subset consisted of 21 typically-developing 

monolingual English-speaking children (13 females, 8 males) from 9;11 years (years; 

months) to 16;7 years of age (M=13;4 years; SD=2;4 years).  The majority of the sample 

was Caucasian (n=16), with the remaining identified as either African-American (n=2) or 

more than one race (n=3).  By parent-report, all children were monolingual native 

English speakers, had normal hearing and vision, and no diagnosed 

cognitive/developmental delays.  Family income was reported as follows: 4.8% 

(<$5,000), 14.3% ($25,000-$34,999), 14.3% ($35,000-$49,999), 14.3% ($50,000-

$64,999), 14.3% ($65,000-$79,999), 4.8% ($80,000-$94,999), 28.6% (>$95,000), and 

4.8% did not report.  The percentage of participants that were cochlear-implanted or NH 

did not differ by gender [c2(1, N=44) =.88, p=.35], income [c2(9, N=44) =8.26, p=.51], or 

age [t(42)=.16, p=.88].  Independent samples t-tests revealed no significant difference in 

nonverbal IQ between children with CIs (M=10.43, SD=2.45) and NH children (M=9.71, 

SD=2.85); t(42)=.90, p=.37, as measured by the Geometric Analogies subtest of the 

CTONI-2.   All NH children had nonverbal IQ scores greater than or equal to 1 SD below 
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the normative mean.  All NH children included in data analyses had pure tone hearing 

screenings within normal limits as assessed by a hearing screening.   

Performance Measures 

 Geometric Analogies Subtest of the CTONI-2 

 The Geometric Analogies subtest is part of the Comprehensive Test of Nonverbal 

Intelligence- Second Edition (CTONI-2).  The CTONI-2 is a standardized test of 

nonverbal reasoning abilities (Hammill & Pearson, 2009) normed for individuals ranging 

from 6–89.11 years of age.  During the Geometric Analogies subtest, a child must 

understand the relationship between the two practice items and then use that knowledge 

to identify the missing item in the test pair.  The Geometric Analogies subtest has a mean 

score of 10 and SD of 3.  Scaled scores were obtained for each child.  The test took 

approximately 10 minutes to administer. 

 Harvard Sentence Test 

 A set of meaningful Harvard Sentences (IEEE, 1969) was presented through a 

recording to both the children with CIs and NH children.  Both groups of children heard 

the sentences presented in the clear, as this was part of a larger study not employing the 

use of vocoded speech.  The stimuli consisted of 28 meaningful phonetically-balanced 

sentences.  Two practice sentences were administered prior to the test sentences.  Each 

sentence contained five keywords for a total of 140 test keywords (e.g. Never kill a snake 

with your bare hands).  Performance was based on number of keywords correct and 

scores were transformed into percent correct scores.  The Harvard Sentence Test took 

approximately 10 minutes to administer. 
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 California Verbal Learning Test- Children’s Version (CVLT-C)   

 See Methods section of Experiment 1 for a description of the CVLT-C assessment. 

Procedures 

 All participants were tested individually.  Parental consents and child assents, 

when applicable, were obtained prior to testing as per the guidelines of the Indiana 

University School of Medicine Review Board.  At the conclusion of the experiment, all 

participants received monetary compensation.  Testing took approximately one hour to 

administer and was carried out by highly experienced ASHA-certified speech-language 

pathologists. 

Results  

CVLT-C Performance Overview  

 Figure 4.6 displays the average number of correct words recalled by both groups 

of children for each of the five learning trials on List A and List B of the CVLT-C and an 

overall average score for the learning trials of List A.  Both groups of children 

demonstrated learning effects following repeated repetitions of List A.  Although both CI 

and NH children showed similar patterns of repetition learning, the CVLT-C scores for 

the CI children were slightly lower than their NH peers on average and for all learning 

trials except List A Trial 1.  Independent samples t-test revealed no significant 

differences between the two groups of children’s scores on any of the learning trials of 

List A (Table 4.6).  An independent samples t-test was also carried out to compare 

learning slopes between the two groups of children to determine if there was a difference 

in the rate of learning of items from List A following repetition.  No significant 

difference was found between the learning rates of the CI children (M=1.03, SD=.67) and 



 139 

NH children (M=1.33, SD=.39), [(t(41)=1.71, p=.095), two-tailed].   However, inspection 

of learning curves in Figure 4.6 shows that the learning curve for the CI sample reached 

an asymptote at a lower value than the learning curve for the NH sample.  Thus, the CI 

sample reached a peak number of words learned that was numerically lower than the NH 

sample, although statistical tests of this difference were nonsignificant. 

 Table 4.7 displays results from an independent samples t-test analysis comparing 

performance by children with CIs and NH children on the CVLT-C.  While the majority 

of differences in performance were nonsignificant, NH children showed higher serial 

clustering scores compared to children with CIs indicating that NH children were more 

likely to recall information in the order it was presented on the study list.    

CVLT-C Free Recall Serial Position Curve Analyses 

 As with the data from the NH children and adults in Experiment 1, each child’s 

CVLT-C free recall data were rescored in order to calculate a percent correct score for 

free recall of items from the primacy, middle, and recency portions of the list for each 

learning trial.  A percent correct score was also calculated for the middle seven items 

although the CVLT-C program did not provide this score.  The free recall data from the 

CI children and their NH age-matched peers were also decomposed into three 

subcomponents (primacy, middle, and recency) for List A Trial 1, List A Trial 5, and List 

B.  Figure 4.7 shows a summary overview of the serial position curves for List A Trial 1 

(top panel) and List A Trial 5 (bottom panel) for the CI and NH groups, respectively.  

Both groups showed a similar pattern of free recall with the typical U-shaped serial 

position curve after first exposure to the test materials (List A Trial 1) and a less shallow 

serial position curve near ceiling levels of performance for List A Trial 5.  
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 Figure 4.8 displays the smoothed serial position curves based on averaging the 

number of items correctly recalled (percent correct) in each of the three subcomponents 

of the list (primacy, middle, and recency) for each learning trial in List A (1-5) for both 

the CI (solid line) and NH (dashed line) children.  Both groups of children displayed 

serial position curves with free recall accuracy increasing following consecutive learning 

trials of List A.  Figure 4.9 shows a more detailed comparison of the rate of learning for 

each group by plotting average percent recall scores for both groups of children broken 

down by the three serial curve subcomponents.  The circles and squares to the right in 

each panel represent the average percent of recall of items in List B for NH children and 

children with CIs, respectively.  Figure 4.10 displays performance on List A Trial 1 and 

List B for each of the three subcomponents of the serial position curves for CI children 

(left panel), NH children (center panel), and the younger NH children from Experiment 1 

(right panel) for comparison.   

Figures 4.8 to 4.10 demonstrate several patterns in the learning curves of the CI 

and NH samples. At List A Trial 1, the CI and NH samples show very similar 

percentages of correct recall for words from the primacy, middle, and recency portions of 

the list.  By Trial 3, however, the percentage of correct recall for primacy and middle 

portions of the list in the NH sample exceeds that of the CI sample, whereas recency 

performance remains similar (not significantly different).  This suggests that differences 

in verbal learning between NH and CI samples influence earlier portions of the word list 

first, consistent with the finding from Experiment 1 which showed that better speech 

perception skills (which would be found in children with NH compared to those with CIs) 

were associated with better primacy (on Trials 1 and 5) and middle (on Trial 5) recall, but 
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not recency recall  (Table 4.4).  In Figure 4.11, effects of PI can be seen by comparing 

free recall performance on List B to free recall performance on List A Trial 1 for each of 

the three groups.  Effects of PI result in worse recall performance for List B than for List 

A in the primacy and middle portions of the list for the NH children in both experiments, 

but not in the recency portion of the list.  The CI children showed susceptibility to PI only 

on the middle portion of List B.  They also displayed the same improvement in List B 

Recency recall as was shown by the NH samples.    

CVLT-C and Speech Perception Measures 

 Spearman’s rank correlations were calculated between performance on the 

Harvard sentences and the CVLT-C for both the CI and NH age-matched children (see 

Table 4.8).  In the NH children’s dataset, one significant correlation was uncovered 

between performance on the Harvard sentences and the CVLT-C Serial Clustering score 

(rs=.48, p=.03).  NH children who utilized more serial recall strategies performed better 

on word recognition in sentences.  In the CI children’s dataset, two significant 

correlations were observed.  Children with CIs who had stronger performance on the 

Harvard sentences produced better CVLT-C List A Trial 1 scores (rs=.43, p=.04) and had 

fewer intrusions on List A recall (rs=-.47, p=.02).   

 Spearman’s rank correlations were then calculated between performance on 

Harvard sentences and the three subcomponents of the serial curve for learning trials List 

A Trial 1, List A Trial 5, and List B (see Table 4.9).  No significant correlations were 

found in the NH children’s data between the Harvard Sentence Test scores and scores 

from the serial position curve subcomponents.  However, significant correlations were 

found between performance on the Harvard Sentence Test and the recency component of 
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each of the three trials for the CI children (List A Trial 1 recency, rs=.60, p=.003; List A 

Trial 5 recency, rs=.51, p=.013; and List B recency, rs=.60, p=.002).  Children with CIs 

who had stronger sentence perception skills on the Harvard sentences had much stronger 

recall performance on test items from the recency portion of the two test lists.  

Discussion 

 Children with CIs and NH children did not differ statistically in performance for 

words recalled on any trials of CVLT-C List A or List B, in contrast to consistent 

findings reported in the research literature showing poorer verbal short-term and working 

memory in children with CIs (Pisoni & Cleary, 2003; Pisoni & Geers, 2000; Pisoni, 

Kronenberger, Roman, & Geers, 2011).  Although the trend for verbal learning across the 

five List A trials was for children with CIs to reach a ceiling level of performance that 

was lower than that for NH children (see Figure 4.7), the similarities in global 

performance on verbal learning and memory capacity between the CI and NH samples on 

the CVLT-C were striking given the significant auditory deprivation of the children with 

CIs.  The discrepancy in findings between the present study and earlier research 

demonstrating short-term verbal memory deficits in children with CIs could be a result of 

several factors:  Almost all of the prior research on short-term memory in children with 

CIs has used span tests that require serial recall lists of items that cannot be grouped 

semantically into meaningful chunks (such as digits), and the test items must be recalled 

in the same serial order as they were presented.  The test items on CVLT-C use words 

that fall into three semantic categories that can be recalled in any order.  Alternatively, 

the current study may not have been sufficiently powered to detect differences between 

the CI and NH groups; for example, numeric differences were evident between groups on 
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List A Trials 3-5 and on List B.  However, this latter explanation would not account for 

the minimal differences between CI and NH groups found on Lists 1 and 2.  Effect sizes 

in other studies of verbal short-term memory (Harris et al., 2011; Pisoni et al., 2011) 

suggest that the sample size in the current study was adequate to detect differences in free 

recall performance.  Thus, the findings from the present study provide evidence that 

performance on CVLT-C verbal learning and memory in children with CIs cannot be 

inferred from performance on rote-sequential verbal short-term memory measures such as 

digit span.  Additional research is needed to understand verbal learning and memory 

capacity in children with CIs in these two memory tasks. 

Analyses of performance based on serial position of words in the list showed a 

characteristic U-shaped curve of performance in both the CI and NH samples overall and 

for all learning trials of List A.  On later trials of List A, the NH sample learned words 

from the primacy and middle portions of the list at a faster rate than the CI sample, 

showing that much of the gain realized by the NH sample relative to the CI sample by 

Trials 4 and 5 came from performance improvement in the earlier portions of the word 

list.  In Experiment 1, poorer speech perception of vocoded stimuli was associated with 

poorer performance during later verbal learning trials (Trial 5) only in the primacy and 

middle portions of the list.  Like the NH children who received vocoded sentence 

perception stimuli in Experiment 1, children with CIs in this experiment have more 

speech perception challenges as a result of the impoverished, degraded signal provided 

by the CI.  Thus, consistent with the findings from Experiment 1 on the effects of 

degraded speech perception on verbal learning, children with CIs showed poorer verbal 
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learning performance only for the primacy and middle portions of the test list by the later 

CVLT-C trials compared to NH controls.    

The ability to efficiently process a degraded, impoverished speech signal may be 

related more to primacy and middle items of verbal learning than to recency items.  This 

may reflect the greater importance of having more robust representations of verbal 

stimuli for earlier-presented items in a list of words.  Alternatively, more efficient speech 

perception under challenging conditions may permit greater use of serial rehearsal 

strategies that allow for better performance for earlier-presented items in a list of verbal 

stimuli. 

 Analyses of the relations between sentence perception skills and verbal learning 

performance revealed several differences between the CI and NH samples.  In the NH 

sample, serial recall scores correlated positively with performance on spoken word 

recognition measured by the Harvard Sentence Test.  A similar finding was found for NH 

children in Experiment 1, with better performance on vocoded sentence perception 

associated with greater serial clustering during recall.  It is likely that this pattern reflects 

a tendency in children with especially strong fast-automatic processing in sentence 

perception to use internal serial representations of verbal stimuli in learning (either 

actively rehearsed or stored as robust representations in memory) during recall.  

For children with CIs, sentence recognition scores were positively related to their 

ability to recall verbal information at first presentation (List A Trial 1) and to the 

production of fewer intrusive responses during recall.  Stronger immediate memory and 

fewer intrusions during free recall suggests that CI children with stronger spoken word 

recognition skills have more robust detailed memory representations for the test items 
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presented on the CVLT-C.  For NH children, significant relations between sentence 

recognition, recency recall memory, and intrusions may be absent because almost all NH 

children have fast-automatic speech recognition skills: NH children displayed near 

ceiling performance on the Harvard sentences (M=96.95, SD=3.17).  As a result, slight 

differences in their sentence recognition skills are unlikely to influence memory 

efficiency in the same way found for children with CIs, whose speech perception skills 

are more variable, capacity-demanding, and effortful. 

 When the primacy and recency data were analyzed separately for List A Trial 1, 

List A Trial 5, and List B, another differential pattern of findings was uncovered between 

the NH and CI groups.  While no significant correlations were found in the NH children’s 

data, the CI children who performed better on the sentence recognition task also showed 

a strong bias for recalling test items from the recency portion presented at the end of the 

lists.  This finding is in sharp contrast with the results obtained from the NH children in 

Experiment 1 and suggests that CI children with stronger speech perception skills may 

display a bias in processing and depend more heavily on retrieval of items from short-

term auditory memory (e.g., recency) for processing of verbal information, even after 

many years of cochlear-implant use.  It may be that the ability to create robust 

representations from degraded auditory sentences for children with CIs is similar to the 

memory representations accessed from the recency portion of a serial position curve.  

Memory for items in earlier portions of the list, in contrast, would require active rehearsal 

and maintenance in the face of competing stimuli from the latter portion of the list, which 

may rely on a different set of strategies in children with CIs.  Clearly, more research is 

needed to investigate the relations and reciprocal influences of speech perception and 
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verbal learning in children with CIs; earlier findings about verbal working memory or 

inferences from results with NH samples under spectral degradation do not appear to be 

appropriate for understanding verbal learning performance in samples of children with 

CIs, especially deaf children who have used their CIs for long periods of time. 

General Discussion 

 The two studies reported in this chapter investigated (1) characteristics of verbal 

memory and learning in NH and CI samples and (2) relations between the perception of 

spectrally-degraded speech and core verbal learning and memory processes.  The 

investigation of relations between speech perception under challenging conditions and 

verbal learning and memory is critical to understanding the links between bottom-up and 

top-down cognitive processing and how they influenced speech perception and verbal 

learning skills.  Specifically, verbal learning and memory are core higher-order cognitive 

functions underlying language development and use, which may be related to speech 

perception skills.  We hypothesized that perception of spectrally-degraded speech and 

verbal learning and memory processes would be bidirectionally related because of (1) 

bottom-up influences whereby more automatic-fluid speech perception facilitates 

efficient verbal learning and memory; and (2) top-down influences whereby stronger 

lexical representations of words in verbal learning and memory allow for more robust 

perception of degraded speech signals.  A correlational method was used in this research 

as a first step for establishing and investigating relations between these components of 

cognitive processing, providing support for the hypotheses and ideas for future directions 

for research. 
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The first study assessed vocoded speech perception in NH children and NH adults.  

The second study investigated speech perception in children with CIs and a group of age-

matched NH controls.  The results obtained with the CVLT-C provided new insights into 

how several core foundational measures of verbal learning and memory strategies are 

related to degraded spoken word recognition in both children with CIs and NH children 

listening to an acoustic simulation of a CI using spectrally-degraded vocoded speech.   

 Among the novel, theoretically significant findings from this research were 

several differences found in how CI and NH children and adults encode and retrieve 

verbally presented information.  Although all groups showed characteristic U-shaped 

serial position curves during the multi-trial free recall tasks of the 15-item lists on the 

CVLT-C, groups who were more proficient in speech perception skills showed faster 

rates of repetition-based learning and greater free recall.  In Experiment 1, adults 

remembered significantly more CVLT-C words and had a faster learning rate than NH 

children.  In Experiment 2, NH children showed numerically greater recall performance 

and faster learning rate, although the differences were nonsignificant.  These findings are 

consistent with stronger speech perception skills being related to better verbal learning 

and memory scores on a multi-trial free recall task. 

 A second set of findings demonstrated differences in verbal learning and memory 

based on the serial position of words in the list.  For NH children in Experiment 1 and 2, 

performance on primacy words was stronger than middle and recency words for the first 

1-2 exposures to the word list.  However, words in the recency and middle positions of 

the list showed steeper learning curves than primacy and continued improvement through 

trial 5.  Although a similar pattern of learning was shown by children with CIs, the CI 
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sample had a slower rate of learning for the primacy and middle portions of the word list 

than the NH sample, while recency learning rate was comparable between the two groups 

(Figure 4.9).  This finding suggests that weaknesses in verbal learning in CI compared to 

NH samples are greater for words presented earlier in the list.  This finding is consistent 

with the results reported in Experiment 1 showing that speech perception skills are 

positively associated with primacy and middle free recall but not recency free recall.   

 Relations between verbal learning and memory and sentence perception skills 

were observed in both experiments, as hypothesized.  For NH children listening to 

vocoded sentences and for children with CIs using Harvard sentences in quiet, better 

speech perception was related to better CVLT-C word recall and fewer intrusion errors, 

consistent with models linking speech perception under challenging conditions and the 

processes underlying verbal learning performance.  However, several differences in 

relations between sentence perception and verbal learning performance were also found 

between NH and CI samples.  In the CI sample, for example, positive relations between 

sentence perception skills and verbal memory capacity were found for List A Trial 1, 

whereas in the NH sample under vocoded conditions, sentence perception performance 

was related to List A Trial 5, List B, and Short-Delay Free Recall.  However, this 

discrepancy may be due to limited power in the statistical analyses, because the sentence 

perception-verbal learning correlations for the other trials for each group were in the 

predicted direction but did not approach significance.  Also, the NH controls approached 

ceiling on the sentence recognition task in quiet. 

 A more substantial contrast between CI and NH results was found in relations 

between sentence perception and use of serial recall strategies in free recall, which were 
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strongly related in the NH sample under both vocoded (Experiment 1) and normal 

listening (Experiment 2) conditions but were unrelated in the CI sample.  It may be that 

serial recall strategies are especially difficult for children with CIs because of possible 

underlying sequential processing deficits (Conway et al., 2010; Conway, Karpicke, et al., 

2011; Conway, Pisoni, et al., 2011) and because of compromised lexical representations 

of spoken words.  As a result, free recall in children with CIs may be reflected more in 

recency recall strategies (Figure 4.9) that are less dependent on active serial memory 

maintenance strategies such as verbal rehearsal.  Therefore, CI children may rely more 

heavily on recency memory because they have less efficient verbal rehearsal and 

organizational strategies to help them transfer underspecified spoken words from auditory 

short-term memory into long-term memory in a brief period of time during a multi-trial 

free recall task.   

 There are several limitations to this research that should be considered when 

interpreting the results.  First, the NH children using vocoded speech from Experiment 1 

and the NH children in Experiment 2 were different demographically.  The NH children 

in Experiment 1 were, on average, 3 years younger than the group of CI children and 

their NH age-matched controls used in Experiment 2.  We did not control for age in the 

analyses, which is something to consider in future research.  Also, the two studies used 

different stimulus materials to measure spoken word recognition, and the sentence stimuli 

were vocoded only in Experiment 1.  As a result, the performance of NH children in 

Experiment 2 on the Harvard sentences, which were presented in unprocessed form, was 

near the ceiling, with very low variability.  This latter characteristic may have influenced 

some of the correlational results of Experiment 2 because of the restricted variance in the 
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sentence scores.  The CI children, on the other hand, received degraded auditory stimuli 

for both the sentences and for the CVLT-C, as a result of limitations inherent in their CIs.   

 An additional limitation is the correlational design of this study, which prevents 

drawing any causal conclusions.  The associations between sentence perception and 

verbal learning skills suggest that there is a relationship that should be further 

investigated but the present results do not provide evidence to support specific, 

processing-level explanations at this time.  Future research should address these 

processing-level questions using experimental designs.  Lastly, because of the small 

sample sizes in all three groups, some analyses might not have been powered sufficiently 

to detect small effects.  Therefore, nonsignificant findings should be interpreted with 

caution, and the findings from this study should be replicated to test for robustness and 

reliability with larger sample sizes spanning a greater age range. 

Conclusions 

 The results of these two experiments demonstrated associations between speech 

perception under challenging, degraded listening conditions, and performance on a 

standardized test of verbal learning and memory.  Although both groups of children (CI 

and NH) could process the degraded acoustic input, the present research using novel 

measures of verbal learning and memory showed that cochlear-implanted and normal-

hearing children processed  (i.e. encoded, stored, and retrieved) verbal material in several 

fundamentally different ways in a multi-trial free recall learning task.  These are 

clinically significant findings because they suggest the presence of bidirectional top-

down and bottom-up relations between speech perception and verbal learning and 

memory.  For NH children, findings indicate that speech perception under challenging 
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conditions may both promote and be supported by verbal learning and memory capacity 

and strategies such as serial recall revealed by clustering strategies.  For children with CIs, 

findings suggest that stronger speech perception skills may be particularly important for 

recency recall and reduction of intrusion errors.  Knowing more about the information 

processing dynamics and organizational strategies used in verbal learning and memory by 

NH children under challenging speech perception conditions and by deaf children with 

CIs is critical at this time for the development of novel interventions for at-risk children 

with CIs.  The next step in this research is to provide a processing-level explanation for 

the associations observed between sentence perception under challenging conditions and 

verbal learning and memory skills measured in the free recall tasks like the CVLT-C.  

Future studies should include direct investigation of the role of top-down and bottom-up 

influences testing causal models and specific predictions using direct experimental 

manipulations of several known independent variables to established functional relations 

between speech perception with challenging degraded conditions and underlying the 

organizational processing and strategies routinely used to assess verbal learning and 

memory skills. 
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Table 4.1.  Independent Samples t-test Analyses Comparing Recall Between Normal-

Hearing Children and Adults in Experiment 1 

Variable Children Adults    

 M SD M SD df t p 

List A Trial 1 6.13 2.09 7.48 1.12 46 3.176 .003 

List A Trial 2 8.26 2.38 11.06 2.08 60 4.94 <.001 

List A Trial 3 9.48 2.59 12.52 1.65 51 5.59 <.001 

List A Trial 4 9.94 2.73 13.03 1.78 52 5.29 <.001 

List A Trial 5 10.52 2.86 13.48 1.63 48 5.017 <.001 

 

Note. Recall is reported in raw scores (number of items recalled).  
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Table 4.2.  Independent Samples t-tests Between NH Children and Adults on CVLT-C 

Performance Measures in Experiment 1 

CVLT-C Variables NH Children 
(N=31) 

NH Adults 
(N=31) 

 

 M SD M SD df t p 
List A Trial 1 6.13 2.09 7.48 1.12 46 3.18 .003 

List A Trial 5 10.52 2.86 13.48 1.63 48 5.017 <.001 

List B 5.58 1.65 7.68 1.86 60 4.68 <.001 

PI -.55 2.20 .19 1.78 60 1.46 .15 

SDFR 8.77 2.78 12.77 2.33 60 6.14 <.001 

RI -1.74 1.55 -.71 1.44 60 2.72 .009 

Intrusions 5.77 6.02 1.23 3.14 45 3.73 <.001 

Serial Clustering 2.26 1.43 3.4 3.32 41 1.75 .087 

Semantic Clustering 1.35 .45 1.68 .72 50 2.23 .03 

Learning Slope 1.05 .59 1.40 .45 60 2.62 .011 

Primacy 29.19 4.99 28.65 3.50 60 .501 .62 

Recency 30.65 7.77 27.94 3.44 41 1.78 .083 

 

Note. PI (proactive interference) was computed by subtracting List A Trial 1 from List B.  

RI (retroactive interference) was computed by subtracting List A Trial 5 from the SDFR 

(short-delay free recall). 
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Table 4.3.  Spearman’s Rank Correlational Analyses Between Percent Recognition of 

Vocoded Sentences and the CVLT-C Performance Measures for the NH Children in 

Experiment 1 

CVLT-C Variables RS-Value 

 
List A Trial 1 
 

 
.30 

List A Trial 5 .47** 

List B .44* 

Proactive Interference (PI) .06 

Short-Delay Free Recall (SDFR) .41* 

Retroactive Interference (RI) -.09 

Intrusions -.42* 

Serial Clustering .43* 

Semantic Clustering .20 

Learning Slope .29 

Primacy .37* 

Recency -.52** 

 

Note. Vocoded sentence recognition scores reflect percent accuracy.  Proactive 

interference was computed by subtracting List A Trial 1 from List B.  Retroactive 

interference was computed by subtracting List A Trial 5 from the Short-Delay Free 

Recall. 

*p<.05. **p<.01. ***p<.001 (two-tailed) 
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Table 4.4.  Spearman’s Rank Correlational Analyses Between Vocoded 

Sentences and Serial Position Curve Subcomponents of the CVLT-C for the NH 

Children in Experiment 1 

 
CVLT-C Serial Position Curve Subcomponents 

 
RS-Value 

 
List A Trial 1: Primacy 
 

 
.51** 

                        Middle .03 

                        Recency -.02 

List A Trial 5: Primacy .43* 

                        Middle .51** 

                        Recency -.042 

List B:             Primacy .18 

                        Middle .017 

                        Recency .43* 

 

Note. Vocoded sentence recognition scores represent percent accuracy. 

 *p<.05. **p<.01. ***p<.001 (two-tailed) 
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Table 4.5. Characteristics of the Children with CIs in Experiment 2 

 
Measure 

 
M 

 
SD 

 
Range 

 
Age 
 

 
13.11 

 
2.36 

 
9.27–16.63 

Age at Implant 2.29 1.08 0.69–4.66 

CI Duration 10.82 2.45 7.29–15.01 

 
 
Note.  Age is given in years; Age at Implant: age at cochlear implantation in years; and 

CI Duration: duration of cochlear implant use in years. 
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Table 4.6.  Independent Samples t-test Analyses Comparing Recall of List A Between 

Children with CIs and NH Children in Experiment 2 

Variable CI Children NH Children    

 M SD M SD df t p 

List A Trial 1 7.35 1.97 6.86 2.29 42 .76 .45 

List A Trial 2 9.65 2.48 9.86 1.77 42 .31 .76 

List A Trial 3 10.13 3.66 11.43 1.66 31 1.54 .13 

List A Trial 4 11.65 2.48 12.43 1.47 36 1.28 .21 

List A Trial 5 11.57 2.52 12.62 1.66 42 1.62 .11 

 

Note. Recall is reported in raw scores (number of items recalled). 

*p<.05. **p<.01. ***p<.001 (two-tailed) 
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Table 4.7.  Independent Samples t-tests Between Children with CIs and NH Children 

in Experiment 2 

CVLT-C Variables CI Children 
(N=23) 

NH Children 
(N=21) 

   

 M SD M SD df t p 

List A Trial 1 7.35 1.97 6.86 2.29 42 .76 .45 

List A Trial 5 11.57 2.52 12.62 1.66 42 1.62 .11 

List B 6.83 2.25 6.62 1.50 42 .36 .72 

PI -.52 2.47 -.24 2.7 42 .36 .72 

SDFR 9.96 3.65 11.10 2.51 42 1.20 .24 

RI -1.61 2.31 -1.52 1.97 42 .13 .90 

Intrusions 5.83 9.32 3.2 3.64 41 1.18 .24 

Serial Clustering 2.11 1.94 3.41 1.97 41 2.16 .036 

Semantic Clustering 1.40 .47 1.38 .50 41 .13 .90 

Learning Slope 1.03 .67 1.33 .39 41 1.71 .095 

Primacy 29.70 6.04 29.95 3.80 41 .16 .87 

Recency 30.78 6.23 28.90 3.86 41 1.16 .47 

 

Note.  PI (proactive interference) was computed by subtracting List A Trial 1 from List B.  

RI (retroactive interference) was computed by subtracting List A Trial 5 from the SDFR 

(short-delay free recall). 
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Table 4.8.  Spearman’s Rank Correlational Analyses Between Harvard 

Sentences and the CVLT-C Performance Measures for the CI and NH 

Children in Experiment 2 

CVLT-C Variables CI Children 

(N=23) 

NH Children 

(N=21) 

List A Trial 1 .43* -.20 

List A Trial 5 .23 -.047 

List B .39 .019 

Proactive Interference (PI) -.006 .21 

Short-Delay Free Recall (SDFR) .21 .22 

Retroactive Interference (RI) -.09 .29 

Intrusions -.47* -.11 

Serial Clustering -.15 .48* 

Semantic Clustering -.11 -.26 

Learning Slope -.039 .29 

Primacy -.37 -.087 

Recency .26 -.25 

      

Note. Speech perception measures represent percent accuracy. Proactive interference 

was computed by subtracting List A Trial 1 from List B.  Retroactive interference was 

computed by subtracting List A Trial 5 from the Short-Delay Free Recall. 

*p<.05. **p<.01. ***p<.001 (two-tailed) 
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Table 4.9.  Spearman’s Rank Correlational Analyses Between Harvard Sentences and 

Serial Position Curve Subcomponents of the CVLT-C for the CI and NH Children in 

Experiment 2  

CVLT-C Serial Curve Subcomponents CI Children  
(N=23) 

NH Children  
(N=21) 

 

 
 

List A Trial 1:   Primacy 

 

.041 

 

-.28 

 

                          Middle .30 .011  

                          Recency .60** -.27  

List A Trial 5:   Primacy -.13 -.18  

                          Middle .22 -.12  

                          Recency .51* .19  

List B:               Primacy .035 -.15  

                          Middle .13 .30  

                          Recency .603** -.06  

 

Note. Speech perception measures represent percent accuracy. 

 *p<.05. **p<.01. ***p<.001 (two-tailed) 
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Figure Captions 

 
Figure 4.1.  Average number of words correctly recalled on the CVLT-C by the NH 

children and adults for each of the five List A learning trials and List B along with an 

overall mean score average across the five learning trials of List A in Experiment 1.  

Error bars represent standard error. 

Figure 4.2.  Top panel shows the serial position curve for List A Trial 1 showing the 

breakdown of average number of each item correctly recalled in Experiment 1. Bottom 

panel shows the serial position curve for List A trial 5 showing the breakdown of average 

number of each item correctly recalled in Experiment 1 with NH children and adults. 

Figure 4.3.  Average percent correct recall of items for each learning trial of List A from 

the primacy, middle, and recency portions of the serial position curve arranged by trials 

in Experiment 1 with NH children and adults.   

Figure 4.4.  Average percent correct recall of items from the primacy, middle, and 

recency portions of the serial position curve for all learning trails of List A and List B 

arranged by subcomponents in Experiment 1 with NH children and adults. 

Figure 4.5.  Average percent correct recall for serial position curve subcomponents of 

List A Trial 1 and List B for both NH children and adults in Experiment 1.   

Figure 4.6.  Average number of words correctly recalled on the CVLT-C by the CI 

children and NH controls for each of the five List A learning trials and List B along with 

an overall mean score average across the five learning trials of List A in Experiment 2.  

Error bars represent standard error. 

Figure 4.7.  Top panel shows the serial position curve for List A Trial 1 showing the 

breakdown of average number of each item correctly recalled in Experiment 2. Bottom 
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panel shows the serial position curve for List A trial 5 showing the breakdown of average 

number of each item correctly recalled in Experiment 2 with CI children and NH controls. 

Figure 4.8.  Average percent correct recall of items for each learning trial of List A from 

the primacy, middle, and recency portions of the serial position curve arranged by trials 

in Experiment 2 with CI children and NH controls.   

Figure 4.9.  Average percent correct recall of items from the primacy, middle, and 

recency portions of the serial position curve for all learning trails of List A and List B 

arranged by subcomponents in Experiment 2 with CI children and NH controls. 

Figure 4.10.  Average percent correct recall for serial position curve subcomponents of 

List A Trial 1 and List B for both CI children and NH controls in Experiment 2 and NH 

children from Experiment 1. 

 

 

 

 

 

 

 

 

 

 

 

 



 169 

Figure 4.1 
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Figure 4.2   
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Figure 4.3   
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Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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Figure 4.7 
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Figure 4.8 
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Figure 4.9 
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Figure 4.10 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

“Hearing loss is primarily a brain issue, not an ear issue.”   

(Flexer, 2011, p. S19) 

 

 The research reported in this dissertation was carried out to investigate the 

contribution of several core neurocognitive factors in speech perception when degraded 

and underspecified phonological and lexical representations of speech are presented to 

listeners.   More specifically, we wanted to understand the contribution of auditory 

attention, short-term memory, and verbal learning and memory to vocoded speech 

perception in normal-hearing (NH) children.  This research was motivated in part by the 

seminal study by Eisenberg, Martinez, Holowecky, and Pogorelsky (2002) who first used 

vocoded speech with NH children to evaluate performance on lexically controlled speech 

recognition tasks while varying the amounts of spectral information available in the 

signal.  While the authors did not extend the research methods to include any cognitive 

testing, the authors did suggest that variability observed in performance during degraded 

word recognition tasks was very likely a result of differences in processing abilities of 

verbal information in short-term memory.  Although it has been over ten years since this 

study was first published, no one has followed-up the study to investigate the authors’ 

suggestions about the important role of cognition and verbal learning in the perception of 

degraded speech. 
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 Since Eisenberg et al. (2002), numerous studies have used vocoded speech to 

investigate the effects of reduced spectral information on speech perception in NH 

children in hopes of better understanding the processing of speech by hearing-impaired 

children who have received cochlear implants (CIs) (Conway, Walk, Deocampo, Anaya, 

& Pisoni, in press; Dorman, Loizou, Kemp, & Kirk, 2000; Maidment, Kang, Stewart, & 

Amitay, 2014; Newman & Chatterjee, 2013; Vongpaisal, Trehub, Schellenberg, & van 

Lieshout, 2012; Warner-Czyz, Houston, & Hynan, 2014).  The use of spectrally-degraded 

vocoded speech is an important and very valuable research tool because it allows 

researchers to investigate factors influencing speech perception processes under 

challenging conditions and to replicate the hearing experience produced by CIs in NH 

children who have typically-developed cognitive systems.  While the previously 

mentioned studies have provided additional new knowledge and understanding of the 

perceptual processing and requirements for NH listeners to successfully perceive 

degraded speech, the involvement of cognition has largely been neglected.  The exclusion 

of tests to assess cognitive information processing abilities under these vocoded 

conditions is a serious problem because previous research with CI children has shown 

that speech perception is a multisensory process that is closely linked with numerous 

aspects of cognition (Beer, Kronenberger, & Pisoni, 2011; Burkholder & Pisoni, 2003; 

Cleary, Pisoni, & Kirk, 2000; Harris et al., 2013; Kronenberger, Pisoni, Henning, & 

Colson, 2013).    

 The first goal of the present research was to carry out a replication of Experiment 

2 from Eisenberg et al. (2002) to assess the robustness of the original findings that 

demonstrated the influence of word frequency and neighborhood density on the 
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recognition of vocoded speech by NH children.  We also extended the replication by 

including a group of NH young adults to serve as a benchmark comparison group.  We 

carried out additional analyses examining context benefit from words in sentences, added 

an expressive vocabulary assessment, and also investigated whether perceptual learning 

occurred during the two vocoded speech recognition tasks.  

 As described in Chapter 2, we successfully replicated the main findings from the 

Eisenberg et al. (2002) study by showing that both NH children and adults recognized 

lexically easy words better than lexically hard words in both isolation and in sentences 

and that accuracy for words in sentences was better than for the same words presented in 

isolation.  Successfully replicating the Eisenberg et al. (2002) study was critical to this 

research because if the familiarity and distinctiveness of a word affects recognition, then 

it strongly supports the suggestion for involvement of cognition in degraded speech 

perception and not just a reliance on quality of acoustic information available in the 

speech signal.  This replication was the motivation for the rest of the dissertation and was 

the logical prerequisite for any new research studies that make use of Eisenberg et al.’s 

(2002) original stimuli and methodology.  Additional analyses examining context benefit 

gain using speech perception data from Eisenberg et al.’s (2002) original study and the 

current study also showed that children with CIs were unable to use context efficiently to 

aid them in spoken word recognition when compared to NH children listening to vocoded 

speech.  This is another finding that provides support for the important contribution of 

cognitive functioning and abilities on speech perception.  We also found that expressive 

vocabulary scores showed stronger relations with vocoded speech perception abilities 

compared to receptive vocabulary scores.  Thus, children who encode words with 
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stronger memory traces needed for expressive recall are also those children who 

performed better on degraded speech recognition tasks.  Lastly, perceptual learning of 

degraded vocoded speech appeared to take place in NH children and adults in a relatively 

short period of time suggesting that rapid adaptation and adjustment are fundamental 

information processing skills that might promote robust speech recognition in challenging 

listening conditions.   

 The second goal of this research was to investigate the effects of neurocognitive 

functioning on the perception of degraded speech.  Specifically, we assessed relations 

between vocoded sentence perception and measures of auditory attention (NEPSY 

Auditory Attention and Response Set and a talker discrimination task) and short-term 

memory (visual digit and symbol spans) in NH children.  We chose auditory attention 

and short-term memory as our measures of cognition because previous research has 

shown these to be significant cognitive outcome measures related to spoken language 

development in children with CIs, who must process degraded speech as a result of 

limitations of the CI device (Cleary & Pisoni, 2002; Cleary, Pisoni, & Kirk, 2005; 

Dawson, Busby, McKay, & Clark, 2002; Eisenberg et al., 2002; Pisoni & Geers, 2000). 

 As described in Chapter 3, analyses revealed significant relations between 

performance on the neurocognitive measures and vocoded sentence perception task.  One 

unexpected finding was that only one of the measures of auditory attention (the talker 

discrimination task) was related to how well a child perceived vocoded sentences.  

Neither of the two NEPSY-2 subtests was found to be correlated with performance on 

vocoded speech recognition.  One explanation of this finding is that both the Auditory 

Attention and Response Set tasks were too easy and performance was close to ceiling.  
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However, both conditions of the talker discrimination task- a measure of the listener’s 

ability to attend to indexical properties of speech- were significantly correlated with 

vocoded speech recognition.  Additionally, because both the talker discrimination task 

and sentence perception task were presented under vocoded conditions, the relations 

found between the two measures may also be interpreted as reflecting individual 

differences in how well the children could process vocoded speech and control their 

attention to components of the speech signal.  Children who are better at perceiving 

vocoded speech would have an advantage on tasks using vocoded stimuli, such as the 

talker discrimination task.  Of special interest were the significant relations between both 

the visual digit and symbol short-term memory span measures and performance on the 

vocoded sentence recognition task.  These specific findings suggest that cognitive 

abilities supporting degraded speech perception are not modality-specific; that is, the 

cognitive abilities involved in perceiving speech may not be limited to the auditory 

domain and audibility of the signal.   

 The findings from Chapter 3 support the proposal that vocoded speech perception 

not only reflects only peripheral auditory processes, but also the contribution of more 

central cognitive processes as well.  The findings also suggest that auditory attention and 

short-term memory support spoken word recognition when there are suboptimal listening 

conditions present.  These findings are pertinent to populations of hearing-impaired 

listeners, who regularly receive transformed and impoverished acoustic signals and must 

activate compensatory cognitive strategies to maximize speech perception performance.  

Knowing specific cognitive factors that are related to performance on degraded speech 

perception and spoken word recognition can not only help in identifying children who 
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may be at high risk for developing delays in speech and language but may also help with 

developing novel targeted interventions to increase cognitive processing abilities that 

underlie speech perception and spoken language processing. 

 Lastly, we used the California Verbal Learning Test – Children’s Edition (CVLT-

C) to investigate verbal learning and memory in NH and CI children and to assess the 

relations between the perception of spectrally-degraded speech and several core 

foundational verbal learning and memory processes.  The CVLT-C is a “high-yield” 

standardized neuropsychological assessment instrument that uses a multi-trial free recall 

task.  Using the CVLT-C to study basic verbal learning and memory provided us with a 

unique opportunity to examine patterns of learning and memory within- and between-

groups and assess how these measures relate to degraded speech recognition abilities.  

Experiment 1 investigated relations between verbal learning and memory and vocoded 

speech perception in NH children and adults.  Experiment 2 investigated relations 

between verbal learning and memory and speech perception in a group of children with 

CIs and age-matched NH controls.  In addition to examining measures obtained from the 

CVLT-C scoring program, we decomposed recall performance for each test list into three 

serial curve subcomponents: recency, middle, and primacy.  This procedure allowed us to 

uncover and investigate patterns of learning and memory that were masked by the 

original scoring program which summed over all the individual learning trials and serial 

positions in the test lists. 

 As described in Chapter 4, many novel significant findings were uncovered about 

how CI and NH children encode, store and retrieve verbally presented sequential 

information.  First, the results indicated that listeners who performed better on the speech 
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perception tests demonstrated greater recall of information and a faster learning rate than 

listeners who did poorly on these tests.  Thus, stronger speech perception skills were 

related to better verbal learning and memory.  Secondly, we found significant differences 

in verbal learning strategies based on the serial position of words in the list.  The ability 

of NH listeners to recall test items from the earlier portions of the list was significantly 

related to performance on degraded speech perception measures (Experiment 1) whereas 

recall from later portions of the list was significantly related to speech perception 

measures for the CI children (Experiment 2).  Additionally, we found that both NH 

children and adults who used serial recall strategies (serial clustering) were better at 

recognizing vocoded speech, a finding that was not observed in the CI children’s data.  

Therefore, it appears that children with CIs may rely more heavily on recency memory 

because they have less efficient verbal rehearsal and organizational strategies (serial 

recall) to help them transfer spoken words from short-term memory into long-term 

memory in a short period of time during the multi-trial free recall task.   

 Taken together, the results obtained from these three studies provide additional 

support and new evidence for the involvement of cognitive factors- specifically, auditory 

attention, short-term memory, and verbal memory and learning- in the perception of 

vocoded speech by NH children.  It is also likely that this relationship between 

neurocognitive functioning and vocoded speech perception is bidirectional where speech 

perception abilities support neurocognitive functioning.  Because these analyses are 

correlational in nature, it is not possible to determine the direction or degree of causality, 

but we would be remiss to not acknowledge the likely reciprocal nature between speech 

perception and neurocognitive functioning.   
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 The research findings from these studies are theoretically significant because they 

represent the first investigations to explore relations between neurocognitive performance 

in typically-developing NH children and their ability to perceive vocoded speech using 

degraded signals that yield underspecified phonological and lexical representations.  

Since we held the amount of spectral information presented to all of the NH children 

constant (all received 4-channel simulations), the variability in outcome performance 

demonstrates that underlying cognitive abilities are being utilized as compensation for the 

reduced and degraded acoustic information in the signal.  As a result, this research 

contributes to basic cognitive and speech perception sciences in many ways.  Children 

rarely encounter environments absent of competing sounds or distractions so simulating 

an environment where information is “lost” in the signal can help us understand what 

cognitive processes compensate for the reduced information in the signal.  Also, using 

spectrally-degraded speech allowed us the unique opportunity to learn about relations 

between neurocognitive functioning and degraded speech perception that are relevant to 

clinical populations with hearing impairment without needing to control for factors 

related to hearing loss.   

 Currently, the overwhelming majority of research in vocoded speech perception 

has focused on the amount of spectral information in the signal needed by a NH listener 

to perceive vocoded speech.  While this is important fundamental knowledge for 

understanding perceptual processing of speech, it does not fully explain the variability 

observed in performance by both NH and CI children.  Findings from the current research 

in which the audibility of the speech signal was held constant suggest that some 

additional sources of variability in performance outcome measures reflect individual 
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differences and variability in basic cognitive abilities.  Knowing the neurocognitive 

processes that support perception of degraded speech is critical for developing much 

needed targeted interventions, especially for hearing impaired children with CIs who may 

not be performing optimally.  For children with CIs, the primary focus of many clinicians 

is to increase the quantity and quality of acoustic input transmitted through the CI.  

However, when options become limited for improving the perceptual input, other 

avenues for intervention need to be explored.  If researchers and clinicians knew more 

about the specific neurocognitive factors that underlie degraded speech perception, novel 

interventions targeting those relevant neurocognitive factors could be tailored to produce 

downstream improvements in speech perception under challenging conditions.  Although 

this research only explored a few areas of neurocognitive processing that contribute to the 

perception of degraded speech, it has established the need for extending future research in 

hearing impaired children with CIs to include new measures of cognition such as 

controlled attention, verbal learning, and memory.  The research studies reported here 

adopted a “whole systems approach” by incorporating both perceptual and cognitive 

measures in an attempt to explain variability in performance and will motivate future 

research to follow the same approach.   

 There are several limitations to this research that should be acknowledged and 

considered when interpreting the results.   First, because the NH children and adults were 

only acutely exposed to vocoded speech, analyses investigating the neurocognitive 

processes that support vocoded speech reflect this brief exposure to degraded speech 

signals.  The NH listeners also showed evidence of rapid perceptual learning, something 

we did not control for and should consider for future studies.  Lastly, we used small 
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groups of listeners and the research studies consisted largely of correlational analyses.  

The correlational analyses presented in this dissertation provided valuable new insights 

into some of the basic foundational neurocognitive processes related to vocoded speech 

perception, but it is important to recognize that correlation does not equal causation.  

Future research should use larger samples and carry out specific experimental 

manipulations of variables (e.g. manipulating cognitive load or amount of spectral 

degradation) to test hypotheses about the underlying processing operations.  

 This research provides motivation and a foundation for the continued use of 

vocoded speech in investigating ties between neurocognitive functioning and degraded 

speech perception.  Future research should investigate neurocognitive processes related to 

other types of speech degradation.  It would be important to know if the cognitive 

processes involved are specific to certain types of noise or degradation.  Also, presenting 

the CVLT-C visually, eliminating issues of audibility entirely, would be beneficial for 

use with hearing impaired populations because it would reduce possible confounds 

related to the quality of the initial sensory and perceptual input received by the listener. 

 In summary, the findings reported in the three studies in this dissertation represent 

some of the first attempts to uncover the core information processing mechanisms used in 

the perception of vocoded spectrally-degraded speech in young children. The use of 

vocoded spectrally-degraded speech has become an important research tool to study 

speech perception and spoken language processing in NH populations using a simulation 

of the acoustic output of a CI.   Human speech perception and spoken language 

processing is extremely robust over a wide range of listening conditions. It is now 

becoming clear that robust performance reflects the operation of the entire information 
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processing system working together as a functionally integrated system. While audibility 

and early sensory processing and encoding of speech and other complex signals play an 

important role in the initial registration of auditory signals by the brain and nervous 

system, the contribution of the rest of the system and the interactions among components 

of the system can no longer be ignored and relegated to the side lines. As Ronnberg and 

his colleagues have stated recently--“Cognition Counts” --and it is time that these central 

components of the language comprehension system are fully acknowledged and studied 

alongside the early sensory processing by the auditory periphery (Rönnberg, Rudner, Foo, 

& Lunner, 2008).    
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Appendix A 

 
Eisenberg’s Lexically Controlled Test Words 

“Easy” Words  “Hard” Words 

1. Kind 31. Please  1. Tell 31. Knows 

2. Airplane 32. Help  2. Sleep 32. Leave 

3. Brown 33. Puzzle  3. Belly 33. Money 

4. Stand 34. Don’t  4. Bunny 34. Piggy 

5. Broken 35. Scribble  5. Hid 35. Moved 

6. Truck 36. Door  6. Room 36. Books 

7. Children 37. Seven  7. Likes 37. Gum 

8. Cried 38. Eggs  8. Share 38. Tiny 

9. Farm 39. Street  9. Butter 39. Box 

10. Broke 40. Just  10. Son 40. Tummy 

11. Finger 41. Grey  11. Played 41. Ten 

12. School 42. Shoelace  12. Chickens 42. Days 

13. Friend 43. Wonder  13. Ever 43. Start 

14. Thinks 44. Brought  14. Find 44. Walking 

15. Lipstick 45. Food  15. Toys 45. Seat 

16. Give 46. Which  16. Grampa 46. Taught 

17. Monkey 47. Space  17. Laughed 47. Us 

18. Juice 48. Black  18. Goats 48. Trick 

19. Wash 49. Its  19. Dad 49. Worm 

20. Ducks 50. Watch  20. Came 50. Stuck 

21. Myself 51. Fish  21. Hello 51. Pool 

22. Draw 52. Lets  22. Boys 52. Guess 

23. Little 53. Gas  23. Turns 53. Were 

24. Snake 54. From  24. Locking 54. Rain 

25. Open 55. Girl  25. Many 55. Cups 

26. Green 56. Takes  26. Kids 56. Pink 

27. First 57. Milk  27. Learn 57. Bag 

28. String 58. Break  28. Lost 58. Both 

29. Stay 59. When  29. Mommy’s 59. Cats 

30. Pocket 60. Jump  30. Ring 60. Mine 
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Appendix B 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eisenberg’s Lexically Controlled Test Sentences 

“Easy” Sentences  “Hard” Sentences 

   

1. That kind of airplane is brown.  1. Tell him to sleep on his belly. 
2. You can’t stand on your broken truck.  2. The bunny hid in my room. 
3. The children cried at the farm.  3. She likes to share the butter. 
4. I broke my finger at school.  4. His son played with the chickens. 
5. My friend thinks her lipstick is cool.  5. Call if you ever find the toys. 
6. Give the monkey some juice.  6. Grampa laughed at the goats. 
7. I can wash the ducks myself.  7. Dad came to say hello. 
8. I can draw a little snake.  8. The boys took turns locking the car. 
9. Open the green one first.  9. Many kids can learn to sing. 
10. The string can stay in my pocket.  10. She lost her mommy’s ring. 
11. Please help her with the puzzle.  11. She knows where to leave the money. 
12. Don’t scribble on the door.  12. The piggy moved the books. 
13. I saw seven eggs in the street.  13. The gum is in the tiny box. 
14. I just found the grey shoelace.  14. His tummy hurt for ten days. 
15. I wonder who brought the food.  15. Start walking to your seat. 
16. I know which space is black.  16. He taught us that funny trick. 
17. Its always fun to watch the fish.  17. The worm was stuck in the pool. 
18. Lets buy gas from that man.  18. I guess you were in the rain. 
19. I hope the girl takes some milk.  19. The cups are in the pink bag. 
20. The chair could break when I jump.  20. Both of the naughty cats are mine. 
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Appendix C 

 

Example response sheet from WIPI assessment 
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Appendix D 

 

NEPSY Auditory Attention and Response Set response sheet 
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Appendix E 

 

Response screen for Talker Discrimination task. 
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Appendix F 

 

Sentence Pairings for Talker Discrimination Task 
 

Fixed-Sentence Condition 
 

Sentence 1 
 

Sentence 2 
The juice of lemons makes fine punch. The juice of lemons makes fine punch. 

  
 

Varied-Sentence Condition 

 
Sentence 1 

 
Sentence 2 

A wisp of cloud hung in the blue air. The pearl was worn in a thin silver ring. 
A wisp of cloud hung in the blue air. The small pup gnawed a hole in the sock. 
The horn of the car woke the sleeping cop. The juice of lemons makes fine punch. 
The box was thrown beside the parked truck. The set of china hit the floor with a crash. 
The two met while playing on the sand. The wide road shimmered in the hot sun. 
A pound of sugar costs more than eggs. The ship was torn apart on the sharp reef. 
The crooked maze failed to fool the mouse. The salt breeze came across from the sea. 
The ink stain dried on the finished page. The colt reared and threw the tall rider. 
The lazy cow lay in the cool grass. The fruit peel was cut in thick slices. 
The frosty air passed through the coat. The meal was cooked before the bell rang. 
The boy was there when the sun rose. The hat brim was wide and too droopy. 
The wagon moved on well-oiled wheels. The soft cushion broke the man’s fall. 
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Appendix G 

 

Example sequence (set size of 2) of forward visual digit span task 
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Appendix H 

 

Example sequence (set size of 2) of forward visual symbol span task 
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